|  | //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the Emit routines for the SelectionDAG class, which creates | 
|  | // MachineInstrs based on the decisions of the SelectionDAG instruction | 
|  | // selection. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "instr-emitter" | 
|  | #include "InstrEmitter.h" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | /// MinRCSize - Smallest register class we allow when constraining virtual | 
|  | /// registers.  If satisfying all register class constraints would require | 
|  | /// using a smaller register class, emit a COPY to a new virtual register | 
|  | /// instead. | 
|  | const unsigned MinRCSize = 4; | 
|  |  | 
|  | /// CountResults - The results of target nodes have register or immediate | 
|  | /// operands first, then an optional chain, and optional glue operands (which do | 
|  | /// not go into the resulting MachineInstr). | 
|  | unsigned InstrEmitter::CountResults(SDNode *Node) { | 
|  | unsigned N = Node->getNumValues(); | 
|  | while (N && Node->getValueType(N - 1) == MVT::Glue) | 
|  | --N; | 
|  | if (N && Node->getValueType(N - 1) == MVT::Other) | 
|  | --N;    // Skip over chain result. | 
|  | return N; | 
|  | } | 
|  |  | 
|  | /// countOperands - The inputs to target nodes have any actual inputs first, | 
|  | /// followed by an optional chain operand, then an optional glue operand. | 
|  | /// Compute the number of actual operands that will go into the resulting | 
|  | /// MachineInstr. | 
|  | /// | 
|  | /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding | 
|  | /// the chain and glue. These operands may be implicit on the machine instr. | 
|  | static unsigned countOperands(SDNode *Node, unsigned NumExpUses, | 
|  | unsigned &NumImpUses) { | 
|  | unsigned N = Node->getNumOperands(); | 
|  | while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) | 
|  | --N; | 
|  | if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) | 
|  | --N; // Ignore chain if it exists. | 
|  |  | 
|  | // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. | 
|  | NumImpUses = N - NumExpUses; | 
|  | for (unsigned I = N; I > NumExpUses; --I) { | 
|  | if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) | 
|  | continue; | 
|  | if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) | 
|  | if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) | 
|  | continue; | 
|  | NumImpUses = N - I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return N; | 
|  | } | 
|  |  | 
|  | /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an | 
|  | /// implicit physical register output. | 
|  | void InstrEmitter:: | 
|  | EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, | 
|  | unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | unsigned VRBase = 0; | 
|  | if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
|  | // Just use the input register directly! | 
|  | SDValue Op(Node, ResNo); | 
|  | if (IsClone) | 
|  | VRBaseMap.erase(Op); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the node is only used by a CopyToReg and the dest reg is a vreg, use | 
|  | // the CopyToReg'd destination register instead of creating a new vreg. | 
|  | bool MatchReg = true; | 
|  | const TargetRegisterClass *UseRC = NULL; | 
|  | MVT VT = Node->getSimpleValueType(ResNo); | 
|  |  | 
|  | // Stick to the preferred register classes for legal types. | 
|  | if (TLI->isTypeLegal(VT)) | 
|  | UseRC = TLI->getRegClassFor(VT); | 
|  |  | 
|  | if (!IsClone && !IsCloned) | 
|  | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); | 
|  | UI != E; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | bool Match = true; | 
|  | if (User->getOpcode() == ISD::CopyToReg && | 
|  | User->getOperand(2).getNode() == Node && | 
|  | User->getOperand(2).getResNo() == ResNo) { | 
|  | unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(DestReg)) { | 
|  | VRBase = DestReg; | 
|  | Match = false; | 
|  | } else if (DestReg != SrcReg) | 
|  | Match = false; | 
|  | } else { | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = User->getOperand(i); | 
|  | if (Op.getNode() != Node || Op.getResNo() != ResNo) | 
|  | continue; | 
|  | MVT VT = Node->getSimpleValueType(Op.getResNo()); | 
|  | if (VT == MVT::Other || VT == MVT::Glue) | 
|  | continue; | 
|  | Match = false; | 
|  | if (User->isMachineOpcode()) { | 
|  | const MCInstrDesc &II = TII->get(User->getMachineOpcode()); | 
|  | const TargetRegisterClass *RC = 0; | 
|  | if (i+II.getNumDefs() < II.getNumOperands()) { | 
|  | RC = TRI->getAllocatableClass( | 
|  | TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); | 
|  | } | 
|  | if (!UseRC) | 
|  | UseRC = RC; | 
|  | else if (RC) { | 
|  | const TargetRegisterClass *ComRC = | 
