|  | //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Subclass of MipsDAGToDAGISel specialized for mips32/64. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MipsSEISelDAGToDAG.h" | 
|  | #include "MCTargetDesc/MipsBaseInfo.h" | 
|  | #include "Mips.h" | 
|  | #include "MipsAnalyzeImmediate.h" | 
|  | #include "MipsMachineFunction.h" | 
|  | #include "MipsRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "mips-isel" | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { | 
|  | Subtarget = &TM.getSubtarget<MipsSubtarget>(); | 
|  | if (Subtarget->inMips16Mode()) | 
|  | return false; | 
|  | return MipsDAGToDAGISel::runOnMachineFunction(MF); | 
|  | } | 
|  |  | 
|  | void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, | 
|  | MachineFunction &MF) { | 
|  | MachineInstrBuilder MIB(MF, &MI); | 
|  | unsigned Mask = MI.getOperand(1).getImm(); | 
|  | unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit; | 
|  |  | 
|  | if (Mask & 1) | 
|  | MIB.addReg(Mips::DSPPos, Flag); | 
|  |  | 
|  | if (Mask & 2) | 
|  | MIB.addReg(Mips::DSPSCount, Flag); | 
|  |  | 
|  | if (Mask & 4) | 
|  | MIB.addReg(Mips::DSPCarry, Flag); | 
|  |  | 
|  | if (Mask & 8) | 
|  | MIB.addReg(Mips::DSPOutFlag, Flag); | 
|  |  | 
|  | if (Mask & 16) | 
|  | MIB.addReg(Mips::DSPCCond, Flag); | 
|  |  | 
|  | if (Mask & 32) | 
|  | MIB.addReg(Mips::DSPEFI, Flag); | 
|  | } | 
|  |  | 
|  | unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { | 
|  | switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { | 
|  | default: | 
|  | llvm_unreachable("Could not map int to register"); | 
|  | case 0: return Mips::MSAIR; | 
|  | case 1: return Mips::MSACSR; | 
|  | case 2: return Mips::MSAAccess; | 
|  | case 3: return Mips::MSASave; | 
|  | case 4: return Mips::MSAModify; | 
|  | case 5: return Mips::MSARequest; | 
|  | case 6: return Mips::MSAMap; | 
|  | case 7: return Mips::MSAUnmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, | 
|  | const MachineInstr& MI) { | 
|  | unsigned DstReg = 0, ZeroReg = 0; | 
|  |  | 
|  | // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". | 
|  | if ((MI.getOpcode() == Mips::ADDiu) && | 
|  | (MI.getOperand(1).getReg() == Mips::ZERO) && | 
|  | (MI.getOperand(2).getImm() == 0)) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | ZeroReg = Mips::ZERO; | 
|  | } else if ((MI.getOpcode() == Mips::DADDiu) && | 
|  | (MI.getOperand(1).getReg() == Mips::ZERO_64) && | 
|  | (MI.getOperand(2).getImm() == 0)) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | ZeroReg = Mips::ZERO_64; | 
|  | } | 
|  |  | 
|  | if (!DstReg) | 
|  | return false; | 
|  |  | 
|  | // Replace uses with ZeroReg. | 
|  | for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), | 
|  | E = MRI->use_end(); U != E;) { | 
|  | MachineOperand &MO = *U; | 
|  | unsigned OpNo = U.getOperandNo(); | 
|  | MachineInstr *MI = MO.getParent(); | 
|  | ++U; | 
|  |  | 
|  | // Do not replace if it is a phi's operand or is tied to def operand. | 
|  | if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) | 
|  | continue; | 
|  |  | 
|  | MO.setReg(ZeroReg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | if (!MipsFI->globalBaseRegSet()) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock &MBB = MF.front(); | 
|  | MachineBasicBlock::iterator I = MBB.begin(); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); | 
|  | DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc(); | 
|  | unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | RC = (Subtarget->isABI_N64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; | 
|  |  | 
|  | V0 = RegInfo.createVirtualRegister(RC); | 
|  | V1 = RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | if (Subtarget->isABI_N64()) { | 
|  | MF.getRegInfo().addLiveIn(Mips::T9_64); | 
|  | MBB.addLiveIn(Mips::T9_64); | 
|  |  | 
|  | // lui $v0, %hi(%neg(%gp_rel(fname))) | 
|  | // daddu $v1, $v0, $t9 | 
|  | // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) | 
|  | const GlobalValue *FName = MF.getFunction(); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) | 
|  | .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) | 
|  | .addReg(Mips::T9_64); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) | 
|  | .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MF.getTarget().getRelocationModel() == Reloc::Static) { | 
|  | // Set global register to __gnu_local_gp. | 
|  | // | 
|  | // lui   $v0, %hi(__gnu_local_gp) | 
