|  | //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the Hexagon implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/DFAPacketizer.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-instrinfo" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #define GET_INSTRMAP_INFO | 
|  | #include "HexagonGenInstrInfo.inc" | 
|  | #include "HexagonGenDFAPacketizer.inc" | 
|  |  | 
|  | /// | 
|  | /// Constants for Hexagon instructions. | 
|  | /// | 
|  | const int Hexagon_MEMW_OFFSET_MAX = 4095; | 
|  | const int Hexagon_MEMW_OFFSET_MIN = -4096; | 
|  | const int Hexagon_MEMD_OFFSET_MAX = 8191; | 
|  | const int Hexagon_MEMD_OFFSET_MIN = -8192; | 
|  | const int Hexagon_MEMH_OFFSET_MAX = 2047; | 
|  | const int Hexagon_MEMH_OFFSET_MIN = -2048; | 
|  | const int Hexagon_MEMB_OFFSET_MAX = 1023; | 
|  | const int Hexagon_MEMB_OFFSET_MIN = -1024; | 
|  | const int Hexagon_ADDI_OFFSET_MAX = 32767; | 
|  | const int Hexagon_ADDI_OFFSET_MIN = -32768; | 
|  | const int Hexagon_MEMD_AUTOINC_MAX = 56; | 
|  | const int Hexagon_MEMD_AUTOINC_MIN = -64; | 
|  | const int Hexagon_MEMW_AUTOINC_MAX = 28; | 
|  | const int Hexagon_MEMW_AUTOINC_MIN = -32; | 
|  | const int Hexagon_MEMH_AUTOINC_MAX = 14; | 
|  | const int Hexagon_MEMH_AUTOINC_MIN = -16; | 
|  | const int Hexagon_MEMB_AUTOINC_MAX = 7; | 
|  | const int Hexagon_MEMB_AUTOINC_MIN = -8; | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void HexagonInstrInfo::anchor() {} | 
|  |  | 
|  | HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) | 
|  | : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), | 
|  | RI(ST), Subtarget(ST) { | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isLoadFromStackSlot - If the specified machine instruction is a direct | 
|  | /// load from a stack slot, return the virtual or physical register number of | 
|  | /// the destination along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than loading from the stack slot. | 
|  | unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  |  | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case Hexagon::LDriw: | 
|  | case Hexagon::LDrid: | 
|  | case Hexagon::LDrih: | 
|  | case Hexagon::LDrib: | 
|  | case Hexagon::LDriub: | 
|  | if (MI->getOperand(2).isFI() && | 
|  | MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { | 
|  | FrameIndex = MI->getOperand(2).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isStoreToStackSlot - If the specified machine instruction is a direct | 
|  | /// store to a stack slot, return the virtual or physical register number of | 
|  | /// the source reg along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than storing to the stack slot. | 
|  | unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case Hexagon::STriw: | 
|  | case Hexagon::STrid: | 
|  | case Hexagon::STrih: | 
|  | case Hexagon::STrib: | 
|  | if (MI->getOperand(2).isFI() && | 
|  | MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { | 
|  | FrameIndex = MI->getOperand(0).getIndex(); | 
|  | return MI->getOperand(2).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned | 
|  | HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | const SmallVectorImpl<MachineOperand> &Cond, | 
|  | DebugLoc DL) const{ | 
|  |  | 
|  | int BOpc   = Hexagon::JMP; | 
|  | int BccOpc = Hexagon::JMP_t; | 
|  |  | 
|  | assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
|  |  | 
|  | int regPos = 0; | 
|  | // Check if ReverseBranchCondition has asked to reverse this branch | 
|  | // If we want to reverse the branch an odd number of times, we want | 
|  | // JMP_f. | 
|  | if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { | 
|  | BccOpc = Hexagon::JMP_f; | 
|  | regPos = 1; | 
|  | } | 
|  |  | 
|  | if (!FBB) { | 
|  | if (Cond.empty()) { | 
|  | // Due to a bug in TailMerging/CFG Optimization, we need to add a | 
|  | // special case handling of a predicated jump followed by an | 
|  | // unconditional jump. If not, Tail Merging and CFG Optimization go | 
|  | // into an infinite loop. | 
|  | MachineBasicBlock *NewTBB, *NewFBB; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | MachineInstr *Term = MBB.getFirstTerminator(); | 
|  | if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, | 
|  | false)) { | 
|  | MachineBasicBlock *NextBB = | 
|  | std::next(MachineFunction::iterator(&MBB)); | 
|  | if (NewTBB == NextBB) { | 
|  | ReverseBranchCondition(Cond); | 
|  | RemoveBranch(MBB); | 
|  | return InsertBranch(MBB, TBB, nullptr, Cond, DL); | 
