|  | //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the ScheduleDAGInstrs class, which implements re-scheduling | 
|  | // of MachineInstrs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "sched-instrs" | 
|  | #include "RegisterPressure.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, | 
|  | const MachineLoopInfo &mli, | 
|  | const MachineDominatorTree &mdt, | 
|  | bool IsPostRAFlag, | 
|  | LiveIntervals *lis) | 
|  | : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), | 
|  | InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis), | 
|  | IsPostRA(IsPostRAFlag), UnitLatencies(false), CanHandleTerminators(false), | 
|  | LoopRegs(MLI, MDT), FirstDbgValue(0) { | 
|  | assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); | 
|  | DbgValues.clear(); | 
|  | assert(!(IsPostRA && MRI.getNumVirtRegs()) && | 
|  | "Virtual registers must be removed prior to PostRA scheduling"); | 
|  | } | 
|  |  | 
|  | /// getUnderlyingObjectFromInt - This is the function that does the work of | 
|  | /// looking through basic ptrtoint+arithmetic+inttoptr sequences. | 
|  | static const Value *getUnderlyingObjectFromInt(const Value *V) { | 
|  | do { | 
|  | if (const Operator *U = dyn_cast<Operator>(V)) { | 
|  | // If we find a ptrtoint, we can transfer control back to the | 
|  | // regular getUnderlyingObjectFromInt. | 
|  | if (U->getOpcode() == Instruction::PtrToInt) | 
|  | return U->getOperand(0); | 
|  | // If we find an add of a constant or a multiplied value, it's | 
|  | // likely that the other operand will lead us to the base | 
|  | // object. We don't have to worry about the case where the | 
|  | // object address is somehow being computed by the multiply, | 
|  | // because our callers only care when the result is an | 
|  | // identifibale object. | 
|  | if (U->getOpcode() != Instruction::Add || | 
|  | (!isa<ConstantInt>(U->getOperand(1)) && | 
|  | Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) | 
|  | return V; | 
|  | V = U->getOperand(0); | 
|  | } else { | 
|  | return V; | 
|  | } | 
|  | assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject | 
|  | /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. | 
|  | static const Value *getUnderlyingObject(const Value *V) { | 
|  | // First just call Value::getUnderlyingObject to let it do what it does. | 
|  | do { | 
|  | V = GetUnderlyingObject(V); | 
|  | // If it found an inttoptr, use special code to continue climing. | 
|  | if (Operator::getOpcode(V) != Instruction::IntToPtr) | 
|  | break; | 
|  | const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); | 
|  | // If that succeeded in finding a pointer, continue the search. | 
|  | if (!O->getType()->isPointerTy()) | 
|  | break; | 
|  | V = O; | 
|  | } while (1); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getUnderlyingObjectForInstr - If this machine instr has memory reference | 
|  | /// information and it can be tracked to a normal reference to a known | 
|  | /// object, return the Value for that object. Otherwise return null. | 
|  | static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, | 
|  | const MachineFrameInfo *MFI, | 
|  | bool &MayAlias) { | 
|  | MayAlias = true; | 
|  | if (!MI->hasOneMemOperand() || | 
|  | !(*MI->memoperands_begin())->getValue() || | 
|  | (*MI->memoperands_begin())->isVolatile()) | 
|  | return 0; | 
|  |  | 
|  | const Value *V = (*MI->memoperands_begin())->getValue(); | 
|  | if (!V) | 
|  | return 0; | 
|  |  | 
|  | V = getUnderlyingObject(V); | 
|  | if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { | 
|  | // For now, ignore PseudoSourceValues which may alias LLVM IR values | 
|  | // because the code that uses this function has no way to cope with | 
|  | // such aliases. | 
|  | if (PSV->isAliased(MFI)) | 
|  | return 0; | 
|  |  | 
|  | MayAlias = PSV->mayAlias(MFI); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (isIdentifiedObject(V)) | 
|  | return V; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { | 
|  | BB = bb; | 
|  | LoopRegs.Deps.clear(); | 
|  | if (MachineLoop *ML = MLI.getLoopFor(BB)) | 
|  | if (BB == ML->getLoopLatch()) | 
|  | LoopRegs.VisitLoop(ML); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::finishBlock() { | 
