|  | //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Perform peephole optimizations on the machine code: | 
|  | // | 
|  | // - Optimize Extensions | 
|  | // | 
|  | //     Optimization of sign / zero extension instructions. It may be extended to | 
|  | //     handle other instructions with similar properties. | 
|  | // | 
|  | //     On some targets, some instructions, e.g. X86 sign / zero extension, may | 
|  | //     leave the source value in the lower part of the result. This optimization | 
|  | //     will replace some uses of the pre-extension value with uses of the | 
|  | //     sub-register of the results. | 
|  | // | 
|  | // - Optimize Comparisons | 
|  | // | 
|  | //     Optimization of comparison instructions. For instance, in this code: | 
|  | // | 
|  | //       sub r1, 1 | 
|  | //       cmp r1, 0 | 
|  | //       bz  L1 | 
|  | // | 
|  | //     If the "sub" instruction all ready sets (or could be modified to set) the | 
|  | //     same flag that the "cmp" instruction sets and that "bz" uses, then we can | 
|  | //     eliminate the "cmp" instruction. | 
|  | // | 
|  | //     Another instance, in this code: | 
|  | // | 
|  | //       sub r1, r3 | sub r1, imm | 
|  | //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm | 
|  | //       bge L1 | 
|  | // | 
|  | //     If the branch instruction can use flag from "sub", then we can replace | 
|  | //     "sub" with "subs" and eliminate the "cmp" instruction. | 
|  | // | 
|  | // - Optimize Loads: | 
|  | // | 
|  | //     Loads that can be folded into a later instruction. A load is foldable | 
|  | //     if it loads to virtual registers and the virtual register defined has | 
|  | //     a single use. | 
|  | // | 
|  | // - Optimize Copies and Bitcast (more generally, target specific copies): | 
|  | // | 
|  | //     Rewrite copies and bitcasts to avoid cross register bank copies | 
|  | //     when possible. | 
|  | //     E.g., Consider the following example, where capital and lower | 
|  | //     letters denote different register file: | 
|  | //     b = copy A <-- cross-bank copy | 
|  | //     C = copy b <-- cross-bank copy | 
|  | //   => | 
|  | //     b = copy A <-- cross-bank copy | 
|  | //     C = copy A <-- same-bank copy | 
|  | // | 
|  | //     E.g., for bitcast: | 
|  | //     b = bitcast A <-- cross-bank copy | 
|  | //     C = bitcast b <-- cross-bank copy | 
|  | //   => | 
|  | //     b = bitcast A <-- cross-bank copy | 
|  | //     C = copy A    <-- same-bank copy | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using RegSubRegPair = TargetInstrInfo::RegSubRegPair; | 
|  | using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; | 
|  |  | 
|  | #define DEBUG_TYPE "peephole-opt" | 
|  |  | 
|  | // Optimize Extensions | 
|  | static cl::opt<bool> | 
|  | Aggressive("aggressive-ext-opt", cl::Hidden, | 
|  | cl::desc("Aggressive extension optimization")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable the peephole optimizer")); | 
|  |  | 
|  | /// Specifiy whether or not the value tracking looks through | 
|  | /// complex instructions. When this is true, the value tracker | 
|  | /// bails on everything that is not a copy or a bitcast. | 
|  | static cl::opt<bool> | 
|  | DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable advanced copy optimization")); | 
|  |  | 
|  | static cl::opt<bool> DisableNAPhysCopyOpt( | 
|  | "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable non-allocatable physical register copy optimization")); | 
|  |  | 
|  | // Limit the number of PHI instructions to process | 
|  | // in PeepholeOptimizer::getNextSource. | 
|  | static cl::opt<unsigned> RewritePHILimit( | 
|  | "rewrite-phi-limit", cl::Hidden, cl::init(10), | 
|  | cl::desc("Limit the length of PHI chains to lookup")); | 
|  |  | 
|  | // Limit the length of recurrence chain when evaluating the benefit of | 
|  | // commuting operands. | 
|  | static cl::opt<unsigned> MaxRecurrenceChain( | 
|  | "recurrence-chain-limit", cl::Hidden, cl::init(3), | 
|  | cl::desc("Maximum length of recurrence chain when evaluating the benefit " | 
|  | "of commuting operands")); | 
|  |  | 
|  |  | 
|  | STATISTIC(NumReuse, "Number of extension results reused"); | 
|  | STATISTIC(NumCmps, "Number of compares eliminated"); | 
|  | STATISTIC(NumImmFold, "Number of move immediate folded"); | 
|  | STATISTIC(NumLoadFold, "Number of loads folded"); | 
|  | STATISTIC(NumSelects, "Number of selects optimized"); | 
|  | STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); | 
|  | STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); | 
|  | STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ValueTrackerResult; | 
|  | class RecurrenceInstr; | 
|  |  | 
|  | class PeepholeOptimizer : public MachineFunctionPass { | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | MachineRegisterInfo *MRI; | 
|  | MachineDominatorTree *DT;  // Machine dominator tree | 
|  | MachineLoopInfo *MLI; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | PeepholeOptimizer() : MachineFunctionPass(ID) { | 
|  | initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | if (Aggressive) { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Track Def -> Use info used for rewriting copies. | 
|  | using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; | 
|  |  | 
|  | /// Sequence of instructions that formulate recurrence cycle. | 
|  | using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; | 
|  |  | 
|  | private: | 
|  | bool optimizeCmpInstr(MachineInstr &MI); | 
|  | bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, | 
|  | SmallPtrSetImpl<MachineInstr*> &LocalMIs); | 
|  | bool optimizeSelect(MachineInstr &MI, | 
|  | SmallPtrSetImpl<MachineInstr *> &LocalMIs); | 
|  | bool optimizeCondBranch(MachineInstr &MI); | 
|  | bool optimizeCoalescableCopy(MachineInstr &MI); | 
|  | bool optimizeUncoalescableCopy(MachineInstr &MI, | 
|  | SmallPtrSetImpl<MachineInstr *> &LocalMIs); | 
|  | bool optimizeRecurrence(MachineInstr &PHI); | 
|  | bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); | 
|  | bool isMoveImmediate(MachineInstr &MI, | 
|  | SmallSet<unsigned, 4> &ImmDefRegs, | 
|  | DenseMap<unsigned, MachineInstr*> &ImmDefMIs); | 
|  | bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, | 
|  | DenseMap<unsigned, MachineInstr*> &ImmDefMIs); | 
|  |  | 
|  | /// Finds recurrence cycles, but only ones that formulated around | 
|  | /// a def operand and a use operand that are tied. If there is a use | 
|  | /// operand commutable with the tied use operand, find recurrence cycle | 
|  | /// along that operand as well. | 
|  | bool findTargetRecurrence(unsigned Reg, | 
|  | const SmallSet<unsigned, 2> &TargetReg, | 
|  | RecurrenceCycle &RC); | 
|  |  | 
|  | /// If copy instruction \p MI is a virtual register copy, track it in | 
|  | /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was | 
|  | /// previously seen as a copy, replace the uses of this copy with the | 
|  | /// previously seen copy's destination register. | 
|  | bool foldRedundantCopy(MachineInstr &MI, | 
|  | SmallSet<unsigned, 4> &CopySrcRegs, | 
|  | DenseMap<unsigned, MachineInstr *> &CopyMIs); | 
|  |  | 
|  | /// Is the register \p Reg a non-allocatable physical register? | 
|  | bool isNAPhysCopy(unsigned Reg); | 
|  |  | 
|  | /// If copy instruction \p MI is a non-allocatable virtual<->physical | 
|  | /// register copy, track it in the \p NAPhysToVirtMIs map. If this | 
|  | /// non-allocatable physical register was previously copied to a virtual | 
|  | /// registered and hasn't been clobbered, the virt->phys copy can be | 
|  | /// deleted. | 
|  | bool foldRedundantNAPhysCopy(MachineInstr &MI, | 
|  | DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); | 
|  |  | 
|  | bool isLoadFoldable(MachineInstr &MI, | 
|  | SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); | 
|  |  | 
|  | /// Check whether \p MI is understood by the register coalescer | 
|  | /// but may require some rewriting. | 
|  | bool isCoalescableCopy(const MachineInstr &MI) { | 
|  | // SubregToRegs are not interesting, because they are already register | 
|  | // coalescer friendly. | 
|  | return MI.isCopy() || (!DisableAdvCopyOpt && | 
|  | (MI.isRegSequence() || MI.isInsertSubreg() || | 
|  | MI.isExtractSubreg())); | 
|  | } | 
|  |  | 
|  | /// Check whether \p MI is a copy like instruction that is | 
|  | /// not recognized by the register coalescer. | 
|  | bool isUncoalescableCopy(const MachineInstr &MI) { | 
|  | return MI.isBitcast() || | 
|  | (!DisableAdvCopyOpt && | 
|  | (MI.isRegSequenceLike() || MI.isInsertSubregLike() || | 
|  | MI.isExtractSubregLike())); | 
|  | } | 
|  |  | 
|  | MachineInstr &rewriteSource(MachineInstr &CopyLike, | 
|  | RegSubRegPair Def, RewriteMapTy &RewriteMap); | 
|  | }; | 
|  |  | 
|  | /// Helper class to hold instructions that are inside recurrence cycles. | 
|  | /// The recurrence cycle is formulated around 1) a def operand and its | 
|  | /// tied use operand, or 2) a def operand and a use operand that is commutable | 
|  | /// with another use operand which is tied to the def operand. In the latter | 
|  | /// case, index of the tied use operand and the commutable use operand are | 
|  | /// maintained with CommutePair. | 
|  | class RecurrenceInstr { | 
|  | public: | 
|  | using IndexPair = std::pair<unsigned, unsigned>; | 
|  |  | 
|  | RecurrenceInstr(MachineInstr *MI) : MI(MI) {} | 
|  | RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) | 
|  | : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} | 
|  |  | 
|  | MachineInstr *getMI() const { return MI; } | 
|  | Optional<IndexPair> getCommutePair() const { return CommutePair; } | 
|  |  | 
|  | private: | 
|  | MachineInstr *MI; | 
|  | Optional<IndexPair> CommutePair; | 
|  | }; | 
|  |  | 
|  | /// Helper class to hold a reply for ValueTracker queries. | 
|  | /// Contains the returned sources for a given search and the instructions | 
|  | /// where the sources were tracked from. | 
|  | class ValueTrackerResult { | 
|  | private: | 
|  | /// Track all sources found by one ValueTracker query. | 
|  | SmallVector<RegSubRegPair, 2> RegSrcs; | 
|  |  | 