|  | TRI->getCommonSubClass(UseRC, RC); | 
|  | // If multiple uses expect disjoint register classes, we emit | 
|  | // copies in AddRegisterOperand. | 
|  | if (ComRC) | 
|  | UseRC = ComRC; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | MatchReg &= Match; | 
|  | if (VRBase) | 
|  | break; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *SrcRC = 0, *DstRC = 0; | 
|  | SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); | 
|  |  | 
|  | // Figure out the register class to create for the destreg. | 
|  | if (VRBase) { | 
|  | DstRC = MRI->getRegClass(VRBase); | 
|  | } else if (UseRC) { | 
|  | assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!"); | 
|  | DstRC = UseRC; | 
|  | } else { | 
|  | DstRC = TLI->getRegClassFor(VT); | 
|  | } | 
|  |  | 
|  | // If all uses are reading from the src physical register and copying the | 
|  | // register is either impossible or very expensive, then don't create a copy. | 
|  | if (MatchReg && SrcRC->getCopyCost() < 0) { | 
|  | VRBase = SrcReg; | 
|  | } else { | 
|  | // Create the reg, emit the copy. | 
|  | VRBase = MRI->createVirtualRegister(DstRC); | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), | 
|  | VRBase).addReg(SrcReg); | 
|  | } | 
|  |  | 
|  | SDValue Op(Node, ResNo); | 
|  | if (IsClone) | 
|  | VRBaseMap.erase(Op); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | } | 
|  |  | 
|  | /// getDstOfCopyToRegUse - If the only use of the specified result number of | 
|  | /// node is a CopyToReg, return its destination register. Return 0 otherwise. | 
|  | unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, | 
|  | unsigned ResNo) const { | 
|  | if (!Node->hasOneUse()) | 
|  | return 0; | 
|  |  | 
|  | SDNode *User = *Node->use_begin(); | 
|  | if (User->getOpcode() == ISD::CopyToReg && | 
|  | User->getOperand(2).getNode() == Node && | 
|  | User->getOperand(2).getResNo() == ResNo) { | 
|  | unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return Reg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void InstrEmitter::CreateVirtualRegisters(SDNode *Node, | 
|  | MachineInstrBuilder &MIB, | 
|  | const MCInstrDesc &II, | 
|  | bool IsClone, bool IsCloned, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && | 
|  | "IMPLICIT_DEF should have been handled as a special case elsewhere!"); | 
|  |  | 
|  | for (unsigned i = 0; i < II.getNumDefs(); ++i) { | 
|  | // If the specific node value is only used by a CopyToReg and the dest reg | 
|  | // is a vreg in the same register class, use the CopyToReg'd destination | 
|  | // register instead of creating a new vreg. | 
|  | unsigned VRBase = 0; | 
|  | const TargetRegisterClass *RC = | 
|  | TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); | 
|  | if (II.OpInfo[i].isOptionalDef()) { | 
|  | // Optional def must be a physical register. | 
|  | unsigned NumResults = CountResults(Node); | 
|  | VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); | 
|  | MIB.addReg(VRBase, RegState::Define); | 
|  | } | 
|  |  | 
|  | if (!VRBase && !IsClone && !IsCloned) | 
|  | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); | 
|  | UI != E; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User->getOpcode() == ISD::CopyToReg && | 
|  | User->getOperand(2).getNode() == Node && | 
|  | User->getOperand(2).getResNo() == i) { | 
|  | unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); | 
|  | if (RegRC == RC) { | 
|  | VRBase = Reg; | 
|  | MIB.addReg(VRBase, RegState::Define); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the result registers for this node and add the result regs to | 
|  | // the machine instruction. | 
|  | if (VRBase == 0) { | 
|  | assert(RC && "Isn't a register operand!"); | 
|  | VRBase = MRI->createVirtualRegister(RC); | 
|  | MIB.addReg(VRBase, RegState::Define); | 
|  | } | 
|  |  | 
|  | SDValue Op(Node, i); | 
|  | if (IsClone) | 
|  | VRBaseMap.erase(Op); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getVR - Return the virtual register corresponding to the specified result | 
|  | /// of the specified node. | 
|  | unsigned InstrEmitter::getVR(SDValue Op, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | if (Op.isMachineOpcode() && | 
|  | Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { | 
|  | // Add an IMPLICIT_DEF instruction before every use. | 
|  | unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); | 
|  | // IMPLICIT_DEF can produce any type of result so its MCInstrDesc | 
|  | // does not include operand register class info. | 
|  | if (!VReg) { | 
|  | const TargetRegisterClass *RC = | 
|  | TLI->getRegClassFor(Op.getSimpleValueType()); | 
|  | VReg = MRI->createVirtualRegister(RC); | 
|  | } | 
|  | BuildMI(*MBB, InsertPos, Op.getDebugLoc(), | 