|  | } | 
|  | } | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); | 
|  | } else { | 
|  | BuildMI(&MBB, DL, | 
|  | get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | TBB = nullptr; | 
|  | FBB = nullptr; | 
|  |  | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::instr_iterator I = MBB.instr_end(); | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  |  | 
|  | // A basic block may looks like this: | 
|  | // | 
|  | //  [   insn | 
|  | //     EH_LABEL | 
|  | //      insn | 
|  | //      insn | 
|  | //      insn | 
|  | //     EH_LABEL | 
|  | //      insn     ] | 
|  | // | 
|  | // It has two succs but does not have a terminator | 
|  | // Don't know how to handle it. | 
|  | do { | 
|  | --I; | 
|  | if (I->isEHLabel()) | 
|  | return true; | 
|  | } while (I != MBB.instr_begin()); | 
|  |  | 
|  | I = MBB.instr_end(); | 
|  | --I; | 
|  |  | 
|  | while (I->isDebugValue()) { | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  |  | 
|  | // Delete the JMP if it's equivalent to a fall-through. | 
|  | if (AllowModify && I->getOpcode() == Hexagon::JMP && | 
|  | MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); | 
|  | I->eraseFromParent(); | 
|  | I = MBB.instr_end(); | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  | if (!isUnpredicatedTerminator(I)) | 
|  | return false; | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr *LastInst = I; | 
|  | MachineInstr *SecondLastInst = nullptr; | 
|  | // Find one more terminator if present. | 
|  | do { | 
|  | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { | 
|  | if (!SecondLastInst) | 
|  | SecondLastInst = I; | 
|  | else | 
|  | // This is a third branch. | 
|  | return true; | 
|  | } | 
|  | if (I == MBB.instr_begin()) | 
|  | break; | 
|  | --I; | 
|  | } while(I); | 
|  |  | 
|  | int LastOpcode = LastInst->getOpcode(); | 
|  |  | 
|  | bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); | 
|  | bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode); | 
|  |  | 
|  | // If there is only one terminator instruction, process it. | 
|  | if (LastInst && !SecondLastInst) { | 
|  | if (LastOpcode == Hexagon::JMP) { | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  | if (LastOpcode == Hexagon::ENDLOOP0) { | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(LastInst->getOperand(0)); | 
|  | return false; | 
|  | } | 
|  | if (LastOpcodeHasJMP_c) { | 
|  | TBB = LastInst->getOperand(1).getMBB(); | 
|  | if (LastOpcodeHasNot) { | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | } | 
|  | Cond.push_back(LastInst->getOperand(0)); | 
|  | return false; | 
|  | } | 
|  | // Otherwise, don't know what this is. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SecLastOpcode = SecondLastInst->getOpcode(); | 
|  |  | 
|  | bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); | 
|  | bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode); | 
|  | if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) { | 
|  | TBB =  SecondLastInst->getOperand(1).getMBB(); | 
|  | if (SecLastOpcodeHasNot) | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | Cond.push_back(SecondLastInst->getOperand(0)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with two Hexagon:JMPs, handle it.  The second one is not | 
|  | // executed, so remove it. | 
|  | if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) { | 
|  | TBB = SecondLastInst->getOperand(0).getMBB(); | 
|  | I = LastInst; | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with an ENDLOOP, and JMP, handle it. | 
|  | if (SecLastOpcode == Hexagon::ENDLOOP0 && | 
|  | LastOpcode == Hexagon::JMP) { | 
|  | TBB = SecondLastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(SecondLastInst->getOperand(0)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, can't handle this. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
|  | int BOpc   = Hexagon::JMP; | 
|  | int BccOpc = Hexagon::JMP_t; | 
|  | int BccOpcNot = Hexagon::JMP_f; | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | if (I == MBB.begin()) return 0; | 
|  | --I; | 
|  | if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc && | 
|  | I->getOpcode() != BccOpcNot) | 
|  | return 0; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | I = MBB.end(); | 
|  |  | 
|  | if (I == MBB.begin()) return 1; | 
|  | --I; | 
|  | if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) | 
|  | return 1; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief For a comparison instruction, return the source registers in | 
