|  | //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass eliminates machine instruction PHI nodes by inserting copy | 
|  | // instructions.  This destroys SSA information, but is the desired input for | 
|  | // some register allocators. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <set> | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | Statistic<> NumAtomic("phielim", "Number of atomic phis lowered"); | 
|  | Statistic<> NumSimple("phielim", "Number of simple phis lowered"); | 
|  |  | 
|  | struct PNE : public MachineFunctionPass { | 
|  | bool runOnMachineFunction(MachineFunction &Fn) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Eliminate PHI instructions by inserting copies into predecessor blocks. | 
|  | for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
|  | Changed |= EliminatePHINodes(Fn, *I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions | 
|  | /// in predecessor basic blocks. | 
|  | /// | 
|  | bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  | void LowerAtomicPHINode(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator AfterPHIsIt, | 
|  | DenseMap<unsigned, VirtReg2IndexFunctor> &VUC); | 
|  | }; | 
|  |  | 
|  | RegisterPass<PNE> X("phi-node-elimination", | 
|  | "Eliminate PHI nodes for register allocation"); | 
|  | } | 
|  |  | 
|  |  | 
|  | const PassInfo *llvm::PHIEliminationID = X.getPassInfo(); | 
|  |  | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in | 
|  | /// predecessor basic blocks. | 
|  | /// | 
|  | bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { | 
|  | if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) | 
|  | return false;   // Quick exit for basic blocks without PHIs. | 
|  |  | 
|  | // VRegPHIUseCount - Keep track of the number of times each virtual register | 
|  | // is used by PHI nodes in successors of this block. | 
|  | DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount; | 
|  | VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg()); | 
|  |  | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(), | 
|  | E = MBB.pred_end(); PI != E; ++PI) | 
|  | for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(), | 
|  | E = (*PI)->succ_end(); SI != E; ++SI) | 
|  | for (MachineBasicBlock::iterator BBI = (*SI)->begin(), E = (*SI)->end(); | 
|  | BBI != E && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) | 
|  | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) | 
|  | VRegPHIUseCount[BBI->getOperand(i).getReg()]++; | 
|  |  | 
|  | // Get an iterator to the first instruction after the last PHI node (this may | 
|  | // also be the end of the basic block). | 
|  | MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); | 
|  | while (AfterPHIsIt != MBB.end() && | 
|  | AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI) | 
|  | ++AfterPHIsIt;    // Skip over all of the PHI nodes... | 
|  |  | 
|  | while (MBB.front().getOpcode() == TargetInstrInfo::PHI) { | 
|  | LowerAtomicPHINode(MBB, AfterPHIsIt, VRegPHIUseCount); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InstructionUsesRegister - Return true if the specified machine instr has a | 
|  | /// use of the specified register. | 
|  | static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) | 
|  | if (MI->getOperand(0).isRegister() && | 
|  | MI->getOperand(0).getReg() == SrcReg && | 
|  | MI->getOperand(0).isUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, | 
|  | /// under the assuption that it needs to be lowered in a way that supports | 
|  | /// atomic execution of PHIs.  This lowering method is always correct all of the | 
|  | /// time. | 
|  | void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator AfterPHIsIt, | 
|  | DenseMap<unsigned, VirtReg2IndexFunctor> &VRegPHIUseCount) { | 
|  | // Unlink the PHI node from the basic block, but don't delete the PHI yet. | 
|  | MachineInstr *MPhi = MBB.remove(MBB.begin()); | 
|  |  | 
|  | unsigned DestReg = MPhi->getOperand(0).getReg(); | 
|  |  | 
|  | // Create a new register for the incoming PHI arguments/ | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); | 
|  | unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
|  |  | 
|  | // Insert a register to register copy in the top of the current block (but | 
|  | // after any remaining phi nodes) which copies the new incoming register | 
|  | // into the phi node destination. | 
|  | // | 
|  | const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); | 
|  | RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC); | 
|  |  | 
|  | // Update live variable information if there is any... | 
|  | LiveVariables *LV = getAnalysisToUpdate<LiveVariables>(); | 
|  | if (LV) { | 
|  | MachineInstr *PHICopy = prior(AfterPHIsIt); | 
|  |  | 
|  | // Add information to LiveVariables to know that the incoming value is | 
|  | // killed.  Note that because the value is defined in several places (once | 
|  | // each for each incoming block), the "def" block and instruction fields | 
|  | // for the VarInfo is not filled in. | 
|  | // | 
|  | LV->addVirtualRegisterKilled(IncomingReg, PHICopy); | 
|  |  | 
|  | // Since we are going to be deleting the PHI node, if it is the last use | 
|  | // of any registers, or if the value itself is dead, we need to move this | 
|  | // information over to the new copy we just inserted. | 
|  | // | 
|  | LV->removeVirtualRegistersKilled(MPhi); | 
|  |  | 
|  | // If the result is dead, update LV. | 
|  | if (LV->RegisterDefIsDead(MPhi, DestReg)) { | 
|  | LV->addVirtualRegisterDead(DestReg, PHICopy); | 
|  | LV->removeVirtualRegistersDead(MPhi); | 
|  | } | 
|  |  | 
|  | // Realize that the destination register is defined by the PHI copy now, not | 
|  | // the PHI itself. | 
|  | LV->getVarInfo(DestReg).DefInst = PHICopy; | 
|  | } | 
|  |  | 
|  | // Adjust the VRegPHIUseCount map to account for the removal of this PHI | 
|  | // node. | 
|  | unsigned NumPreds = (MPhi->getNumOperands()-1)/2; | 
|  | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) | 
