| //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass (at IR level) to replace atomic instructions with |
| // appropriate (intrinsic-based) ldrex/strex loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "atomic-expand" |
| |
| namespace { |
| class AtomicExpand: public FunctionPass { |
| const TargetMachine *TM; |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| explicit AtomicExpand(const TargetMachine *TM = nullptr) |
| : FunctionPass(ID), TM(TM) { |
| initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| private: |
| bool expandAtomicLoad(LoadInst *LI); |
| bool expandAtomicStore(StoreInst *SI); |
| bool expandAtomicRMW(AtomicRMWInst *AI); |
| bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
| }; |
| } |
| |
| char AtomicExpand::ID = 0; |
| char &llvm::AtomicExpandID = AtomicExpand::ID; |
| INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", |
| "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", |
| false, false) |
| |
| FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { |
| return new AtomicExpand(TM); |
| } |
| |
| bool AtomicExpand::runOnFunction(Function &F) { |
| if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand()) |
| return false; |
| auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering(); |
| |
| SmallVector<Instruction *, 1> AtomicInsts; |
| |
| // Changing control-flow while iterating through it is a bad idea, so gather a |
| // list of all atomic instructions before we start. |
| for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { |
| if (I->isAtomic()) |
| AtomicInsts.push_back(&*I); |
| } |
| |
| bool MadeChange = false; |
| for (auto I : AtomicInsts) { |
| auto LI = dyn_cast<LoadInst>(I); |
| auto SI = dyn_cast<StoreInst>(I); |
| auto RMWI = dyn_cast<AtomicRMWInst>(I); |
| auto CASI = dyn_cast<AtomicCmpXchgInst>(I); |
| |
| assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && |
| "Unknown atomic instruction"); |
| |
| if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) { |
| MadeChange |= expandAtomicLoad(LI); |
| } else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) { |
| MadeChange |= expandAtomicStore(SI); |
| } else if (RMWI && TargetLowering->shouldExpandAtomicRMWInIR(RMWI)) { |
| MadeChange |= expandAtomicRMW(RMWI); |
| } else if (CASI) { |
| MadeChange |= expandAtomicCmpXchg(CASI); |
| } |
| } |
| return MadeChange; |
| } |
| |
| bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { |
| auto TLI = TM->getSubtargetImpl()->getTargetLowering(); |
| // If getInsertFencesForAtomic() returns true, then the target does not want |
| // to deal with memory orders, and emitLeading/TrailingFence should take care |
| // of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
| // should preserve the ordering. |
| AtomicOrdering MemOpOrder = |
| TLI->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering(); |
| IRBuilder<> Builder(LI); |
| |
| // Note that although no fence is required before atomic load on ARM, it is |
| // required before SequentiallyConsistent loads for the recommended Power |
| // mapping (see http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html). |
| // So we let the target choose what to emit. |
| TLI->emitLeadingFence(Builder, LI->getOrdering(), |
| /*IsStore=*/false, /*IsLoad=*/true); |
| |
| // The only 64-bit load guaranteed to be single-copy atomic by ARM is |
| // an ldrexd (A3.5.3). |
| Value *Val = |
| TLI->emitLoadLinked(Builder, LI->getPointerOperand(), MemOpOrder); |
| |
| TLI->emitTrailingFence(Builder, LI->getOrdering(), |
| /*IsStore=*/false, /*IsLoad=*/true); |
| |
| LI->replaceAllUsesWith(Val); |
| LI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AtomicExpand::expandAtomicStore(StoreInst *SI) { |
| // The only atomic 64-bit store on ARM is an strexd that succeeds, which means |
| // we need a loop and the entire instruction is essentially an "atomicrmw |
| // xchg" that ignores the value loaded. |
| IRBuilder<> Builder(SI); |
| AtomicRMWInst *AI = |
| Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), |
| SI->getValueOperand(), SI->getOrdering()); |
| SI->eraseFromParent(); |
| |
| // Now we have an appropriate swap instruction, lower it as usual. |
| return expandAtomicRMW(AI); |
| } |
| |
| bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) { |
| auto TLI = TM->getSubtargetImpl()->getTargetLowering(); |
| AtomicOrdering Order = AI->getOrdering(); |
| Value *Addr = AI->getPointerOperand(); |
| BasicBlock *BB = AI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| // If getInsertFencesForAtomic() returns true, then the target does not want |
| // to deal with memory orders, and emitLeading/TrailingFence should take care |
| // of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
| // should preserve the ordering. |
| AtomicOrdering MemOpOrder = |
| TLI->getInsertFencesForAtomic() ? Monotonic : Order; |
| |
| // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| // |
| // The standard expansion we produce is: |
| // [...] |
| // fence? |
| // atomicrmw.start: |
| // %loaded = @load.linked(%addr) |
| // %new = some_op iN %loaded, %incr |
| // %stored = @store_conditional(%new, %addr) |
| // %try_again = icmp i32 ne %stored, 0 |
| // br i1 %try_again, label %loop, label %atomicrmw.end |
| // atomicrmw.end: |
| // fence? |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); |
| BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); |
| |
| // This grabs the DebugLoc from AI. |
| IRBuilder<> Builder(AI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| TLI->emitLeadingFence(Builder, Order, /*IsStore=*/true, /*IsLoad=*/true); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); |
| |
| Value *NewVal; |
| switch (AI->getOperation()) { |
| case AtomicRMWInst::Xchg: |
