|  | //===-- LiveInterval.cpp - Live Interval Representation -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the LiveRange and LiveInterval classes.  Given some | 
|  | // numbering of each the machine instructions an interval [i, j) is said to be a | 
|  | // live range for register v if there is no instruction with number j' >= j | 
|  | // such that v is live at j' and there is no instruction with number i' < i such | 
|  | // that v is live at i'. In this implementation ranges can have holes, | 
|  | // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each | 
|  | // individual segment is represented as an instance of LiveRange::Segment, | 
|  | // and the whole range is represented as an instance of LiveRange. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "RegisterCoalescer.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | LiveRange::iterator LiveRange::find(SlotIndex Pos) { | 
|  | // This algorithm is basically std::upper_bound. | 
|  | // Unfortunately, std::upper_bound cannot be used with mixed types until we | 
|  | // adopt C++0x. Many libraries can do it, but not all. | 
|  | if (empty() || Pos >= endIndex()) | 
|  | return end(); | 
|  | iterator I = begin(); | 
|  | size_t Len = size(); | 
|  | do { | 
|  | size_t Mid = Len >> 1; | 
|  | if (Pos < I[Mid].end) | 
|  | Len = Mid; | 
|  | else | 
|  | I += Mid + 1, Len -= Mid + 1; | 
|  | } while (Len); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | VNInfo *LiveRange::createDeadDef(SlotIndex Def, | 
|  | VNInfo::Allocator &VNInfoAllocator) { | 
|  | assert(!Def.isDead() && "Cannot define a value at the dead slot"); | 
|  | iterator I = find(Def); | 
|  | if (I == end()) { | 
|  | VNInfo *VNI = getNextValue(Def, VNInfoAllocator); | 
|  | segments.push_back(Segment(Def, Def.getDeadSlot(), VNI)); | 
|  | return VNI; | 
|  | } | 
|  | if (SlotIndex::isSameInstr(Def, I->start)) { | 
|  | assert(I->valno->def == I->start && "Inconsistent existing value def"); | 
|  |  | 
|  | // It is possible to have both normal and early-clobber defs of the same | 
|  | // register on an instruction. It doesn't make a lot of sense, but it is | 
|  | // possible to specify in inline assembly. | 
|  | // | 
|  | // Just convert everything to early-clobber. | 
|  | Def = std::min(Def, I->start); | 
|  | if (Def != I->start) | 
|  | I->start = I->valno->def = Def; | 
|  | return I->valno; | 
|  | } | 
|  | assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); | 
|  | VNInfo *VNI = getNextValue(Def, VNInfoAllocator); | 
|  | segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI)); | 
|  | return VNI; | 
|  | } | 
|  |  | 
|  | // overlaps - Return true if the intersection of the two live ranges is | 
|  | // not empty. | 
|  | // | 
|  | // An example for overlaps(): | 
|  | // | 
|  | // 0: A = ... | 
|  | // 4: B = ... | 
|  | // 8: C = A + B ;; last use of A | 
|  | // | 
|  | // The live ranges should look like: | 
|  | // | 
|  | // A = [3, 11) | 
|  | // B = [7, x) | 
|  | // C = [11, y) | 
|  | // | 
|  | // A->overlaps(C) should return false since we want to be able to join | 
|  | // A and C. | 
|  | // | 
|  | bool LiveRange::overlapsFrom(const LiveRange& other, | 
|  | const_iterator StartPos) const { | 
|  | assert(!empty() && "empty range"); | 
|  | const_iterator i = begin(); | 
|  | const_iterator ie = end(); | 
|  | const_iterator j = StartPos; | 
|  | const_iterator je = other.end(); | 
|  |  | 
|  | assert((StartPos->start <= i->start || StartPos == other.begin()) && | 
|  | StartPos != other.end() && "Bogus start position hint!"); | 
|  |  | 
|  | if (i->start < j->start) { | 
|  | i = std::upper_bound(i, ie, j->start); | 
|  | if (i != begin()) --i; | 
|  | } else if (j->start < i->start) { | 
|  | ++StartPos; | 
|  | if (StartPos != other.end() && StartPos->start <= i->start) { | 
|  | assert(StartPos < other.end() && i < end()); | 
|  | j = std::upper_bound(j, je, i->start); | 
|  | if (j != other.begin()) --j; | 
|  | } | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (j == je) return false; | 
|  |  | 
|  | while (i != ie) { | 
|  | if (i->start > j->start) { | 
|  | std::swap(i, j); | 
|  | std::swap(ie, je); | 
|  | } | 
|  |  | 