|  | /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it | 
|  | /// compares against in CmpValue. Return true if the comparison instruction | 
|  | /// can be analyzed. | 
|  | bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, | 
|  | unsigned &SrcReg, unsigned &SrcReg2, | 
|  | int &Mask, int &Value) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | // Set mask and the first source register. | 
|  | switch (Opc) { | 
|  | case Hexagon::CMPEHexagon4rr: | 
|  | case Hexagon::CMPEQri: | 
|  | case Hexagon::CMPEQrr: | 
|  | case Hexagon::CMPGT64rr: | 
|  | case Hexagon::CMPGTU64rr: | 
|  | case Hexagon::CMPGTUri: | 
|  | case Hexagon::CMPGTUrr: | 
|  | case Hexagon::CMPGTri: | 
|  | case Hexagon::CMPGTrr: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | Mask = ~0; | 
|  | break; | 
|  | case Hexagon::CMPbEQri_V4: | 
|  | case Hexagon::CMPbEQrr_sbsb_V4: | 
|  | case Hexagon::CMPbEQrr_ubub_V4: | 
|  | case Hexagon::CMPbGTUri_V4: | 
|  | case Hexagon::CMPbGTUrr_V4: | 
|  | case Hexagon::CMPbGTrr_V4: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | Mask = 0xFF; | 
|  | break; | 
|  | case Hexagon::CMPhEQri_V4: | 
|  | case Hexagon::CMPhEQrr_shl_V4: | 
|  | case Hexagon::CMPhEQrr_xor_V4: | 
|  | case Hexagon::CMPhGTUri_V4: | 
|  | case Hexagon::CMPhGTUrr_V4: | 
|  | case Hexagon::CMPhGTrr_shl_V4: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | Mask = 0xFFFF; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Set the value/second source register. | 
|  | switch (Opc) { | 
|  | case Hexagon::CMPEHexagon4rr: | 
|  | case Hexagon::CMPEQrr: | 
|  | case Hexagon::CMPGT64rr: | 
|  | case Hexagon::CMPGTU64rr: | 
|  | case Hexagon::CMPGTUrr: | 
|  | case Hexagon::CMPGTrr: | 
|  | case Hexagon::CMPbEQrr_sbsb_V4: | 
|  | case Hexagon::CMPbEQrr_ubub_V4: | 
|  | case Hexagon::CMPbGTUrr_V4: | 
|  | case Hexagon::CMPbGTrr_V4: | 
|  | case Hexagon::CMPhEQrr_shl_V4: | 
|  | case Hexagon::CMPhEQrr_xor_V4: | 
|  | case Hexagon::CMPhGTUrr_V4: | 
|  | case Hexagon::CMPhGTrr_shl_V4: | 
|  | SrcReg2 = MI->getOperand(2).getReg(); | 
|  | return true; | 
|  |  | 
|  | case Hexagon::CMPEQri: | 
|  | case Hexagon::CMPGTUri: | 
|  | case Hexagon::CMPGTri: | 
|  | case Hexagon::CMPbEQri_V4: | 
|  | case Hexagon::CMPbGTUri_V4: | 
|  | case Hexagon::CMPhEQri_V4: | 
|  | case Hexagon::CMPhGTUri_V4: | 
|  | SrcReg2 = 0; | 
|  | Value = MI->getOperand(2).getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, DebugLoc DL, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | bool KillSrc) const { | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | // Map Pd = Ps to Pd = or(Ps, Ps). | 
|  | BuildMI(MBB, I, DL, get(Hexagon::OR_pp), | 
|  | DestReg).addReg(SrcReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::DoubleRegsRegClass.contains(DestReg) && | 
|  | Hexagon::IntRegsRegClass.contains(SrcReg)) { | 
|  | // We can have an overlap between single and double reg: r1:0 = r0. | 
|  | if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { | 
|  | // r1:0 = r0 | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, | 
|  | Hexagon::subreg_hireg))).addImm(0); | 
|  | } else { | 
|  | // r1:0 = r1 or no overlap. | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg, | 
|  | Hexagon::subreg_loreg))).addReg(SrcReg); | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, | 
|  | Hexagon::subreg_hireg))).addImm(0); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (Hexagon::CRRegsRegClass.contains(DestReg) && | 
|  | Hexagon::IntRegsRegClass.contains(SrcReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg) && | 
|  | Hexagon::IntRegsRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg). | 
|  | addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | 
|  | Hexagon::PredRegsRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg). | 
|  | addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonInstrInfo:: | 
|  | storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned SrcReg, bool isKill, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  |  | 
|  | DebugLoc DL = MBB.findDebugLoc(I); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand( | 
|  | MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), | 
|  | MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), | 
|  | Align); | 
|  |  | 
|  | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::STriw)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); | 
