|  | //===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// \file | 
|  | /// This file implements a TargetTransformInfo analysis pass specific to the | 
|  | /// PPC target machine. It uses the target's detailed information to provide | 
|  | /// more precise answers to certain TTI queries, while letting the target | 
|  | /// independent and default TTI implementations handle the rest. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Target/CostTable.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppctti" | 
|  |  | 
|  | static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", | 
|  | cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); | 
|  |  | 
|  | // Declare the pass initialization routine locally as target-specific passes | 
|  | // don't have a target-wide initialization entry point, and so we rely on the | 
|  | // pass constructor initialization. | 
|  | namespace llvm { | 
|  | void initializePPCTTIPass(PassRegistry &); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class PPCTTI final : public ImmutablePass, public TargetTransformInfo { | 
|  | const TargetMachine *TM; | 
|  | const PPCSubtarget *ST; | 
|  | const PPCTargetLowering *TLI; | 
|  |  | 
|  | public: | 
|  | PPCTTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) { | 
|  | llvm_unreachable("This pass cannot be directly constructed"); | 
|  | } | 
|  |  | 
|  | PPCTTI(const PPCTargetMachine *TM) | 
|  | : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), | 
|  | TLI(TM->getSubtargetImpl()->getTargetLowering()) { | 
|  | initializePPCTTIPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void initializePass() override { | 
|  | pushTTIStack(this); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | TargetTransformInfo::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Pass identification. | 
|  | static char ID; | 
|  |  | 
|  | /// Provide necessary pointer adjustments for the two base classes. | 
|  | void *getAdjustedAnalysisPointer(const void *ID) override { | 
|  | if (ID == &TargetTransformInfo::ID) | 
|  | return (TargetTransformInfo*)this; | 
|  | return this; | 
|  | } | 
|  |  | 
|  | /// \name Scalar TTI Implementations | 
|  | /// @{ | 
|  | unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; | 
|  |  | 
|  | unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, | 
|  | Type *Ty) const override; | 
|  | unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, | 
|  | Type *Ty) const override; | 
|  |  | 
|  | PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override; | 
|  | void getUnrollingPreferences(const Function *F, Loop *L, | 
|  | UnrollingPreferences &UP) const override; | 
|  |  | 
|  | /// @} | 
|  |  | 
|  | /// \name Vector TTI Implementations | 
|  | /// @{ | 
|  |  | 
|  | unsigned getNumberOfRegisters(bool Vector) const override; | 
|  | unsigned getRegisterBitWidth(bool Vector) const override; | 
|  | unsigned getMaxInterleaveFactor() const override; | 
|  | unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, | 
|  | OperandValueKind, OperandValueProperties, | 
|  | OperandValueProperties) const override; | 
|  | unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, | 
|  | int Index, Type *SubTp) const override; | 
|  | unsigned getCastInstrCost(unsigned Opcode, Type *Dst, | 
|  | Type *Src) const override; | 
|  | unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy) const override; | 
|  | unsigned getVectorInstrCost(unsigned Opcode, Type *Val, | 
|  | unsigned Index) const override; | 
|  | unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace) const override; | 
|  |  | 
|  | /// @} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti", | 
|  | "PPC Target Transform Info", true, true, false) | 
|  | char PPCTTI::ID = 0; | 
|  |  | 
|  | ImmutablePass * | 
|  | llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) { | 
|  | return new PPCTTI(TM); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // PPC cost model. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const { | 
|  | assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); | 
|  | if (ST->hasPOPCNTD() && TyWidth <= 64) | 
|  | return PSK_FastHardware; | 
|  | return PSK_Software; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getIntImmCost(const APInt &Imm, Type *Ty) const { | 
|  | if (DisablePPCConstHoist) | 
