|  | //===-- TargetData.cpp - Data size & alignment routines --------------------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines target properties related to datatype size/offset/alignment | 
|  | // information. | 
|  | // | 
|  | // This structure should be created once, filled in if the defaults are not | 
|  | // correct and then passed around by const&.  None of the members functions | 
|  | // require modification to the object. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/Mutex.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  | using namespace llvm; | 
|  |  | 
|  | // Handle the Pass registration stuff necessary to use TargetData's. | 
|  |  | 
|  | // Register the default SparcV9 implementation... | 
|  | INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) | 
|  | char TargetData::ID = 0; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Support for StructLayout | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | StructLayout::StructLayout(StructType *ST, const TargetData &TD) { | 
|  | assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); | 
|  | StructAlignment = 0; | 
|  | StructSize = 0; | 
|  | NumElements = ST->getNumElements(); | 
|  |  | 
|  | // Loop over each of the elements, placing them in memory. | 
|  | for (unsigned i = 0, e = NumElements; i != e; ++i) { | 
|  | Type *Ty = ST->getElementType(i); | 
|  | unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); | 
|  |  | 
|  | // Add padding if necessary to align the data element properly. | 
|  | if ((StructSize & (TyAlign-1)) != 0) | 
|  | StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); | 
|  |  | 
|  | // Keep track of maximum alignment constraint. | 
|  | StructAlignment = std::max(TyAlign, StructAlignment); | 
|  |  | 
|  | MemberOffsets[i] = StructSize; | 
|  | StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item | 
|  | } | 
|  |  | 
|  | // Empty structures have alignment of 1 byte. | 
|  | if (StructAlignment == 0) StructAlignment = 1; | 
|  |  | 
|  | // Add padding to the end of the struct so that it could be put in an array | 
|  | // and all array elements would be aligned correctly. | 
|  | if ((StructSize & (StructAlignment-1)) != 0) | 
|  | StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getElementContainingOffset - Given a valid offset into the structure, | 
|  | /// return the structure index that contains it. | 
|  | unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { | 
|  | const uint64_t *SI = | 
|  | std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); | 
|  | assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); | 
|  | --SI; | 
|  | assert(*SI <= Offset && "upper_bound didn't work"); | 
|  | assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && | 
|  | (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && | 
|  | "Upper bound didn't work!"); | 
|  |  | 
|  | // Multiple fields can have the same offset if any of them are zero sized. | 
|  | // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop | 
|  | // at the i32 element, because it is the last element at that offset.  This is | 
|  | // the right one to return, because anything after it will have a higher | 
|  | // offset, implying that this element is non-empty. | 
|  | return SI-&MemberOffsets[0]; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetAlignElem, TargetAlign support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetAlignElem | 
|  | TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, | 
|  | unsigned pref_align, uint32_t bit_width) { | 
|  | assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); | 
|  | TargetAlignElem retval; | 
|  | retval.AlignType = align_type; | 
|  | retval.ABIAlign = abi_align; | 
|  | retval.PrefAlign = pref_align; | 
|  | retval.TypeBitWidth = bit_width; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetAlignElem::operator==(const TargetAlignElem &rhs) const { | 