|  | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::STrid)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); | 
|  | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); | 
|  | } else { | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonInstrInfo::storeRegToAddr( | 
|  | MachineFunction &MF, unsigned SrcReg, | 
|  | bool isKill, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const | 
|  | { | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonInstrInfo:: | 
|  | loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL = MBB.findDebugLoc(I); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand( | 
|  | MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), | 
|  | MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), | 
|  | Align); | 
|  | if (RC == &Hexagon::IntRegsRegClass) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (RC == &Hexagon::DoubleRegsRegClass) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (RC == &Hexagon::PredRegsRegClass) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else { | 
|  | llvm_unreachable("Can't store this register to stack slot"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | int FI) const { | 
|  | // Hexagon_TODO: Implement. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | const TargetRegisterClass *TRC; | 
|  | if (VT == MVT::i1) { | 
|  | TRC = &Hexagon::PredRegsRegClass; | 
|  | } else if (VT == MVT::i32 || VT == MVT::f32) { | 
|  | TRC = &Hexagon::IntRegsRegClass; | 
|  | } else if (VT == MVT::i64 || VT == MVT::f64) { | 
|  | TRC = &Hexagon::DoubleRegsRegClass; | 
|  | } else { | 
|  | llvm_unreachable("Cannot handle this register class"); | 
|  | } | 
|  |  | 
|  | unsigned NewReg = RegInfo.createVirtualRegister(TRC); | 
|  | return NewReg; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { | 
|  | // Constant extenders are allowed only for V4 and above. | 
|  | if (!Subtarget.hasV4TOps()) | 
|  | return false; | 
|  |  | 
|  | const MCInstrDesc &MID = MI->getDesc(); | 
|  | const uint64_t F = MID.TSFlags; | 
|  | if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) | 
|  | return true; | 
|  |  | 
|  | // TODO: This is largely obsolete now. Will need to be removed | 
|  | // in consecutive patches. | 
|  | switch(MI->getOpcode()) { | 
|  | // TFR_FI Remains a special case. | 
|  | case Hexagon::TFR_FI: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | return  false; | 
|  | } | 
|  |  | 
|  | // This returns true in two cases: | 
|  | // - The OP code itself indicates that this is an extended instruction. | 
|  | // - One of MOs has been marked with HMOTF_ConstExtended flag. | 
|  | bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { | 
|  | // First check if this is permanently extended op code. | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) | 
|  | return true; | 
|  | // Use MO operand flags to determine if one of MI's operands | 
|  | // has HMOTF_ConstExtended flag set. | 
|  | for (MachineInstr::const_mop_iterator I = MI->operands_begin(), | 
|  | E = MI->operands_end(); I != E; ++I) { | 
|  | if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) | 
|  | return true; | 
|  | } | 
|  | return  false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { | 
|  | return MI->getDesc().isBranch(); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { | 
|  | if (isNewValueJump(MI)) | 
|  | return true; | 
|  |  | 
|  | if (isNewValueStore(MI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { | 
|  | return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { | 
|  | bool isPred = MI->getDesc().isPredicable(); | 
|  |  | 
|  | if (!isPred) | 
|  | return false; | 
|  |  | 
|  | const int Opc = MI->getOpcode(); | 
|  |  | 
|  | switch(Opc) { | 
|  | case Hexagon::TFRI: | 
|  | return isInt<12>(MI->getOperand(1).getImm()); | 
|  |  | 
|  | case Hexagon::STrid: | 
|  | case Hexagon::STrid_indexed: | 
|  | return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); | 
|  |  | 
|  | case Hexagon::STriw: | 
|  | case Hexagon::STriw_indexed: | 
|  | case Hexagon::STriw_nv_V4: | 
|  | return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); | 
|  |  | 
|  | case Hexagon::STrih: | 
|  | case Hexagon::STrih_indexed: | 
|  | case Hexagon::STrih_nv_V4: | 
|  | return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); | 
|  |  | 
|  | case Hexagon::STrib: | 
|  | case Hexagon::STrib_indexed: | 
|  | case Hexagon::STrib_nv_V4: | 
|  | return isUInt<6>(MI->getOperand(1).getImm()); | 
|  |  | 
|  | case Hexagon::LDrid: | 