| NewVal = AI->getValOperand(); |
| break; |
| case AtomicRMWInst::Add: |
| NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Sub: |
| NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::And: |
| NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Nand: |
| NewVal = Builder.CreateNot(Builder.CreateAnd(Loaded, AI->getValOperand()), |
| "new"); |
| break; |
| case AtomicRMWInst::Or: |
| NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Xor: |
| NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Max: |
| NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Min: |
| NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::UMax: |
| NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::UMin: |
| NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| default: |
| llvm_unreachable("Unknown atomic op"); |
| } |
| |
| Value *StoreSuccess = |
| TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); |
| Value *TryAgain = Builder.CreateICmpNE( |
| StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); |
| Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); |
| |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| TLI->emitTrailingFence(Builder, Order, /*IsStore=*/true, /*IsLoad=*/true); |
| |
| AI->replaceAllUsesWith(Loaded); |
| AI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
| auto TLI = TM->getSubtargetImpl()->getTargetLowering(); |
| AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); |
| AtomicOrdering FailureOrder = CI->getFailureOrdering(); |
| Value *Addr = CI->getPointerOperand(); |
| BasicBlock *BB = CI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| // If getInsertFencesForAtomic() returns true, then the target does not want |
| // to deal with memory orders, and emitLeading/TrailingFence should take care |
| // of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
| // should preserve the ordering. |
| AtomicOrdering MemOpOrder = |
| TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; |
| |
| // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord |
| // |
| // The full expansion we produce is: |
| // [...] |
| // fence? |
| // cmpxchg.start: |
| // %loaded = @load.linked(%addr) |
| // %should_store = icmp eq %loaded, %desired |
| // br i1 %should_store, label %cmpxchg.trystore, |
| // label %cmpxchg.failure |
| // cmpxchg.trystore: |
| // %stored = @store_conditional(%new, %addr) |
| // %success = icmp eq i32 %stored, 0 |
| // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure |
| // cmpxchg.success: |
| // fence? |
| // br label %cmpxchg.end |
| // cmpxchg.failure: |
| // fence? |
| // br label %cmpxchg.end |
| // cmpxchg.end: |
| // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] |
| // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 |
| // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); |
| auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); |
| auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); |
| auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); |
| auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); |
| |
| // This grabs the DebugLoc from CI |
| IRBuilder<> Builder(CI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); |
| Value *ShouldStore = |
| Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); |
| |
| // If the the cmpxchg doesn't actually need any ordering when it fails, we can |
| // jump straight past that fence instruction (if it exists). |
| Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); |
| |
| Builder.SetInsertPoint(TryStoreBB); |
| Value *StoreSuccess = TLI->emitStoreConditional( |
| Builder, CI->getNewValOperand(), Addr, MemOpOrder); |
| StoreSuccess = Builder.CreateICmpEQ( |
| StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); |
| Builder.CreateCondBr(StoreSuccess, SuccessBB, |
| CI->isWeak() ? FailureBB : LoopBB); |
| |
| // Make sure later instructions don't get reordered with a fence if necessary. |
| Builder.SetInsertPoint(SuccessBB); |
| TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(ExitBB); |
| |
| Builder.SetInsertPoint(FailureBB); |
| TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(ExitBB); |
| |
| // Finally, we have control-flow based knowledge of whether the cmpxchg |
| // succeeded or not. We expose this to later passes by converting any |
| // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. |
| |
| // Setup the builder so we can create any PHIs we need. |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); |
| Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); |
| Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); |
| |
| // Look for any users of the cmpxchg that are just comparing the loaded value |
| // against the desired one, and replace them with the CFG-derived version. |
| SmallVector<ExtractValueInst *, 2> PrunedInsts; |
| for (auto User : CI->users()) { |
| ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); |
| if (!EV) |
| continue; |
| |
| assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && |
| "weird extraction from { iN, i1 }"); |
| |
| if (EV->getIndices()[0] == 0) |
| EV->replaceAllUsesWith(Loaded); |
| else |
| EV->replaceAllUsesWith(Success); |
| |
| PrunedInsts.push_back(EV); |
| } |
| |
| // We can remove the instructions now we're no longer iterating through them. |
| for (auto EV : PrunedInsts) |
| EV->eraseFromParent(); |
| |
| if (!CI->use_empty()) { |
| // Some use of the full struct return that we don't understand has happened, |
| // so we've got to reconstruct it properly. |
| Value *Res; |
| Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); |
| Res = Builder.CreateInsertValue(Res, Success, 1); |
| |
| CI->replaceAllUsesWith(Res); |
| } |
| |
| CI->eraseFromParent(); |
| return true; |
| } |