| //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| // register allocator for LLVM. This allocator works by constructing a PBQP |
| // problem representing the register allocation problem under consideration, |
| // solving this using a PBQP solver, and mapping the solution back to a |
| // register assignment. If any variables are selected for spilling then spill |
| // code is inserted and the process repeated. |
| // |
| // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| // for register allocation. For more information on PBQP for register |
| // allocation, see the following papers: |
| // |
| // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| // |
| // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| // architectures. In Proceedings of the Joint Conference on Languages, |
| // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| // NY, USA, 139-148. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/RegAllocPBQP.h" |
| #include "RegisterCoalescer.h" |
| #include "Spiller.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveRangeEdit.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| #include <limits> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| static RegisterRegAlloc |
| RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", |
| createDefaultPBQPRegisterAllocator); |
| |
| static cl::opt<bool> |
| PBQPCoalescing("pbqp-coalescing", |
| cl::desc("Attempt coalescing during PBQP register allocation."), |
| cl::init(false), cl::Hidden); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| PBQPDumpGraphs("pbqp-dump-graphs", |
| cl::desc("Dump graphs for each function/round in the compilation unit."), |
| cl::init(false), cl::Hidden); |
| #endif |
| |
| namespace { |
| |
| /// |
| /// PBQP based allocators solve the register allocation problem by mapping |
| /// register allocation problems to Partitioned Boolean Quadratic |
| /// Programming problems. |
| class RegAllocPBQP : public MachineFunctionPass { |
| public: |
| |
| static char ID; |
| |
| /// Construct a PBQP register allocator. |
| RegAllocPBQP(char *cPassID = nullptr) |
| : MachineFunctionPass(ID), customPassID(cPassID) { |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| /// Return the pass name. |
| const char* getPassName() const override { |
| return "PBQP Register Allocator"; |
| } |
| |
| /// PBQP analysis usage. |
| void getAnalysisUsage(AnalysisUsage &au) const override; |
| |
| /// Perform register allocation |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| |
| typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; |
| typedef std::vector<const LiveInterval*> Node2LIMap; |
| typedef std::vector<unsigned> AllowedSet; |
| typedef std::vector<AllowedSet> AllowedSetMap; |
| typedef std::pair<unsigned, unsigned> RegPair; |
| typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; |
| typedef std::set<unsigned> RegSet; |
| |
| char *customPassID; |
| |
| RegSet VRegsToAlloc, EmptyIntervalVRegs; |
| |
| /// \brief Finds the initial set of vreg intervals to allocate. |
| void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); |
| |
| /// \brief Constructs an initial graph. |
| void initializeGraph(PBQPRAGraph &G); |
| |
| /// \brief Given a solved PBQP problem maps this solution back to a register |
| /// assignment. |
| bool mapPBQPToRegAlloc(const PBQPRAGraph &G, |
| const PBQP::Solution &Solution, |
| VirtRegMap &VRM, |
| Spiller &VRegSpiller); |
| |
| /// \brief Postprocessing before final spilling. Sets basic block "live in" |
| /// variables. |
| void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, |
| VirtRegMap &VRM) const; |
| |
| }; |
| |
| char RegAllocPBQP::ID = 0; |
| |
| /// @brief Set spill costs for each node in the PBQP reg-alloc graph. |
| class SpillCosts : public PBQPRAConstraint { |
| public: |
| void apply(PBQPRAGraph &G) override { |
| LiveIntervals &LIS = G.getMetadata().LIS; |
| |
| for (auto NId : G.nodeIds()) { |
| PBQP::PBQPNum SpillCost = |
| LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; |
| if (SpillCost == 0.0) |
| SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); |
| PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); |
| NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; |
| G.setNodeCosts(NId, std::move(NodeCosts)); |
| } |
| } |
| }; |
| |
| /// @brief Add interference edges between overlapping vregs. |
| class Interference : public PBQPRAConstraint { |
| public: |
| |