|  | // Subclasses should no longer refer to the old block. | 
|  | BB = 0; | 
|  | } | 
|  |  | 
|  | /// Initialize the map with the number of registers. | 
|  | void Reg2SUnitsMap::setRegLimit(unsigned Limit) { | 
|  | PhysRegSet.setUniverse(Limit); | 
|  | SUnits.resize(Limit); | 
|  | } | 
|  |  | 
|  | /// Clear the map without deallocating storage. | 
|  | void Reg2SUnitsMap::clear() { | 
|  | for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) { | 
|  | SUnits[*I].clear(); | 
|  | } | 
|  | PhysRegSet.clear(); | 
|  | } | 
|  |  | 
|  | /// Initialize the DAG and common scheduler state for the current scheduling | 
|  | /// region. This does not actually create the DAG, only clears it. The | 
|  | /// scheduling driver may call BuildSchedGraph multiple times per scheduling | 
|  | /// region. | 
|  | void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator begin, | 
|  | MachineBasicBlock::iterator end, | 
|  | unsigned endcount) { | 
|  | assert(bb == BB && "startBlock should set BB"); | 
|  | RegionBegin = begin; | 
|  | RegionEnd = end; | 
|  | EndIndex = endcount; | 
|  | MISUnitMap.clear(); | 
|  |  | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | UnitLatencies = forceUnitLatencies(); | 
|  |  | 
|  | ScheduleDAG::clearDAG(); | 
|  | } | 
|  |  | 
|  | /// Close the current scheduling region. Don't clear any state in case the | 
|  | /// driver wants to refer to the previous scheduling region. | 
|  | void ScheduleDAGInstrs::exitRegion() { | 
|  | // Nothing to do. | 
|  | } | 
|  |  | 
|  | /// addSchedBarrierDeps - Add dependencies from instructions in the current | 
|  | /// list of instructions being scheduled to scheduling barrier by adding | 
|  | /// the exit SU to the register defs and use list. This is because we want to | 
|  | /// make sure instructions which define registers that are either used by | 
|  | /// the terminator or are live-out are properly scheduled. This is | 
|  | /// especially important when the definition latency of the return value(s) | 
|  | /// are too high to be hidden by the branch or when the liveout registers | 
|  | /// used by instructions in the fallthrough block. | 
|  | void ScheduleDAGInstrs::addSchedBarrierDeps() { | 
|  | MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; | 
|  | ExitSU.setInstr(ExitMI); | 
|  | bool AllDepKnown = ExitMI && | 
|  | (ExitMI->isCall() || ExitMI->isBarrier()); | 
|  | if (ExitMI && AllDepKnown) { | 
|  | // If it's a call or a barrier, add dependencies on the defs and uses of | 
|  | // instruction. | 
|  | for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = ExitMI->getOperand(i); | 
|  | if (!MO.isReg() || MO.isDef()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  |  | 
|  | if (TRI->isPhysicalRegister(Reg)) | 
|  | Uses[Reg].push_back(&ExitSU); | 
|  | else { | 
|  | assert(!IsPostRA && "Virtual register encountered after regalloc."); | 
|  | addVRegUseDeps(&ExitSU, i); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // For others, e.g. fallthrough, conditional branch, assume the exit | 
|  | // uses all the registers that are livein to the successor blocks. | 
|  | assert(Uses.empty() && "Uses in set before adding deps?"); | 
|  | for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
|  | SE = BB->succ_end(); SI != SE; ++SI) | 
|  | for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), | 
|  | E = (*SI)->livein_end(); I != E; ++I) { | 
|  | unsigned Reg = *I; | 
|  | if (!Uses.contains(Reg)) | 
|  | Uses[Reg].push_back(&ExitSU); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MO is an operand of SU's instruction that defines a physical register. Add | 
|  | /// data dependencies from SU to any uses of the physical register. | 
|  | void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, | 
|  | const MachineOperand &MO) { | 
|  | assert(MO.isDef() && "expect physreg def"); | 
|  |  | 
|  | // Ask the target if address-backscheduling is desirable, and if so how much. | 
|  | const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); | 
|  | unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); | 
|  | unsigned DataLatency = SU->Latency; | 
|  |  | 
|  | for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) { | 