|  | TII->get(TargetOpcode::IMPLICIT_DEF), VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); | 
|  | assert(I != VRBaseMap.end() && "Node emitted out of order - late"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddRegisterOperand - Add the specified register as an operand to the | 
|  | /// specified machine instr. Insert register copies if the register is | 
|  | /// not in the required register class. | 
|  | void | 
|  | InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, | 
|  | SDValue Op, | 
|  | unsigned IIOpNum, | 
|  | const MCInstrDesc *II, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | bool IsDebug, bool IsClone, bool IsCloned) { | 
|  | assert(Op.getValueType() != MVT::Other && | 
|  | Op.getValueType() != MVT::Glue && | 
|  | "Chain and glue operands should occur at end of operand list!"); | 
|  | // Get/emit the operand. | 
|  | unsigned VReg = getVR(Op, VRBaseMap); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); | 
|  |  | 
|  | const MCInstrDesc &MCID = MIB->getDesc(); | 
|  | bool isOptDef = IIOpNum < MCID.getNumOperands() && | 
|  | MCID.OpInfo[IIOpNum].isOptionalDef(); | 
|  |  | 
|  | // If the instruction requires a register in a different class, create | 
|  | // a new virtual register and copy the value into it, but first attempt to | 
|  | // shrink VReg's register class within reason.  For example, if VReg == GR32 | 
|  | // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. | 
|  | if (II) { | 
|  | const TargetRegisterClass *DstRC = 0; | 
|  | if (IIOpNum < II->getNumOperands()) | 
|  | DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF)); | 
|  | if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) { | 
|  | unsigned NewVReg = MRI->createVirtualRegister(DstRC); | 
|  | BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); | 
|  | VReg = NewVReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this value has only one use, that use is a kill. This is a | 
|  | // conservative approximation. InstrEmitter does trivial coalescing | 
|  | // with CopyFromReg nodes, so don't emit kill flags for them. | 
|  | // Avoid kill flags on Schedule cloned nodes, since there will be | 
|  | // multiple uses. | 
|  | // Tied operands are never killed, so we need to check that. And that | 
|  | // means we need to determine the index of the operand. | 
|  | bool isKill = Op.hasOneUse() && | 
|  | Op.getNode()->getOpcode() != ISD::CopyFromReg && | 
|  | !IsDebug && | 
|  | !(IsClone || IsCloned); | 
|  | if (isKill) { | 
|  | unsigned Idx = MIB->getNumOperands(); | 
|  | while (Idx > 0 && | 
|  | MIB->getOperand(Idx-1).isReg() && | 
|  | MIB->getOperand(Idx-1).isImplicit()) | 
|  | --Idx; | 
|  | bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; | 
|  | if (isTied) | 
|  | isKill = false; | 
|  | } | 
|  |  | 
|  | MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | | 
|  | getDebugRegState(IsDebug)); | 
|  | } | 
|  |  | 
|  | /// AddOperand - Add the specified operand to the specified machine instr.  II | 
|  | /// specifies the instruction information for the node, and IIOpNum is the | 
|  | /// operand number (in the II) that we are adding. | 
|  | void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, | 
|  | SDValue Op, | 
|  | unsigned IIOpNum, | 
|  | const MCInstrDesc *II, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | bool IsDebug, bool IsClone, bool IsCloned) { | 
|  | if (Op.isMachineOpcode()) { | 
|  | AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, | 
|  | IsDebug, IsClone, IsCloned); | 
|  | } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | MIB.addImm(C->getSExtValue()); | 
|  | } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { | 
|  | MIB.addFPImm(F->getConstantFPValue()); | 
|  | } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { | 
|  | // Turn additional physreg operands into implicit uses on non-variadic | 
|  | // instructions. This is used by call and return instructions passing | 
|  | // arguments in registers. | 
|  | bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); | 
|  | MIB.addReg(R->getReg(), getImplRegState(Imp)); | 
|  | } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { | 
|  | MIB.addRegMask(RM->getRegMask()); | 
|  | } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { | 
|  | MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), | 
|  | TGA->getTargetFlags()); | 
|  | } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { | 
|  | MIB.addMBB(BBNode->getBasicBlock()); | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { | 
|  | MIB.addFrameIndex(FI->getIndex()); | 
|  | } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { | 
|  | MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { | 