| void apply(PBQPRAGraph &G) override { |
| LiveIntervals &LIS = G.getMetadata().LIS; |
| const TargetRegisterInfo &TRI = |
| *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); |
| |
| for (auto NItr = G.nodeIds().begin(), NEnd = G.nodeIds().end(); |
| NItr != NEnd; ++NItr) { |
| auto NId = *NItr; |
| unsigned NVReg = G.getNodeMetadata(NId).getVReg(); |
| LiveInterval &NLI = LIS.getInterval(NVReg); |
| |
| for (auto MItr = std::next(NItr); MItr != NEnd; ++MItr) { |
| auto MId = *MItr; |
| unsigned MVReg = G.getNodeMetadata(MId).getVReg(); |
| LiveInterval &MLI = LIS.getInterval(MVReg); |
| |
| if (NLI.overlaps(MLI)) { |
| const auto &NOpts = G.getNodeMetadata(NId).getOptionRegs(); |
| const auto &MOpts = G.getNodeMetadata(MId).getOptionRegs(); |
| G.addEdge(NId, MId, createInterferenceMatrix(TRI, NOpts, MOpts)); |
| } |
| } |
| } |
| } |
| |
| private: |
| |
| PBQPRAGraph::RawMatrix createInterferenceMatrix( |
| const TargetRegisterInfo &TRI, |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap &NOpts, |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap &MOpts) { |
| PBQPRAGraph::RawMatrix M(NOpts.size() + 1, MOpts.size() + 1, 0); |
| for (unsigned I = 0; I != NOpts.size(); ++I) { |
| unsigned PRegN = NOpts[I]; |
| for (unsigned J = 0; J != MOpts.size(); ++J) { |
| unsigned PRegM = MOpts[J]; |
| if (TRI.regsOverlap(PRegN, PRegM)) |
| M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); |
| } |
| } |
| |
| return M; |
| } |
| }; |
| |
| |
| class Coalescing : public PBQPRAConstraint { |
| public: |
| void apply(PBQPRAGraph &G) override { |
| MachineFunction &MF = G.getMetadata().MF; |
| MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; |
| CoalescerPair CP(*MF.getTarget().getSubtargetImpl()->getRegisterInfo()); |
| |
| // Scan the machine function and add a coalescing cost whenever CoalescerPair |
| // gives the Ok. |
| for (const auto &MBB : MF) { |
| for (const auto &MI : MBB) { |
| |
| // Skip not-coalescable or already coalesced copies. |
| if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) |
| continue; |
| |
| unsigned DstReg = CP.getDstReg(); |
| unsigned SrcReg = CP.getSrcReg(); |
| |
| const float CopyFactor = 0.5; // Cost of copy relative to load. Current |
| // value plucked randomly out of the air. |
| |
| PBQP::PBQPNum CBenefit = |
| CopyFactor * LiveIntervals::getSpillWeight(false, true, &MBFI, &MI); |
| |
| if (CP.isPhys()) { |
| if (!MF.getRegInfo().isAllocatable(DstReg)) |
| continue; |
| |
| PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); |
| |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed = |
| G.getNodeMetadata(NId).getOptionRegs(); |
| |
| unsigned PRegOpt = 0; |
| while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) |
| ++PRegOpt; |
| |
| if (PRegOpt < Allowed.size()) { |
| PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); |
| NewCosts[PRegOpt + 1] += CBenefit; |
| G.setNodeCosts(NId, std::move(NewCosts)); |
| } |
| } else { |
| PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); |
| PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed1 = |
| &G.getNodeMetadata(N1Id).getOptionRegs(); |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed2 = |
| &G.getNodeMetadata(N2Id).getOptionRegs(); |
| |
| PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); |
| if (EId == G.invalidEdgeId()) { |
| PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, |
| Allowed2->size() + 1, 0); |
| addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); |
| G.addEdge(N1Id, N2Id, std::move(Costs)); |
| } else { |
| if (G.getEdgeNode1Id(EId) == N2Id) { |
| std::swap(N1Id, N2Id); |
| std::swap(Allowed1, Allowed2); |
| } |
| PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); |
| addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); |
| G.setEdgeCosts(EId, std::move(Costs)); |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| |
| void addVirtRegCoalesce( |
| PBQPRAGraph::RawMatrix &CostMat, |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed1, |
| const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed2, |
| PBQP::PBQPNum Benefit) { |
| assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); |
| assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); |
| for (unsigned I = 0; I != Allowed1.size(); ++I) { |
| unsigned PReg1 = Allowed1[I]; |
| for (unsigned J = 0; J != Allowed2.size(); ++J) { |
| unsigned PReg2 = Allowed2[J]; |
| if (PReg1 == PReg2) |
| CostMat[I + 1][J + 1] += -Benefit; |
| } |
| } |