|  | // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) | 
|  | .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) | 
|  | .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MF.getRegInfo().addLiveIn(Mips::T9); | 
|  | MBB.addLiveIn(Mips::T9); | 
|  |  | 
|  | if (Subtarget->isABI_N32()) { | 
|  | // lui $v0, %hi(%neg(%gp_rel(fname))) | 
|  | // addu $v1, $v0, $t9 | 
|  | // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) | 
|  | const GlobalValue *FName = MF.getFunction(); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) | 
|  | .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) | 
|  | .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Subtarget->isABI_O32()); | 
|  |  | 
|  | // For O32 ABI, the following instruction sequence is emitted to initialize | 
|  | // the global base register: | 
|  | // | 
|  | //  0. lui   $2, %hi(_gp_disp) | 
|  | //  1. addiu $2, $2, %lo(_gp_disp) | 
|  | //  2. addu  $globalbasereg, $2, $t9 | 
|  | // | 
|  | // We emit only the last instruction here. | 
|  | // | 
|  | // GNU linker requires that the first two instructions appear at the beginning | 
|  | // of a function and no instructions be inserted before or between them. | 
|  | // The two instructions are emitted during lowering to MC layer in order to | 
|  | // avoid any reordering. | 
|  | // | 
|  | // Register $2 (Mips::V0) is added to the list of live-in registers to ensure | 
|  | // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) | 
|  | // reads it. | 
|  | MF.getRegInfo().addLiveIn(Mips::V0); | 
|  | MBB.addLiveIn(Mips::V0); | 
|  | BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) | 
|  | .addReg(Mips::V0).addReg(Mips::T9); | 
|  | } | 
|  |  | 
|  | void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { | 
|  | initGlobalBaseReg(MF); | 
|  |  | 
|  | MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  |  | 
|  | for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE; | 
|  | ++MFI) | 
|  | for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) { | 
|  | if (I->getOpcode() == Mips::RDDSP) | 
|  | addDSPCtrlRegOperands(false, *I, MF); | 
|  | else if (I->getOpcode() == Mips::WRDSP) | 
|  | addDSPCtrlRegOperands(true, *I, MF); | 
|  | else | 
|  | replaceUsesWithZeroReg(MRI, *I); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag, | 
|  | SDValue CmpLHS, SDLoc DL, | 
|  | SDNode *Node) const { | 
|  | unsigned Opc = InFlag.getOpcode(); (void)Opc; | 
|  |  | 
|  | assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) || | 
|  | (Opc == ISD::SUBC || Opc == ISD::SUBE)) && | 
|  | "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"); | 
|  |  | 
|  | unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu; | 
|  | if (Subtarget->isGP64bit()) { | 
|  | SLTuOp = Mips::SLTu64; | 
|  | ADDuOp = Mips::DADDu; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) }; | 
|  | SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  |  | 
|  | SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops); | 
|  |  | 
|  | if (Subtarget->isGP64bit()) { | 
|  | // On 64-bit targets, sltu produces an i64 but our backend currently says | 
|  | // that SLTu64 produces an i32. We need to fix this in the long run but for | 
|  | // now, just make the DAG type-correct by asserting the upper bits are zero. | 
|  | Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT, | 
|  | CurDAG->getTargetConstant(0, VT), | 
|  | SDValue(Carry, 0), | 
|  | CurDAG->getTargetConstant(Mips::sub_32, VT)); | 
|  | } | 
|  |  | 
|  | SDNode *AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, | 
|  | SDValue(Carry, 0), RHS); | 
|  |  | 
|  | return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, | 
|  | SDValue(AddCarry, 0)); | 
|  | } | 
|  |  | 
|  | /// Match frameindex | 
|  | bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { | 
|  | EVT ValTy = Addr.getValueType(); | 
|  |  | 
|  | Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); | 
|  | Offset = CurDAG->getTargetConstant(0, ValTy); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Match frameindex+offset and frameindex|offset | 
|  | bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | unsigned OffsetBits) const { | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); | 
|  | if (isIntN(OffsetBits, CN->getSExtValue())) { | 
|  | EVT ValTy = Addr.getValueType(); | 
|  |  | 
|  | // If the first operand is a FI, get the TargetFI Node | 
|  | if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode> | 