|  | if (i->end > j->start) | 
|  | return true; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, | 
|  | const SlotIndexes &Indexes) const { | 
|  | assert(!empty() && "empty range"); | 
|  | if (Other.empty()) | 
|  | return false; | 
|  |  | 
|  | // Use binary searches to find initial positions. | 
|  | const_iterator I = find(Other.beginIndex()); | 
|  | const_iterator IE = end(); | 
|  | if (I == IE) | 
|  | return false; | 
|  | const_iterator J = Other.find(I->start); | 
|  | const_iterator JE = Other.end(); | 
|  | if (J == JE) | 
|  | return false; | 
|  |  | 
|  | for (;;) { | 
|  | // J has just been advanced to satisfy: | 
|  | assert(J->end >= I->start); | 
|  | // Check for an overlap. | 
|  | if (J->start < I->end) { | 
|  | // I and J are overlapping. Find the later start. | 
|  | SlotIndex Def = std::max(I->start, J->start); | 
|  | // Allow the overlap if Def is a coalescable copy. | 
|  | if (Def.isBlock() || | 
|  | !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) | 
|  | return true; | 
|  | } | 
|  | // Advance the iterator that ends first to check for more overlaps. | 
|  | if (J->end > I->end) { | 
|  | std::swap(I, J); | 
|  | std::swap(IE, JE); | 
|  | } | 
|  | // Advance J until J->end >= I->start. | 
|  | do | 
|  | if (++J == JE) | 
|  | return false; | 
|  | while (J->end < I->start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// overlaps - Return true if the live range overlaps an interval specified | 
|  | /// by [Start, End). | 
|  | bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { | 
|  | assert(Start < End && "Invalid range"); | 
|  | const_iterator I = std::lower_bound(begin(), end(), End); | 
|  | return I != begin() && (--I)->end > Start; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ValNo is dead, remove it.  If it is the largest value number, just nuke it | 
|  | /// (and any other deleted values neighboring it), otherwise mark it as ~1U so | 
|  | /// it can be nuked later. | 
|  | void LiveRange::markValNoForDeletion(VNInfo *ValNo) { | 
|  | if (ValNo->id == getNumValNums()-1) { | 
|  | do { | 
|  | valnos.pop_back(); | 
|  | } while (!valnos.empty() && valnos.back()->isUnused()); | 
|  | } else { | 
|  | ValNo->markUnused(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RenumberValues - Renumber all values in order of appearance and delete the | 
|  | /// remaining unused values. | 
|  | void LiveRange::RenumberValues() { | 
|  | SmallPtrSet<VNInfo*, 8> Seen; | 
|  | valnos.clear(); | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) { | 
|  | VNInfo *VNI = I->valno; | 
|  | if (!Seen.insert(VNI)) | 
|  | continue; | 
|  | assert(!VNI->isUnused() && "Unused valno used by live segment"); | 
|  | VNI->id = (unsigned)valnos.size(); | 
|  | valnos.push_back(VNI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This method is used when we want to extend the segment specified by I to end | 
|  | /// at the specified endpoint.  To do this, we should merge and eliminate all | 
|  | /// segments that this will overlap with.  The iterator is not invalidated. | 
|  | void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) { | 
|  | assert(I != end() && "Not a valid segment!"); | 
|  | VNInfo *ValNo = I->valno; | 
|  |  | 
|  | // Search for the first segment that we can't merge with. | 
|  | iterator MergeTo = std::next(I); | 
|  | for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) { | 
|  | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); | 
|  | } | 
|  |  | 
|  | // If NewEnd was in the middle of a segment, make sure to get its endpoint. | 
|  | I->end = std::max(NewEnd, std::prev(MergeTo)->end); | 
|  |  | 
|  | // If the newly formed segment now touches the segment after it and if they | 
|  | // have the same value number, merge the two segments into one segment. | 
|  | if (MergeTo != end() && MergeTo->start <= I->end && | 
|  | MergeTo->valno == ValNo) { | 
|  | I->end = MergeTo->end; | 
|  | ++MergeTo; | 
|  | } | 
|  |  | 
|  | // Erase any dead segments. | 
|  | segments.erase(std::next(I), MergeTo); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This method is used when we want to extend the segment specified by I to | 