|  | VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= NumPreds; | 
|  |  | 
|  | // Now loop over all of the incoming arguments, changing them to copy into | 
|  | // the IncomingReg register in the corresponding predecessor basic block. | 
|  | // | 
|  | std::set<MachineBasicBlock*> MBBsInsertedInto; | 
|  | for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) { | 
|  | unsigned SrcReg = MPhi->getOperand(i-1).getReg(); | 
|  | assert(MRegisterInfo::isVirtualRegister(SrcReg) && | 
|  | "Machine PHI Operands must all be virtual registers!"); | 
|  |  | 
|  | // Get the MachineBasicBlock equivalent of the BasicBlock that is the | 
|  | // source path the PHI. | 
|  | MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock(); | 
|  |  | 
|  | // Check to make sure we haven't already emitted the copy for this block. | 
|  | // This can happen because PHI nodes may have multiple entries for the | 
|  | // same basic block. | 
|  | if (!MBBsInsertedInto.insert(&opBlock).second) | 
|  | continue;  // If the copy has already been emitted, we're done. | 
|  |  | 
|  | // Get an iterator pointing to the first terminator in the block (or end()). | 
|  | // This is the point where we can insert a copy if we'd like to. | 
|  | MachineBasicBlock::iterator I = opBlock.getFirstTerminator(); | 
|  |  | 
|  | // Insert the copy. | 
|  | RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC); | 
|  |  | 
|  | // Now update live variable information if we have it.  Otherwise we're done | 
|  | if (!LV) continue; | 
|  |  | 
|  | // We want to be able to insert a kill of the register if this PHI | 
|  | // (aka, the copy we just inserted) is the last use of the source | 
|  | // value.  Live variable analysis conservatively handles this by | 
|  | // saying that the value is live until the end of the block the PHI | 
|  | // entry lives in.  If the value really is dead at the PHI copy, there | 
|  | // will be no successor blocks which have the value live-in. | 
|  | // | 
|  | // Check to see if the copy is the last use, and if so, update the | 
|  | // live variables information so that it knows the copy source | 
|  | // instruction kills the incoming value. | 
|  | // | 
|  | LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); | 
|  |  | 
|  | // Loop over all of the successors of the basic block, checking to see | 
|  | // if the value is either live in the block, or if it is killed in the | 
|  | // block.  Also check to see if this register is in use by another PHI | 
|  | // node which has not yet been eliminated.  If so, it will be killed | 
|  | // at an appropriate point later. | 
|  | // | 
|  |  | 
|  | // Is it used by any PHI instructions in this block? | 
|  | bool ValueIsLive = VRegPHIUseCount[SrcReg] != 0; | 
|  |  | 
|  | std::vector<MachineBasicBlock*> OpSuccBlocks; | 
|  |  | 
|  | // Otherwise, scan successors, including the BB the PHI node lives in. | 
|  | for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), | 
|  | E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { | 
|  | MachineBasicBlock *SuccMBB = *SI; | 
|  |  | 
|  | // Is it alive in this successor? | 
|  | unsigned SuccIdx = SuccMBB->getNumber(); | 
|  | if (SuccIdx < InRegVI.AliveBlocks.size() && | 
|  | InRegVI.AliveBlocks[SuccIdx]) { | 
|  | ValueIsLive = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OpSuccBlocks.push_back(SuccMBB); | 
|  | } | 
|  |  | 
|  | // Check to see if this value is live because there is a use in a successor | 
|  | // that kills it. | 
|  | if (!ValueIsLive) { | 
|  | switch (OpSuccBlocks.size()) { | 
|  | case 1: { | 
|  | MachineBasicBlock *MBB = OpSuccBlocks[0]; | 
|  | for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
|  | if (InRegVI.Kills[i]->getParent() == MBB) { | 
|  | ValueIsLive = true; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 2: { | 
|  | MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1]; | 
|  | for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
|  | if (InRegVI.Kills[i]->getParent() == MBB1 || | 
|  | InRegVI.Kills[i]->getParent() == MBB2) { | 
|  | ValueIsLive = true; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); | 
|  | for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
|  | if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), | 
|  | InRegVI.Kills[i]->getParent())) { | 
|  | ValueIsLive = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, if we now know that the value is not live out of the block, | 
|  | // we can add a kill marker in this block saying that it kills the incoming | 
|  | // value! | 
|  | if (!ValueIsLive) { | 
|  | // In our final twist, we have to decide which instruction kills the | 
|  | // register.  In most cases this is the copy, however, the first | 
|  | // terminator instruction at the end of the block may also use the value. | 
|  | // In this case, we should mark *it* as being the killing block, not the | 
|  | // copy. | 
|  | bool FirstTerminatorUsesValue = false; | 
|  | if (I != opBlock.end()) { | 
|  | FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg); | 
|  |  | 
|  | // Check that no other terminators use values. | 
|  | #ifndef NDEBUG | 
|  | for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end(); | 
|  | ++TI) { | 
|  | assert(!InstructionUsesRegister(TI, SrcReg) && | 
|  | "Terminator instructions cannot use virtual registers unless" | 
|  | "they are the first terminator in a block!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator KillInst; | 
|  | if (!FirstTerminatorUsesValue) | 
|  | KillInst = prior(I); | 
|  | else | 
|  | KillInst = I; | 
|  |  | 
|  | // Finally, mark it killed. | 
|  | LV->addVirtualRegisterKilled(SrcReg, KillInst); | 
|  |  | 
|  | // This vreg no longer lives all of the way through opBlock. | 
|  | unsigned opBlockNum = opBlock.getNumber(); | 
|  | if (opBlockNum < InRegVI.AliveBlocks.size()) | 
|  | InRegVI.AliveBlocks[opBlockNum] = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Really delete the PHI instruction now! | 
|  | delete MPhi; | 
|  | ++NumAtomic; | 
|  | } |