|  | int Offset = CP->getOffset(); | 
|  | unsigned Align = CP->getAlignment(); | 
|  | Type *Type = CP->getType(); | 
|  | // MachineConstantPool wants an explicit alignment. | 
|  | if (Align == 0) { | 
|  | Align = TM->getDataLayout()->getPrefTypeAlignment(Type); | 
|  | if (Align == 0) { | 
|  | // Alignment of vector types.  FIXME! | 
|  | Align = TM->getDataLayout()->getTypeAllocSize(Type); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Idx; | 
|  | MachineConstantPool *MCP = MF->getConstantPool(); | 
|  | if (CP->isMachineConstantPoolEntry()) | 
|  | Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); | 
|  | else | 
|  | Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); | 
|  | MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); | 
|  | } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { | 
|  | MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); | 
|  | } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { | 
|  | MIB.addBlockAddress(BA->getBlockAddress(), | 
|  | BA->getOffset(), | 
|  | BA->getTargetFlags()); | 
|  | } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { | 
|  | MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); | 
|  | } else { | 
|  | assert(Op.getValueType() != MVT::Other && | 
|  | Op.getValueType() != MVT::Glue && | 
|  | "Chain and glue operands should occur at end of operand list!"); | 
|  | AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, | 
|  | IsDebug, IsClone, IsCloned); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, | 
|  | MVT VT, DebugLoc DL) { | 
|  | const TargetRegisterClass *VRC = MRI->getRegClass(VReg); | 
|  | const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); | 
|  |  | 
|  | // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg | 
|  | // within reason. | 
|  | if (RC && RC != VRC) | 
|  | RC = MRI->constrainRegClass(VReg, RC, MinRCSize); | 
|  |  | 
|  | // VReg has been adjusted.  It can be used with SubIdx operands now. | 
|  | if (RC) | 
|  | return VReg; | 
|  |  | 
|  | // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual | 
|  | // register instead. | 
|  | RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); | 
|  | assert(RC && "No legal register class for VT supports that SubIdx"); | 
|  | unsigned NewReg = MRI->createVirtualRegister(RC); | 
|  | BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) | 
|  | .addReg(VReg); | 
|  | return NewReg; | 
|  | } | 
|  |  | 
|  | /// EmitSubregNode - Generate machine code for subreg nodes. | 
|  | /// | 
|  | void InstrEmitter::EmitSubregNode(SDNode *Node, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | bool IsClone, bool IsCloned) { | 
|  | unsigned VRBase = 0; | 
|  | unsigned Opc = Node->getMachineOpcode(); | 
|  |  | 
|  | // If the node is only used by a CopyToReg and the dest reg is a vreg, use | 
|  | // the CopyToReg'd destination register instead of creating a new vreg. | 
|  | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); | 
|  | UI != E; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User->getOpcode() == ISD::CopyToReg && | 
|  | User->getOperand(2).getNode() == Node) { | 
|  | unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(DestReg)) { | 
|  | VRBase = DestReg; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opc == TargetOpcode::EXTRACT_SUBREG) { | 
|  | // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no | 
|  | // constraints on the %dst register, COPY can target all legal register | 
|  | // classes. | 
|  | unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); | 
|  | const TargetRegisterClass *TRC = | 
|  | TLI->getRegClassFor(Node->getSimpleValueType(0)); | 
|  |  | 
|  | unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); | 
|  | MachineInstr *DefMI = MRI->getVRegDef(VReg); | 
|  | unsigned SrcReg, DstReg, DefSubIdx; | 
|  | if (DefMI && | 
|  | TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && | 
|  | SubIdx == DefSubIdx && | 
|  | TRC == MRI->getRegClass(SrcReg)) { | 
|  | // Optimize these: | 
|  | // r1025 = s/zext r1024, 4 | 
|  | // r1026 = extract_subreg r1025, 4 | 
|  | // to a copy | 
|  | // r1026 = copy r1024 | 
|  | VRBase = MRI->createVirtualRegister(TRC); | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); | 
|  | MRI->clearKillFlags(SrcReg); | 
|  | } else { | 
|  | // VReg may not support a SubIdx sub-register, and we may need to | 
|  | // constrain its register class or issue a COPY to a compatible register | 
|  | // class. | 
|  | VReg = ConstrainForSubReg(VReg, SubIdx, | 
|  | Node->getOperand(0).getSimpleValueType(), | 
|  | Node->getDebugLoc()); | 
|  |  | 
|  | // Create the destreg if it is missing. | 
|  | if (VRBase == 0) | 
|  | VRBase = MRI->createVirtualRegister(TRC); | 