|  | /// Instruction using the sources in 'RegSrcs'. | 
|  | const MachineInstr *Inst = nullptr; | 
|  |  | 
|  | public: | 
|  | ValueTrackerResult() = default; | 
|  |  | 
|  | ValueTrackerResult(unsigned Reg, unsigned SubReg) { | 
|  | addSource(Reg, SubReg); | 
|  | } | 
|  |  | 
|  | bool isValid() const { return getNumSources() > 0; } | 
|  |  | 
|  | void setInst(const MachineInstr *I) { Inst = I; } | 
|  | const MachineInstr *getInst() const { return Inst; } | 
|  |  | 
|  | void clear() { | 
|  | RegSrcs.clear(); | 
|  | Inst = nullptr; | 
|  | } | 
|  |  | 
|  | void addSource(unsigned SrcReg, unsigned SrcSubReg) { | 
|  | RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); | 
|  | } | 
|  |  | 
|  | void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { | 
|  | assert(Idx < getNumSources() && "Reg pair source out of index"); | 
|  | RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); | 
|  | } | 
|  |  | 
|  | int getNumSources() const { return RegSrcs.size(); } | 
|  |  | 
|  | RegSubRegPair getSrc(int Idx) const { | 
|  | return RegSrcs[Idx]; | 
|  | } | 
|  |  | 
|  | unsigned getSrcReg(int Idx) const { | 
|  | assert(Idx < getNumSources() && "Reg source out of index"); | 
|  | return RegSrcs[Idx].Reg; | 
|  | } | 
|  |  | 
|  | unsigned getSrcSubReg(int Idx) const { | 
|  | assert(Idx < getNumSources() && "SubReg source out of index"); | 
|  | return RegSrcs[Idx].SubReg; | 
|  | } | 
|  |  | 
|  | bool operator==(const ValueTrackerResult &Other) { | 
|  | if (Other.getInst() != getInst()) | 
|  | return false; | 
|  |  | 
|  | if (Other.getNumSources() != getNumSources()) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, e = Other.getNumSources(); i != e; ++i) | 
|  | if (Other.getSrcReg(i) != getSrcReg(i) || | 
|  | Other.getSrcSubReg(i) != getSrcSubReg(i)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper class to track the possible sources of a value defined by | 
|  | /// a (chain of) copy related instructions. | 
|  | /// Given a definition (instruction and definition index), this class | 
|  | /// follows the use-def chain to find successive suitable sources. | 
|  | /// The given source can be used to rewrite the definition into | 
|  | /// def = COPY src. | 
|  | /// | 
|  | /// For instance, let us consider the following snippet: | 
|  | /// v0 = | 
|  | /// v2 = INSERT_SUBREG v1, v0, sub0 | 
|  | /// def = COPY v2.sub0 | 
|  | /// | 
|  | /// Using a ValueTracker for def = COPY v2.sub0 will give the following | 
|  | /// suitable sources: | 
|  | /// v2.sub0 and v0. | 
|  | /// Then, def can be rewritten into def = COPY v0. | 
|  | class ValueTracker { | 
|  | private: | 
|  | /// The current point into the use-def chain. | 
|  | const MachineInstr *Def = nullptr; | 
|  |  | 
|  | /// The index of the definition in Def. | 
|  | unsigned DefIdx = 0; | 
|  |  | 
|  | /// The sub register index of the definition. | 
|  | unsigned DefSubReg; | 
|  |  | 
|  | /// The register where the value can be found. | 
|  | unsigned Reg; | 
|  |  | 
|  | /// MachineRegisterInfo used to perform tracking. | 
|  | const MachineRegisterInfo &MRI; | 
|  |  | 
|  | /// Optional TargetInstrInfo used to perform some complex tracking. | 
|  | const TargetInstrInfo *TII; | 
|  |  | 
|  | /// Dispatcher to the right underlying implementation of getNextSource. | 
|  | ValueTrackerResult getNextSourceImpl(); | 
|  |  | 
|  | /// Specialized version of getNextSource for Copy instructions. | 
|  | ValueTrackerResult getNextSourceFromCopy(); | 
|  |  | 
|  | /// Specialized version of getNextSource for Bitcast instructions. | 
|  | ValueTrackerResult getNextSourceFromBitcast(); | 
|  |  | 
|  | /// Specialized version of getNextSource for RegSequence instructions. | 
|  | ValueTrackerResult getNextSourceFromRegSequence(); | 
|  |  | 
|  | /// Specialized version of getNextSource for InsertSubreg instructions. | 
|  | ValueTrackerResult getNextSourceFromInsertSubreg(); | 
|  |  | 
|  | /// Specialized version of getNextSource for ExtractSubreg instructions. | 
|  | ValueTrackerResult getNextSourceFromExtractSubreg(); | 
|  |  | 
|  | /// Specialized version of getNextSource for SubregToReg instructions. | 
|  | ValueTrackerResult getNextSourceFromSubregToReg(); | 
|  |  | 
|  | /// Specialized version of getNextSource for PHI instructions. | 
|  | ValueTrackerResult getNextSourceFromPHI(); | 
|  |  | 
|  | public: | 
|  | /// Create a ValueTracker instance for the value defined by \p Reg. | 
|  | /// \p DefSubReg represents the sub register index the value tracker will | 
|  | /// track. It does not need to match the sub register index used in the | 
|  | /// definition of \p Reg. | 
|  | /// If \p Reg is a physical register, a value tracker constructed with | 
|  | /// this constructor will not find any alternative source. | 
|  | /// Indeed, when \p Reg is a physical register that constructor does not | 
|  | /// know which definition of \p Reg it should track. | 
|  | /// Use the next constructor to track a physical register. | 
|  | ValueTracker(unsigned Reg, unsigned DefSubReg, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const TargetInstrInfo *TII = nullptr) | 
|  | : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { | 
|  | if (!Register::isPhysicalRegister(Reg)) { | 
|  | Def = MRI.getVRegDef(Reg); | 
|  | DefIdx = MRI.def_begin(Reg).getOperandNo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Following the use-def chain, get the next available source | 
|  | /// for the tracked value. | 
|  | /// \return A ValueTrackerResult containing a set of registers | 
|  | /// and sub registers with tracked values. A ValueTrackerResult with | 
|  | /// an empty set of registers means no source was found. | 
|  | ValueTrackerResult getNextSource(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char PeepholeOptimizer::ID = 0; | 
|  |  | 
|  | char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, | 
|  | "Peephole Optimizations", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, | 
|  | "Peephole Optimizations", false, false) | 
|  |  | 
|  | /// If instruction is a copy-like instruction, i.e. it reads a single register | 
|  | /// and writes a single register and it does not modify the source, and if the | 
|  | /// source value is preserved as a sub-register of the result, then replace all | 
|  | /// reachable uses of the source with the subreg of the result. | 
|  | /// | 
|  | /// Do not generate an EXTRACT that is used only in a debug use, as this changes | 
|  | /// the code. Since this code does not currently share EXTRACTs, just ignore all | 
|  | /// debug uses. | 
|  | bool PeepholeOptimizer:: | 
|  | optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, | 
|  | SmallPtrSetImpl<MachineInstr*> &LocalMIs) { | 
|  | unsigned SrcReg, DstReg, SubIdx; | 
|  | if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) | 
|  | return false; | 
|  |  | 
|  | if (Register::isPhysicalRegister(DstReg) || | 
|  | Register::isPhysicalRegister(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | if (MRI->hasOneNonDBGUse(SrcReg)) | 
|  | // No other uses. | 
|  | return false; | 
|  |  | 
|  | // Ensure DstReg can get a register class that actually supports | 
|  | // sub-registers. Don't change the class until we commit. | 
|  | const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); | 
|  | DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); | 
|  | if (!DstRC) | 
|  | return false; | 
|  |  | 
|  | // The ext instr may be operating on a sub-register of SrcReg as well. | 
|  | // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit | 
|  | // register. | 
|  | // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of | 
|  | // SrcReg:SubIdx should be replaced. | 
|  | bool UseSrcSubIdx = | 
|  | TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; | 
|  |  | 
|  | // The source has other uses. See if we can replace the other uses with use of | 
|  | // the result of the extension. | 
|  | SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; | 
|  | for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) | 
|  | ReachedBBs.insert(UI.getParent()); | 
|  |  | 
|  | // Uses that are in the same BB of uses of the result of the instruction. | 
|  | SmallVector<MachineOperand*, 8> Uses; | 
|  |  | 
|  | // Uses that the result of the instruction can reach. | 
|  | SmallVector<MachineOperand*, 8> ExtendedUses; | 
|  |  | 
|  | bool ExtendLife = true; | 
|  | for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { | 
|  | MachineInstr *UseMI = UseMO.getParent(); | 
|  | if (UseMI == &MI) | 
|  | continue; | 
|  |  | 
|  | if (UseMI->isPHI()) { | 
|  | ExtendLife = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only accept uses of SrcReg:SubIdx. | 
|  | if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) | 
|  | continue; | 
|  |  | 
|  | // It's an error to translate this: | 
|  | // | 
|  | //    %reg1025 = <sext> %reg1024 | 
|  | //     ... | 
|  | //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 | 
|  | // | 
|  | // into this: | 
|  | // | 
|  | //    %reg1025 = <sext> %reg1024 | 
|  | //     ... | 
|  | //    %reg1027 = COPY %reg1025:4 | 
|  | //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 | 
|  | // | 
|  | // The problem here is that SUBREG_TO_REG is there to assert that an | 
|  | // implicit zext occurs. It doesn't insert a zext instruction. If we allow | 
|  | // the COPY here, it will give us the value after the <sext>, not the | 
|  | // original value of %reg1024 before <sext>. | 
|  | if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock *UseMBB = UseMI->getParent(); | 
|  | if (UseMBB == &MBB) { | 
|  | // Local uses that come after the extension. | 
|  | if (!LocalMIs.count(UseMI)) | 
|  | Uses.push_back(&UseMO); | 
|  | } else if (ReachedBBs.count(UseMBB)) { | 
|  | // Non-local uses where the result of the extension is used. Always | 
|  | // replace these unless it's a PHI. | 
|  | Uses.push_back(&UseMO); | 
|  | } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { | 
|  | // We may want to extend the live range of the extension result in order | 
|  | // to replace these uses. | 
|  | ExtendedUses.push_back(&UseMO); | 
|  | } else { | 