|  | return (AlignType == rhs.AlignType | 
|  | && ABIAlign == rhs.ABIAlign | 
|  | && PrefAlign == rhs.PrefAlign | 
|  | && TypeBitWidth == rhs.TypeBitWidth); | 
|  | } | 
|  |  | 
|  | const TargetAlignElem TargetData::InvalidAlignmentElem = | 
|  | TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       TargetData Class Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getInt - Get an integer ignoring errors. | 
|  | static int getInt(StringRef R) { | 
|  | int Result = 0; | 
|  | R.getAsInteger(10, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void TargetData::init() { | 
|  | initializeTargetDataPass(*PassRegistry::getPassRegistry()); | 
|  |  | 
|  | LayoutMap = 0; | 
|  | LittleEndian = false; | 
|  | PointerMemSize = 8; | 
|  | PointerABIAlign = 8; | 
|  | PointerPrefAlign = PointerABIAlign; | 
|  | StackNaturalAlign = 0; | 
|  |  | 
|  | // Default alignments | 
|  | setAlignment(INTEGER_ALIGN,   1,  1, 1);   // i1 | 
|  | setAlignment(INTEGER_ALIGN,   1,  1, 8);   // i8 | 
|  | setAlignment(INTEGER_ALIGN,   2,  2, 16);  // i16 | 
|  | setAlignment(INTEGER_ALIGN,   4,  4, 32);  // i32 | 
|  | setAlignment(INTEGER_ALIGN,   4,  8, 64);  // i64 | 
|  | setAlignment(FLOAT_ALIGN,     4,  4, 32);  // float | 
|  | setAlignment(FLOAT_ALIGN,     8,  8, 64);  // double | 
|  | setAlignment(VECTOR_ALIGN,    8,  8, 64);  // v2i32, v1i64, ... | 
|  | setAlignment(VECTOR_ALIGN,   16, 16, 128); // v16i8, v8i16, v4i32, ... | 
|  | setAlignment(AGGREGATE_ALIGN, 0,  8,  0);  // struct | 
|  | } | 
|  |  | 
|  | std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) { | 
|  |  | 
|  | if (td) | 
|  | td->init(); | 
|  |  | 
|  | while (!Desc.empty()) { | 
|  | std::pair<StringRef, StringRef> Split = Desc.split('-'); | 
|  | StringRef Token = Split.first; | 
|  | Desc = Split.second; | 
|  |  | 
|  | if (Token.empty()) | 
|  | continue; | 
|  |  | 
|  | Split = Token.split(':'); | 
|  | StringRef Specifier = Split.first; | 
|  | Token = Split.second; | 
|  |  | 
|  | assert(!Specifier.empty() && "Can't be empty here"); | 
|  |  | 
|  | switch (Specifier[0]) { | 
|  | case 'E': | 
|  | if (td) | 
|  | td->LittleEndian = false; | 
|  | break; | 
|  | case 'e': | 
|  | if (td) | 
|  | td->LittleEndian = true; | 
|  | break; | 
|  | case 'p': { | 
|  | // Pointer size. | 
|  | Split = Token.split(':'); | 
|  | int PointerMemSizeBits = getInt(Split.first); | 
|  | if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0) | 
|  | return "invalid pointer size, must be a positive 8-bit multiple"; | 
|  | if (td) | 
|  | td->PointerMemSize = PointerMemSizeBits / 8; | 
|  |  | 
|  | // Pointer ABI alignment. | 
|  | Split = Split.second.split(':'); | 
|  | int PointerABIAlignBits = getInt(Split.first); | 
|  | if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) { | 
|  | return "invalid pointer ABI alignment, " | 
|  | "must be a positive 8-bit multiple"; | 
|  | } | 
|  | if (td) | 
|  | td->PointerABIAlign = PointerABIAlignBits / 8; | 
|  |  | 
|  | // Pointer preferred alignment. | 
|  | Split = Split.second.split(':'); | 
|  | int PointerPrefAlignBits = getInt(Split.first); | 
|  | if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) { | 
|  | return "invalid pointer preferred alignment, " | 
|  | "must be a positive 8-bit multiple"; | 
|  | } | 
|  | if (td) { | 
|  | td->PointerPrefAlign = PointerPrefAlignBits / 8; | 
|  | if (td->PointerPrefAlign == 0) | 
|  | td->PointerPrefAlign = td->PointerABIAlign; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 'i': | 
|  | case 'v': | 
|  | case 'f': | 
|  | case 'a': | 
|  | case 's': { | 
|  | AlignTypeEnum AlignType; | 
|  | char field = Specifier[0]; | 
|  | switch (field) { | 
|  | default: | 
|  | case 'i': AlignType = INTEGER_ALIGN; break; | 
|  | case 'v': AlignType = VECTOR_ALIGN; break; | 
|  | case 'f': AlignType = FLOAT_ALIGN; break; | 