|  | /// start at the specified endpoint.  To do this, we should merge and eliminate | 
|  | /// all segments that this will overlap with. | 
|  | LiveRange::iterator | 
|  | LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) { | 
|  | assert(I != end() && "Not a valid segment!"); | 
|  | VNInfo *ValNo = I->valno; | 
|  |  | 
|  | // Search for the first segment that we can't merge with. | 
|  | iterator MergeTo = I; | 
|  | do { | 
|  | if (MergeTo == begin()) { | 
|  | I->start = NewStart; | 
|  | segments.erase(MergeTo, I); | 
|  | return I; | 
|  | } | 
|  | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); | 
|  | --MergeTo; | 
|  | } while (NewStart <= MergeTo->start); | 
|  |  | 
|  | // If we start in the middle of another segment, just delete a range and | 
|  | // extend that segment. | 
|  | if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { | 
|  | MergeTo->end = I->end; | 
|  | } else { | 
|  | // Otherwise, extend the segment right after. | 
|  | ++MergeTo; | 
|  | MergeTo->start = NewStart; | 
|  | MergeTo->end = I->end; | 
|  | } | 
|  |  | 
|  | segments.erase(std::next(MergeTo), std::next(I)); | 
|  | return MergeTo; | 
|  | } | 
|  |  | 
|  | LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) { | 
|  | SlotIndex Start = S.start, End = S.end; | 
|  | iterator it = std::upper_bound(From, end(), Start); | 
|  |  | 
|  | // If the inserted segment starts in the middle or right at the end of | 
|  | // another segment, just extend that segment to contain the segment of S. | 
|  | if (it != begin()) { | 
|  | iterator B = std::prev(it); | 
|  | if (S.valno == B->valno) { | 
|  | if (B->start <= Start && B->end >= Start) { | 
|  | extendSegmentEndTo(B, End); | 
|  | return B; | 
|  | } | 
|  | } else { | 
|  | // Check to make sure that we are not overlapping two live segments with | 
|  | // different valno's. | 
|  | assert(B->end <= Start && | 
|  | "Cannot overlap two segments with differing ValID's" | 
|  | " (did you def the same reg twice in a MachineInstr?)"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this segment ends in the middle of, or right next to, another | 
|  | // segment, merge it into that segment. | 
|  | if (it != end()) { | 
|  | if (S.valno == it->valno) { | 
|  | if (it->start <= End) { | 
|  | it = extendSegmentStartTo(it, Start); | 
|  |  | 
|  | // If S is a complete superset of a segment, we may need to grow its | 
|  | // endpoint as well. | 
|  | if (End > it->end) | 
|  | extendSegmentEndTo(it, End); | 
|  | return it; | 
|  | } | 
|  | } else { | 
|  | // Check to make sure that we are not overlapping two live segments with | 
|  | // different valno's. | 
|  | assert(it->start >= End && | 
|  | "Cannot overlap two segments with differing ValID's"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this is just a new segment that doesn't interact with anything. | 
|  | // Insert it. | 
|  | return segments.insert(it, S); | 
|  | } | 
|  |  | 
|  | /// extendInBlock - If this range is live before Kill in the basic | 
|  | /// block that starts at StartIdx, extend it to be live up to Kill and return | 
|  | /// the value. If there is no live range before Kill, return NULL. | 
|  | VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { | 
|  | if (empty()) | 
|  | return nullptr; | 
|  | iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); | 
|  | if (I == begin()) | 
|  | return nullptr; | 
|  | --I; | 
|  | if (I->end <= StartIdx) | 
|  | return nullptr; | 
|  | if (I->end < Kill) | 
|  | extendSegmentEndTo(I, Kill); | 
|  | return I->valno; | 
|  | } | 
|  |  | 
|  | /// Remove the specified segment from this range.  Note that the segment must | 
|  | /// be in a single Segment in its entirety. | 
|  | void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, | 
|  | bool RemoveDeadValNo) { | 
|  | // Find the Segment containing this span. | 
|  | iterator I = find(Start); | 
|  | assert(I != end() && "Segment is not in range!"); | 
|  | assert(I->containsInterval(Start, End) | 
|  | && "Segment is not entirely in range!"); | 
|  |  | 
|  | // If the span we are removing is at the start of the Segment, adjust it. | 
|  | VNInfo *ValNo = I->valno; | 