|  | if (!Uses.contains(*Alias)) | 
|  | continue; | 
|  | std::vector<SUnit*> &UseList = Uses[*Alias]; | 
|  | for (unsigned i = 0, e = UseList.size(); i != e; ++i) { | 
|  | SUnit *UseSU = UseList[i]; | 
|  | if (UseSU == SU) | 
|  | continue; | 
|  | unsigned LDataLatency = DataLatency; | 
|  | // Optionally add in a special extra latency for nodes that | 
|  | // feed addresses. | 
|  | // TODO: Perhaps we should get rid of | 
|  | // SpecialAddressLatency and just move this into | 
|  | // adjustSchedDependency for the targets that care about it. | 
|  | if (SpecialAddressLatency != 0 && !UnitLatencies && | 
|  | UseSU != &ExitSU) { | 
|  | MachineInstr *UseMI = UseSU->getInstr(); | 
|  | const MCInstrDesc &UseMCID = UseMI->getDesc(); | 
|  | int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias); | 
|  | assert(RegUseIndex >= 0 && "UseMI doesn't use register!"); | 
|  | if (RegUseIndex >= 0 && | 
|  | (UseMI->mayLoad() || UseMI->mayStore()) && | 
|  | (unsigned)RegUseIndex < UseMCID.getNumOperands() && | 
|  | UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) | 
|  | LDataLatency += SpecialAddressLatency; | 
|  | } | 
|  | // Adjust the dependence latency using operand def/use | 
|  | // information (if any), and then allow the target to | 
|  | // perform its own adjustments. | 
|  | const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias); | 
|  | if (!UnitLatencies) { | 
|  | computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); | 
|  | ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); | 
|  | } | 
|  | UseSU->addPred(dep); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// addPhysRegDeps - Add register dependencies (data, anti, and output) from | 
|  | /// this SUnit to following instructions in the same scheduling region that | 
|  | /// depend the physical register referenced at OperIdx. | 
|  | void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | const MachineOperand &MO = MI->getOperand(OperIdx); | 
|  |  | 
|  | // Optionally add output and anti dependencies. For anti | 
|  | // dependencies we use a latency of 0 because for a multi-issue | 
|  | // target we want to allow the defining instruction to issue | 
|  | // in the same cycle as the using instruction. | 
|  | // TODO: Using a latency of 1 here for output dependencies assumes | 
|  | //       there's no cost for reusing registers. | 
|  | SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; | 
|  | for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) { | 
|  | if (!Defs.contains(*Alias)) | 
|  | continue; | 
|  | std::vector<SUnit *> &DefList = Defs[*Alias]; | 
|  | for (unsigned i = 0, e = DefList.size(); i != e; ++i) { | 
|  | SUnit *DefSU = DefList[i]; | 
|  | if (DefSU == &ExitSU) | 
|  | continue; | 
|  | if (DefSU != SU && | 
|  | (Kind != SDep::Output || !MO.isDead() || | 
|  | !DefSU->getInstr()->registerDefIsDead(*Alias))) { | 
|  | if (Kind == SDep::Anti) | 
|  | DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias)); | 
|  | else { | 
|  | unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx, | 
|  | DefSU->getInstr()); | 
|  | DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MO.isDef()) { | 
|  | // Either insert a new Reg2SUnits entry with an empty SUnits list, or | 
|  | // retrieve the existing SUnits list for this register's uses. | 
|  | // Push this SUnit on the use list. | 
|  | Uses[MO.getReg()].push_back(SU); | 
|  | } | 
|  | else { | 
|  | addPhysRegDataDeps(SU, MO); | 
|  |  | 
|  | // Either insert a new Reg2SUnits entry with an empty SUnits list, or | 
|  | // retrieve the existing SUnits list for this register's defs. | 
|  | std::vector<SUnit *> &DefList = Defs[MO.getReg()]; | 
|  |  | 
|  | // If a def is going to wrap back around to the top of the loop, | 
|  | // backschedule it. | 
|  | if (!UnitLatencies && DefList.empty()) { | 
|  | LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg()); | 
|  | if (I != LoopRegs.Deps.end()) { | 
|  | const MachineOperand *UseMO = I->second.first; | 
|  | unsigned Count = I->second.second; | 
|  | const MachineInstr *UseMI = UseMO->getParent(); | 
|  | unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); | 