|  | // Both will be live out of the def MBB anyway. Don't extend live range of | 
|  | // the extension result. | 
|  | ExtendLife = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExtendLife && !ExtendedUses.empty()) | 
|  | // Extend the liveness of the extension result. | 
|  | Uses.append(ExtendedUses.begin(), ExtendedUses.end()); | 
|  |  | 
|  | // Now replace all uses. | 
|  | bool Changed = false; | 
|  | if (!Uses.empty()) { | 
|  | SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; | 
|  |  | 
|  | // Look for PHI uses of the extended result, we don't want to extend the | 
|  | // liveness of a PHI input. It breaks all kinds of assumptions down | 
|  | // stream. A PHI use is expected to be the kill of its source values. | 
|  | for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) | 
|  | if (UI.isPHI()) | 
|  | PHIBBs.insert(UI.getParent()); | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); | 
|  | for (unsigned i = 0, e = Uses.size(); i != e; ++i) { | 
|  | MachineOperand *UseMO = Uses[i]; | 
|  | MachineInstr *UseMI = UseMO->getParent(); | 
|  | MachineBasicBlock *UseMBB = UseMI->getParent(); | 
|  | if (PHIBBs.count(UseMBB)) | 
|  | continue; | 
|  |  | 
|  | // About to add uses of DstReg, clear DstReg's kill flags. | 
|  | if (!Changed) { | 
|  | MRI->clearKillFlags(DstReg); | 
|  | MRI->constrainRegClass(DstReg, DstRC); | 
|  | } | 
|  |  | 
|  | Register NewVR = MRI->createVirtualRegister(RC); | 
|  | MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), NewVR) | 
|  | .addReg(DstReg, 0, SubIdx); | 
|  | // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. | 
|  | if (UseSrcSubIdx) { | 
|  | Copy->getOperand(0).setSubReg(SubIdx); | 
|  | Copy->getOperand(0).setIsUndef(); | 
|  | } | 
|  | UseMO->setReg(NewVR); | 
|  | ++NumReuse; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// If the instruction is a compare and the previous instruction it's comparing | 
|  | /// against already sets (or could be modified to set) the same flag as the | 
|  | /// compare, then we can remove the comparison and use the flag from the | 
|  | /// previous instruction. | 
|  | bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { | 
|  | // If this instruction is a comparison against zero and isn't comparing a | 
|  | // physical register, we can try to optimize it. | 
|  | unsigned SrcReg, SrcReg2; | 
|  | int CmpMask, CmpValue; | 
|  | if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || | 
|  | Register::isPhysicalRegister(SrcReg) || | 
|  | (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2))) | 
|  | return false; | 
|  |  | 
|  | // Attempt to optimize the comparison instruction. | 
|  | if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { | 
|  | ++NumCmps; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Optimize a select instruction. | 
|  | bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, | 
|  | SmallPtrSetImpl<MachineInstr *> &LocalMIs) { | 
|  | unsigned TrueOp = 0; | 
|  | unsigned FalseOp = 0; | 
|  | bool Optimizable = false; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) | 
|  | return false; | 
|  | if (!Optimizable) | 
|  | return false; | 
|  | if (!TII->optimizeSelect(MI, LocalMIs)) | 
|  | return false; | 
|  | MI.eraseFromParent(); | 
|  | ++NumSelects; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if a simpler conditional branch can be generated. | 
|  | bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { | 
|  | return TII->optimizeCondBranch(MI); | 
|  | } | 
|  |  | 
|  | /// Try to find the next source that share the same register file | 
|  | /// for the value defined by \p Reg and \p SubReg. | 
|  | /// When true is returned, the \p RewriteMap can be used by the client to | 
|  | /// retrieve all Def -> Use along the way up to the next source. Any found | 
|  | /// Use that is not itself a key for another entry, is the next source to | 
|  | /// use. During the search for the next source, multiple sources can be found | 
|  | /// given multiple incoming sources of a PHI instruction. In this case, we | 
|  | /// look in each PHI source for the next source; all found next sources must | 
|  | /// share the same register file as \p Reg and \p SubReg. The client should | 
|  | /// then be capable to rewrite all intermediate PHIs to get the next source. | 
|  | /// \return False if no alternative sources are available. True otherwise. | 
|  | bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, | 
|  | RewriteMapTy &RewriteMap) { | 
|  | // Do not try to find a new source for a physical register. | 
|  | // So far we do not have any motivating example for doing that. | 
|  | // Thus, instead of maintaining untested code, we will revisit that if | 
|  | // that changes at some point. | 
|  | unsigned Reg = RegSubReg.Reg; | 
|  | if (Register::isPhysicalRegister(Reg)) | 
|  | return false; | 
|  | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); | 
|  |  | 
|  | SmallVector<RegSubRegPair, 4> SrcToLook; | 
|  | RegSubRegPair CurSrcPair = RegSubReg; | 
|  | SrcToLook.push_back(CurSrcPair); | 
|  |  | 
|  | unsigned PHICount = 0; | 
|  | do { | 
|  | CurSrcPair = SrcToLook.pop_back_val(); | 
|  | // As explained above, do not handle physical registers | 
|  | if (Register::isPhysicalRegister(CurSrcPair.Reg)) | 
|  | return false; | 
|  |  | 
|  | ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); | 
|  |  | 
|  | // Follow the chain of copies until we find a more suitable source, a phi | 
|  | // or have to abort. | 
|  | while (true) { | 
|  | ValueTrackerResult Res = ValTracker.getNextSource(); | 
|  | // Abort at the end of a chain (without finding a suitable source). | 
|  | if (!Res.isValid()) | 
|  | return false; | 
|  |  | 
|  | // Insert the Def -> Use entry for the recently found source. | 
|  | ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); | 
|  | if (CurSrcRes.isValid()) { | 
|  | assert(CurSrcRes == Res && "ValueTrackerResult found must match"); | 
|  | // An existent entry with multiple sources is a PHI cycle we must avoid. | 
|  | // Otherwise it's an entry with a valid next source we already found. | 
|  | if (CurSrcRes.getNumSources() > 1) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "findNextSource: found PHI cycle, aborting...\n"); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | RewriteMap.insert(std::make_pair(CurSrcPair, Res)); | 
|  |  | 
|  | // ValueTrackerResult usually have one source unless it's the result from | 
|  | // a PHI instruction. Add the found PHI edges to be looked up further. | 
|  | unsigned NumSrcs = Res.getNumSources(); | 
|  | if (NumSrcs > 1) { | 
|  | PHICount++; | 
|  | if (PHICount >= RewritePHILimit) { | 
|  | LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < NumSrcs; ++i) | 
|  | SrcToLook.push_back(Res.getSrc(i)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | CurSrcPair = Res.getSrc(0); | 
|  | // Do not extend the live-ranges of physical registers as they add | 
|  | // constraints to the register allocator. Moreover, if we want to extend | 
|  | // the live-range of a physical register, unlike SSA virtual register, | 
|  | // we will have to check that they aren't redefine before the related use. | 
|  | if (Register::isPhysicalRegister(CurSrcPair.Reg)) | 
|  | return false; | 
|  |  | 
|  | // Keep following the chain if the value isn't any better yet. | 
|  | const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); | 
|  | if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, | 
|  | CurSrcPair.SubReg)) | 
|  | continue; | 
|  |  | 
|  | // We currently cannot deal with subreg operands on PHI instructions | 
|  | // (see insertPHI()). | 
|  | if (PHICount > 0 && CurSrcPair.SubReg != 0) | 
|  | continue; | 
|  |  | 
|  | // We found a suitable source, and are done with this chain. | 
|  | break; | 
|  | } | 
|  | } while (!SrcToLook.empty()); | 
|  |  | 
|  | // If we did not find a more suitable source, there is nothing to optimize. | 
|  | return CurSrcPair.Reg != Reg; | 
|  | } | 
|  |  | 
|  | /// Insert a PHI instruction with incoming edges \p SrcRegs that are | 
|  | /// guaranteed to have the same register class. This is necessary whenever we | 
|  | /// successfully traverse a PHI instruction and find suitable sources coming | 
|  | /// from its edges. By inserting a new PHI, we provide a rewritten PHI def | 
|  | /// suitable to be used in a new COPY instruction. | 
|  | static MachineInstr & | 
|  | insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, | 
|  | const SmallVectorImpl<RegSubRegPair> &SrcRegs, | 
|  | MachineInstr &OrigPHI) { | 
|  | assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); | 
|  |  | 
|  | const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); | 
|  | // NewRC is only correct if no subregisters are involved. findNextSource() | 
|  | // should have rejected those cases already. | 
|  | assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); | 
|  | Register NewVR = MRI.createVirtualRegister(NewRC); | 
|  | MachineBasicBlock *MBB = OrigPHI.getParent(); | 
|  | MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), | 
|  | TII.get(TargetOpcode::PHI), NewVR); | 
|  |  | 
|  | unsigned MBBOpIdx = 2; | 
|  | for (const RegSubRegPair &RegPair : SrcRegs) { | 
|  | MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); | 
|  | MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); | 
|  | // Since we're extended the lifetime of RegPair.Reg, clear the | 
|  | // kill flags to account for that and make RegPair.Reg reaches | 
|  | // the new PHI. | 
|  | MRI.clearKillFlags(RegPair.Reg); | 
|  | MBBOpIdx += 2; | 
|  | } | 
|  |  | 
|  | return *MIB; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Interface to query instructions amenable to copy rewriting. | 
|  | class Rewriter { | 
|  | protected: | 
|  | MachineInstr &CopyLike; | 
|  | unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten. | 
|  | public: | 
|  | Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} | 
|  | virtual ~Rewriter() {} | 
|  |  | 
|  | /// Get the next rewritable source (SrcReg, SrcSubReg) and | 
|  | /// the related value that it affects (DstReg, DstSubReg). | 