|  | if (I->start == Start) { | 
|  | if (I->end == End) { | 
|  | if (RemoveDeadValNo) { | 
|  | // Check if val# is dead. | 
|  | bool isDead = true; | 
|  | for (const_iterator II = begin(), EE = end(); II != EE; ++II) | 
|  | if (II != I && II->valno == ValNo) { | 
|  | isDead = false; | 
|  | break; | 
|  | } | 
|  | if (isDead) { | 
|  | // Now that ValNo is dead, remove it. | 
|  | markValNoForDeletion(ValNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | segments.erase(I);  // Removed the whole Segment. | 
|  | } else | 
|  | I->start = End; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise if the span we are removing is at the end of the Segment, | 
|  | // adjust the other way. | 
|  | if (I->end == End) { | 
|  | I->end = Start; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we are splitting the Segment into two pieces. | 
|  | SlotIndex OldEnd = I->end; | 
|  | I->end = Start;   // Trim the old segment. | 
|  |  | 
|  | // Insert the new one. | 
|  | segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); | 
|  | } | 
|  |  | 
|  | /// removeValNo - Remove all the segments defined by the specified value#. | 
|  | /// Also remove the value# from value# list. | 
|  | void LiveRange::removeValNo(VNInfo *ValNo) { | 
|  | if (empty()) return; | 
|  | iterator I = end(); | 
|  | iterator E = begin(); | 
|  | do { | 
|  | --I; | 
|  | if (I->valno == ValNo) | 
|  | segments.erase(I); | 
|  | } while (I != E); | 
|  | // Now that ValNo is dead, remove it. | 
|  | markValNoForDeletion(ValNo); | 
|  | } | 
|  |  | 
|  | void LiveRange::join(LiveRange &Other, | 
|  | const int *LHSValNoAssignments, | 
|  | const int *RHSValNoAssignments, | 
|  | SmallVectorImpl<VNInfo *> &NewVNInfo) { | 
|  | verify(); | 
|  |  | 
|  | // Determine if any of our values are mapped.  This is uncommon, so we want | 
|  | // to avoid the range scan if not. | 
|  | bool MustMapCurValNos = false; | 
|  | unsigned NumVals = getNumValNums(); | 
|  | unsigned NumNewVals = NewVNInfo.size(); | 
|  | for (unsigned i = 0; i != NumVals; ++i) { | 
|  | unsigned LHSValID = LHSValNoAssignments[i]; | 
|  | if (i != LHSValID || | 
|  | (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { | 
|  | MustMapCurValNos = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have to apply a mapping to our base range assignment, rewrite it now. | 
|  | if (MustMapCurValNos && !empty()) { | 
|  | // Map the first live range. | 
|  |  | 
|  | iterator OutIt = begin(); | 
|  | OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; | 
|  | for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { | 
|  | VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; | 
|  | assert(nextValNo && "Huh?"); | 
|  |  | 
|  | // If this live range has the same value # as its immediate predecessor, | 
|  | // and if they are neighbors, remove one Segment.  This happens when we | 
|  | // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. | 
|  | if (OutIt->valno == nextValNo && OutIt->end == I->start) { | 
|  | OutIt->end = I->end; | 
|  | } else { | 
|  | // Didn't merge. Move OutIt to the next segment, | 
|  | ++OutIt; | 
|  | OutIt->valno = nextValNo; | 
|  | if (OutIt != I) { | 
|  | OutIt->start = I->start; | 
|  | OutIt->end = I->end; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we merge some segments, chop off the end. | 
|  | ++OutIt; | 
|  | segments.erase(OutIt, end()); | 
|  | } | 
|  |  | 
|  | // Rewrite Other values before changing the VNInfo ids. | 
|  | // This can leave Other in an invalid state because we're not coalescing | 
|  | // touching segments that now have identical values. That's OK since Other is | 
|  | // not supposed to be valid after calling join(); | 
|  | for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) | 
|  | I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; | 
|  |  | 
|  | // Update val# info. Renumber them and make sure they all belong to this | 
|  | // LiveRange now. Also remove dead val#'s. | 
|  | unsigned NumValNos = 0; | 
|  | for (unsigned i = 0; i < NumNewVals; ++i) { | 
|  | VNInfo *VNI = NewVNInfo[i]; | 
|  | if (VNI) { | 
|  | if (NumValNos >= NumVals) | 
|  | valnos.push_back(VNI); | 
|  | else | 