|  | const MCInstrDesc &UseMCID = UseMI->getDesc(); | 
|  | const TargetSubtargetInfo &ST = | 
|  | TM.getSubtarget<TargetSubtargetInfo>(); | 
|  | unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); | 
|  | // TODO: If we knew the total depth of the region here, we could | 
|  | // handle the case where the whole loop is inside the region but | 
|  | // is large enough that the isScheduleHigh trick isn't needed. | 
|  | if (UseMOIdx < UseMCID.getNumOperands()) { | 
|  | // Currently, we only support scheduling regions consisting of | 
|  | // single basic blocks. Check to see if the instruction is in | 
|  | // the same region by checking to see if it has the same parent. | 
|  | if (UseMI->getParent() != MI->getParent()) { | 
|  | unsigned Latency = SU->Latency; | 
|  | if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) | 
|  | Latency += SpecialAddressLatency; | 
|  | // This is a wild guess as to the portion of the latency which | 
|  | // will be overlapped by work done outside the current | 
|  | // scheduling region. | 
|  | Latency -= std::min(Latency, Count); | 
|  | // Add the artificial edge. | 
|  | ExitSU.addPred(SDep(SU, SDep::Order, Latency, | 
|  | /*Reg=*/0, /*isNormalMemory=*/false, | 
|  | /*isMustAlias=*/false, | 
|  | /*isArtificial=*/true)); | 
|  | } else if (SpecialAddressLatency > 0 && | 
|  | UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { | 
|  | // The entire loop body is within the current scheduling region | 
|  | // and the latency of this operation is assumed to be greater | 
|  | // than the latency of the loop. | 
|  | // TODO: Recursively mark data-edge predecessors as | 
|  | //       isScheduleHigh too. | 
|  | SU->isScheduleHigh = true; | 
|  | } | 
|  | } | 
|  | LoopRegs.Deps.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // clear this register's use list | 
|  | if (Uses.contains(MO.getReg())) | 
|  | Uses[MO.getReg()].clear(); | 
|  |  | 
|  | if (!MO.isDead()) | 
|  | DefList.clear(); | 
|  |  | 
|  | // Calls will not be reordered because of chain dependencies (see | 
|  | // below). Since call operands are dead, calls may continue to be added | 
|  | // to the DefList making dependence checking quadratic in the size of | 
|  | // the block. Instead, we leave only one call at the back of the | 
|  | // DefList. | 
|  | if (SU->isCall) { | 
|  | while (!DefList.empty() && DefList.back()->isCall) | 
|  | DefList.pop_back(); | 
|  | } | 
|  | // Defs are pushed in the order they are visited and never reordered. | 
|  | DefList.push_back(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// addVRegDefDeps - Add register output and data dependencies from this SUnit | 
|  | /// to instructions that occur later in the same scheduling region if they read | 
|  | /// from or write to the virtual register defined at OperIdx. | 
|  | /// | 
|  | /// TODO: Hoist loop induction variable increments. This has to be | 
|  | /// reevaluated. Generally, IV scheduling should be done before coalescing. | 
|  | void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | unsigned Reg = MI->getOperand(OperIdx).getReg(); | 
|  |  | 
|  | // SSA defs do not have output/anti dependencies. | 
|  | // The current operand is a def, so we have at least one. | 
|  | if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end()) | 
|  | return; | 
|  |  | 
|  | // Add output dependence to the next nearest def of this vreg. | 
|  | // | 
|  | // Unless this definition is dead, the output dependence should be | 
|  | // transitively redundant with antidependencies from this definition's | 
|  | // uses. We're conservative for now until we have a way to guarantee the uses | 
|  | // are not eliminated sometime during scheduling. The output dependence edge | 
|  | // is also useful if output latency exceeds def-use latency. | 
|  | VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); | 
|  | if (DefI == VRegDefs.end()) | 
|  | VRegDefs.insert(VReg2SUnit(Reg, SU)); | 
|  | else { | 
|  | SUnit *DefSU = DefI->SU; | 
|  | if (DefSU != SU && DefSU != &ExitSU) { | 
|  | unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx, | 
|  | DefSU->getInstr()); | 
|  | DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg)); | 
|  | } | 