|  | /// A source is considered rewritable if its register class and the | 
|  | /// register class of the related DstReg may not be register | 
|  | /// coalescer friendly. In other words, given a copy-like instruction | 
|  | /// not all the arguments may be returned at rewritable source, since | 
|  | /// some arguments are none to be register coalescer friendly. | 
|  | /// | 
|  | /// Each call of this method moves the current source to the next | 
|  | /// rewritable source. | 
|  | /// For instance, let CopyLike be the instruction to rewrite. | 
|  | /// CopyLike has one definition and one source: | 
|  | /// dst.dstSubIdx = CopyLike src.srcSubIdx. | 
|  | /// | 
|  | /// The first call will give the first rewritable source, i.e., | 
|  | /// the only source this instruction has: | 
|  | /// (SrcReg, SrcSubReg) = (src, srcSubIdx). | 
|  | /// This source defines the whole definition, i.e., | 
|  | /// (DstReg, DstSubReg) = (dst, dstSubIdx). | 
|  | /// | 
|  | /// The second and subsequent calls will return false, as there is only one | 
|  | /// rewritable source. | 
|  | /// | 
|  | /// \return True if a rewritable source has been found, false otherwise. | 
|  | /// The output arguments are valid if and only if true is returned. | 
|  | virtual bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) = 0; | 
|  |  | 
|  | /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. | 
|  | /// \return True if the rewriting was possible, false otherwise. | 
|  | virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0; | 
|  | }; | 
|  |  | 
|  | /// Rewriter for COPY instructions. | 
|  | class CopyRewriter : public Rewriter { | 
|  | public: | 
|  | CopyRewriter(MachineInstr &MI) : Rewriter(MI) { | 
|  | assert(MI.isCopy() && "Expected copy instruction"); | 
|  | } | 
|  | virtual ~CopyRewriter() = default; | 
|  |  | 
|  | bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) override { | 
|  | // CurrentSrcIdx > 0 means this function has already been called. | 
|  | if (CurrentSrcIdx > 0) | 
|  | return false; | 
|  | // This is the first call to getNextRewritableSource. | 
|  | // Move the CurrentSrcIdx to remember that we made that call. | 
|  | CurrentSrcIdx = 1; | 
|  | // The rewritable source is the argument. | 
|  | const MachineOperand &MOSrc = CopyLike.getOperand(1); | 
|  | Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); | 
|  | // What we track are the alternative sources of the definition. | 
|  | const MachineOperand &MODef = CopyLike.getOperand(0); | 
|  | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { | 
|  | if (CurrentSrcIdx != 1) | 
|  | return false; | 
|  | MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); | 
|  | MOSrc.setReg(NewReg); | 
|  | MOSrc.setSubReg(NewSubReg); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper class to rewrite uncoalescable copy like instructions | 
|  | /// into new COPY (coalescable friendly) instructions. | 
|  | class UncoalescableRewriter : public Rewriter { | 
|  | unsigned NumDefs;  ///< Number of defs in the bitcast. | 
|  |  | 
|  | public: | 
|  | UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { | 
|  | NumDefs = MI.getDesc().getNumDefs(); | 
|  | } | 
|  |  | 
|  | /// \see See Rewriter::getNextRewritableSource() | 
|  | /// All such sources need to be considered rewritable in order to | 
|  | /// rewrite a uncoalescable copy-like instruction. This method return | 
|  | /// each definition that must be checked if rewritable. | 
|  | bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) override { | 
|  | // Find the next non-dead definition and continue from there. | 
|  | if (CurrentSrcIdx == NumDefs) | 
|  | return false; | 
|  |  | 
|  | while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { | 
|  | ++CurrentSrcIdx; | 
|  | if (CurrentSrcIdx == NumDefs) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // What we track are the alternative sources of the definition. | 
|  | Src = RegSubRegPair(0, 0); | 
|  | const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); | 
|  | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | 
|  |  | 
|  | CurrentSrcIdx++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Specialized rewriter for INSERT_SUBREG instruction. | 
|  | class InsertSubregRewriter : public Rewriter { | 
|  | public: | 
|  | InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { | 
|  | assert(MI.isInsertSubreg() && "Invalid instruction"); | 
|  | } | 
|  |  | 
|  | /// \see See Rewriter::getNextRewritableSource() | 
|  | /// Here CopyLike has the following form: | 
|  | /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. | 
|  | /// Src1 has the same register class has dst, hence, there is | 
|  | /// nothing to rewrite. | 
|  | /// Src2.src2SubIdx, may not be register coalescer friendly. | 
|  | /// Therefore, the first call to this method returns: | 
|  | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). | 
|  | /// (DstReg, DstSubReg) = (dst, subIdx). | 
|  | /// | 
|  | /// Subsequence calls will return false. | 
|  | bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) override { | 
|  | // If we already get the only source we can rewrite, return false. | 
|  | if (CurrentSrcIdx == 2) | 
|  | return false; | 
|  | // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. | 
|  | CurrentSrcIdx = 2; | 
|  | const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); | 
|  | Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); | 
|  | const MachineOperand &MODef = CopyLike.getOperand(0); | 
|  |  | 
|  | // We want to track something that is compatible with the | 
|  | // partial definition. | 
|  | if (MODef.getSubReg()) | 
|  | // Bail if we have to compose sub-register indices. | 
|  | return false; | 
|  | Dst = RegSubRegPair(MODef.getReg(), | 
|  | (unsigned)CopyLike.getOperand(3).getImm()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { | 
|  | if (CurrentSrcIdx != 2) | 
|  | return false; | 
|  | // We are rewriting the inserted reg. | 
|  | MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); | 
|  | MO.setReg(NewReg); | 
|  | MO.setSubReg(NewSubReg); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Specialized rewriter for EXTRACT_SUBREG instruction. | 
|  | class ExtractSubregRewriter : public Rewriter { | 
|  | const TargetInstrInfo &TII; | 
|  |  | 
|  | public: | 
|  | ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) | 
|  | : Rewriter(MI), TII(TII) { | 
|  | assert(MI.isExtractSubreg() && "Invalid instruction"); | 
|  | } | 
|  |  | 
|  | /// \see Rewriter::getNextRewritableSource() | 
|  | /// Here CopyLike has the following form: | 
|  | /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. | 
|  | /// There is only one rewritable source: Src.subIdx, | 
|  | /// which defines dst.dstSubIdx. | 
|  | bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) override { | 
|  | // If we already get the only source we can rewrite, return false. | 
|  | if (CurrentSrcIdx == 1) | 
|  | return false; | 
|  | // We are looking at v1 = EXTRACT_SUBREG v0, sub0. | 
|  | CurrentSrcIdx = 1; | 
|  | const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); | 
|  | // If we have to compose sub-register indices, bail out. | 
|  | if (MOExtractedReg.getSubReg()) | 
|  | return false; | 
|  |  | 
|  | Src = RegSubRegPair(MOExtractedReg.getReg(), | 
|  | CopyLike.getOperand(2).getImm()); | 
|  |  | 
|  | // We want to track something that is compatible with the definition. | 
|  | const MachineOperand &MODef = CopyLike.getOperand(0); | 
|  | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { | 
|  | // The only source we can rewrite is the input register. | 
|  | if (CurrentSrcIdx != 1) | 
|  | return false; | 
|  |  | 
|  | CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); | 
|  |  | 
|  | // If we find a source that does not require to extract something, | 
|  | // rewrite the operation with a copy. | 
|  | if (!NewSubReg) { | 
|  | // Move the current index to an invalid position. | 
|  | // We do not want another call to this method to be able | 
|  | // to do any change. | 
|  | CurrentSrcIdx = -1; | 
|  | // Rewrite the operation as a COPY. | 
|  | // Get rid of the sub-register index. | 
|  | CopyLike.RemoveOperand(2); | 
|  | // Morph the operation into a COPY. | 
|  | CopyLike.setDesc(TII.get(TargetOpcode::COPY)); | 
|  | return true; | 
|  | } | 
|  | CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Specialized rewriter for REG_SEQUENCE instruction. | 
|  | class RegSequenceRewriter : public Rewriter { | 
|  | public: | 
|  | RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { | 
|  | assert(MI.isRegSequence() && "Invalid instruction"); | 
|  | } | 
|  |  | 
|  | /// \see Rewriter::getNextRewritableSource() | 
|  | /// Here CopyLike has the following form: | 
|  | /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. | 
|  | /// Each call will return a different source, walking all the available | 
|  | /// source. | 
|  | /// | 
|  | /// The first call returns: | 
|  | /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). | 
|  | /// (DstReg, DstSubReg) = (dst, subIdx1). | 
|  | /// | 
|  | /// The second call returns: | 
|  | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). | 
|  | /// (DstReg, DstSubReg) = (dst, subIdx2). | 
|  | /// | 
|  | /// And so on, until all the sources have been traversed, then | 
|  | /// it returns false. | 
|  | bool getNextRewritableSource(RegSubRegPair &Src, | 
|  | RegSubRegPair &Dst) override { | 
|  | // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. | 
|  |  | 
|  | // If this is the first call, move to the first argument. | 
|  | if (CurrentSrcIdx == 0) { | 
|  | CurrentSrcIdx = 1; | 
|  | } else { | 
|  | // Otherwise, move to the next argument and check that it is valid. | 
|  | CurrentSrcIdx += 2; | 
|  | if (CurrentSrcIdx >= CopyLike.getNumOperands()) | 
|  | return false; | 
|  | } | 
|  | const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); | 
|  | Src.Reg = MOInsertedReg.getReg(); | 
|  | // If we have to compose sub-register indices, bail out. | 
|  | if ((Src.SubReg = MOInsertedReg.getSubReg())) | 
|  | return false; | 
|  |  | 
|  | // We want to track something that is compatible with the related | 