|  | case Hexagon::LDrid_indexed: | 
|  | return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); | 
|  |  | 
|  | case Hexagon::LDriw: | 
|  | case Hexagon::LDriw_indexed: | 
|  | return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); | 
|  |  | 
|  | case Hexagon::LDrih: | 
|  | case Hexagon::LDriuh: | 
|  | case Hexagon::LDrih_indexed: | 
|  | case Hexagon::LDriuh_indexed: | 
|  | return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); | 
|  |  | 
|  | case Hexagon::LDrib: | 
|  | case Hexagon::LDriub: | 
|  | case Hexagon::LDrib_indexed: | 
|  | case Hexagon::LDriub_indexed: | 
|  | return isUInt<6>(MI->getOperand(2).getImm()); | 
|  |  | 
|  | case Hexagon::POST_LDrid: | 
|  | return isShiftedInt<4,3>(MI->getOperand(3).getImm()); | 
|  |  | 
|  | case Hexagon::POST_LDriw: | 
|  | return isShiftedInt<4,2>(MI->getOperand(3).getImm()); | 
|  |  | 
|  | case Hexagon::POST_LDrih: | 
|  | case Hexagon::POST_LDriuh: | 
|  | return isShiftedInt<4,1>(MI->getOperand(3).getImm()); | 
|  |  | 
|  | case Hexagon::POST_LDrib: | 
|  | case Hexagon::POST_LDriub: | 
|  | return isInt<4>(MI->getOperand(3).getImm()); | 
|  |  | 
|  | case Hexagon::STrib_imm_V4: | 
|  | case Hexagon::STrih_imm_V4: | 
|  | case Hexagon::STriw_imm_V4: | 
|  | return (isUInt<6>(MI->getOperand(1).getImm()) && | 
|  | isInt<6>(MI->getOperand(2).getImm())); | 
|  |  | 
|  | case Hexagon::ADD_ri: | 
|  | return isInt<8>(MI->getOperand(2).getImm()); | 
|  |  | 
|  | case Hexagon::ASLH: | 
|  | case Hexagon::ASRH: | 
|  | case Hexagon::A2_sxtb: | 
|  | case Hexagon::SXTH: | 
|  | case Hexagon::ZXTB: | 
|  | case Hexagon::ZXTH: | 
|  | return Subtarget.hasV4TOps(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This function performs the following inversiones: | 
|  | // | 
|  | //  cPt    ---> cNotPt | 
|  | //  cNotPt ---> cPt | 
|  | // | 
|  | unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { | 
|  | int InvPredOpcode; | 
|  | InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) | 
|  | : Hexagon::getTruePredOpcode(Opc); | 
|  | if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. | 
|  | return InvPredOpcode; | 
|  |  | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unexpected predicated instruction"); | 
|  | case Hexagon::COMBINE_rr_cPt: | 
|  | return Hexagon::COMBINE_rr_cNotPt; | 
|  | case Hexagon::COMBINE_rr_cNotPt: | 
|  | return Hexagon::COMBINE_rr_cPt; | 
|  |  | 
|  | // Dealloc_return. | 
|  | case Hexagon::DEALLOC_RET_cPt_V4: | 
|  | return Hexagon::DEALLOC_RET_cNotPt_V4; | 
|  | case Hexagon::DEALLOC_RET_cNotPt_V4: | 
|  | return Hexagon::DEALLOC_RET_cPt_V4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // New Value Store instructions. | 
|  | bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); | 
|  | } | 
|  |  | 
|  | int HexagonInstrInfo:: | 
|  | getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { | 
|  | enum Hexagon::PredSense inPredSense; | 
|  | inPredSense = invertPredicate ? Hexagon::PredSense_false : | 
|  | Hexagon::PredSense_true; | 
|  | int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); | 
|  | if (CondOpcode >= 0) // Valid Conditional opcode/instruction | 
|  | return CondOpcode; | 
|  |  | 
|  | // This switch case will be removed once all the instructions have been | 
|  | // modified to use relation maps. | 
|  | switch(Opc) { | 
|  | case Hexagon::TFRI_f: | 
|  | return !invertPredicate ? Hexagon::TFRI_cPt_f : | 
|  | Hexagon::TFRI_cNotPt_f; | 
|  | case Hexagon::COMBINE_rr: | 
|  | return !invertPredicate ? Hexagon::COMBINE_rr_cPt : | 
|  | Hexagon::COMBINE_rr_cNotPt; | 
|  |  | 
|  | // Word. | 
|  | case Hexagon::STriw_f: | 
|  | return !invertPredicate ? Hexagon::STriw_cPt : | 
|  | Hexagon::STriw_cNotPt; | 
|  | case Hexagon::STriw_indexed_f: | 
|  | return !invertPredicate ? Hexagon::STriw_indexed_cPt : | 
|  | Hexagon::STriw_indexed_cNotPt; | 
|  |  | 
|  | // DEALLOC_RETURN. | 
|  | case Hexagon::DEALLOC_RET_V4: | 
|  | return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 : | 
|  | Hexagon::DEALLOC_RET_cNotPt_V4; | 
|  | } | 
|  | llvm_unreachable("Unexpected predicable instruction"); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | PredicateInstruction(MachineInstr *MI, | 
|  | const SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | int Opc = MI->getOpcode(); | 
|  | assert (isPredicable(MI) && "Expected predicable instruction"); | 
|  | bool invertJump = (!Cond.empty() && Cond[0].isImm() && | 
|  | (Cond[0].getImm() == 0)); | 
|  |  | 