|  |  | 
|  | // Create the extract_subreg machine instruction. | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx); | 
|  | } | 
|  | } else if (Opc == TargetOpcode::INSERT_SUBREG || | 
|  | Opc == TargetOpcode::SUBREG_TO_REG) { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  | SDValue N2 = Node->getOperand(2); | 
|  | unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); | 
|  |  | 
|  | // Figure out the register class to create for the destreg.  It should be | 
|  | // the largest legal register class supporting SubIdx sub-registers. | 
|  | // RegisterCoalescer will constrain it further if it decides to eliminate | 
|  | // the INSERT_SUBREG instruction. | 
|  | // | 
|  | //   %dst = INSERT_SUBREG %src, %sub, SubIdx | 
|  | // | 
|  | // is lowered by TwoAddressInstructionPass to: | 
|  | // | 
|  | //   %dst = COPY %src | 
|  | //   %dst:SubIdx = COPY %sub | 
|  | // | 
|  | // There is no constraint on the %src register class. | 
|  | // | 
|  | const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); | 
|  | SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); | 
|  | assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); | 
|  |  | 
|  | if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) | 
|  | VRBase = MRI->createVirtualRegister(SRC); | 
|  |  | 
|  | // Create the insert_subreg or subreg_to_reg machine instruction. | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); | 
|  |  | 
|  | // If creating a subreg_to_reg, then the first input operand | 
|  | // is an implicit value immediate, otherwise it's a register | 
|  | if (Opc == TargetOpcode::SUBREG_TO_REG) { | 
|  | const ConstantSDNode *SD = cast<ConstantSDNode>(N0); | 
|  | MIB.addImm(SD->getZExtValue()); | 
|  | } else | 
|  | AddOperand(MIB, N0, 0, 0, VRBaseMap, /*IsDebug=*/false, | 
|  | IsClone, IsCloned); | 
|  | // Add the subregster being inserted | 
|  | AddOperand(MIB, N1, 0, 0, VRBaseMap, /*IsDebug=*/false, | 
|  | IsClone, IsCloned); | 
|  | MIB.addImm(SubIdx); | 
|  | MBB->insert(InsertPos, MIB); | 
|  | } else | 
|  | llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); | 
|  |  | 
|  | SDValue Op(Node, 0); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | } | 
|  |  | 
|  | /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. | 
|  | /// COPY_TO_REGCLASS is just a normal copy, except that the destination | 
|  | /// register is constrained to be in a particular register class. | 
|  | /// | 
|  | void | 
|  | InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); | 
|  |  | 
|  | // Create the new VReg in the destination class and emit a copy. | 
|  | unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); | 
|  | const TargetRegisterClass *DstRC = | 
|  | TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); | 
|  | unsigned NewVReg = MRI->createVirtualRegister(DstRC); | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), | 
|  | NewVReg).addReg(VReg); | 
|  |  | 
|  | SDValue Op(Node, 0); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | } | 
|  |  | 
|  | /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. | 
|  | /// | 
|  | void InstrEmitter::EmitRegSequence(SDNode *Node, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | bool IsClone, bool IsCloned) { | 
|  | unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); | 
|  | const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); | 
|  | unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); | 
|  | const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); | 
|  | MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); | 
|  | unsigned NumOps = Node->getNumOperands(); | 
|  | assert((NumOps & 1) == 1 && | 
|  | "REG_SEQUENCE must have an odd number of operands!"); | 
|  | for (unsigned i = 1; i != NumOps; ++i) { | 
|  | SDValue Op = Node->getOperand(i); | 
|  | if ((i & 1) == 0) { | 
|  | RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); | 
|  | // Skip physical registers as they don't have a vreg to get and we'll | 
|  | // insert copies for them in TwoAddressInstructionPass anyway. | 
|  | if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { | 
|  | unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); | 
|  | unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); | 
|  | const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); | 
|  | const TargetRegisterClass *SRC = | 
|  | TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); | 
|  | if (SRC && SRC != RC) { | 
|  | MRI->setRegClass(NewVReg, SRC); | 
|  | RC = SRC; | 
|  | } | 
|  | } | 
|  | } | 
|  | AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, | 
|  | IsClone, IsCloned); | 
|  | } | 
|  |  | 
|  | MBB->insert(InsertPos, MIB); | 