|  | valnos[NumValNos] = VNI; | 
|  | VNI->id = NumValNos++;  // Renumber val#. | 
|  | } | 
|  | } | 
|  | if (NumNewVals < NumVals) | 
|  | valnos.resize(NumNewVals);  // shrinkify | 
|  |  | 
|  | // Okay, now insert the RHS live segments into the LHS. | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) | 
|  | Updater.add(*I); | 
|  | } | 
|  |  | 
|  | /// Merge all of the segments in RHS into this live range as the specified | 
|  | /// value number.  The segments in RHS are allowed to overlap with segments in | 
|  | /// the current range, but only if the overlapping segments have the | 
|  | /// specified value number. | 
|  | void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, | 
|  | VNInfo *LHSValNo) { | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) | 
|  | Updater.add(I->start, I->end, LHSValNo); | 
|  | } | 
|  |  | 
|  | /// MergeValueInAsValue - Merge all of the live segments of a specific val# | 
|  | /// in RHS into this live range as the specified value number. | 
|  | /// The segments in RHS are allowed to overlap with segments in the | 
|  | /// current range, it will replace the value numbers of the overlaped | 
|  | /// segments with the specified value number. | 
|  | void LiveRange::MergeValueInAsValue(const LiveRange &RHS, | 
|  | const VNInfo *RHSValNo, | 
|  | VNInfo *LHSValNo) { | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) | 
|  | if (I->valno == RHSValNo) | 
|  | Updater.add(I->start, I->end, LHSValNo); | 
|  | } | 
|  |  | 
|  | /// MergeValueNumberInto - This method is called when two value nubmers | 
|  | /// are found to be equivalent.  This eliminates V1, replacing all | 
|  | /// segments with the V1 value number with the V2 value number.  This can | 
|  | /// cause merging of V1/V2 values numbers and compaction of the value space. | 
|  | VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { | 
|  | assert(V1 != V2 && "Identical value#'s are always equivalent!"); | 
|  |  | 
|  | // This code actually merges the (numerically) larger value number into the | 
|  | // smaller value number, which is likely to allow us to compactify the value | 
|  | // space.  The only thing we have to be careful of is to preserve the | 
|  | // instruction that defines the result value. | 
|  |  | 
|  | // Make sure V2 is smaller than V1. | 
|  | if (V1->id < V2->id) { | 
|  | V1->copyFrom(*V2); | 
|  | std::swap(V1, V2); | 
|  | } | 
|  |  | 
|  | // Merge V1 segments into V2. | 
|  | for (iterator I = begin(); I != end(); ) { | 
|  | iterator S = I++; | 
|  | if (S->valno != V1) continue;  // Not a V1 Segment. | 
|  |  | 
|  | // Okay, we found a V1 live range.  If it had a previous, touching, V2 live | 
|  | // range, extend it. | 
|  | if (S != begin()) { | 
|  | iterator Prev = S-1; | 
|  | if (Prev->valno == V2 && Prev->end == S->start) { | 
|  | Prev->end = S->end; | 
|  |  | 
|  | // Erase this live-range. | 
|  | segments.erase(S); | 
|  | I = Prev+1; | 
|  | S = Prev; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, now we have a V1 or V2 live range that is maximally merged forward. | 
|  | // Ensure that it is a V2 live-range. | 
|  | S->valno = V2; | 
|  |  | 
|  | // If we can merge it into later V2 segments, do so now.  We ignore any | 
|  | // following V1 segments, as they will be merged in subsequent iterations | 
|  | // of the loop. | 
|  | if (I != end()) { | 
|  | if (I->start == S->end && I->valno == V2) { | 
|  | S->end = I->end; | 
|  | segments.erase(I); | 
|  | I = S+1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that V1 is dead, remove it. | 
|  | markValNoForDeletion(V1); | 
|  |  | 
|  | return V2; | 
|  | } | 
|  |  | 
|  | unsigned LiveInterval::getSize() const { | 
|  | unsigned Sum = 0; | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) | 
|  | Sum += I->start.distance(I->end); | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { | 
|  | return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LiveRange::Segment::dump() const { | 
|  | dbgs() << *this << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void LiveRange::print(raw_ostream &OS) const { | 
|  | if (empty()) | 
|  | OS << "EMPTY"; | 