|  | (Addr.getOperand(0))) | 
|  | Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); | 
|  | else | 
|  | Base = Addr.getOperand(0); | 
|  |  | 
|  | Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ComplexPattern used on MipsInstrInfo | 
|  | /// Used on Mips Load/Store instructions | 
|  | bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | // if Address is FI, get the TargetFrameIndex. | 
|  | if (selectAddrFrameIndex(Addr, Base, Offset)) | 
|  | return true; | 
|  |  | 
|  | // on PIC code Load GA | 
|  | if (Addr.getOpcode() == MipsISD::Wrapper) { | 
|  | Base   = Addr.getOperand(0); | 
|  | Offset = Addr.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (TM.getRelocationModel() != Reloc::PIC_) { | 
|  | if ((Addr.getOpcode() == ISD::TargetExternalSymbol || | 
|  | Addr.getOpcode() == ISD::TargetGlobalAddress)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Addresses of the form FI+const or FI|const | 
|  | if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) | 
|  | return true; | 
|  |  | 
|  | // Operand is a result from an ADD. | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | // When loading from constant pools, load the lower address part in | 
|  | // the instruction itself. Example, instead of: | 
|  | //  lui $2, %hi($CPI1_0) | 
|  | //  addiu $2, $2, %lo($CPI1_0) | 
|  | //  lwc1 $f0, 0($2) | 
|  | // Generate: | 
|  | //  lui $2, %hi($CPI1_0) | 
|  | //  lwc1 $f0, %lo($CPI1_0)($2) | 
|  | if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || | 
|  | Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { | 
|  | SDValue Opnd0 = Addr.getOperand(1).getOperand(0); | 
|  | if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || | 
|  | isa<JumpTableSDNode>(Opnd0)) { | 
|  | Base = Addr.getOperand(0); | 
|  | Offset = Opnd0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ComplexPattern used on MipsInstrInfo | 
|  | /// Used on Mips Load/Store instructions | 
|  | bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | // Operand is a result from an ADD. | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | Base = Addr.getOperand(0); | 
|  | Offset = Addr.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | Base = Addr; | 
|  | Offset = CurDAG->getTargetConstant(0, Addr.getValueType()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | return selectAddrRegImm(Addr, Base, Offset) || | 
|  | selectAddrDefault(Addr, Base, Offset); | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | if (selectAddrFrameIndex(Addr, Base, Offset)) | 
|  | return true; | 
|  |  | 
|  | if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) | 
|  | bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | if (selectAddrFrameIndex(Addr, Base, Offset)) | 
|  | return true; | 
|  |  | 
|  | if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | return selectAddrRegImm12(Addr, Base, Offset) || | 
|  | selectAddrDefault(Addr, Base, Offset); | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | if (selectAddrRegImm10(Addr, Base, Offset)) | 
|  | return true; | 
|  |  | 
|  | if (selectAddrDefault(Addr, Base, Offset)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | // | 
|  | // Returns true and sets Imm if: | 
|  | // * MSA is enabled | 
|  | // * N is a ISD::BUILD_VECTOR representing a constant splat | 
|  | bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const { | 
|  | if (!Subtarget->hasMSA()) | 
|  | return false; | 
|  |  | 
|  | BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); | 
|  |  | 
|  | if (!Node) | 
|  | return false; | 
|  |  | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, 8, | 
|  | !Subtarget->isLittle())) | 
|  | return false; | 
|  |  | 
|  | Imm = SplatValue; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | // | 
|  | // In addition to the requirements of selectVSplat(), this function returns | 
|  | // true and sets Imm if: | 
|  | // * The splat value is the same width as the elements of the vector | 
|  | // * The splat value fits in an integer with the specified signed-ness and | 
|  | //   width. | 
|  | // | 
|  | // This function looks through ISD::BITCAST nodes. | 
|  | // TODO: This might not be appropriate for big-endian MSA since BITCAST is | 
|  | //       sometimes a shuffle in big-endian mode. | 
|  | // | 
|  | // It's worth noting that this function is not used as part of the selection | 
|  | // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] | 