|  | DefI->SU = SU; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// addVRegUseDeps - Add a register data dependency if the instruction that | 
|  | /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a | 
|  | /// register antidependency from this SUnit to instructions that occur later in | 
|  | /// the same scheduling region if they write the virtual register. | 
|  | /// | 
|  | /// TODO: Handle ExitSU "uses" properly. | 
|  | void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | unsigned Reg = MI->getOperand(OperIdx).getReg(); | 
|  |  | 
|  | // Lookup this operand's reaching definition. | 
|  | assert(LIS && "vreg dependencies requires LiveIntervals"); | 
|  | SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(); | 
|  | LiveInterval *LI = &LIS->getInterval(Reg); | 
|  | VNInfo *VNI = LI->getVNInfoBefore(UseIdx); | 
|  |  | 
|  | // Special case: An early-clobber tied operand reads and writes the | 
|  | // register one slot early. e.g. InlineAsm. | 
|  | // | 
|  | // FIXME: Same special case is in shrinkToUses. Hide under an API. | 
|  | if (SlotIndex::isSameInstr(VNI->def, UseIdx)) { | 
|  | UseIdx = VNI->def; | 
|  | VNI = LI->getVNInfoBefore(UseIdx); | 
|  | } | 
|  | // VNI will be valid because MachineOperand::readsReg() is checked by caller. | 
|  | MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); | 
|  | // Phis and other noninstructions (after coalescing) have a NULL Def. | 
|  | if (Def) { | 
|  | SUnit *DefSU = getSUnit(Def); | 
|  | if (DefSU) { | 
|  | // The reaching Def lives within this scheduling region. | 
|  | // Create a data dependence. | 
|  | // | 
|  | // TODO: Handle "special" address latencies cleanly. | 
|  | const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg); | 
|  | if (!UnitLatencies) { | 
|  | // Adjust the dependence latency using operand def/use information, then | 
|  | // allow the target to perform its own adjustments. | 
|  | computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep)); | 
|  | const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); | 
|  | ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); | 
|  | } | 
|  | SU->addPred(dep); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add antidependence to the following def of the vreg it uses. | 
|  | VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); | 
|  | if (DefI != VRegDefs.end() && DefI->SU != SU) | 
|  | DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg)); | 
|  | } | 
|  |  | 
|  | /// Create an SUnit for each real instruction, numbered in top-down toplological | 
|  | /// order. The instruction order A < B, implies that no edge exists from B to A. | 
|  | /// | 
|  | /// Map each real instruction to its SUnit. | 
|  | /// | 
|  | /// After initSUnits, the SUnits vector cannot be resized and the scheduler may | 
|  | /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs | 
|  | /// instead of pointers. | 
|  | /// | 
|  | /// MachineScheduler relies on initSUnits numbering the nodes by their order in | 
|  | /// the original instruction list. | 
|  | void ScheduleDAGInstrs::initSUnits() { | 
|  | // We'll be allocating one SUnit for each real instruction in the region, | 
|  | // which is contained within a basic block. | 
|  | SUnits.reserve(BB->size()); | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { | 
|  | MachineInstr *MI = I; | 
|  | if (MI->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | SUnit *SU = newSUnit(MI); | 
|  | MISUnitMap[MI] = SU; | 
|  |  | 
|  | SU->isCall = MI->isCall(); | 
|  | SU->isCommutable = MI->isCommutable(); | 
|  |  | 
|  | // Assign the Latency field of SU using target-provided information. | 
|  | if (UnitLatencies) | 
|  | SU->Latency = 1; | 
|  | else | 
|  | computeLatency(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If RegPressure is non null, compute register pressure as a side effect. The | 
|  | /// DAG builder is an efficient place to do it because it already visits | 
|  | /// operands. | 
|  | void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, | 
|  | RegPressureTracker *RPTracker) { | 
|  | // Create an SUnit for each real instruction. | 
|  | initSUnits(); | 
|  |  | 
|  | // We build scheduling units by walking a block's instruction list from bottom | 