|  | else { | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) { | 
|  | OS << *I; | 
|  | assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print value number info. | 
|  | if (getNumValNums()) { | 
|  | OS << "  "; | 
|  | unsigned vnum = 0; | 
|  | for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; | 
|  | ++i, ++vnum) { | 
|  | const VNInfo *vni = *i; | 
|  | if (vnum) OS << " "; | 
|  | OS << vnum << "@"; | 
|  | if (vni->isUnused()) { | 
|  | OS << "x"; | 
|  | } else { | 
|  | OS << vni->def; | 
|  | if (vni->isPHIDef()) | 
|  | OS << "-phi"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveInterval::print(raw_ostream &OS) const { | 
|  | OS << PrintReg(reg) << ' '; | 
|  | super::print(OS); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LiveRange::dump() const { | 
|  | dbgs() << *this << "\n"; | 
|  | } | 
|  |  | 
|  | void LiveInterval::dump() const { | 
|  | dbgs() << *this << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | void LiveRange::verify() const { | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) { | 
|  | assert(I->start.isValid()); | 
|  | assert(I->end.isValid()); | 
|  | assert(I->start < I->end); | 
|  | assert(I->valno != nullptr); | 
|  | assert(I->valno->id < valnos.size()); | 
|  | assert(I->valno == valnos[I->valno->id]); | 
|  | if (std::next(I) != E) { | 
|  | assert(I->end <= std::next(I)->start); | 
|  | if (I->end == std::next(I)->start) | 
|  | assert(I->valno != std::next(I)->valno); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           LiveRangeUpdater class | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The LiveRangeUpdater class always maintains these invariants: | 
|  | // | 
|  | // - When LastStart is invalid, Spills is empty and the iterators are invalid. | 
|  | //   This is the initial state, and the state created by flush(). | 
|  | //   In this state, isDirty() returns false. | 
|  | // | 
|  | // Otherwise, segments are kept in three separate areas: | 
|  | // | 
|  | // 1. [begin; WriteI) at the front of LR. | 
|  | // 2. [ReadI; end) at the back of LR. | 
|  | // 3. Spills. | 
|  | // | 
|  | // - LR.begin() <= WriteI <= ReadI <= LR.end(). | 
|  | // - Segments in all three areas are fully ordered and coalesced. | 
|  | // - Segments in area 1 precede and can't coalesce with segments in area 2. | 
|  | // - Segments in Spills precede and can't coalesce with segments in area 2. | 
|  | // - No coalescing is possible between segments in Spills and segments in area | 
|  | //   1, and there are no overlapping segments. | 
|  | // | 
|  | // The segments in Spills are not ordered with respect to the segments in area | 
|  | // 1. They need to be merged. | 
|  | // | 
|  | // When they exist, Spills.back().start <= LastStart, | 
|  | //                 and WriteI[-1].start <= LastStart. | 
|  |  | 
|  | void LiveRangeUpdater::print(raw_ostream &OS) const { | 
|  | if (!isDirty()) { | 
|  | if (LR) | 
|  | OS << "Clean updater: " << *LR << '\n'; | 
|  | else | 
|  | OS << "Null updater.\n"; | 
|  | return; | 
|  | } | 
|  | assert(LR && "Can't have null LR in dirty updater."); | 
|  | OS << " updater with gap = " << (ReadI - WriteI) | 
|  | << ", last start = " << LastStart | 
|  | << ":\n  Area 1:"; | 
|  | for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I) | 
|  | OS << ' ' << *I; | 
|  | OS << "\n  Spills:"; | 
|  | for (unsigned I = 0, E = Spills.size(); I != E; ++I) | 
|  | OS << ' ' << Spills[I]; | 
|  | OS << "\n  Area 2:"; | 
|  | for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I) | 
|  | OS << ' ' << *I; | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | void LiveRangeUpdater::dump() const | 
|  | { | 
|  | print(errs()); | 
|  | } | 
|  |  | 
|  | // Determine if A and B should be coalesced. | 
|  | static inline bool coalescable(const LiveRange::Segment &A, | 
|  | const LiveRange::Segment &B) { | 
|  | assert(A.start <= B.start && "Unordered live segments."); | 
|  | if (A.end == B.start) | 
|  | return A.valno == B.valno; | 
|  | if (A.end < B.start) | 
|  | return false; | 
|  | assert(A.valno == B.valno && "Cannot overlap different values"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void LiveRangeUpdater::add(LiveRange::Segment Seg) { | 