|  | // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in | 
|  | // MipsSEDAGToDAGISel::selectNode. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, | 
|  | unsigned ImmBitSize) const { | 
|  | APInt ImmValue; | 
|  | EVT EltTy = N->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | if (selectVSplat (N.getNode(), ImmValue) && | 
|  | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { | 
|  | if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || | 
|  | (!Signed && ImmValue.isIntN(ImmBitSize))) { | 
|  | Imm = CurDAG->getTargetConstant(ImmValue, EltTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm1(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 1); | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm2(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 2); | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm3(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 3); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm4(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 4); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm5(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 5); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm6(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 6); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatUimm8(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, false, 8); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats. | 
|  | bool MipsSEDAGToDAGISel:: | 
|  | selectVSplatSimm5(SDValue N, SDValue &Imm) const { | 
|  | return selectVSplatCommon(N, Imm, true, 5); | 
|  | } | 
|  |  | 
|  | // Select constant vector splats whose value is a power of 2. | 
|  | // | 
|  | // In addition to the requirements of selectVSplat(), this function returns | 
|  | // true and sets Imm if: | 
|  | // * The splat value is the same width as the elements of the vector | 
|  | // * The splat value is a power of two. | 
|  | // | 
|  | // This function looks through ISD::BITCAST nodes. | 
|  | // TODO: This might not be appropriate for big-endian MSA since BITCAST is | 
|  | //       sometimes a shuffle in big-endian mode. | 
|  | bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { | 
|  | APInt ImmValue; | 
|  | EVT EltTy = N->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | if (selectVSplat (N.getNode(), ImmValue) && | 
|  | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { | 
|  | int32_t Log2 = ImmValue.exactLogBase2(); | 
|  |  | 
|  | if (Log2 != -1) { | 
|  | Imm = CurDAG->getTargetConstant(Log2, EltTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Select constant vector splats whose value only has a consecutive sequence | 
|  | // of left-most bits set (e.g. 0b11...1100...00). | 
|  | // | 
|  | // In addition to the requirements of selectVSplat(), this function returns | 
|  | // true and sets Imm if: | 
|  | // * The splat value is the same width as the elements of the vector | 
|  | // * The splat value is a consecutive sequence of left-most bits. | 
|  | // | 
|  | // This function looks through ISD::BITCAST nodes. | 
|  | // TODO: This might not be appropriate for big-endian MSA since BITCAST is | 
|  | //       sometimes a shuffle in big-endian mode. | 
|  | bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { | 
|  | APInt ImmValue; | 
|  | EVT EltTy = N->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | if (selectVSplat(N.getNode(), ImmValue) && | 
|  | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { | 
|  | // Extract the run of set bits starting with bit zero from the bitwise | 
|  | // inverse of ImmValue, and test that the inverse of this is the same | 
|  | // as the original value. | 
|  | if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { | 
|  |  | 
|  | Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Select constant vector splats whose value only has a consecutive sequence | 
|  | // of right-most bits set (e.g. 0b00...0011...11). | 
|  | // | 
|  | // In addition to the requirements of selectVSplat(), this function returns | 
|  | // true and sets Imm if: | 
|  | // * The splat value is the same width as the elements of the vector | 
|  | // * The splat value is a consecutive sequence of right-most bits. | 
|  | // | 
|  | // This function looks through ISD::BITCAST nodes. | 
|  | // TODO: This might not be appropriate for big-endian MSA since BITCAST is | 
|  | //       sometimes a shuffle in big-endian mode. | 
|  | bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { | 