|  | // to top. | 
|  |  | 
|  | // Remember where a generic side-effecting instruction is as we procede. | 
|  | SUnit *BarrierChain = 0, *AliasChain = 0; | 
|  |  | 
|  | // Memory references to specific known memory locations are tracked | 
|  | // so that they can be given more precise dependencies. We track | 
|  | // separately the known memory locations that may alias and those | 
|  | // that are known not to alias | 
|  | std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; | 
|  | std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; | 
|  |  | 
|  | // Remove any stale debug info; sometimes BuildSchedGraph is called again | 
|  | // without emitting the info from the previous call. | 
|  | DbgValues.clear(); | 
|  | FirstDbgValue = NULL; | 
|  |  | 
|  | assert(Defs.empty() && Uses.empty() && | 
|  | "Only BuildGraph should update Defs/Uses"); | 
|  | Defs.setRegLimit(TRI->getNumRegs()); | 
|  | Uses.setRegLimit(TRI->getNumRegs()); | 
|  |  | 
|  | assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); | 
|  | // FIXME: Allow SparseSet to reserve space for the creation of virtual | 
|  | // registers during scheduling. Don't artificially inflate the Universe | 
|  | // because we want to assert that vregs are not created during DAG building. | 
|  | VRegDefs.setUniverse(MRI.getNumVirtRegs()); | 
|  |  | 
|  | // Model data dependencies between instructions being scheduled and the | 
|  | // ExitSU. | 
|  | addSchedBarrierDeps(); | 
|  |  | 
|  | // Walk the list of instructions, from bottom moving up. | 
|  | MachineInstr *PrevMI = NULL; | 
|  | for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; | 
|  | MII != MIE; --MII) { | 
|  | MachineInstr *MI = prior(MII); | 
|  | if (MI && PrevMI) { | 
|  | DbgValues.push_back(std::make_pair(PrevMI, MI)); | 
|  | PrevMI = NULL; | 
|  | } | 
|  |  | 
|  | if (MI->isDebugValue()) { | 
|  | PrevMI = MI; | 
|  | continue; | 
|  | } | 
|  | if (RPTracker) { | 
|  | RPTracker->recede(); | 
|  | assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); | 
|  | } | 
|  |  | 
|  | assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() && | 
|  | "Cannot schedule terminators or labels!"); | 
|  |  | 
|  | SUnit *SU = MISUnitMap[MI]; | 
|  | assert(SU && "No SUnit mapped to this MI"); | 
|  |  | 
|  | // Add register-based dependencies (data, anti, and output). | 
|  | for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { | 
|  | const MachineOperand &MO = MI->getOperand(j); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  |  | 
|  | if (TRI->isPhysicalRegister(Reg)) | 
|  | addPhysRegDeps(SU, j); | 
|  | else { | 
|  | assert(!IsPostRA && "Virtual register encountered!"); | 
|  | if (MO.isDef()) | 
|  | addVRegDefDeps(SU, j); | 
|  | else if (MO.readsReg()) // ignore undef operands | 
|  | addVRegUseDeps(SU, j); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add chain dependencies. | 
|  | // Chain dependencies used to enforce memory order should have | 
|  | // latency of 0 (except for true dependency of Store followed by | 
|  | // aliased Load... we estimate that with a single cycle of latency | 
|  | // assuming the hardware will bypass) | 
|  | // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable | 
|  | // after stack slots are lowered to actual addresses. | 
|  | // TODO: Use an AliasAnalysis and do real alias-analysis queries, and | 
|  | // produce more precise dependence information. | 
|  | #define STORE_LOAD_LATENCY 1 | 
|  | unsigned TrueMemOrderLatency = 0; | 
|  | if (MI->isCall() || MI->hasUnmodeledSideEffects() || | 
|  | (MI->hasVolatileMemoryRef() && | 
|  | (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) { | 
|  | // Be conservative with these and add dependencies on all memory | 
|  | // references, even those that are known to not alias. | 
|  | for (std::map<const Value *, SUnit *>::iterator I = | 
|  | NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { | 
|  | I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | } | 
|  | for (std::map<const Value *, std::vector<SUnit *> >::iterator I = | 
|  | NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { | 
|  | for (unsigned i = 0, e = I->second.size(); i != e; ++i) | 
