blob: 5873c7fb38729029263f86f2c4bbe28522c0d238 [file] [log] [blame]
//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for ARM.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "ARMLegalizerInfo.h"
#include "ARMCallLowering.h"
#include "ARMSubtarget.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Target/TargetOpcodes.h"
using namespace llvm;
#ifndef LLVM_BUILD_GLOBAL_ISEL
#error "You shouldn't build this"
#endif
ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 32);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
setAction({G_FRAME_INDEX, p0}, Legal);
for (unsigned Op : {G_LOAD, G_STORE}) {
for (auto Ty : {s1, s8, s16, s32, p0})
setAction({Op, Ty}, Legal);
setAction({Op, 1, p0}, Legal);
}
for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) {
for (auto Ty : {s1, s8, s16})
setAction({Op, Ty}, WidenScalar);
setAction({Op, s32}, Legal);
}
for (unsigned Op : {G_SDIV, G_UDIV}) {
for (auto Ty : {s8, s16})
// FIXME: We need WidenScalar here, but in the case of targets with
// software division we'll also need Libcall afterwards. Treat as Custom
// until we have better support for chaining legalization actions.
setAction({Op, Ty}, Custom);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
// FIXME: Support s8 and s16 as well
for (unsigned Op : {G_SREM, G_UREM})
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Lower);
else if (ST.isTargetAEABI() || ST.isTargetGNUAEABI() ||
ST.isTargetMuslAEABI())
setAction({Op, s32}, Custom);
else
setAction({Op, s32}, Libcall);
for (unsigned Op : {G_SEXT, G_ZEXT}) {
setAction({Op, s32}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({Op, 1, Ty}, Legal);
}
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s32}, Legal);
setAction({G_CONSTANT, s32}, Legal);
setAction({G_ICMP, s1}, Legal);
for (auto Ty : {s8, s16})
setAction({G_ICMP, 1, Ty}, WidenScalar);
for (auto Ty : {s32, p0})
setAction({G_ICMP, 1, Ty}, Legal);
if (!ST.useSoftFloat() && ST.hasVFP2()) {
setAction({G_FADD, s32}, Legal);
setAction({G_FADD, s64}, Legal);
setAction({G_LOAD, s64}, Legal);
setAction({G_STORE, s64}, Legal);
} else {
for (auto Ty : {s32, s64})
setAction({G_FADD, Ty}, Libcall);
}
for (unsigned Op : {G_FREM, G_FPOW})
for (auto Ty : {s32, s64})
setAction({Op, Ty}, Libcall);
computeTables();
}
bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
using namespace TargetOpcode;
switch (MI.getOpcode()) {
default:
return false;
case G_SDIV:
case G_UDIV: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty != LLT::scalar(16) && Ty != LLT::scalar(8))
return false;
// We need to widen to 32 bits and then maybe, if the target requires,
// transform into a libcall.
LegalizerHelper Helper(MIRBuilder.getMF());
MachineInstr *NewMI = nullptr;
Helper.MIRBuilder.recordInsertions([&](MachineInstr *MI) {
// Store the new, 32-bit div instruction.
if (MI->getOpcode() == G_SDIV || MI->getOpcode() == G_UDIV)
NewMI = MI;
});
auto Result = Helper.widenScalar(MI, 0, LLT::scalar(32));
Helper.MIRBuilder.stopRecordingInsertions();
if (Result == LegalizerHelper::UnableToLegalize) {
return false;
}
assert(NewMI && "Couldn't find widened instruction");
assert((NewMI->getOpcode() == G_SDIV || NewMI->getOpcode() == G_UDIV) &&
"Unexpected widened instruction");
assert(MRI.getType(NewMI->getOperand(0).getReg()).getSizeInBits() == 32 &&
"Unexpected type for the widened instruction");
Result = Helper.legalizeInstrStep(*NewMI);
if (Result == LegalizerHelper::UnableToLegalize) {
return false;
}
return true;
}
case G_SREM:
case G_UREM: {
unsigned OriginalResult = MI.getOperand(0).getReg();
auto Size = MRI.getType(OriginalResult).getSizeInBits();
if (Size != 32)
return false;
auto Libcall =
MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
// Our divmod libcalls return a struct containing the quotient and the
// remainder. We need to create a virtual register for it.
auto &Ctx = MIRBuilder.getMF().getFunction()->getContext();
Type *ArgTy = Type::getInt32Ty(Ctx);
StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
auto RetVal = MRI.createGenericVirtualRegister(
getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
auto Status = replaceWithLibcall(MI, MIRBuilder, Libcall, {RetVal, RetTy},
{{MI.getOperand(1).getReg(), ArgTy},
{MI.getOperand(2).getReg(), ArgTy}});
if (Status != LegalizerHelper::Legalized)
return false;
// The remainder is the second result of divmod. Split the return value into
// a new, unused register for the quotient and the destination of the
// original instruction for the remainder.
MIRBuilder.buildUnmerge(
{MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
RetVal);
return LegalizerHelper::Legalized;
}
}
}