|  | // partial definition. | 
|  | Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); | 
|  |  | 
|  | const MachineOperand &MODef = CopyLike.getOperand(0); | 
|  | Dst.Reg = MODef.getReg(); | 
|  | // If we have to compose sub-registers, bail. | 
|  | return MODef.getSubReg() == 0; | 
|  | } | 
|  |  | 
|  | bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { | 
|  | // We cannot rewrite out of bound operands. | 
|  | // Moreover, rewritable sources are at odd positions. | 
|  | if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); | 
|  | MO.setReg(NewReg); | 
|  | MO.setSubReg(NewSubReg); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Get the appropriated Rewriter for \p MI. | 
|  | /// \return A pointer to a dynamically allocated Rewriter or nullptr if no | 
|  | /// rewriter works for \p MI. | 
|  | static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { | 
|  | // Handle uncoalescable copy-like instructions. | 
|  | if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || | 
|  | MI.isExtractSubregLike()) | 
|  | return new UncoalescableRewriter(MI); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return nullptr; | 
|  | case TargetOpcode::COPY: | 
|  | return new CopyRewriter(MI); | 
|  | case TargetOpcode::INSERT_SUBREG: | 
|  | return new InsertSubregRewriter(MI); | 
|  | case TargetOpcode::EXTRACT_SUBREG: | 
|  | return new ExtractSubregRewriter(MI, TII); | 
|  | case TargetOpcode::REG_SEQUENCE: | 
|  | return new RegSequenceRewriter(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find | 
|  | /// the new source to use for rewrite. If \p HandleMultipleSources is true and | 
|  | /// multiple sources for a given \p Def are found along the way, we found a | 
|  | /// PHI instructions that needs to be rewritten. | 
|  | /// TODO: HandleMultipleSources should be removed once we test PHI handling | 
|  | /// with coalescable copies. | 
|  | static RegSubRegPair | 
|  | getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, | 
|  | RegSubRegPair Def, | 
|  | const PeepholeOptimizer::RewriteMapTy &RewriteMap, | 
|  | bool HandleMultipleSources = true) { | 
|  | RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); | 
|  | while (true) { | 
|  | ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); | 
|  | // If there are no entries on the map, LookupSrc is the new source. | 
|  | if (!Res.isValid()) | 
|  | return LookupSrc; | 
|  |  | 
|  | // There's only one source for this definition, keep searching... | 
|  | unsigned NumSrcs = Res.getNumSources(); | 
|  | if (NumSrcs == 1) { | 
|  | LookupSrc.Reg = Res.getSrcReg(0); | 
|  | LookupSrc.SubReg = Res.getSrcSubReg(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TODO: Remove once multiple srcs w/ coalescable copies are supported. | 
|  | if (!HandleMultipleSources) | 
|  | break; | 
|  |  | 
|  | // Multiple sources, recurse into each source to find a new source | 
|  | // for it. Then, rewrite the PHI accordingly to its new edges. | 
|  | SmallVector<RegSubRegPair, 4> NewPHISrcs; | 
|  | for (unsigned i = 0; i < NumSrcs; ++i) { | 
|  | RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); | 
|  | NewPHISrcs.push_back( | 
|  | getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); | 
|  | } | 
|  |  | 
|  | // Build the new PHI node and return its def register as the new source. | 
|  | MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); | 
|  | MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); | 
|  | LLVM_DEBUG(dbgs() << "-- getNewSource\n"); | 
|  | LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI); | 
|  | LLVM_DEBUG(dbgs() << "        With: " << NewPHI); | 
|  | const MachineOperand &MODef = NewPHI.getOperand(0); | 
|  | return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | 
|  | } | 
|  |  | 
|  | return RegSubRegPair(0, 0); | 
|  | } | 
|  |  | 
|  | /// Optimize generic copy instructions to avoid cross register bank copy. | 
|  | /// The optimization looks through a chain of copies and tries to find a source | 
|  | /// that has a compatible register class. | 
|  | /// Two register classes are considered to be compatible if they share the same | 
|  | /// register bank. | 
|  | /// New copies issued by this optimization are register allocator | 
|  | /// friendly. This optimization does not remove any copy as it may | 
|  | /// overconstrain the register allocator, but replaces some operands | 
|  | /// when possible. | 
|  | /// \pre isCoalescableCopy(*MI) is true. | 
|  | /// \return True, when \p MI has been rewritten. False otherwise. | 
|  | bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { | 
|  | assert(isCoalescableCopy(MI) && "Invalid argument"); | 
|  | assert(MI.getDesc().getNumDefs() == 1 && | 
|  | "Coalescer can understand multiple defs?!"); | 
|  | const MachineOperand &MODef = MI.getOperand(0); | 
|  | // Do not rewrite physical definitions. | 
|  | if (Register::isPhysicalRegister(MODef.getReg())) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | // Get the right rewriter for the current copy. | 
|  | std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); | 
|  | // If none exists, bail out. | 
|  | if (!CpyRewriter) | 
|  | return false; | 
|  | // Rewrite each rewritable source. | 
|  | RegSubRegPair Src; | 
|  | RegSubRegPair TrackPair; | 
|  | while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { | 
|  | // Keep track of PHI nodes and its incoming edges when looking for sources. | 
|  | RewriteMapTy RewriteMap; | 
|  | // Try to find a more suitable source. If we failed to do so, or get the | 
|  | // actual source, move to the next source. | 
|  | if (!findNextSource(TrackPair, RewriteMap)) | 
|  | continue; | 
|  |  | 
|  | // Get the new source to rewrite. TODO: Only enable handling of multiple | 
|  | // sources (PHIs) once we have a motivating example and testcases for it. | 
|  | RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, | 
|  | /*HandleMultipleSources=*/false); | 
|  | if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // Rewrite source. | 
|  | if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { | 
|  | // We may have extended the live-range of NewSrc, account for that. | 
|  | MRI->clearKillFlags(NewSrc.Reg); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | // TODO: We could have a clean-up method to tidy the instruction. | 
|  | // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 | 
|  | // => v0 = COPY v1 | 
|  | // Currently we haven't seen motivating example for that and we | 
|  | // want to avoid untested code. | 
|  | NumRewrittenCopies += Changed; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Rewrite the source found through \p Def, by using the \p RewriteMap | 
|  | /// and create a new COPY instruction. More info about RewriteMap in | 
|  | /// PeepholeOptimizer::findNextSource. Right now this is only used to handle | 
|  | /// Uncoalescable copies, since they are copy like instructions that aren't | 
|  | /// recognized by the register allocator. | 
|  | MachineInstr & | 
|  | PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, | 
|  | RegSubRegPair Def, RewriteMapTy &RewriteMap) { | 
|  | assert(!Register::isPhysicalRegister(Def.Reg) && | 
|  | "We do not rewrite physical registers"); | 
|  |  | 
|  | // Find the new source to use in the COPY rewrite. | 
|  | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); | 
|  |  | 
|  | // Insert the COPY. | 
|  | const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); | 
|  | Register NewVReg = MRI->createVirtualRegister(DefRC); | 
|  |  | 
|  | MachineInstr *NewCopy = | 
|  | BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), NewVReg) | 
|  | .addReg(NewSrc.Reg, 0, NewSrc.SubReg); | 
|  |  | 
|  | if (Def.SubReg) { | 
|  | NewCopy->getOperand(0).setSubReg(Def.SubReg); | 
|  | NewCopy->getOperand(0).setIsUndef(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); | 
|  | LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike); | 
|  | LLVM_DEBUG(dbgs() << "        With: " << *NewCopy); | 
|  | MRI->replaceRegWith(Def.Reg, NewVReg); | 
|  | MRI->clearKillFlags(NewVReg); | 
|  |  | 
|  | // We extended the lifetime of NewSrc.Reg, clear the kill flags to | 
|  | // account for that. | 
|  | MRI->clearKillFlags(NewSrc.Reg); | 
|  |  | 
|  | return *NewCopy; | 
|  | } | 
|  |  | 
|  | /// Optimize copy-like instructions to create | 
|  | /// register coalescer friendly instruction. | 
|  | /// The optimization tries to kill-off the \p MI by looking | 
|  | /// through a chain of copies to find a source that has a compatible | 
|  | /// register class. | 
|  | /// If such a source is found, it replace \p MI by a generic COPY | 
|  | /// operation. | 
|  | /// \pre isUncoalescableCopy(*MI) is true. | 
|  | /// \return True, when \p MI has been optimized. In that case, \p MI has | 
|  | /// been removed from its parent. | 
|  | /// All COPY instructions created, are inserted in \p LocalMIs. | 
|  | bool PeepholeOptimizer::optimizeUncoalescableCopy( | 
|  | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { | 
|  | assert(isUncoalescableCopy(MI) && "Invalid argument"); | 
|  | UncoalescableRewriter CpyRewriter(MI); | 
|  |  | 
|  | // Rewrite each rewritable source by generating new COPYs. This works | 
|  | // differently from optimizeCoalescableCopy since it first makes sure that all | 
|  | // definitions can be rewritten. | 
|  | RewriteMapTy RewriteMap; | 
|  | RegSubRegPair Src; | 
|  | RegSubRegPair Def; | 
|  | SmallVector<RegSubRegPair, 4> RewritePairs; | 
|  | while (CpyRewriter.getNextRewritableSource(Src, Def)) { | 
|  | // If a physical register is here, this is probably for a good reason. | 
|  | // Do not rewrite that. | 
|  | if (Register::isPhysicalRegister(Def.Reg)) | 
|  | return false; | 
|  |  | 
|  | // If we do not know how to rewrite this definition, there is no point | 
|  | // in trying to kill this instruction. | 
|  | if (!findNextSource(Def, RewriteMap)) | 
|  | return false; | 
|  |  | 
|  | RewritePairs.push_back(Def); | 
|  | } | 
|  |  | 
|  | // The change is possible for all defs, do it. | 
|  | for (const RegSubRegPair &Def : RewritePairs) { | 
|  | // Rewrite the "copy" in a way the register coalescer understands. | 