|  | case 'a': AlignType = AGGREGATE_ALIGN; break; | 
|  | case 's': AlignType = STACK_ALIGN; break; | 
|  | } | 
|  | int Size = getInt(Specifier.substr(1)); | 
|  | if (Size < 0) { | 
|  | return std::string("invalid ") + field + "-size field, " | 
|  | "must be positive"; | 
|  | } | 
|  |  | 
|  | Split = Token.split(':'); | 
|  | int ABIAlignBits = getInt(Split.first); | 
|  | if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) { | 
|  | return std::string("invalid ") + field +"-abi-alignment field, " | 
|  | "must be a positive 8-bit multiple"; | 
|  | } | 
|  | unsigned ABIAlign = ABIAlignBits / 8; | 
|  |  | 
|  | Split = Split.second.split(':'); | 
|  |  | 
|  | int PrefAlignBits = getInt(Split.first); | 
|  | if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) { | 
|  | return std::string("invalid ") + field +"-preferred-alignment field, " | 
|  | "must be a positive 8-bit multiple"; | 
|  | } | 
|  | unsigned PrefAlign = PrefAlignBits / 8; | 
|  | if (PrefAlign == 0) | 
|  | PrefAlign = ABIAlign; | 
|  |  | 
|  | if (td) | 
|  | td->setAlignment(AlignType, ABIAlign, PrefAlign, Size); | 
|  | break; | 
|  | } | 
|  | case 'n':  // Native integer types. | 
|  | Specifier = Specifier.substr(1); | 
|  | do { | 
|  | int Width = getInt(Specifier); | 
|  | if (Width <= 0) { | 
|  | return std::string("invalid native integer size \'") + Specifier.str() + | 
|  | "\', must be a positive integer."; | 
|  | } | 
|  | if (td && Width != 0) | 
|  | td->LegalIntWidths.push_back(Width); | 
|  | Split = Token.split(':'); | 
|  | Specifier = Split.first; | 
|  | Token = Split.second; | 
|  | } while (!Specifier.empty() || !Token.empty()); | 
|  | break; | 
|  | case 'S': { // Stack natural alignment. | 
|  | int StackNaturalAlignBits = getInt(Specifier.substr(1)); | 
|  | if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) { | 
|  | return "invalid natural stack alignment (S-field), " | 
|  | "must be a positive 8-bit multiple"; | 
|  | } | 
|  | if (td) | 
|  | td->StackNaturalAlign = StackNaturalAlignBits / 8; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /// Default ctor. | 
|  | /// | 
|  | /// @note This has to exist, because this is a pass, but it should never be | 
|  | /// used. | 
|  | TargetData::TargetData() : ImmutablePass(ID) { | 
|  | report_fatal_error("Bad TargetData ctor used.  " | 
|  | "Tool did not specify a TargetData to use?"); | 
|  | } | 
|  |  | 
|  | TargetData::TargetData(const Module *M) | 
|  | : ImmutablePass(ID) { | 
|  | std::string errMsg = parseSpecifier(M->getDataLayout(), this); | 
|  | assert(errMsg == "" && "Module M has malformed target data layout string."); | 
|  | (void)errMsg; | 
|  | } | 
|  |  | 
|  | void | 
|  | TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, | 
|  | unsigned pref_align, uint32_t bit_width) { | 
|  | assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); | 
|  | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { | 
|  | if (Alignments[i].AlignType == align_type && | 
|  | Alignments[i].TypeBitWidth == bit_width) { | 
|  | // Update the abi, preferred alignments. | 
|  | Alignments[i].ABIAlign = abi_align; | 
|  | Alignments[i].PrefAlign = pref_align; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Alignments.push_back(TargetAlignElem::get(align_type, abi_align, | 
|  | pref_align, bit_width)); | 
|  | } | 
|  |  | 
|  | /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or | 
|  | /// preferred if ABIInfo = false) the target wants for the specified datatype. | 
|  | unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, | 
|  | uint32_t BitWidth, bool ABIInfo, | 
|  | Type *Ty) const { | 
|  | // Check to see if we have an exact match and remember the best match we see. | 
|  | int BestMatchIdx = -1; | 
|  | int LargestInt = -1; | 
|  | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { | 
|  | if (Alignments[i].AlignType == AlignType && | 