|  | return TargetTransformInfo::getIntImmCost(Imm, Ty); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | if (Imm == 0) | 
|  | return TCC_Free; | 
|  |  | 
|  | if (Imm.getBitWidth() <= 64) { | 
|  | if (isInt<16>(Imm.getSExtValue())) | 
|  | return TCC_Basic; | 
|  |  | 
|  | if (isInt<32>(Imm.getSExtValue())) { | 
|  | // A constant that can be materialized using lis. | 
|  | if ((Imm.getZExtValue() & 0xFFFF) == 0) | 
|  | return TCC_Basic; | 
|  |  | 
|  | return 2 * TCC_Basic; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 4 * TCC_Basic; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty) const { | 
|  | if (DisablePPCConstHoist) | 
|  | return TargetTransformInfo::getIntImmCost(IID, Idx, Imm, Ty); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | switch (IID) { | 
|  | default: return TCC_Free; | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) | 
|  | return TCC_Free; | 
|  | break; | 
|  | } | 
|  | return PPCTTI::getIntImmCost(Imm, Ty); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | if (DisablePPCConstHoist) | 
|  | return TargetTransformInfo::getIntImmCost(Opcode, Idx, Imm, Ty); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | unsigned ImmIdx = ~0U; | 
|  | bool ShiftedFree = false, RunFree = false, UnsignedFree = false, | 
|  | ZeroFree = false; | 
|  | switch (Opcode) { | 
|  | default: return TCC_Free; | 
|  | case Instruction::GetElementPtr: | 
|  | // Always hoist the base address of a GetElementPtr. This prevents the | 
|  | // creation of new constants for every base constant that gets constant | 
|  | // folded with the offset. | 
|  | if (Idx == 0) | 
|  | return 2 * TCC_Basic; | 
|  | return TCC_Free; | 
|  | case Instruction::And: | 
|  | RunFree = true; // (for the rotate-and-mask instructions) | 
|  | // Fallthrough... | 
|  | case Instruction::Add: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | ShiftedFree = true; | 
|  | // Fallthrough... | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | ImmIdx = 1; | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | UnsignedFree = true; | 
|  | ImmIdx = 1; | 
|  | // Fallthrough... (zero comparisons can use record-form instructions) | 
|  | case Instruction::Select: | 
|  | ZeroFree = true; | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | case Instruction::Call: | 
|  | case Instruction::Ret: | 
|  | case Instruction::Load: | 
|  | case Instruction::Store: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ZeroFree && Imm == 0) | 
|  | return TCC_Free; | 
|  |  | 
|  | if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { | 
|  | if (isInt<16>(Imm.getSExtValue())) | 
|  | return TCC_Free; | 
|  |  | 
|  | if (RunFree) { | 
|  | if (Imm.getBitWidth() <= 32 && | 
|  | (isShiftedMask_32(Imm.getZExtValue()) || | 
|  | isShiftedMask_32(~Imm.getZExtValue()))) | 
|  | return TCC_Free; | 
|  |  | 
|  |  | 
|  | if (ST->isPPC64() && | 
|  | (isShiftedMask_64(Imm.getZExtValue()) || | 
|  | isShiftedMask_64(~Imm.getZExtValue()))) | 
|  | return TCC_Free; | 
|  | } | 
|  |  | 
|  | if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) | 
|  | return TCC_Free; | 
|  |  | 
|  | if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) | 
|  | return TCC_Free; | 
|  | } | 
|  |  | 
|  | return PPCTTI::getIntImmCost(Imm, Ty); | 
|  | } | 
|  |  | 
|  | void PPCTTI::getUnrollingPreferences(const Function *F, Loop *L, | 
|  | UnrollingPreferences &UP) const { | 
|  | if (TM->getSubtarget<PPCSubtarget>(F).getDarwinDirective() == PPC::DIR_A2) { | 
|  | // The A2 is in-order with a deep pipeline, and concatenation unrolling | 
|  | // helps expose latency-hiding opportunities to the instruction scheduler. | 
|  | UP.Partial = UP.Runtime = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getNumberOfRegisters(bool Vector) const { | 
|  | if (Vector && !ST->hasAltivec()) | 
|  | return 0; | 
|  | return ST->hasVSX() ? 64 : 32; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getRegisterBitWidth(bool Vector) const { | 
|  | if (Vector) { | 
|  | if (ST->hasAltivec()) return 128; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ST->isPPC64()) | 
|  | return 64; | 
|  | return 32; | 
|  |  | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getMaxInterleaveFactor() const { | 
|  | unsigned Directive = ST->getDarwinDirective(); | 