|  | APInt ImmValue; | 
|  | EVT EltTy = N->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | if (selectVSplat(N.getNode(), ImmValue) && | 
|  | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { | 
|  | // Extract the run of set bits starting with bit zero, and test that the | 
|  | // result is the same as the original value | 
|  | if (ImmValue == (ImmValue & ~(ImmValue + 1))) { | 
|  | Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, | 
|  | SDValue &Imm) const { | 
|  | APInt ImmValue; | 
|  | EVT EltTy = N->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | if (selectVSplat(N.getNode(), ImmValue) && | 
|  | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { | 
|  | int32_t Log2 = (~ImmValue).exactLogBase2(); | 
|  |  | 
|  | if (Log2 != -1) { | 
|  | Imm = CurDAG->getTargetConstant(Log2, EltTy); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) { | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | /// | 
|  | // Instruction Selection not handled by the auto-generated | 
|  | // tablegen selection should be handled here. | 
|  | /// | 
|  | SDNode *Result; | 
|  |  | 
|  | switch(Opcode) { | 
|  | default: break; | 
|  |  | 
|  | case ISD::SUBE: { | 
|  | SDValue InFlag = Node->getOperand(2); | 
|  | unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu; | 
|  | Result = selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node); | 
|  | return std::make_pair(true, Result); | 
|  | } | 
|  |  | 
|  | case ISD::ADDE: { | 
|  | if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC. | 
|  | break; | 
|  | SDValue InFlag = Node->getOperand(2); | 
|  | unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu; | 
|  | Result = selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node); | 
|  | return std::make_pair(true, Result); | 
|  | } | 
|  |  | 
|  | case ISD::ConstantFP: { | 
|  | ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); | 
|  | if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { | 
|  | if (Subtarget->isGP64bit()) { | 
|  | SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, | 
|  | Mips::ZERO_64, MVT::i64); | 
|  | Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero); | 
|  | } else if (Subtarget->isFP64bit()) { | 
|  | SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, | 
|  | Mips::ZERO, MVT::i32); | 
|  | Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64, | 
|  | Zero, Zero); | 
|  | } else { | 
|  | SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, | 
|  | Mips::ZERO, MVT::i32); | 
|  | Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero, | 
|  | Zero); | 
|  | } | 
|  |  | 
|  | return std::make_pair(true, Result); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::Constant: { | 
|  | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); | 
|  | unsigned Size = CN->getValueSizeInBits(0); | 
|  |  | 
|  | if (Size == 32) | 
|  | break; | 
|  |  | 
|  | MipsAnalyzeImmediate AnalyzeImm; | 
|  | int64_t Imm = CN->getSExtValue(); | 
|  |  | 
|  | const MipsAnalyzeImmediate::InstSeq &Seq = | 
|  | AnalyzeImm.Analyze(Imm, Size, false); | 
|  |  | 
|  | MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); | 
|  | SDLoc DL(CN); | 
|  | SDNode *RegOpnd; | 
|  | SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), | 
|  | MVT::i64); | 
|  |  | 
|  | // The first instruction can be a LUi which is different from other | 
|  | // instructions (ADDiu, ORI and SLL) in that it does not have a register | 
|  | // operand. | 
|  | if (Inst->Opc == Mips::LUi64) | 
|  | RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); | 
|  | else | 
|  | RegOpnd = | 
|  | CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, | 
|  | CurDAG->getRegister(Mips::ZERO_64, MVT::i64), | 
|  | ImmOpnd); | 
|  |  | 
|  | // The remaining instructions in the sequence are handled here. | 
|  | for (++Inst; Inst != Seq.end(); ++Inst) { | 
|  | ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), | 
|  | MVT::i64); | 
|  | RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, | 
|  | SDValue(RegOpnd, 0), ImmOpnd); | 
|  | } | 
|  |  | 
|  | return std::make_pair(true, RegOpnd); | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case Intrinsic::mips_cfcmsa: { | 
|  | SDValue ChainIn = Node->getOperand(0); | 
|  | SDValue RegIdx = Node->getOperand(2); | 
|  | SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, | 
|  | getMSACtrlReg(RegIdx), MVT::i32); | 