|  | Alignments[i].TypeBitWidth == BitWidth) | 
|  | return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; | 
|  |  | 
|  | // The best match so far depends on what we're looking for. | 
|  | if (AlignType == INTEGER_ALIGN && | 
|  | Alignments[i].AlignType == INTEGER_ALIGN) { | 
|  | // The "best match" for integers is the smallest size that is larger than | 
|  | // the BitWidth requested. | 
|  | if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || | 
|  | Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) | 
|  | BestMatchIdx = i; | 
|  | // However, if there isn't one that's larger, then we must use the | 
|  | // largest one we have (see below) | 
|  | if (LargestInt == -1 || | 
|  | Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) | 
|  | LargestInt = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we didn't find an exact solution.  Fall back here depending on what | 
|  | // is being looked for. | 
|  | if (BestMatchIdx == -1) { | 
|  | // If we didn't find an integer alignment, fall back on most conservative. | 
|  | if (AlignType == INTEGER_ALIGN) { | 
|  | BestMatchIdx = LargestInt; | 
|  | } else { | 
|  | assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); | 
|  |  | 
|  | // By default, use natural alignment for vector types. This is consistent | 
|  | // with what clang and llvm-gcc do. | 
|  | unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType()); | 
|  | Align *= cast<VectorType>(Ty)->getNumElements(); | 
|  | // If the alignment is not a power of 2, round up to the next power of 2. | 
|  | // This happens for non-power-of-2 length vectors. | 
|  | if (Align & (Align-1)) | 
|  | Align = llvm::NextPowerOf2(Align); | 
|  | return Align; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since we got a "best match" index, just return it. | 
|  | return ABIInfo ? Alignments[BestMatchIdx].ABIAlign | 
|  | : Alignments[BestMatchIdx].PrefAlign; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class StructLayoutMap { | 
|  | typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy; | 
|  | LayoutInfoTy LayoutInfo; | 
|  |  | 
|  | public: | 
|  | virtual ~StructLayoutMap() { | 
|  | // Remove any layouts. | 
|  | for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); | 
|  | I != E; ++I) { | 
|  | StructLayout *Value = I->second; | 
|  | Value->~StructLayout(); | 
|  | free(Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | StructLayout *&operator[](StructType *STy) { | 
|  | return LayoutInfo[STy]; | 
|  | } | 
|  |  | 
|  | // for debugging... | 
|  | virtual void dump() const {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | TargetData::~TargetData() { | 
|  | delete static_cast<StructLayoutMap*>(LayoutMap); | 
|  | } | 
|  |  | 
|  | const StructLayout *TargetData::getStructLayout(StructType *Ty) const { | 
|  | if (!LayoutMap) | 
|  | LayoutMap = new StructLayoutMap(); | 
|  |  | 
|  | StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap); | 
|  | StructLayout *&SL = (*STM)[Ty]; | 
|  | if (SL) return SL; | 
|  |  | 
|  | // Otherwise, create the struct layout.  Because it is variable length, we | 
|  | // malloc it, then use placement new. | 
|  | int NumElts = Ty->getNumElements(); | 
|  | StructLayout *L = | 
|  | (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); | 
|  |  | 
|  | // Set SL before calling StructLayout's ctor.  The ctor could cause other | 
|  | // entries to be added to TheMap, invalidating our reference. | 
|  | SL = L; | 
|  |  | 
|  | new (L) StructLayout(Ty, *this); | 
|  |  | 
|  | return L; | 
|  | } | 
|  |  | 
|  | std::string TargetData::getStringRepresentation() const { | 
|  | std::string Result; | 
|  | raw_string_ostream OS(Result); | 
|  |  | 
|  | OS << (LittleEndian ? "e" : "E") | 
|  | << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 | 
|  | << ':' << PointerPrefAlign*8 | 
|  | << "-S" << StackNaturalAlign*8; | 