|  | I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
|  | } | 
|  | NonAliasMemDefs.clear(); | 
|  | NonAliasMemUses.clear(); | 
|  | // Add SU to the barrier chain. | 
|  | if (BarrierChain) | 
|  | BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | BarrierChain = SU; | 
|  |  | 
|  | // fall-through | 
|  | new_alias_chain: | 
|  | // Chain all possibly aliasing memory references though SU. | 
|  | if (AliasChain) | 
|  | AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | AliasChain = SU; | 
|  | for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) | 
|  | PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
|  | for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), | 
|  | E = AliasMemDefs.end(); I != E; ++I) { | 
|  | I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | } | 
|  | for (std::map<const Value *, std::vector<SUnit *> >::iterator I = | 
|  | AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { | 
|  | for (unsigned i = 0, e = I->second.size(); i != e; ++i) | 
|  | I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
|  | } | 
|  | PendingLoads.clear(); | 
|  | AliasMemDefs.clear(); | 
|  | AliasMemUses.clear(); | 
|  | } else if (MI->mayStore()) { | 
|  | bool MayAlias = true; | 
|  | TrueMemOrderLatency = STORE_LOAD_LATENCY; | 
|  | if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { | 
|  | // A store to a specific PseudoSourceValue. Add precise dependencies. | 
|  | // Record the def in MemDefs, first adding a dep if there is | 
|  | // an existing def. | 
|  | std::map<const Value *, SUnit *>::iterator I = | 
|  | ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); | 
|  | std::map<const Value *, SUnit *>::iterator IE = | 
|  | ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); | 
|  | if (I != IE) { | 
|  | I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, | 
|  | /*isNormalMemory=*/true)); | 
|  | I->second = SU; | 
|  | } else { | 
|  | if (MayAlias) | 
|  | AliasMemDefs[V] = SU; | 
|  | else | 
|  | NonAliasMemDefs[V] = SU; | 
|  | } | 
|  | // Handle the uses in MemUses, if there are any. | 
|  | std::map<const Value *, std::vector<SUnit *> >::iterator J = | 
|  | ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); | 
|  | std::map<const Value *, std::vector<SUnit *> >::iterator JE = | 
|  | ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); | 
|  | if (J != JE) { | 
|  | for (unsigned i = 0, e = J->second.size(); i != e; ++i) | 
|  | J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, | 
|  | /*Reg=*/0, /*isNormalMemory=*/true)); | 
|  | J->second.clear(); | 
|  | } | 
|  | if (MayAlias) { | 
|  | // Add dependencies from all the PendingLoads, i.e. loads | 
|  | // with no underlying object. | 
|  | for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) | 
|  | PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
|  | // Add dependence on alias chain, if needed. | 
|  | if (AliasChain) | 
|  | AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | } | 
|  | // Add dependence on barrier chain, if needed. | 
|  | if (BarrierChain) | 
|  | BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | } else { | 
|  | // Treat all other stores conservatively. | 
|  | goto new_alias_chain; | 
|  | } | 
|  |  | 
|  | if (!ExitSU.isPred(SU)) | 
|  | // Push store's up a bit to avoid them getting in between cmp | 
|  | // and branches. | 
|  | ExitSU.addPred(SDep(SU, SDep::Order, 0, | 
|  | /*Reg=*/0, /*isNormalMemory=*/false, | 
|  | /*isMustAlias=*/false, | 
|  | /*isArtificial=*/true)); | 
|  | } else if (MI->mayLoad()) { | 
|  | bool MayAlias = true; | 
|  | TrueMemOrderLatency = 0; | 
|  | if (MI->isInvariantLoad(AA)) { | 
|  | // Invariant load, no chain dependencies needed! | 
|  | } else { | 
|  | if (const Value *V = | 
|  | getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { | 
|  | // A load from a specific PseudoSourceValue. Add precise dependencies. | 
|  | std::map<const Value *, SUnit *>::iterator I = | 
|  | ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); | 
|  | std::map<const Value *, SUnit *>::iterator IE = | 
|  | ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); | 
|  | if (I != IE) | 