|  | // This will change MI's opcode to its predicate version. | 
|  | // However, its operand list is still the old one, i.e. the | 
|  | // non-predicate one. | 
|  | MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); | 
|  |  | 
|  | int oper = -1; | 
|  | unsigned int GAIdx = 0; | 
|  |  | 
|  | // Indicates whether the current MI has a GlobalAddress operand | 
|  | bool hasGAOpnd = false; | 
|  | std::vector<MachineOperand> tmpOpnds; | 
|  |  | 
|  | // Indicates whether we need to shift operands to right. | 
|  | bool needShift = true; | 
|  |  | 
|  | // The predicate is ALWAYS the FIRST input operand !!! | 
|  | if (MI->getNumOperands() == 0) { | 
|  | // The non-predicate version of MI does not take any operands, | 
|  | // i.e. no outs and no ins. In this condition, the predicate | 
|  | // operand will be directly placed at Operands[0]. No operand | 
|  | // shift is needed. | 
|  | // Example: BARRIER | 
|  | needShift = false; | 
|  | oper = -1; | 
|  | } | 
|  | else if (   MI->getOperand(MI->getNumOperands()-1).isReg() | 
|  | && MI->getOperand(MI->getNumOperands()-1).isDef() | 
|  | && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) { | 
|  | // The non-predicate version of MI does not have any input operands. | 
|  | // In this condition, we extend the length of Operands[] by one and | 
|  | // copy the original last operand to the newly allocated slot. | 
|  | // At this moment, it is just a place holder. Later, we will put | 
|  | // predicate operand directly into it. No operand shift is needed. | 
|  | // Example: r0=BARRIER (this is a faked insn used here for illustration) | 
|  | MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); | 
|  | needShift = false; | 
|  | oper = MI->getNumOperands() - 2; | 
|  | } | 
|  | else { | 
|  | // We need to right shift all input operands by one. Duplicate the | 
|  | // last operand into the newly allocated slot. | 
|  | MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); | 
|  | } | 
|  |  | 
|  | if (needShift) | 
|  | { | 
|  | // Operands[ MI->getNumOperands() - 2 ] has been copied into | 
|  | // Operands[ MI->getNumOperands() - 1 ], so we start from | 
|  | // Operands[ MI->getNumOperands() - 3 ]. | 
|  | // oper is a signed int. | 
|  | // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1. | 
|  | for (oper = MI->getNumOperands() - 3; oper >= 0; --oper) | 
|  | { | 
|  | MachineOperand &MO = MI->getOperand(oper); | 
|  |  | 
|  | // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7] | 
|  | // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1> | 
|  | //               /\~ | 
|  | //              /||\~ | 
|  | //               || | 
|  | //        Predicate Operand here | 
|  | if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) { | 
|  | break; | 
|  | } | 
|  | if (MO.isReg()) { | 
|  | MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(), | 
|  | MO.isImplicit(), MO.isKill(), | 
|  | MO.isDead(), MO.isUndef(), | 
|  | MO.isDebug()); | 
|  | } | 
|  | else if (MO.isImm()) { | 
|  | MI->getOperand(oper+1).ChangeToImmediate(MO.getImm()); | 
|  | } | 
|  | else if (MO.isGlobal()) { | 
|  | // MI can not have more than one GlobalAddress operand. | 
|  | assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd"); | 
|  |  | 
|  | // There is no member function called "ChangeToGlobalAddress" in the | 
|  | // MachineOperand class (not like "ChangeToRegister" and | 
|  | // "ChangeToImmediate"). So we have to remove them from Operands[] list | 
|  | // first, and then add them back after we have inserted the predicate | 
|  | // operand. tmpOpnds[] is to remember these operands before we remove | 
|  | // them. | 
|  | tmpOpnds.push_back(MO); | 
|  |  | 
|  | // Operands[oper] is a GlobalAddress operand; | 
|  | // Operands[oper+1] has been copied into Operands[oper+2]; | 
|  | hasGAOpnd = true; | 
|  | GAIdx = oper; | 
|  | continue; | 
|  | } | 
|  | else { | 
|  | assert(false && "Unexpected operand type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int regPos = invertJump ? 1 : 0; | 
|  | MachineOperand PredMO = Cond[regPos]; | 
|  |  | 
|  | // [oper] now points to the last explicit Def. Predicate operand must be | 
|  | // located at [oper+1]. See diagram above. | 
|  | // This assumes that the predicate is always the first operand, | 
|  | // i.e. Operands[0+numResults], in the set of inputs | 
|  | // It is better to have an assert here to check this. But I don't know how | 