|  |  | 
|  | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { | 
|  | const TargetAlignElem &AI = Alignments[i]; | 
|  | OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' | 
|  | << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; | 
|  | } | 
|  |  | 
|  | if (!LegalIntWidths.empty()) { | 
|  | OS << "-n" << (unsigned)LegalIntWidths[0]; | 
|  |  | 
|  | for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) | 
|  | OS << ':' << (unsigned)LegalIntWidths[i]; | 
|  | } | 
|  | return OS.str(); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { | 
|  | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::LabelTyID: | 
|  | case Type::PointerTyID: | 
|  | return getPointerSizeInBits(); | 
|  | case Type::ArrayTyID: { | 
|  | ArrayType *ATy = cast<ArrayType>(Ty); | 
|  | return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); | 
|  | } | 
|  | case Type::StructTyID: | 
|  | // Get the layout annotation... which is lazily created on demand. | 
|  | return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); | 
|  | case Type::IntegerTyID: | 
|  | return cast<IntegerType>(Ty)->getBitWidth(); | 
|  | case Type::VoidTyID: | 
|  | return 8; | 
|  | case Type::FloatTyID: | 
|  | return 32; | 
|  | case Type::DoubleTyID: | 
|  | case Type::X86_MMXTyID: | 
|  | return 64; | 
|  | case Type::PPC_FP128TyID: | 
|  | case Type::FP128TyID: | 
|  | return 128; | 
|  | // In memory objects this is always aligned to a higher boundary, but | 
|  | // only 80 bits contain information. | 
|  | case Type::X86_FP80TyID: | 
|  | return 80; | 
|  | case Type::VectorTyID: | 
|  | return cast<VectorType>(Ty)->getBitWidth(); | 
|  | default: | 
|  | llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type"); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*! | 
|  | \param abi_or_pref Flag that determines which alignment is returned. true | 
|  | returns the ABI alignment, false returns the preferred alignment. | 
|  | \param Ty The underlying type for which alignment is determined. | 
|  |  | 
|  | Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref | 
|  | == false) for the requested type \a Ty. | 
|  | */ | 
|  | unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { | 
|  | int AlignType = -1; | 
|  |  | 
|  | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); | 
|  | switch (Ty->getTypeID()) { | 
|  | // Early escape for the non-numeric types. | 
|  | case Type::LabelTyID: | 
|  | case Type::PointerTyID: | 
|  | return (abi_or_pref | 
|  | ? getPointerABIAlignment() | 
|  | : getPointerPrefAlignment()); | 
|  | case Type::ArrayTyID: | 
|  | return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); | 
|  |  | 
|  | case Type::StructTyID: { | 
|  | // Packed structure types always have an ABI alignment of one. | 
|  | if (cast<StructType>(Ty)->isPacked() && abi_or_pref) | 
|  | return 1; | 
|  |  | 
|  | // Get the layout annotation... which is lazily created on demand. | 
|  | const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); | 
|  | unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); | 
|  | return std::max(Align, Layout->getAlignment()); | 
|  | } | 
|  | case Type::IntegerTyID: | 
|  | case Type::VoidTyID: | 
|  | AlignType = INTEGER_ALIGN; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | case Type::DoubleTyID: | 
|  | // PPC_FP128TyID and FP128TyID have different data contents, but the | 
|  | // same size and alignment, so they look the same here. | 
|  | case Type::PPC_FP128TyID: | 
|  | case Type::FP128TyID: | 
|  | case Type::X86_FP80TyID: | 
|  | AlignType = FLOAT_ALIGN; | 
|  | break; | 
|  | case Type::X86_MMXTyID: | 
|  | case Type::VectorTyID: | 
|  | AlignType = VECTOR_ALIGN; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Bad type for getAlignment!!!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), | 
|  | abi_or_pref, Ty); | 
|  | } | 
|  |  | 