|  | SDValue Op(Node, 0); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | } | 
|  |  | 
|  | /// EmitDbgValue - Generate machine instruction for a dbg_value node. | 
|  | /// | 
|  | MachineInstr * | 
|  | InstrEmitter::EmitDbgValue(SDDbgValue *SD, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | uint64_t Offset = SD->getOffset(); | 
|  | MDNode* MDPtr = SD->getMDPtr(); | 
|  | DebugLoc DL = SD->getDebugLoc(); | 
|  |  | 
|  | if (SD->getKind() == SDDbgValue::FRAMEIX) { | 
|  | // Stack address; this needs to be lowered in target-dependent fashion. | 
|  | // EmitTargetCodeForFrameDebugValue is responsible for allocation. | 
|  | unsigned FrameIx = SD->getFrameIx(); | 
|  | return TII->emitFrameIndexDebugValue(*MF, FrameIx, Offset, MDPtr, DL); | 
|  | } | 
|  | // Otherwise, we're going to create an instruction here. | 
|  | const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); | 
|  | MachineInstrBuilder MIB = BuildMI(*MF, DL, II); | 
|  | if (SD->getKind() == SDDbgValue::SDNODE) { | 
|  | SDNode *Node = SD->getSDNode(); | 
|  | SDValue Op = SDValue(Node, SD->getResNo()); | 
|  | // It's possible we replaced this SDNode with other(s) and therefore | 
|  | // didn't generate code for it.  It's better to catch these cases where | 
|  | // they happen and transfer the debug info, but trying to guarantee that | 
|  | // in all cases would be very fragile; this is a safeguard for any | 
|  | // that were missed. | 
|  | DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); | 
|  | if (I==VRBaseMap.end()) | 
|  | MIB.addReg(0U);       // undef | 
|  | else | 
|  | AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, | 
|  | /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); | 
|  | } else if (SD->getKind() == SDDbgValue::CONST) { | 
|  | const Value *V = SD->getConst(); | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getBitWidth() > 64) | 
|  | MIB.addCImm(CI); | 
|  | else | 
|  | MIB.addImm(CI->getSExtValue()); | 
|  | } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { | 
|  | MIB.addFPImm(CF); | 
|  | } else { | 
|  | // Could be an Undef.  In any case insert an Undef so we can see what we | 
|  | // dropped. | 
|  | MIB.addReg(0U); | 
|  | } | 
|  | } else { | 
|  | // Insert an Undef so we can see what we dropped. | 
|  | MIB.addReg(0U); | 
|  | } | 
|  |  | 
|  | MIB.addImm(Offset).addMetadata(MDPtr); | 
|  | return &*MIB; | 
|  | } | 
|  |  | 
|  | /// EmitMachineNode - Generate machine code for a target-specific node and | 
|  | /// needed dependencies. | 
|  | /// | 
|  | void InstrEmitter:: | 
|  | EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | unsigned Opc = Node->getMachineOpcode(); | 
|  |  | 
|  | // Handle subreg insert/extract specially | 
|  | if (Opc == TargetOpcode::EXTRACT_SUBREG || | 
|  | Opc == TargetOpcode::INSERT_SUBREG || | 
|  | Opc == TargetOpcode::SUBREG_TO_REG) { | 
|  | EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle COPY_TO_REGCLASS specially. | 
|  | if (Opc == TargetOpcode::COPY_TO_REGCLASS) { | 
|  | EmitCopyToRegClassNode(Node, VRBaseMap); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle REG_SEQUENCE specially. | 
|  | if (Opc == TargetOpcode::REG_SEQUENCE) { | 
|  | EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Opc == TargetOpcode::IMPLICIT_DEF) | 
|  | // We want a unique VR for each IMPLICIT_DEF use. | 
|  | return; | 
|  |  | 
|  | const MCInstrDesc &II = TII->get(Opc); | 
|  | unsigned NumResults = CountResults(Node); | 
|  | unsigned NumImpUses = 0; | 
|  | unsigned NodeOperands = | 
|  | countOperands(Node, II.getNumOperands() - II.getNumDefs(), NumImpUses); | 
|  | bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0; | 
|  | #ifndef NDEBUG | 
|  | unsigned NumMIOperands = NodeOperands + NumResults; | 
|  | if (II.isVariadic()) | 
|  | assert(NumMIOperands >= II.getNumOperands() && | 
|  | "Too few operands for a variadic node!"); | 
|  | else | 
|  | assert(NumMIOperands >= II.getNumOperands() && | 
|  | NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + | 
|  | NumImpUses && | 
|  | "#operands for dag node doesn't match .td file!"); | 
|  | #endif | 
|  |  | 
|  | // Create the new machine instruction. | 
|  | MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); | 
|  |  | 
|  | // Add result register values for things that are defined by this | 
|  | // instruction. | 
|  | if (NumResults) | 
|  | CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); | 
|  |  | 
|  | // Emit all of the actual operands of this instruction, adding them to the | 
|  | // instruction as appropriate. | 
|  | bool HasOptPRefs = II.getNumDefs() > NumResults; | 
|  | assert((!HasOptPRefs || !HasPhysRegOuts) && | 
|  | "Unable to cope with optional defs and phys regs defs!"); | 