|  | MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); | 
|  | LocalMIs.insert(&NewCopy); | 
|  | } | 
|  |  | 
|  | // MI is now dead. | 
|  | MI.eraseFromParent(); | 
|  | ++NumUncoalescableCopies; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether MI is a candidate for folding into a later instruction. | 
|  | /// We only fold loads to virtual registers and the virtual register defined | 
|  | /// has a single user. | 
|  | bool PeepholeOptimizer::isLoadFoldable( | 
|  | MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { | 
|  | if (!MI.canFoldAsLoad() || !MI.mayLoad()) | 
|  | return false; | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (MCID.getNumDefs() != 1) | 
|  | return false; | 
|  |  | 
|  | Register Reg = MI.getOperand(0).getReg(); | 
|  | // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting | 
|  | // loads. It should be checked when processing uses of the load, since | 
|  | // uses can be removed during peephole. | 
|  | if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) && | 
|  | MRI->hasOneNonDBGUser(Reg)) { | 
|  | FoldAsLoadDefCandidates.insert(Reg); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PeepholeOptimizer::isMoveImmediate( | 
|  | MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, | 
|  | DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (!MI.isMoveImmediate()) | 
|  | return false; | 
|  | if (MCID.getNumDefs() != 1) | 
|  | return false; | 
|  | Register Reg = MI.getOperand(0).getReg(); | 
|  | if (Register::isVirtualRegister(Reg)) { | 
|  | ImmDefMIs.insert(std::make_pair(Reg, &MI)); | 
|  | ImmDefRegs.insert(Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try folding register operands that are defined by move immediate | 
|  | /// instructions, i.e. a trivial constant folding optimization, if | 
|  | /// and only if the def and use are in the same BB. | 
|  | bool PeepholeOptimizer::foldImmediate(MachineInstr &MI, | 
|  | SmallSet<unsigned, 4> &ImmDefRegs, | 
|  | DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { | 
|  | for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.isDef()) | 
|  | continue; | 
|  | // Ignore dead implicit defs. | 
|  | if (MO.isImplicit() && MO.isDead()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Register::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | if (ImmDefRegs.count(Reg) == 0) | 
|  | continue; | 
|  | DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); | 
|  | assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); | 
|  | if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { | 
|  | ++NumImmFold; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: This is very simple and misses some cases which should be handled when | 
|  | // motivating examples are found. | 
|  | // | 
|  | // The copy rewriting logic should look at uses as well as defs and be able to | 
|  | // eliminate copies across blocks. | 
|  | // | 
|  | // Later copies that are subregister extracts will also not be eliminated since | 
|  | // only the first copy is considered. | 
|  | // | 
|  | // e.g. | 
|  | // %1 = COPY %0 | 
|  | // %2 = COPY %0:sub1 | 
|  | // | 
|  | // Should replace %2 uses with %1:sub1 | 
|  | bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI, | 
|  | SmallSet<unsigned, 4> &CopySrcRegs, | 
|  | DenseMap<unsigned, MachineInstr *> &CopyMIs) { | 
|  | assert(MI.isCopy() && "expected a COPY machine instruction"); | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!Register::isVirtualRegister(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | if (!Register::isVirtualRegister(DstReg)) | 
|  | return false; | 
|  |  | 
|  | if (CopySrcRegs.insert(SrcReg).second) { | 
|  | // First copy of this reg seen. | 
|  | CopyMIs.insert(std::make_pair(SrcReg, &MI)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; | 
|  |  | 
|  | unsigned SrcSubReg = MI.getOperand(1).getSubReg(); | 
|  | unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); | 
|  |  | 
|  | // Can't replace different subregister extracts. | 
|  | if (SrcSubReg != PrevSrcSubReg) | 
|  | return false; | 
|  |  | 
|  | Register PrevDstReg = PrevCopy->getOperand(0).getReg(); | 
|  |  | 
|  | // Only replace if the copy register class is the same. | 
|  | // | 
|  | // TODO: If we have multiple copies to different register classes, we may want | 
|  | // to track multiple copies of the same source register. | 
|  | if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) | 
|  | return false; | 
|  |  | 
|  | MRI->replaceRegWith(DstReg, PrevDstReg); | 
|  |  | 
|  | // Lifetime of the previous copy has been extended. | 
|  | MRI->clearKillFlags(PrevDstReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { | 
|  | return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg); | 
|  | } | 
|  |  | 
|  | bool PeepholeOptimizer::foldRedundantNAPhysCopy( | 
|  | MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { | 
|  | assert(MI.isCopy() && "expected a COPY machine instruction"); | 
|  |  | 
|  | if (DisableNAPhysCopyOpt) | 
|  | return false; | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { | 
|  | // %vreg = COPY %physreg | 
|  | // Avoid using a datastructure which can track multiple live non-allocatable | 
|  | // phys->virt copies since LLVM doesn't seem to do this. | 
|  | NAPhysToVirtMIs.insert({SrcReg, &MI}); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) | 
|  | return false; | 
|  |  | 
|  | // %physreg = COPY %vreg | 
|  | auto PrevCopy = NAPhysToVirtMIs.find(DstReg); | 
|  | if (PrevCopy == NAPhysToVirtMIs.end()) { | 
|  | // We can't remove the copy: there was an intervening clobber of the | 
|  | // non-allocatable physical register after the copy to virtual. | 
|  | LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " | 
|  | << MI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); | 
|  | if (PrevDstReg == SrcReg) { | 
|  | // Remove the virt->phys copy: we saw the virtual register definition, and | 
|  | // the non-allocatable physical register's state hasn't changed since then. | 
|  | LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); | 
|  | ++NumNAPhysCopies; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Potential missed optimization opportunity: we saw a different virtual | 
|  | // register get a copy of the non-allocatable physical register, and we only | 
|  | // track one such copy. Avoid getting confused by this new non-allocatable | 
|  | // physical register definition, and remove it from the tracked copies. | 
|  | LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); | 
|  | NAPhysToVirtMIs.erase(PrevCopy); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \bried Returns true if \p MO is a virtual register operand. | 
|  | static bool isVirtualRegisterOperand(MachineOperand &MO) { | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  | return Register::isVirtualRegister(MO.getReg()); | 
|  | } | 
|  |  | 
|  | bool PeepholeOptimizer::findTargetRecurrence( | 
|  | unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, | 
|  | RecurrenceCycle &RC) { | 
|  | // Recurrence found if Reg is in TargetRegs. | 
|  | if (TargetRegs.count(Reg)) | 
|  | return true; | 
|  |  | 
|  | // TODO: Curerntly, we only allow the last instruction of the recurrence | 
|  | // cycle (the instruction that feeds the PHI instruction) to have more than | 
|  | // one uses to guarantee that commuting operands does not tie registers | 
|  | // with overlapping live range. Once we have actual live range info of | 
|  | // each register, this constraint can be relaxed. | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | return false; | 
|  |  | 
|  | // Give up if the reccurrence chain length is longer than the limit. | 
|  | if (RC.size() >= MaxRecurrenceChain) | 
|  | return false; | 
|  |  | 
|  | MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); | 
|  | unsigned Idx = MI.findRegisterUseOperandIdx(Reg); | 
|  |  | 
|  | // Only interested in recurrences whose instructions have only one def, which | 
|  | // is a virtual register. | 
|  | if (MI.getDesc().getNumDefs() != 1) | 
|  | return false; | 
|  |  | 
|  | MachineOperand &DefOp = MI.getOperand(0); | 
|  | if (!isVirtualRegisterOperand(DefOp)) | 
|  | return false; | 
|  |  | 
|  | // Check if def operand of MI is tied to any use operand. We are only | 
|  | // interested in the case that all the instructions in the recurrence chain | 
|  | // have there def operand tied with one of the use operand. | 
|  | unsigned TiedUseIdx; | 
|  | if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) | 
|  | return false; | 
|  |  | 
|  | if (Idx == TiedUseIdx) { | 
|  | RC.push_back(RecurrenceInstr(&MI)); | 
|  | return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); | 
|  | } else { | 
|  | // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. | 
|  | unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; | 
|  | if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { | 
|  | RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); | 
|  | return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Phi instructions will eventually be lowered to copy instructions. | 
|  | /// If phi is in a loop header, a recurrence may formulated around the source | 
|  | /// and destination of the phi. For such case commuting operands of the | 
|  | /// instructions in the recurrence may enable coalescing of the copy instruction | 
|  | /// generated from the phi. For example, if there is a recurrence of | 
|  | /// | 
|  | /// LoopHeader: | 
|  | ///   %1 = phi(%0, %100) | 
|  | /// LoopLatch: | 
|  | ///   %0<def, tied1> = ADD %2<def, tied0>, %1 | 
|  | /// | 
|  | /// , the fact that %0 and %2 are in the same tied operands set makes | 
|  | /// the coalescing of copy instruction generated from the phi in | 
|  | /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and | 
|  | /// %2 have overlapping live range. This introduces additional move | 
|  | /// instruction to the final assembly. However, if we commute %2 and | 
|  | /// %1 of ADD instruction, the redundant move instruction can be | 
|  | /// avoided. | 
|  | bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { | 
|  | SmallSet<unsigned, 2> TargetRegs; | 