|  | unsigned TargetData::getABITypeAlignment(Type *Ty) const { | 
|  | return getAlignment(Ty, true); | 
|  | } | 
|  |  | 
|  | /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for | 
|  | /// an integer type of the specified bitwidth. | 
|  | unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { | 
|  | return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { | 
|  | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) | 
|  | if (Alignments[i].AlignType == STACK_ALIGN) | 
|  | return Alignments[i].ABIAlign; | 
|  |  | 
|  | return getABITypeAlignment(Ty); | 
|  | } | 
|  |  | 
|  | unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { | 
|  | return getAlignment(Ty, false); | 
|  | } | 
|  |  | 
|  | unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { | 
|  | unsigned Align = getPrefTypeAlignment(Ty); | 
|  | assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); | 
|  | return Log2_32(Align); | 
|  | } | 
|  |  | 
|  | /// getIntPtrType - Return an unsigned integer type that is the same size or | 
|  | /// greater to the host pointer size. | 
|  | IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { | 
|  | return IntegerType::get(C, getPointerSizeInBits()); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint64_t TargetData::getIndexedOffset(Type *ptrTy, | 
|  | ArrayRef<Value *> Indices) const { | 
|  | Type *Ty = ptrTy; | 
|  | assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); | 
|  | uint64_t Result = 0; | 
|  |  | 
|  | generic_gep_type_iterator<Value* const*> | 
|  | TI = gep_type_begin(ptrTy, Indices); | 
|  | for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; | 
|  | ++CurIDX, ++TI) { | 
|  | if (StructType *STy = dyn_cast<StructType>(*TI)) { | 
|  | assert(Indices[CurIDX]->getType() == | 
|  | Type::getInt32Ty(ptrTy->getContext()) && | 
|  | "Illegal struct idx"); | 
|  | unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue(); | 
|  |  | 
|  | // Get structure layout information... | 
|  | const StructLayout *Layout = getStructLayout(STy); | 
|  |  | 
|  | // Add in the offset, as calculated by the structure layout info... | 
|  | Result += Layout->getElementOffset(FieldNo); | 
|  |  | 
|  | // Update Ty to refer to current element | 
|  | Ty = STy->getElementType(FieldNo); | 
|  | } else { | 
|  | // Update Ty to refer to current element | 
|  | Ty = cast<SequentialType>(Ty)->getElementType(); | 
|  |  | 
|  | // Get the array index and the size of each array element. | 
|  | if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue()) | 
|  | Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getPreferredAlignment - Return the preferred alignment of the specified | 
|  | /// global.  This includes an explicitly requested alignment (if the global | 
|  | /// has one). | 
|  | unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { | 
|  | Type *ElemType = GV->getType()->getElementType(); | 
|  | unsigned Alignment = getPrefTypeAlignment(ElemType); | 
|  | unsigned GVAlignment = GV->getAlignment(); | 
|  | if (GVAlignment >= Alignment) { | 
|  | Alignment = GVAlignment; | 
|  | } else if (GVAlignment != 0) { | 
|  | Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); | 
|  | } | 
|  |  | 
|  | if (GV->hasInitializer() && GVAlignment == 0) { | 
|  | if (Alignment < 16) { | 
|  | // If the global is not external, see if it is large.  If so, give it a | 
|  | // larger alignment. | 
|  | if (getTypeSizeInBits(ElemType) > 128) | 
|  | Alignment = 16;    // 16-byte alignment. | 
|  | } | 
|  | } | 
|  | return Alignment; | 
|  | } | 
|  |  | 
|  | /// getPreferredAlignmentLog - Return the preferred alignment of the | 
|  | /// specified global, returned in log form.  This includes an explicitly | 
|  | /// requested alignment (if the global has one). | 
|  | unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { | 
|  | return Log2_32(getPreferredAlignment(GV)); | 
|  | } |