|  | assert(LR && "Cannot add to a null destination"); | 
|  |  | 
|  | // Flush the state if Start moves backwards. | 
|  | if (!LastStart.isValid() || LastStart > Seg.start) { | 
|  | if (isDirty()) | 
|  | flush(); | 
|  | // This brings us to an uninitialized state. Reinitialize. | 
|  | assert(Spills.empty() && "Leftover spilled segments"); | 
|  | WriteI = ReadI = LR->begin(); | 
|  | } | 
|  |  | 
|  | // Remember start for next time. | 
|  | LastStart = Seg.start; | 
|  |  | 
|  | // Advance ReadI until it ends after Seg.start. | 
|  | LiveRange::iterator E = LR->end(); | 
|  | if (ReadI != E && ReadI->end <= Seg.start) { | 
|  | // First try to close the gap between WriteI and ReadI with spills. | 
|  | if (ReadI != WriteI) | 
|  | mergeSpills(); | 
|  | // Then advance ReadI. | 
|  | if (ReadI == WriteI) | 
|  | ReadI = WriteI = LR->find(Seg.start); | 
|  | else | 
|  | while (ReadI != E && ReadI->end <= Seg.start) | 
|  | *WriteI++ = *ReadI++; | 
|  | } | 
|  |  | 
|  | assert(ReadI == E || ReadI->end > Seg.start); | 
|  |  | 
|  | // Check if the ReadI segment begins early. | 
|  | if (ReadI != E && ReadI->start <= Seg.start) { | 
|  | assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); | 
|  | // Bail if Seg is completely contained in ReadI. | 
|  | if (ReadI->end >= Seg.end) | 
|  | return; | 
|  | // Coalesce into Seg. | 
|  | Seg.start = ReadI->start; | 
|  | ++ReadI; | 
|  | } | 
|  |  | 
|  | // Coalesce as much as possible from ReadI into Seg. | 
|  | while (ReadI != E && coalescable(Seg, *ReadI)) { | 
|  | Seg.end = std::max(Seg.end, ReadI->end); | 
|  | ++ReadI; | 
|  | } | 
|  |  | 
|  | // Try coalescing Spills.back() into Seg. | 
|  | if (!Spills.empty() && coalescable(Spills.back(), Seg)) { | 
|  | Seg.start = Spills.back().start; | 
|  | Seg.end = std::max(Spills.back().end, Seg.end); | 
|  | Spills.pop_back(); | 
|  | } | 
|  |  | 
|  | // Try coalescing Seg into WriteI[-1]. | 
|  | if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { | 
|  | WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Seg doesn't coalesce with anything, and needs to be inserted somewhere. | 
|  | if (WriteI != ReadI) { | 
|  | *WriteI++ = Seg; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Finally, append to LR or Spills. | 
|  | if (WriteI == E) { | 
|  | LR->segments.push_back(Seg); | 
|  | WriteI = ReadI = LR->end(); | 
|  | } else | 
|  | Spills.push_back(Seg); | 
|  | } | 
|  |  | 
|  | // Merge as many spilled segments as possible into the gap between WriteI | 
|  | // and ReadI. Advance WriteI to reflect the inserted instructions. | 
|  | void LiveRangeUpdater::mergeSpills() { | 
|  | // Perform a backwards merge of Spills and [SpillI;WriteI). | 
|  | size_t GapSize = ReadI - WriteI; | 
|  | size_t NumMoved = std::min(Spills.size(), GapSize); | 
|  | LiveRange::iterator Src = WriteI; | 
|  | LiveRange::iterator Dst = Src + NumMoved; | 
|  | LiveRange::iterator SpillSrc = Spills.end(); | 
|  | LiveRange::iterator B = LR->begin(); | 
|  |  | 
|  | // This is the new WriteI position after merging spills. | 
|  | WriteI = Dst; | 
|  |  | 
|  | // Now merge Src and Spills backwards. | 
|  | while (Src != Dst) { | 
|  | if (Src != B && Src[-1].start > SpillSrc[-1].start) | 
|  | *--Dst = *--Src; | 
|  | else | 
|  | *--Dst = *--SpillSrc; | 
|  | } | 
|  | assert(NumMoved == size_t(Spills.end() - SpillSrc)); | 
|  | Spills.erase(SpillSrc, Spills.end()); | 
|  | } | 
|  |  | 
|  | void LiveRangeUpdater::flush() { | 
|  | if (!isDirty()) | 
|  | return; | 
|  | // Clear the dirty state. | 
|  | LastStart = SlotIndex(); | 
|  |  | 
|  | assert(LR && "Cannot add to a null destination"); | 
|  |  | 
|  | // Nothing to merge? | 
|  | if (Spills.empty()) { | 
|  | LR->segments.erase(WriteI, ReadI); | 
|  | LR->verify(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Resize the WriteI - ReadI gap to match Spills. | 
|  | size_t GapSize = ReadI - WriteI; | 
|  | if (GapSize < Spills.size()) { | 
|  | // The gap is too small. Make some room. | 
|  | size_t WritePos = WriteI - LR->begin(); | 
|  | LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); | 