| } |
| |
| }; |
| |
| } // End anonymous namespace. |
| |
| // Out-of-line destructor/anchor for PBQPRAConstraint. |
| PBQPRAConstraint::~PBQPRAConstraint() {} |
| void PBQPRAConstraint::anchor() {} |
| void PBQPRAConstraintList::anchor() {} |
| |
| void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { |
| au.setPreservesCFG(); |
| au.addRequired<AliasAnalysis>(); |
| au.addPreserved<AliasAnalysis>(); |
| au.addRequired<SlotIndexes>(); |
| au.addPreserved<SlotIndexes>(); |
| au.addRequired<LiveIntervals>(); |
| au.addPreserved<LiveIntervals>(); |
| //au.addRequiredID(SplitCriticalEdgesID); |
| if (customPassID) |
| au.addRequiredID(*customPassID); |
| au.addRequired<LiveStacks>(); |
| au.addPreserved<LiveStacks>(); |
| au.addRequired<MachineBlockFrequencyInfo>(); |
| au.addPreserved<MachineBlockFrequencyInfo>(); |
| au.addRequired<MachineLoopInfo>(); |
| au.addPreserved<MachineLoopInfo>(); |
| au.addRequired<MachineDominatorTree>(); |
| au.addPreserved<MachineDominatorTree>(); |
| au.addRequired<VirtRegMap>(); |
| au.addPreserved<VirtRegMap>(); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, |
| LiveIntervals &LIS) { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // Iterate over all live ranges. |
| for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(I); |
| if (MRI.reg_nodbg_empty(Reg)) |
| continue; |
| LiveInterval &LI = LIS.getInterval(Reg); |
| |
| // If this live interval is non-empty we will use pbqp to allocate it. |
| // Empty intervals we allocate in a simple post-processing stage in |
| // finalizeAlloc. |
| if (!LI.empty()) { |
| VRegsToAlloc.insert(LI.reg); |
| } else { |
| EmptyIntervalVRegs.insert(LI.reg); |
| } |
| } |
| } |
| |
| void RegAllocPBQP::initializeGraph(PBQPRAGraph &G) { |
| MachineFunction &MF = G.getMetadata().MF; |
| |
| LiveIntervals &LIS = G.getMetadata().LIS; |
| const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); |
| const TargetRegisterInfo &TRI = |
| *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); |
| |
| for (auto VReg : VRegsToAlloc) { |
| const TargetRegisterClass *TRC = MRI.getRegClass(VReg); |
| LiveInterval &VRegLI = LIS.getInterval(VReg); |
| |
| // Record any overlaps with regmask operands. |
| BitVector RegMaskOverlaps; |
| LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); |
| |
| // Compute an initial allowed set for the current vreg. |
| std::vector<unsigned> VRegAllowed; |
| ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); |
| for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { |
| unsigned PReg = RawPRegOrder[I]; |
| if (MRI.isReserved(PReg)) |
| continue; |
| |
| // vregLI crosses a regmask operand that clobbers preg. |
| if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) |
| continue; |
| |
| // vregLI overlaps fixed regunit interference. |
| bool Interference = false; |
| for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { |
| if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { |
| Interference = true; |
| break; |
| } |
| } |
| if (Interference) |
| continue; |
| |
| // preg is usable for this virtual register. |
| VRegAllowed.push_back(PReg); |
| } |
| |
| PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); |
| PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); |
| G.getNodeMetadata(NId).setVReg(VReg); |
| G.getNodeMetadata(NId).setOptionRegs(std::move(VRegAllowed)); |
| G.getMetadata().setNodeIdForVReg(VReg, NId); |
| } |
| } |
| |
| bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, |
| const PBQP::Solution &Solution, |
| VirtRegMap &VRM, |
| Spiller &VRegSpiller) { |
| MachineFunction &MF = G.getMetadata().MF; |
| LiveIntervals &LIS = G.getMetadata().LIS; |
| const TargetRegisterInfo &TRI = |
| *MF.getTarget().getSubtargetImpl()->getRegisterInfo(); |
| (void)TRI; |
| |
| // Set to true if we have any spills |
| bool AnotherRoundNeeded = false; |
| |
| // Clear the existing allocation. |
| VRM.clearAllVirt(); |
| |
| // Iterate over the nodes mapping the PBQP solution to a register |
| // assignment. |
| for (auto NId : G.nodeIds()) { |
| unsigned VReg = G.getNodeMetadata(NId).getVReg(); |
| unsigned AllocOption = Solution.getSelection(NId); |
| |
| if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { |
| unsigned PReg = G.getNodeMetadata(NId).getOptionRegs()[AllocOption - 1]; |
| DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " |
| << TRI.getName(PReg) << "\n"); |
| assert(PReg != 0 && "Invalid preg selected."); |