|  | for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { | 
|  | MachineOperand &MO = PHI.getOperand(Idx); | 
|  | assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); | 
|  | TargetRegs.insert(MO.getReg()); | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | RecurrenceCycle RC; | 
|  | if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { | 
|  | // Commutes operands of instructions in RC if necessary so that the copy to | 
|  | // be generated from PHI can be coalesced. | 
|  | LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); | 
|  | for (auto &RI : RC) { | 
|  | LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); | 
|  | auto CP = RI.getCommutePair(); | 
|  | if (CP) { | 
|  | Changed = true; | 
|  | TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, | 
|  | (*CP).second); | 
|  | LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); | 
|  | LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); | 
|  |  | 
|  | if (DisablePeephole) | 
|  | return false; | 
|  |  | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | bool SeenMoveImm = false; | 
|  |  | 
|  | // During this forward scan, at some point it needs to answer the question | 
|  | // "given a pointer to an MI in the current BB, is it located before or | 
|  | // after the current instruction". | 
|  | // To perform this, the following set keeps track of the MIs already seen | 
|  | // during the scan, if a MI is not in the set, it is assumed to be located | 
|  | // after. Newly created MIs have to be inserted in the set as well. | 
|  | SmallPtrSet<MachineInstr*, 16> LocalMIs; | 
|  | SmallSet<unsigned, 4> ImmDefRegs; | 
|  | DenseMap<unsigned, MachineInstr*> ImmDefMIs; | 
|  | SmallSet<unsigned, 16> FoldAsLoadDefCandidates; | 
|  |  | 
|  | // Track when a non-allocatable physical register is copied to a virtual | 
|  | // register so that useless moves can be removed. | 
|  | // | 
|  | // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` | 
|  | // without any intervening re-definition of %physreg. | 
|  | DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; | 
|  |  | 
|  | // Set of virtual registers that are copied from. | 
|  | SmallSet<unsigned, 4> CopySrcRegs; | 
|  | DenseMap<unsigned, MachineInstr *> CopySrcMIs; | 
|  |  | 
|  | bool IsLoopHeader = MLI->isLoopHeader(&MBB); | 
|  |  | 
|  | for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); | 
|  | MII != MIE; ) { | 
|  | MachineInstr *MI = &*MII; | 
|  | // We may be erasing MI below, increment MII now. | 
|  | ++MII; | 
|  | LocalMIs.insert(MI); | 
|  |  | 
|  | // Skip debug instructions. They should not affect this peephole optimization. | 
|  | if (MI->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | if (MI->isPosition()) | 
|  | continue; | 
|  |  | 
|  | if (IsLoopHeader && MI->isPHI()) { | 
|  | if (optimizeRecurrence(*MI)) { | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MI->isCopy()) { | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | // Visit all operands: definitions can be implicit or explicit. | 
|  | if (MO.isReg()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (MO.isDef() && isNAPhysCopy(Reg)) { | 
|  | const auto &Def = NAPhysToVirtMIs.find(Reg); | 
|  | if (Def != NAPhysToVirtMIs.end()) { | 
|  | // A new definition of the non-allocatable physical register | 
|  | // invalidates previous copies. | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "NAPhysCopy: invalidating because of " << *MI); | 
|  | NAPhysToVirtMIs.erase(Def); | 
|  | } | 
|  | } | 
|  | } else if (MO.isRegMask()) { | 
|  | const uint32_t *RegMask = MO.getRegMask(); | 
|  | for (auto &RegMI : NAPhysToVirtMIs) { | 
|  | unsigned Def = RegMI.first; | 
|  | if (MachineOperand::clobbersPhysReg(RegMask, Def)) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "NAPhysCopy: invalidating because of " << *MI); | 
|  | NAPhysToVirtMIs.erase(Def); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MI->isImplicitDef() || MI->isKill()) | 
|  | continue; | 
|  |  | 
|  | if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { | 
|  | // Blow away all non-allocatable physical registers knowledge since we | 
|  | // don't know what's correct anymore. | 
|  | // | 
|  | // FIXME: handle explicit asm clobbers. | 
|  | LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " | 
|  | << *MI); | 
|  | NAPhysToVirtMIs.clear(); | 
|  | } | 
|  |  | 
|  | if ((isUncoalescableCopy(*MI) && | 
|  | optimizeUncoalescableCopy(*MI, LocalMIs)) || | 
|  | (MI->isCompare() && optimizeCmpInstr(*MI)) || | 
|  | (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { | 
|  | // MI is deleted. | 
|  | LocalMIs.erase(MI); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { | 
|  | // MI is just rewritten. | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (MI->isCopy() && | 
|  | (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || | 
|  | foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { | 
|  | LocalMIs.erase(MI); | 
|  | MI->eraseFromParent(); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { | 
|  | SeenMoveImm = true; | 
|  | } else { | 
|  | Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); | 
|  | // optimizeExtInstr might have created new instructions after MI | 
|  | // and before the already incremented MII. Adjust MII so that the | 
|  | // next iteration sees the new instructions. | 
|  | MII = MI; | 
|  | ++MII; | 
|  | if (SeenMoveImm) | 
|  | Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); | 
|  | } | 
|  |  | 
|  | // Check whether MI is a load candidate for folding into a later | 
|  | // instruction. If MI is not a candidate, check whether we can fold an | 
|  | // earlier load into MI. | 
|  | if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && | 
|  | !FoldAsLoadDefCandidates.empty()) { | 
|  |  | 
|  | // We visit each operand even after successfully folding a previous | 
|  | // one.  This allows us to fold multiple loads into a single | 
|  | // instruction.  We do assume that optimizeLoadInstr doesn't insert | 
|  | // foldable uses earlier in the argument list.  Since we don't restart | 
|  | // iteration, we'd miss such cases. | 
|  | const MCInstrDesc &MIDesc = MI->getDesc(); | 
|  | for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); | 
|  | ++i) { | 
|  | const MachineOperand &MOp = MI->getOperand(i); | 
|  | if (!MOp.isReg()) | 
|  | continue; | 
|  | unsigned FoldAsLoadDefReg = MOp.getReg(); | 
|  | if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { | 
|  | // We need to fold load after optimizeCmpInstr, since | 
|  | // optimizeCmpInstr can enable folding by converting SUB to CMP. | 
|  | // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and | 
|  | // we need it for markUsesInDebugValueAsUndef(). | 
|  | unsigned FoldedReg = FoldAsLoadDefReg; | 
|  | MachineInstr *DefMI = nullptr; | 
|  | if (MachineInstr *FoldMI = | 
|  | TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { | 
|  | // Update LocalMIs since we replaced MI with FoldMI and deleted | 
|  | // DefMI. | 
|  | LLVM_DEBUG(dbgs() << "Replacing: " << *MI); | 
|  | LLVM_DEBUG(dbgs() << "     With: " << *FoldMI); | 
|  | LocalMIs.erase(MI); | 
|  | LocalMIs.erase(DefMI); | 
|  | LocalMIs.insert(FoldMI); | 
|  | // Update the call site info. | 
|  | if (MI->shouldUpdateCallSiteInfo()) | 
|  | MI->getMF()->moveCallSiteInfo(MI, FoldMI); | 
|  | MI->eraseFromParent(); | 
|  | DefMI->eraseFromParent(); | 
|  | MRI->markUsesInDebugValueAsUndef(FoldedReg); | 
|  | FoldAsLoadDefCandidates.erase(FoldedReg); | 
|  | ++NumLoadFold; | 
|  |  | 
|  | // MI is replaced with FoldMI so we can continue trying to fold | 
|  | Changed = true; | 
|  | MI = FoldMI; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we run into an instruction we can't fold across, discard | 
|  | // the load candidates.  Note: We might be able to fold *into* this | 
|  | // instruction, so this needs to be after the folding logic. | 
|  | if (MI->isLoadFoldBarrier()) { | 
|  | LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); | 
|  | FoldAsLoadDefCandidates.clear(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromCopy() { | 
|  | assert(Def->isCopy() && "Invalid definition"); | 
|  | // Copy instruction are supposed to be: Def = Src. | 
|  | // If someone breaks this assumption, bad things will happen everywhere. | 
|  | // There may be implicit uses preventing the copy to be moved across | 
|  | // some target specific register definitions | 
|  | assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && | 
|  | "Invalid number of operands"); | 
|  | assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); | 
|  |  | 
|  | if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) | 
|  | // If we look for a different subreg, it means we want a subreg of src. | 
|  | // Bails as we do not support composing subregs yet. | 
|  | return ValueTrackerResult(); | 
|  | // Otherwise, we want the whole source. | 
|  | const MachineOperand &Src = Def->getOperand(1); | 
|  | if (Src.isUndef()) | 
|  | return ValueTrackerResult(); | 
|  | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { | 
|  | assert(Def->isBitcast() && "Invalid definition"); | 
|  |  | 
|  | // Bail if there are effects that a plain copy will not expose. | 
|  | if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // Bitcasts with more than one def are not supported. | 
|  | if (Def->getDesc().getNumDefs() != 1) | 
|  | return ValueTrackerResult(); | 
|  | const MachineOperand DefOp = Def->getOperand(DefIdx); | 
|  | if (DefOp.getSubReg() != DefSubReg) | 
|  | // If we look for a different subreg, it means we want a subreg of the src. | 
|  | // Bails as we do not support composing subregs yet. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | unsigned SrcIdx = Def->getNumOperands(); | 
|  | for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; | 
|  | ++OpIdx) { | 
|  | const MachineOperand &MO = Def->getOperand(OpIdx); | 
|  | if (!MO.isReg() || !MO.getReg()) | 
|  | continue; | 
|  | // Ignore dead implicit defs. | 
|  | if (MO.isImplicit() && MO.isDead()) | 
|  | continue; | 
|  | assert(!MO.isDef() && "We should have skipped all the definitions by now"); | 
|  | if (SrcIdx != EndOpIdx) | 