|  | unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0; | 
|  | for (unsigned i = NumSkip; i != NodeOperands; ++i) | 
|  | AddOperand(MIB, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II, | 
|  | VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); | 
|  |  | 
|  | // Transfer all of the memory reference descriptions of this instruction. | 
|  | MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(), | 
|  | cast<MachineSDNode>(Node)->memoperands_end()); | 
|  |  | 
|  | // Insert the instruction into position in the block. This needs to | 
|  | // happen before any custom inserter hook is called so that the | 
|  | // hook knows where in the block to insert the replacement code. | 
|  | MBB->insert(InsertPos, MIB); | 
|  |  | 
|  | // The MachineInstr may also define physregs instead of virtregs.  These | 
|  | // physreg values can reach other instructions in different ways: | 
|  | // | 
|  | // 1. When there is a use of a Node value beyond the explicitly defined | 
|  | //    virtual registers, we emit a CopyFromReg for one of the implicitly | 
|  | //    defined physregs.  This only happens when HasPhysRegOuts is true. | 
|  | // | 
|  | // 2. A CopyFromReg reading a physreg may be glued to this instruction. | 
|  | // | 
|  | // 3. A glued instruction may implicitly use a physreg. | 
|  | // | 
|  | // 4. A glued instruction may use a RegisterSDNode operand. | 
|  | // | 
|  | // Collect all the used physreg defs, and make sure that any unused physreg | 
|  | // defs are marked as dead. | 
|  | SmallVector<unsigned, 8> UsedRegs; | 
|  |  | 
|  | // Additional results must be physical register defs. | 
|  | if (HasPhysRegOuts) { | 
|  | for (unsigned i = II.getNumDefs(); i < NumResults; ++i) { | 
|  | unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()]; | 
|  | if (!Node->hasAnyUseOfValue(i)) | 
|  | continue; | 
|  | // This implicitly defined physreg has a use. | 
|  | UsedRegs.push_back(Reg); | 
|  | EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan the glue chain for any used physregs. | 
|  | if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { | 
|  | for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { | 
|  | if (F->getOpcode() == ISD::CopyFromReg) { | 
|  | UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); | 
|  | continue; | 
|  | } else if (F->getOpcode() == ISD::CopyToReg) { | 
|  | // Skip CopyToReg nodes that are internal to the glue chain. | 
|  | continue; | 
|  | } | 
|  | // Collect declared implicit uses. | 
|  | const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); | 
|  | UsedRegs.append(MCID.getImplicitUses(), | 
|  | MCID.getImplicitUses() + MCID.getNumImplicitUses()); | 
|  | // In addition to declared implicit uses, we must also check for | 
|  | // direct RegisterSDNode operands. | 
|  | for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) | 
|  | if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { | 
|  | unsigned Reg = R->getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | UsedRegs.push_back(Reg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally mark unused registers as dead. | 
|  | if (!UsedRegs.empty() || II.getImplicitDefs()) | 
|  | MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); | 
|  |  | 
|  | // Run post-isel target hook to adjust this instruction if needed. | 
|  | #ifdef NDEBUG | 
|  | if (II.hasPostISelHook()) | 
|  | #endif | 
|  | TLI->AdjustInstrPostInstrSelection(MIB, Node); | 
|  | } | 
|  |  | 
|  | /// EmitSpecialNode - Generate machine code for a target-independent node and | 
|  | /// needed dependencies. | 
|  | void InstrEmitter:: | 
|  | EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap) { | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | Node->dump(); | 
|  | #endif | 
|  | llvm_unreachable("This target-independent node should have been selected!"); | 
|  | case ISD::EntryToken: | 
|  | llvm_unreachable("EntryToken should have been excluded from the schedule!"); | 
|  | case ISD::MERGE_VALUES: | 
|  | case ISD::TokenFactor: // fall thru | 
|  | break; | 
|  | case ISD::CopyToReg: { | 
|  | unsigned SrcReg; | 
|  | SDValue SrcVal = Node->getOperand(2); | 
|  | if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) | 
|  | SrcReg = R->getReg(); | 
|  | else | 
|  | SrcReg = getVR(SrcVal, VRBaseMap); | 
|  |  | 
|  | unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); | 
|  | if (SrcReg == DestReg) // Coalesced away the copy? Ignore. | 
|  | break; | 
|  |  | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), | 
|  | DestReg).addReg(SrcReg); | 
|  | break; | 
|  | } | 
|  | case ISD::CopyFromReg: { | 
|  | unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); | 