| VRM.assignVirt2Phys(VReg, PReg); |
| } else { |
| VRegsToAlloc.erase(VReg); |
| SmallVector<unsigned, 8> NewSpills; |
| LiveRangeEdit LRE(&LIS.getInterval(VReg), NewSpills, MF, LIS, &VRM); |
| VRegSpiller.spill(LRE); |
| |
| DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " |
| << LRE.getParent().weight << ", New vregs: "); |
| |
| // Copy any newly inserted live intervals into the list of regs to |
| // allocate. |
| for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); |
| I != E; ++I) { |
| LiveInterval &LI = LIS.getInterval(*I); |
| assert(!LI.empty() && "Empty spill range."); |
| DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); |
| VRegsToAlloc.insert(LI.reg); |
| } |
| |
| DEBUG(dbgs() << ")\n"); |
| |
| // We need another round if spill intervals were added. |
| AnotherRoundNeeded |= !LRE.empty(); |
| } |
| } |
| |
| return !AnotherRoundNeeded; |
| } |
| |
| |
| void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, |
| LiveIntervals &LIS, |
| VirtRegMap &VRM) const { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // First allocate registers for the empty intervals. |
| for (RegSet::const_iterator |
| I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); |
| I != E; ++I) { |
| LiveInterval &LI = LIS.getInterval(*I); |
| |
| unsigned PReg = MRI.getSimpleHint(LI.reg); |
| |
| if (PReg == 0) { |
| const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); |
| PReg = RC.getRawAllocationOrder(MF).front(); |
| } |
| |
| VRM.assignVirt2Phys(LI.reg, PReg); |
| } |
| } |
| |
| bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { |
| LiveIntervals &LIS = getAnalysis<LiveIntervals>(); |
| MachineBlockFrequencyInfo &MBFI = |
| getAnalysis<MachineBlockFrequencyInfo>(); |
| |
| calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI); |
| |
| VirtRegMap &VRM = getAnalysis<VirtRegMap>(); |
| |
| std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); |
| |
| MF.getRegInfo().freezeReservedRegs(MF); |
| |
| DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); |
| |
| // Allocator main loop: |
| // |
| // * Map current regalloc problem to a PBQP problem |
| // * Solve the PBQP problem |
| // * Map the solution back to a register allocation |
| // * Spill if necessary |
| // |
| // This process is continued till no more spills are generated. |
| |
| // Find the vreg intervals in need of allocation. |
| findVRegIntervalsToAlloc(MF, LIS); |
| |
| #ifndef NDEBUG |
| const Function &F = *MF.getFunction(); |
| std::string FullyQualifiedName = |
| F.getParent()->getModuleIdentifier() + "." + F.getName().str(); |
| #endif |
| |
| // If there are non-empty intervals allocate them using pbqp. |
| if (!VRegsToAlloc.empty()) { |
| |
| const TargetSubtargetInfo &Subtarget = *MF.getTarget().getSubtargetImpl(); |
| std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = |
| llvm::make_unique<PBQPRAConstraintList>(); |
| ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); |
| ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); |
| if (PBQPCoalescing) |
| ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); |
| ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); |
| |
| bool PBQPAllocComplete = false; |
| unsigned Round = 0; |
| |
| while (!PBQPAllocComplete) { |
| DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); |
| |
| PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); |
| initializeGraph(G); |
| ConstraintsRoot->apply(G); |
| |
| #ifndef NDEBUG |
| if (PBQPDumpGraphs) { |
| std::ostringstream RS; |
| RS << Round; |
| std::string GraphFileName = FullyQualifiedName + "." + RS.str() + |
| ".pbqpgraph"; |
| std::error_code EC; |
| raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); |
| DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" |
| << GraphFileName << "\"\n"); |
| G.dumpToStream(OS); |
| } |
| #endif |
| |
| PBQP::Solution Solution = PBQP::RegAlloc::solve(G); |
| PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); |
| ++Round; |
| } |
| } |
| |
| // Finalise allocation, allocate empty ranges. |
| finalizeAlloc(MF, LIS, VRM); |
| VRegsToAlloc.clear(); |
| EmptyIntervalVRegs.clear(); |
| |
| DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); |
| |
| return true; |
| } |
| |
| FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { |
| return new RegAllocPBQP(customPassID); |
| } |
| |
| FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { |
| return createPBQPRegisterAllocator(); |
| } |
| |
| #undef DEBUG_TYPE |