|  | // to write this assert because findFirstPredOperandIdx() would return -1 | 
|  | if (oper < -1) oper = -1; | 
|  |  | 
|  | MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(), | 
|  | PredMO.isImplicit(), false, | 
|  | PredMO.isDead(), PredMO.isUndef(), | 
|  | PredMO.isDebug()); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo(); | 
|  | RegInfo.clearKillFlags(PredMO.getReg()); | 
|  |  | 
|  | if (hasGAOpnd) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | // Operands[GAIdx] is the original GlobalAddress operand, which is | 
|  | // already copied into tmpOpnds[0]. | 
|  | // Operands[GAIdx] now stores a copy of Operands[GAIdx-1] | 
|  | // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2], | 
|  | // so we start from [GAIdx+2] | 
|  | for (i = GAIdx + 2; i < MI->getNumOperands(); ++i) | 
|  | tmpOpnds.push_back(MI->getOperand(i)); | 
|  |  | 
|  | // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ] | 
|  | // It is very important that we always remove from the end of Operands[] | 
|  | // MI->getNumOperands() is at least 2 if program goes to here. | 
|  | for (i = MI->getNumOperands() - 1; i > GAIdx; --i) | 
|  | MI->RemoveOperand(i); | 
|  |  | 
|  | for (i = 0; i < tmpOpnds.size(); ++i) | 
|  | MI->addOperand(tmpOpnds[i]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | HexagonInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &MBB, | 
|  | unsigned NumCycles, | 
|  | unsigned ExtraPredCycles, | 
|  | const BranchProbability &Probability) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | HexagonInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned NumTCycles, | 
|  | unsigned ExtraTCycles, | 
|  | MachineBasicBlock &FMBB, | 
|  | unsigned NumFCycles, | 
|  | unsigned ExtraFCycles, | 
|  | const BranchProbability &Probability) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true if an instruction is predicated irrespective of the predicate | 
|  | // sense. For example, all of the following will return true. | 
|  | // if (p0) R1 = add(R2, R3) | 
|  | // if (!p0) R1 = add(R2, R3) | 
|  | // if (p0.new) R1 = add(R2, R3) | 
|  | // if (!p0.new) R1 = add(R2, R3) | 
|  | bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | assert(isPredicated(MI)); | 
|  | return (!((F >> HexagonII::PredicatedFalsePos) & | 
|  | HexagonII::PredicatedFalseMask)); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  |  | 
|  | // Make sure that the instruction is predicated. | 
|  | assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); | 
|  | return (!((F >> HexagonII::PredicatedFalsePos) & | 
|  | HexagonII::PredicatedFalseMask)); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | assert(isPredicated(MI)); | 
|  | return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  |  | 
|  | assert(isPredicated(Opcode)); | 
|  | return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); | 
|  | } | 
|  |  | 
|  | // Returns true, if a ST insn can be promoted to a new-value store. | 
|  | bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const { | 
|  | const HexagonRegisterInfo& QRI = getRegisterInfo(); | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::mayNVStorePos) & | 
|  | HexagonII::mayNVStoreMask & | 
|  | QRI.Subtarget.hasV4TOps()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, | 
|  | std::vector<MachineOperand> &Pred) const { | 
|  | for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { | 
|  | MachineOperand MO = MI->getOperand(oper); | 
|  | if (MO.isReg() && MO.isDef()) { | 
|  | const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); | 
|  | if (RC == &Hexagon::PredRegsRegClass) { | 
|  | Pred.push_back(MO); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | HexagonInstrInfo:: | 
|  | SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, | 
|  | const SmallVectorImpl<MachineOperand> &Pred2) const { | 
|  | // TODO: Fix this | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // | 
|  | // We indicate that we want to reverse the branch by | 
|  | // inserting a 0 at the beginning of the Cond vector. | 
|  | // | 
|  | bool HexagonInstrInfo:: | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { | 
|  | Cond.erase(Cond.begin()); | 
|  | } else { | 
|  | Cond.insert(Cond.begin(), MachineOperand::CreateImm(0)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, | 
|  | const BranchProbability &Probability) const { | 
|  | return (NumInstrs <= 4); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case Hexagon::DEALLOC_RET_V4 : | 
