|  | //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file defines BasicValueFactory, a class that manages the lifetime | 
|  | //  of APSInt objects and symbolic constraints used by GRExprEngine | 
|  | //  and related classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Checker/PathSensitive/BasicValueFactory.h" | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T, | 
|  | llvm::ImmutableList<SVal> L) { | 
|  | T.Profile(ID); | 
|  | ID.AddPointer(L.getInternalPointer()); | 
|  | } | 
|  |  | 
|  | void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID, | 
|  | const void *store,const TypedRegion *region) { | 
|  | ID.AddPointer(store); | 
|  | ID.AddPointer(region); | 
|  | } | 
|  |  | 
|  | typedef std::pair<SVal, uintptr_t> SValData; | 
|  | typedef std::pair<SVal, SVal> SValPair; | 
|  |  | 
|  | namespace llvm { | 
|  | template<> struct FoldingSetTrait<SValData> { | 
|  | static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) { | 
|  | X.first.Profile(ID); | 
|  | ID.AddPointer( (void*) X.second); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct FoldingSetTrait<SValPair> { | 
|  | static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) { | 
|  | X.first.Profile(ID); | 
|  | X.second.Profile(ID); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> > | 
|  | PersistentSValsTy; | 
|  |  | 
|  | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> > | 
|  | PersistentSValPairsTy; | 
|  |  | 
|  | BasicValueFactory::~BasicValueFactory() { | 
|  | // Note that the dstor for the contents of APSIntSet will never be called, | 
|  | // so we iterate over the set and invoke the dstor for each APSInt.  This | 
|  | // frees an aux. memory allocated to represent very large constants. | 
|  | for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) | 
|  | I->getValue().~APSInt(); | 
|  |  | 
|  | delete (PersistentSValsTy*) PersistentSVals; | 
|  | delete (PersistentSValPairsTy*) PersistentSValPairs; | 
|  | } | 
|  |  | 
|  | const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | void* InsertPos; | 
|  | typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy; | 
|  |  | 
|  | X.Profile(ID); | 
|  | FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!P) { | 
|  | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
|  | new (P) FoldNodeTy(X); | 
|  | APSIntSet.InsertNode(P, InsertPos); | 
|  | } | 
|  |  | 
|  | return *P; | 
|  | } | 
|  |  | 
|  | const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X, | 
|  | bool isUnsigned) { | 
|  | llvm::APSInt V(X, isUnsigned); | 
|  | return getValue(V); | 
|  | } | 
|  |  | 
|  | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth, | 
|  | bool isUnsigned) { | 
|  | llvm::APSInt V(BitWidth, isUnsigned); | 
|  | V = X; | 
|  | return getValue(V); | 
|  | } | 
|  |  | 
|  | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) { | 
|  |  | 
|  | unsigned bits = Ctx.getTypeSize(T); | 
|  | llvm::APSInt V(bits, T->isUnsignedIntegerType() || Loc::IsLocType(T)); | 
|  | V = X; | 
|  | return getValue(V); | 
|  | } | 
|  |  | 
|  | const CompoundValData* | 
|  | BasicValueFactory::getCompoundValData(QualType T, | 
|  | llvm::ImmutableList<SVal> Vals) { | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CompoundValData::Profile(ID, T, Vals); | 
|  | void* InsertPos; | 
|  |  | 
|  | CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!D) { | 
|  | D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>(); | 
|  | new (D) CompoundValData(T, Vals); | 
|  | CompoundValDataSet.InsertNode(D, InsertPos); | 
|  | } | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | const LazyCompoundValData* | 
|  | BasicValueFactory::getLazyCompoundValData(const void *store, | 
|  | const TypedRegion *region) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | LazyCompoundValData::Profile(ID, store, region); | 
|  | void* InsertPos; | 
|  |  | 
|  | LazyCompoundValData *D = | 
|  | LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!D) { | 
|  | D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>(); | 
|  | new (D) LazyCompoundValData(store, region); | 
|  | LazyCompoundValDataSet.InsertNode(D, InsertPos); | 
|  | } | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | const llvm::APSInt* | 