|  | I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, | 
|  | /*isNormalMemory=*/true)); | 
|  | if (MayAlias) | 
|  | AliasMemUses[V].push_back(SU); | 
|  | else | 
|  | NonAliasMemUses[V].push_back(SU); | 
|  | } else { | 
|  | // A load with no underlying object. Depend on all | 
|  | // potentially aliasing stores. | 
|  | for (std::map<const Value *, SUnit *>::iterator I = | 
|  | AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) | 
|  | I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  |  | 
|  | PendingLoads.push_back(SU); | 
|  | MayAlias = true; | 
|  | } | 
|  |  | 
|  | // Add dependencies on alias and barrier chains, if needed. | 
|  | if (MayAlias && AliasChain) | 
|  | AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | if (BarrierChain) | 
|  | BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (PrevMI) | 
|  | FirstDbgValue = PrevMI; | 
|  |  | 
|  | Defs.clear(); | 
|  | Uses.clear(); | 
|  | VRegDefs.clear(); | 
|  | PendingLoads.clear(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::computeLatency(SUnit *SU) { | 
|  | // Compute the latency for the node. | 
|  | if (!InstrItins || InstrItins->isEmpty()) { | 
|  | SU->Latency = 1; | 
|  |  | 
|  | // Simplistic target-independent heuristic: assume that loads take | 
|  | // extra time. | 
|  | if (SU->getInstr()->mayLoad()) | 
|  | SU->Latency += 2; | 
|  | } else { | 
|  | SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use, | 
|  | SDep& dep) const { | 
|  | if (!InstrItins || InstrItins->isEmpty()) | 
|  | return; | 
|  |  | 
|  | // For a data dependency with a known register... | 
|  | if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) | 
|  | return; | 
|  |  | 
|  | const unsigned Reg = dep.getReg(); | 
|  |  | 
|  | // ... find the definition of the register in the defining | 
|  | // instruction | 
|  | MachineInstr *DefMI = Def->getInstr(); | 
|  | int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); | 
|  | if (DefIdx != -1) { | 
|  | const MachineOperand &MO = DefMI->getOperand(DefIdx); | 
|  | if (MO.isReg() && MO.isImplicit() && | 
|  | DefIdx >= (int)DefMI->getDesc().getNumOperands()) { | 
|  | // This is an implicit def, getOperandLatency() won't return the correct | 
|  | // latency. e.g. | 
|  | //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def> | 
|  | //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ... | 
|  | // What we want is to compute latency between def of %D6/%D7 and use of | 
|  | // %Q3 instead. | 
|  | unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); | 
|  | if (DefMI->getOperand(Op2).isReg()) | 
|  | DefIdx = Op2; | 
|  | } | 
|  | MachineInstr *UseMI = Use->getInstr(); | 
|  | // For all uses of the register, calculate the maxmimum latency | 
|  | int Latency = -1; | 
|  | if (UseMI) { | 
|  | for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = UseMI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (MOReg != Reg) | 
|  | continue; | 
|  |  | 
|  | int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, | 
|  | UseMI, i); | 
|  | Latency = std::max(Latency, UseCycle); | 
|  | } | 
|  | } else { | 
|  | // UseMI is null, then it must be a scheduling barrier. | 
|  | if (!InstrItins || InstrItins->isEmpty()) | 
|  | return; | 
|  | unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
|  | Latency = InstrItins->getOperandCycle(DefClass, DefIdx); | 
|  | } | 
|  |  | 
|  | // If we found a latency, then replace the existing dependence latency. | 
|  | if (Latency >= 0) | 
|  | dep.setLatency(Latency); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { | 
|  | SU->getInstr()->dump(); | 
|  | } | 
|  |  | 
|  | std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { | 
|  | std::string s; | 
|  | raw_string_ostream oss(s); | 
|  | if (SU == &EntrySU) | 
|  | oss << "<entry>"; | 
|  | else if (SU == &ExitSU) | 
|  | oss << "<exit>"; | 
|  | else | 
|  | SU->getInstr()->print(oss); | 
|  | return oss.str(); | 
|  | } | 
|  |  | 
|  | /// Return the basic block label. It is not necessarilly unique because a block | 
|  | /// contains multiple scheduling regions. But it is fine for visualization. | 
|  | std::string ScheduleDAGInstrs::getDAGName() const { | 
|  | return "dag." + BB->getFullName(); | 
|  | } |