|  | // Multiple sources? | 
|  | return ValueTrackerResult(); | 
|  | SrcIdx = OpIdx; | 
|  | } | 
|  |  | 
|  | // In some rare case, Def has no input, SrcIdx is out of bound, | 
|  | // getOperand(SrcIdx) will fail below. | 
|  | if (SrcIdx >= Def->getNumOperands()) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY | 
|  | // will break the assumed guarantees for the upper bits. | 
|  | for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { | 
|  | if (UseMI.isSubregToReg()) | 
|  | return ValueTrackerResult(); | 
|  | } | 
|  |  | 
|  | const MachineOperand &Src = Def->getOperand(SrcIdx); | 
|  | if (Src.isUndef()) | 
|  | return ValueTrackerResult(); | 
|  | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { | 
|  | assert((Def->isRegSequence() || Def->isRegSequenceLike()) && | 
|  | "Invalid definition"); | 
|  |  | 
|  | if (Def->getOperand(DefIdx).getSubReg()) | 
|  | // If we are composing subregs, bail out. | 
|  | // The case we are checking is Def.<subreg> = REG_SEQUENCE. | 
|  | // This should almost never happen as the SSA property is tracked at | 
|  | // the register level (as opposed to the subreg level). | 
|  | // I.e., | 
|  | // Def.sub0 = | 
|  | // Def.sub1 = | 
|  | // is a valid SSA representation for Def.sub0 and Def.sub1, but not for | 
|  | // Def. Thus, it must not be generated. | 
|  | // However, some code could theoretically generates a single | 
|  | // Def.sub0 (i.e, not defining the other subregs) and we would | 
|  | // have this case. | 
|  | // If we can ascertain (or force) that this never happens, we could | 
|  | // turn that into an assertion. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | if (!TII) | 
|  | // We could handle the REG_SEQUENCE here, but we do not want to | 
|  | // duplicate the code from the generic TII. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; | 
|  | if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... | 
|  | // Check if one of the operand defines the subreg we are interested in. | 
|  | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { | 
|  | if (RegSeqInput.SubIdx == DefSubReg) | 
|  | return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); | 
|  | } | 
|  |  | 
|  | // If the subreg we are tracking is super-defined by another subreg, | 
|  | // we could follow this value. However, this would require to compose | 
|  | // the subreg and we do not do that for now. | 
|  | return ValueTrackerResult(); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { | 
|  | assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && | 
|  | "Invalid definition"); | 
|  |  | 
|  | if (Def->getOperand(DefIdx).getSubReg()) | 
|  | // If we are composing subreg, bail out. | 
|  | // Same remark as getNextSourceFromRegSequence. | 
|  | // I.e., this may be turned into an assert. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | if (!TII) | 
|  | // We could handle the REG_SEQUENCE here, but we do not want to | 
|  | // duplicate the code from the generic TII. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | RegSubRegPair BaseReg; | 
|  | RegSubRegPairAndIdx InsertedReg; | 
|  | if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = INSERT_SUBREG v0, v1, sub1 | 
|  | // There are two cases: | 
|  | // 1. DefSubReg == sub1, get v1. | 
|  | // 2. DefSubReg != sub1, the value may be available through v0. | 
|  |  | 
|  | // #1 Check if the inserted register matches the required sub index. | 
|  | if (InsertedReg.SubIdx == DefSubReg) { | 
|  | return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); | 
|  | } | 
|  | // #2 Otherwise, if the sub register we are looking for is not partial | 
|  | // defined by the inserted element, we can look through the main | 
|  | // register (v0). | 
|  | const MachineOperand &MODef = Def->getOperand(DefIdx); | 
|  | // If the result register (Def) and the base register (v0) do not | 
|  | // have the same register class or if we have to compose | 
|  | // subregisters, bail out. | 
|  | if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || | 
|  | BaseReg.SubReg) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // Get the TRI and check if the inserted sub-register overlaps with the | 
|  | // sub-register we are tracking. | 
|  | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); | 
|  | if (!TRI || | 
|  | !(TRI->getSubRegIndexLaneMask(DefSubReg) & | 
|  | TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) | 
|  | return ValueTrackerResult(); | 
|  | // At this point, the value is available in v0 via the same subreg | 
|  | // we used for Def. | 
|  | return ValueTrackerResult(BaseReg.Reg, DefSubReg); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { | 
|  | assert((Def->isExtractSubreg() || | 
|  | Def->isExtractSubregLike()) && "Invalid definition"); | 
|  | // We are looking at: | 
|  | // Def = EXTRACT_SUBREG v0, sub0 | 
|  |  | 
|  | // Bail if we have to compose sub registers. | 
|  | // Indeed, if DefSubReg != 0, we would have to compose it with sub0. | 
|  | if (DefSubReg) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | if (!TII) | 
|  | // We could handle the EXTRACT_SUBREG here, but we do not want to | 
|  | // duplicate the code from the generic TII. | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | RegSubRegPairAndIdx ExtractSubregInputReg; | 
|  | if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // Bail if we have to compose sub registers. | 
|  | // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. | 
|  | if (ExtractSubregInputReg.SubReg) | 
|  | return ValueTrackerResult(); | 
|  | // Otherwise, the value is available in the v0.sub0. | 
|  | return ValueTrackerResult(ExtractSubregInputReg.Reg, | 
|  | ExtractSubregInputReg.SubIdx); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { | 
|  | assert(Def->isSubregToReg() && "Invalid definition"); | 
|  | // We are looking at: | 
|  | // Def = SUBREG_TO_REG Imm, v0, sub0 | 
|  |  | 
|  | // Bail if we have to compose sub registers. | 
|  | // If DefSubReg != sub0, we would have to check that all the bits | 
|  | // we track are included in sub0 and if yes, we would have to | 
|  | // determine the right subreg in v0. | 
|  | if (DefSubReg != Def->getOperand(3).getImm()) | 
|  | return ValueTrackerResult(); | 
|  | // Bail if we have to compose sub registers. | 
|  | // Likewise, if v0.subreg != 0, we would have to compose it with sub0. | 
|  | if (Def->getOperand(2).getSubReg()) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | return ValueTrackerResult(Def->getOperand(2).getReg(), | 
|  | Def->getOperand(3).getImm()); | 
|  | } | 
|  |  | 
|  | /// Explore each PHI incoming operand and return its sources. | 
|  | ValueTrackerResult ValueTracker::getNextSourceFromPHI() { | 
|  | assert(Def->isPHI() && "Invalid definition"); | 
|  | ValueTrackerResult Res; | 
|  |  | 
|  | // If we look for a different subreg, bail as we do not support composing | 
|  | // subregs yet. | 
|  | if (Def->getOperand(0).getSubReg() != DefSubReg) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | // Return all register sources for PHI instructions. | 
|  | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { | 
|  | const MachineOperand &MO = Def->getOperand(i); | 
|  | assert(MO.isReg() && "Invalid PHI instruction"); | 
|  | // We have no code to deal with undef operands. They shouldn't happen in | 
|  | // normal programs anyway. | 
|  | if (MO.isUndef()) | 
|  | return ValueTrackerResult(); | 
|  | Res.addSource(MO.getReg(), MO.getSubReg()); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSourceImpl() { | 
|  | assert(Def && "This method needs a valid definition"); | 
|  |  | 
|  | assert(((Def->getOperand(DefIdx).isDef() && | 
|  | (DefIdx < Def->getDesc().getNumDefs() || | 
|  | Def->getDesc().isVariadic())) || | 
|  | Def->getOperand(DefIdx).isImplicit()) && | 
|  | "Invalid DefIdx"); | 
|  | if (Def->isCopy()) | 
|  | return getNextSourceFromCopy(); | 
|  | if (Def->isBitcast()) | 
|  | return getNextSourceFromBitcast(); | 
|  | // All the remaining cases involve "complex" instructions. | 
|  | // Bail if we did not ask for the advanced tracking. | 
|  | if (DisableAdvCopyOpt) | 
|  | return ValueTrackerResult(); | 
|  | if (Def->isRegSequence() || Def->isRegSequenceLike()) | 
|  | return getNextSourceFromRegSequence(); | 
|  | if (Def->isInsertSubreg() || Def->isInsertSubregLike()) | 
|  | return getNextSourceFromInsertSubreg(); | 
|  | if (Def->isExtractSubreg() || Def->isExtractSubregLike()) | 
|  | return getNextSourceFromExtractSubreg(); | 
|  | if (Def->isSubregToReg()) | 
|  | return getNextSourceFromSubregToReg(); | 
|  | if (Def->isPHI()) | 
|  | return getNextSourceFromPHI(); | 
|  | return ValueTrackerResult(); | 
|  | } | 
|  |  | 
|  | ValueTrackerResult ValueTracker::getNextSource() { | 
|  | // If we reach a point where we cannot move up in the use-def chain, | 
|  | // there is nothing we can get. | 
|  | if (!Def) | 
|  | return ValueTrackerResult(); | 
|  |  | 
|  | ValueTrackerResult Res = getNextSourceImpl(); | 
|  | if (Res.isValid()) { | 
|  | // Update definition, definition index, and subregister for the | 
|  | // next call of getNextSource. | 
|  | // Update the current register. | 
|  | bool OneRegSrc = Res.getNumSources() == 1; | 
|  | if (OneRegSrc) | 
|  | Reg = Res.getSrcReg(0); | 
|  | // Update the result before moving up in the use-def chain | 
|  | // with the instruction containing the last found sources. | 
|  | Res.setInst(Def); | 
|  |  | 
|  | // If we can still move up in the use-def chain, move to the next | 
|  | // definition. | 
|  | if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { | 
|  | MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); | 
|  | if (DI != MRI.def_end()) { | 
|  | Def = DI->getParent(); | 
|  | DefIdx = DI.getOperandNo(); | 
|  | DefSubReg = Res.getSrcSubReg(0); | 
|  | } else { | 
|  | Def = nullptr; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | // If we end up here, this means we will not be able to find another source | 
|  | // for the next iteration. Make sure any new call to getNextSource bails out | 
|  | // early by cutting the use-def chain. | 
|  | Def = nullptr; | 
|  | return Res; | 
|  | } |