|  | BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op, | 
|  | const llvm::APSInt& V1, const llvm::APSInt& V2) { | 
|  |  | 
|  | switch (Op) { | 
|  | default: | 
|  | assert (false && "Invalid Opcode."); | 
|  |  | 
|  | case BinaryOperator::Mul: | 
|  | return &getValue( V1 * V2 ); | 
|  |  | 
|  | case BinaryOperator::Div: | 
|  | return &getValue( V1 / V2 ); | 
|  |  | 
|  | case BinaryOperator::Rem: | 
|  | return &getValue( V1 % V2 ); | 
|  |  | 
|  | case BinaryOperator::Add: | 
|  | return &getValue( V1 + V2 ); | 
|  |  | 
|  | case BinaryOperator::Sub: | 
|  | return &getValue( V1 - V2 ); | 
|  |  | 
|  | case BinaryOperator::Shl: { | 
|  |  | 
|  | // FIXME: This logic should probably go higher up, where we can | 
|  | // test these conditions symbolically. | 
|  |  | 
|  | // FIXME: Expand these checks to include all undefined behavior. | 
|  |  | 
|  | if (V2.isSigned() && V2.isNegative()) | 
|  | return NULL; | 
|  |  | 
|  | uint64_t Amt = V2.getZExtValue(); | 
|  |  | 
|  | if (Amt > V1.getBitWidth()) | 
|  | return NULL; | 
|  |  | 
|  | return &getValue( V1.operator<<( (unsigned) Amt )); | 
|  | } | 
|  |  | 
|  | case BinaryOperator::Shr: { | 
|  |  | 
|  | // FIXME: This logic should probably go higher up, where we can | 
|  | // test these conditions symbolically. | 
|  |  | 
|  | // FIXME: Expand these checks to include all undefined behavior. | 
|  |  | 
|  | if (V2.isSigned() && V2.isNegative()) | 
|  | return NULL; | 
|  |  | 
|  | uint64_t Amt = V2.getZExtValue(); | 
|  |  | 
|  | if (Amt > V1.getBitWidth()) | 
|  | return NULL; | 
|  |  | 
|  | return &getValue( V1.operator>>( (unsigned) Amt )); | 
|  | } | 
|  |  | 
|  | case BinaryOperator::LT: | 
|  | return &getTruthValue( V1 < V2 ); | 
|  |  | 
|  | case BinaryOperator::GT: | 
|  | return &getTruthValue( V1 > V2 ); | 
|  |  | 
|  | case BinaryOperator::LE: | 
|  | return &getTruthValue( V1 <= V2 ); | 
|  |  | 
|  | case BinaryOperator::GE: | 
|  | return &getTruthValue( V1 >= V2 ); | 
|  |  | 
|  | case BinaryOperator::EQ: | 
|  | return &getTruthValue( V1 == V2 ); | 
|  |  | 
|  | case BinaryOperator::NE: | 
|  | return &getTruthValue( V1 != V2 ); | 
|  |  | 
|  | // Note: LAnd, LOr, Comma are handled specially by higher-level logic. | 
|  |  | 
|  | case BinaryOperator::And: | 
|  | return &getValue( V1 & V2 ); | 
|  |  | 
|  | case BinaryOperator::Or: | 
|  | return &getValue( V1 | V2 ); | 
|  |  | 
|  | case BinaryOperator::Xor: | 
|  | return &getValue( V1 ^ V2 ); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | const std::pair<SVal, uintptr_t>& | 
|  | BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) { | 
|  |  | 
|  | // Lazily create the folding set. | 
|  | if (!PersistentSVals) PersistentSVals = new PersistentSValsTy(); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | void* InsertPos; | 
|  | V.Profile(ID); | 
|  | ID.AddPointer((void*) Data); | 
|  |  | 
|  | PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals); | 
|  |  | 
|  | typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy; | 
|  | FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!P) { | 
|  | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
|  | new (P) FoldNodeTy(std::make_pair(V, Data)); | 
|  | Map.InsertNode(P, InsertPos); | 
|  | } | 
|  |  | 
|  | return P->getValue(); | 
|  | } | 
|  |  | 
|  | const std::pair<SVal, SVal>& | 
|  | BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) { | 
|  |  | 
|  | // Lazily create the folding set. | 
|  | if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy(); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | void* InsertPos; | 
|  | V1.Profile(ID); | 
|  | V2.Profile(ID); | 
|  |  | 
|  | PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs); | 
|  |  | 
|  | typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy; | 
|  | FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!P) { | 
|  | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
|  | new (P) FoldNodeTy(std::make_pair(V1, V2)); | 
|  | Map.InsertNode(P, InsertPos); | 
|  | } | 
|  |  | 
|  | return P->getValue(); | 
|  | } | 
|  |  | 
|  | const SVal* BasicValueFactory::getPersistentSVal(SVal X) { | 
|  | return &getPersistentSValWithData(X, 0).first; | 
|  | } | 
|  |  | 
|  |  |