|  | EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); | 
|  | break; | 
|  | } | 
|  | case ISD::EH_LABEL: { | 
|  | MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel(); | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), | 
|  | TII->get(TargetOpcode::EH_LABEL)).addSym(S); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: { | 
|  | unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? | 
|  | TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; | 
|  |  | 
|  | FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); | 
|  | BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) | 
|  | .addFrameIndex(FI->getIndex()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INLINEASM: { | 
|  | unsigned NumOps = Node->getNumOperands(); | 
|  | if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) | 
|  | --NumOps;  // Ignore the glue operand. | 
|  |  | 
|  | // Create the inline asm machine instruction. | 
|  | MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), | 
|  | TII->get(TargetOpcode::INLINEASM)); | 
|  |  | 
|  | // Add the asm string as an external symbol operand. | 
|  | SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); | 
|  | const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); | 
|  | MIB.addExternalSymbol(AsmStr); | 
|  |  | 
|  | // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore | 
|  | // bits. | 
|  | int64_t ExtraInfo = | 
|  | cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> | 
|  | getZExtValue(); | 
|  | MIB.addImm(ExtraInfo); | 
|  |  | 
|  | // Remember to operand index of the group flags. | 
|  | SmallVector<unsigned, 8> GroupIdx; | 
|  |  | 
|  | // Add all of the operand registers to the instruction. | 
|  | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { | 
|  | unsigned Flags = | 
|  | cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); | 
|  | const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); | 
|  |  | 
|  | GroupIdx.push_back(MIB->getNumOperands()); | 
|  | MIB.addImm(Flags); | 
|  | ++i;  // Skip the ID value. | 
|  |  | 
|  | switch (InlineAsm::getKind(Flags)) { | 
|  | default: llvm_unreachable("Bad flags!"); | 
|  | case InlineAsm::Kind_RegDef: | 
|  | for (unsigned j = 0; j != NumVals; ++j, ++i) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); | 
|  | // FIXME: Add dead flags for physical and virtual registers defined. | 
|  | // For now, mark physical register defs as implicit to help fast | 
|  | // regalloc. This makes inline asm look a lot like calls. | 
|  | MIB.addReg(Reg, RegState::Define | | 
|  | getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); | 
|  | } | 
|  | break; | 
|  | case InlineAsm::Kind_RegDefEarlyClobber: | 
|  | case InlineAsm::Kind_Clobber: | 
|  | for (unsigned j = 0; j != NumVals; ++j, ++i) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); | 
|  | MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | | 
|  | getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); | 
|  | } | 
|  | break; | 
|  | case InlineAsm::Kind_RegUse:  // Use of register. | 
|  | case InlineAsm::Kind_Imm:  // Immediate. | 
|  | case InlineAsm::Kind_Mem:  // Addressing mode. | 
|  | // The addressing mode has been selected, just add all of the | 
|  | // operands to the machine instruction. | 
|  | for (unsigned j = 0; j != NumVals; ++j, ++i) | 
|  | AddOperand(MIB, Node->getOperand(i), 0, 0, VRBaseMap, | 
|  | /*IsDebug=*/false, IsClone, IsCloned); | 
|  |  | 
|  | // Manually set isTied bits. | 
|  | if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { | 
|  | unsigned DefGroup = 0; | 
|  | if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { | 
|  | unsigned DefIdx = GroupIdx[DefGroup] + 1; | 
|  | unsigned UseIdx = GroupIdx.back() + 1; | 
|  | for (unsigned j = 0; j != NumVals; ++j) | 
|  | MIB->tieOperands(DefIdx + j, UseIdx + j); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the mdnode from the asm if it exists and add it to the instruction. | 
|  | SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); | 
|  | const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); | 
|  | if (MD) | 
|  | MIB.addMetadata(MD); | 
|  |  | 
|  | MBB->insert(InsertPos, MIB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InstrEmitter - Construct an InstrEmitter and set it to start inserting | 
|  | /// at the given position in the given block. | 
|  | InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, | 
|  | MachineBasicBlock::iterator insertpos) | 
|  | : MF(mbb->getParent()), | 
|  | MRI(&MF->getRegInfo()), | 
|  | TM(&MF->getTarget()), | 
|  | TII(TM->getInstrInfo()), | 
|  | TRI(TM->getRegisterInfo()), | 
|  | TLI(TM->getTargetLowering()), | 
|  | MBB(mbb), InsertPos(insertpos) { | 
|  | } |