|  | // This also invalidated ReadI, but it is recomputed below. | 
|  | WriteI = LR->begin() + WritePos; | 
|  | } else { | 
|  | // Shrink the gap if necessary. | 
|  | LR->segments.erase(WriteI + Spills.size(), ReadI); | 
|  | } | 
|  | ReadI = WriteI + Spills.size(); | 
|  | mergeSpills(); | 
|  | LR->verify(); | 
|  | } | 
|  |  | 
|  | unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { | 
|  | // Create initial equivalence classes. | 
|  | EqClass.clear(); | 
|  | EqClass.grow(LI->getNumValNums()); | 
|  |  | 
|  | const VNInfo *used = nullptr, *unused = nullptr; | 
|  |  | 
|  | // Determine connections. | 
|  | for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); | 
|  | I != E; ++I) { | 
|  | const VNInfo *VNI = *I; | 
|  | // Group all unused values into one class. | 
|  | if (VNI->isUnused()) { | 
|  | if (unused) | 
|  | EqClass.join(unused->id, VNI->id); | 
|  | unused = VNI; | 
|  | continue; | 
|  | } | 
|  | used = VNI; | 
|  | if (VNI->isPHIDef()) { | 
|  | const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); | 
|  | assert(MBB && "Phi-def has no defining MBB"); | 
|  | // Connect to values live out of predecessors. | 
|  | for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) | 
|  | if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) | 
|  | EqClass.join(VNI->id, PVNI->id); | 
|  | } else { | 
|  | // Normal value defined by an instruction. Check for two-addr redef. | 
|  | // FIXME: This could be coincidental. Should we really check for a tied | 
|  | // operand constraint? | 
|  | // Note that VNI->def may be a use slot for an early clobber def. | 
|  | if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) | 
|  | EqClass.join(VNI->id, UVNI->id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lump all the unused values in with the last used value. | 
|  | if (used && unused) | 
|  | EqClass.join(used->id, unused->id); | 
|  |  | 
|  | EqClass.compress(); | 
|  | return EqClass.getNumClasses(); | 
|  | } | 
|  |  | 
|  | void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], | 
|  | MachineRegisterInfo &MRI) { | 
|  | assert(LIV[0] && "LIV[0] must be set"); | 
|  | LiveInterval &LI = *LIV[0]; | 
|  |  | 
|  | // Rewrite instructions. | 
|  | for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), | 
|  | RE = MRI.reg_end(); RI != RE;) { | 
|  | MachineOperand &MO = *RI; | 
|  | MachineInstr *MI = RI->getParent(); | 
|  | ++RI; | 
|  | // DBG_VALUE instructions don't have slot indexes, so get the index of the | 
|  | // instruction before them. | 
|  | // Normally, DBG_VALUE instructions are removed before this function is | 
|  | // called, but it is not a requirement. | 
|  | SlotIndex Idx; | 
|  | if (MI->isDebugValue()) | 
|  | Idx = LIS.getSlotIndexes()->getIndexBefore(MI); | 
|  | else | 
|  | Idx = LIS.getInstructionIndex(MI); | 
|  | LiveQueryResult LRQ = LI.Query(Idx); | 
|  | const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); | 
|  | // In the case of an <undef> use that isn't tied to any def, VNI will be | 
|  | // NULL. If the use is tied to a def, VNI will be the defined value. | 
|  | if (!VNI) | 
|  | continue; | 
|  | MO.setReg(LIV[getEqClass(VNI)]->reg); | 
|  | } | 
|  |  | 
|  | // Move runs to new intervals. | 
|  | LiveInterval::iterator J = LI.begin(), E = LI.end(); | 
|  | while (J != E && EqClass[J->valno->id] == 0) | 
|  | ++J; | 
|  | for (LiveInterval::iterator I = J; I != E; ++I) { | 
|  | if (unsigned eq = EqClass[I->valno->id]) { | 
|  | assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && | 
|  | "New intervals should be empty"); | 
|  | LIV[eq]->segments.push_back(*I); | 
|  | } else | 
|  | *J++ = *I; | 
|  | } | 
|  | LI.segments.erase(J, E); | 
|  |  | 
|  | // Transfer VNInfos to their new owners and renumber them. | 
|  | unsigned j = 0, e = LI.getNumValNums(); | 
|  | while (j != e && EqClass[j] == 0) | 
|  | ++j; | 
|  | for (unsigned i = j; i != e; ++i) { | 
|  | VNInfo *VNI = LI.getValNumInfo(i); | 
|  | if (unsigned eq = EqClass[i]) { | 
|  | VNI->id = LIV[eq]->getNumValNums(); | 
|  | LIV[eq]->valnos.push_back(VNI); | 
|  | } else { | 
|  | VNI->id = j; | 
|  | LI.valnos[j++] = VNI; | 
|  | } | 
|  | } | 
|  | LI.valnos.resize(j); | 
|  | } |