|  | // The 440 has no SIMD support, but floating-point instructions | 
|  | // have a 5-cycle latency, so unroll by 5x for latency hiding. | 
|  | if (Directive == PPC::DIR_440) | 
|  | return 5; | 
|  |  | 
|  | // The A2 has no SIMD support, but floating-point instructions | 
|  | // have a 6-cycle latency, so unroll by 6x for latency hiding. | 
|  | if (Directive == PPC::DIR_A2) | 
|  | return 6; | 
|  |  | 
|  | // FIXME: For lack of any better information, do no harm... | 
|  | if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) | 
|  | return 1; | 
|  |  | 
|  | // For most things, modern systems have two execution units (and | 
|  | // out-of-order execution). | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, OperandValueKind Op1Info, | 
|  | OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo, | 
|  | OperandValueProperties Opd2PropInfo) const { | 
|  | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); | 
|  |  | 
|  | // Fallback to the default implementation. | 
|  | return TargetTransformInfo::getArithmeticInstrCost( | 
|  | Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, | 
|  | Type *SubTp) const { | 
|  | return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { | 
|  | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); | 
|  |  | 
|  | return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy) const { | 
|  | return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val, | 
|  | unsigned Index) const { | 
|  | assert(Val->isVectorTy() && "This must be a vector type"); | 
|  |  | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | assert(ISD && "Invalid opcode"); | 
|  |  | 
|  | if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { | 
|  | // Double-precision scalars are already located in index #0. | 
|  | if (Index == 0) | 
|  | return 0; | 
|  |  | 
|  | return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); | 
|  | } | 
|  |  | 
|  | // Estimated cost of a load-hit-store delay.  This was obtained | 
|  | // experimentally as a minimum needed to prevent unprofitable | 
|  | // vectorization for the paq8p benchmark.  It may need to be | 
|  | // raised further if other unprofitable cases remain. | 
|  | unsigned LHSPenalty = 2; | 
|  | if (ISD == ISD::INSERT_VECTOR_ELT) | 
|  | LHSPenalty += 7; | 
|  |  | 
|  | // Vector element insert/extract with Altivec is very expensive, | 
|  | // because they require store and reload with the attendant | 
|  | // processor stall for load-hit-store.  Until VSX is available, | 
|  | // these need to be estimated as very costly. | 
|  | if (ISD == ISD::EXTRACT_VECTOR_ELT || | 
|  | ISD == ISD::INSERT_VECTOR_ELT) | 
|  | return LHSPenalty + | 
|  | TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); | 
|  |  | 
|  | return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace) const { | 
|  | // Legalize the type. | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); | 
|  | assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && | 
|  | "Invalid Opcode"); | 
|  |  | 
|  | unsigned Cost = | 
|  | TargetTransformInfo::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); | 
|  |  | 
|  | // VSX loads/stores support unaligned access. | 
|  | if (ST->hasVSX()) { | 
|  | if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64) | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | bool UnalignedAltivec = | 
|  | Src->isVectorTy() && | 
|  | Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() && | 
|  | LT.second.getSizeInBits() == 128 && | 
|  | Opcode == Instruction::Load; | 
|  |  | 
|  | // PPC in general does not support unaligned loads and stores. They'll need | 
|  | // to be decomposed based on the alignment factor. | 
|  | unsigned SrcBytes = LT.second.getStoreSize(); | 
|  | if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) { | 
|  | Cost += LT.first*(SrcBytes/Alignment-1); | 
|  |  | 
|  | // For a vector type, there is also scalarization overhead (only for | 
|  | // stores, loads are expanded using the vector-load + permutation sequence, | 
|  | // which is much less expensive). | 
|  | if (Src->isVectorTy() && Opcode == Instruction::Store) | 
|  | for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) | 
|  | Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); | 
|  | } | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  |