|  | return std::make_pair(true, Reg.getNode()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case Intrinsic::mips_move_v: | 
|  | // Like an assignment but will always produce a move.v even if | 
|  | // unnecessary. | 
|  | return std::make_pair(true, | 
|  | CurDAG->getMachineNode(Mips::MOVE_V, DL, | 
|  | Node->getValueType(0), | 
|  | Node->getOperand(1))); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_VOID: { | 
|  | switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case Intrinsic::mips_ctcmsa: { | 
|  | SDValue ChainIn = Node->getOperand(0); | 
|  | SDValue RegIdx  = Node->getOperand(2); | 
|  | SDValue Value   = Node->getOperand(3); | 
|  | SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, | 
|  | getMSACtrlReg(RegIdx), Value); | 
|  | return std::make_pair(true, ChainOut.getNode()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case MipsISD::ThreadPointer: { | 
|  | EVT PtrVT = getTargetLowering()->getPointerTy(); | 
|  | unsigned RdhwrOpc, DestReg; | 
|  |  | 
|  | if (PtrVT == MVT::i32) { | 
|  | RdhwrOpc = Mips::RDHWR; | 
|  | DestReg = Mips::V1; | 
|  | } else { | 
|  | RdhwrOpc = Mips::RDHWR64; | 
|  | DestReg = Mips::V1_64; | 
|  | } | 
|  |  | 
|  | SDNode *Rdhwr = | 
|  | CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node), | 
|  | Node->getValueType(0), | 
|  | CurDAG->getRegister(Mips::HWR29, MVT::i32)); | 
|  | SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, | 
|  | SDValue(Rdhwr, 0)); | 
|  | SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); | 
|  | ReplaceUses(SDValue(Node, 0), ResNode); | 
|  | return std::make_pair(true, ResNode.getNode()); | 
|  | } | 
|  |  | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // Select appropriate ldi.[bhwd] instructions for constant splats of | 
|  | // 128-bit when MSA is enabled. Fixup any register class mismatches that | 
|  | // occur as a result. | 
|  | // | 
|  | // This allows the compiler to use a wider range of immediates than would | 
|  | // otherwise be allowed. If, for example, v4i32 could only use ldi.h then | 
|  | // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, | 
|  | // 0x01010101 } without using a constant pool. This would be sub-optimal | 
|  | // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the | 
|  | // same set/ of registers. Similarly, ldi.h isn't capable of producing { | 
|  | // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. | 
|  |  | 
|  | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | unsigned LdiOp; | 
|  | EVT ResVecTy = BVN->getValueType(0); | 
|  | EVT ViaVecTy; | 
|  |  | 
|  | if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) | 
|  | return std::make_pair(false, nullptr); | 
|  |  | 
|  | if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, 8, | 
|  | !Subtarget->isLittle())) | 
|  | return std::make_pair(false, nullptr); | 
|  |  | 
|  | switch (SplatBitSize) { | 
|  | default: | 
|  | return std::make_pair(false, nullptr); | 
|  | case 8: | 
|  | LdiOp = Mips::LDI_B; | 
|  | ViaVecTy = MVT::v16i8; | 
|  | break; | 
|  | case 16: | 
|  | LdiOp = Mips::LDI_H; | 
|  | ViaVecTy = MVT::v8i16; | 
|  | break; | 
|  | case 32: | 
|  | LdiOp = Mips::LDI_W; | 
|  | ViaVecTy = MVT::v4i32; | 
|  | break; | 
|  | case 64: | 
|  | LdiOp = Mips::LDI_D; | 
|  | ViaVecTy = MVT::v2i64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!SplatValue.isSignedIntN(10)) | 
|  | return std::make_pair(false, nullptr); | 
|  |  | 
|  | SDValue Imm = CurDAG->getTargetConstant(SplatValue, | 
|  | ViaVecTy.getVectorElementType()); | 
|  |  | 
|  | SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm); | 
|  |  | 
|  | if (ResVecTy != ViaVecTy) { | 
|  | // If LdiOp is writing to a different register class to ResVecTy, then | 
|  | // fix it up here. This COPY_TO_REGCLASS should never cause a move.v | 
|  | // since the source and destination register sets contain the same | 
|  | // registers. | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | MVT ResVecTySimple = ResVecTy.getSimpleVT(); | 
|  | const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); | 
|  | Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node), | 
|  | ResVecTy, SDValue(Res, 0), | 
|  | CurDAG->getTargetConstant(RC->getID(), | 
|  | MVT::i32)); | 
|  | } | 
|  |  | 
|  | return std::make_pair(true, Res); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return std::make_pair(false, nullptr); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) { | 
|  | return new MipsSEDAGToDAGISel(TM); | 
|  | } |