|  | case Hexagon::DEALLOC_RET_cPt_V4 : | 
|  | case Hexagon::DEALLOC_RET_cNotPt_V4 : | 
|  | case Hexagon::DEALLOC_RET_cdnPnt_V4 : | 
|  | case Hexagon::DEALLOC_RET_cNotdnPnt_V4 : | 
|  | case Hexagon::DEALLOC_RET_cdnPt_V4 : | 
|  | case Hexagon::DEALLOC_RET_cNotdnPt_V4 : | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isValidOffset(const int Opcode, const int Offset) const { | 
|  | // This function is to check whether the "Offset" is in the correct range of | 
|  | // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is | 
|  | // inserted to calculate the final address. Due to this reason, the function | 
|  | // assumes that the "Offset" has correct alignment. | 
|  | // We used to assert if the offset was not properly aligned, however, | 
|  | // there are cases where a misaligned pointer recast can cause this | 
|  | // problem, and we need to allow for it. The front end warns of such | 
|  | // misaligns with respect to load size. | 
|  |  | 
|  | switch(Opcode) { | 
|  |  | 
|  | case Hexagon::LDriw: | 
|  | case Hexagon::LDriw_indexed: | 
|  | case Hexagon::LDriw_f: | 
|  | case Hexagon::STriw_indexed: | 
|  | case Hexagon::STriw: | 
|  | case Hexagon::STriw_f: | 
|  | return (Offset >= Hexagon_MEMW_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMW_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::LDrid: | 
|  | case Hexagon::LDrid_indexed: | 
|  | case Hexagon::LDrid_f: | 
|  | case Hexagon::STrid: | 
|  | case Hexagon::STrid_indexed: | 
|  | case Hexagon::STrid_f: | 
|  | return (Offset >= Hexagon_MEMD_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMD_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::LDrih: | 
|  | case Hexagon::LDriuh: | 
|  | case Hexagon::STrih: | 
|  | return (Offset >= Hexagon_MEMH_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMH_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::LDrib: | 
|  | case Hexagon::STrib: | 
|  | case Hexagon::LDriub: | 
|  | return (Offset >= Hexagon_MEMB_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMB_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::ADD_ri: | 
|  | case Hexagon::TFR_FI: | 
|  | return (Offset >= Hexagon_ADDI_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_ADDI_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::MemOPw_ADDi_V4 : | 
|  | case Hexagon::MemOPw_SUBi_V4 : | 
|  | case Hexagon::MemOPw_ADDr_V4 : | 
|  | case Hexagon::MemOPw_SUBr_V4 : | 
|  | case Hexagon::MemOPw_ANDr_V4 : | 
|  | case Hexagon::MemOPw_ORr_V4 : | 
|  | return (0 <= Offset && Offset <= 255); | 
|  |  | 
|  | case Hexagon::MemOPh_ADDi_V4 : | 
|  | case Hexagon::MemOPh_SUBi_V4 : | 
|  | case Hexagon::MemOPh_ADDr_V4 : | 
|  | case Hexagon::MemOPh_SUBr_V4 : | 
|  | case Hexagon::MemOPh_ANDr_V4 : | 
|  | case Hexagon::MemOPh_ORr_V4 : | 
|  | return (0 <= Offset && Offset <= 127); | 
|  |  | 
|  | case Hexagon::MemOPb_ADDi_V4 : | 
|  | case Hexagon::MemOPb_SUBi_V4 : | 
|  | case Hexagon::MemOPb_ADDr_V4 : | 
|  | case Hexagon::MemOPb_SUBr_V4 : | 
|  | case Hexagon::MemOPb_ANDr_V4 : | 
|  | case Hexagon::MemOPb_ORr_V4 : | 
|  | return (0 <= Offset && Offset <= 63); | 
|  |  | 
|  | // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of | 
|  | // any size. Later pass knows how to handle it. | 
|  | case Hexagon::STriw_pred: | 
|  | case Hexagon::LDriw_pred: | 
|  | return true; | 
|  |  | 
|  | case Hexagon::LOOP0_i: | 
|  | return isUInt<10>(Offset); | 
|  |  | 
|  | // INLINEASM is very special. | 
|  | case Hexagon::INLINEASM: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("No offset range is defined for this opcode. " | 
|  | "Please define it in the above switch statement!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | // | 
|  | // Check if the Offset is a valid auto-inc imm by Load/Store Type. | 
|  | // | 
|  | bool HexagonInstrInfo:: | 
|  | isValidAutoIncImm(const EVT VT, const int Offset) const { | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | return (Offset >= Hexagon_MEMD_AUTOINC_MIN && | 
|  | Offset <= Hexagon_MEMD_AUTOINC_MAX && | 
|  | (Offset & 0x7) == 0); | 
|  | } | 
|  | if (VT == MVT::i32) { | 
|  | return (Offset >= Hexagon_MEMW_AUTOINC_MIN && | 
|  | Offset <= Hexagon_MEMW_AUTOINC_MAX && | 
|  | (Offset & 0x3) == 0); | 
|  | } | 
|  | if (VT == MVT::i16) { | 
|  | return (Offset >= Hexagon_MEMH_AUTOINC_MIN && | 
|  | Offset <= Hexagon_MEMH_AUTOINC_MAX && | 
|  | (Offset & 0x1) == 0); | 
|  | } | 
|  | if (VT == MVT::i8) { | 
|  | return (Offset >= Hexagon_MEMB_AUTOINC_MIN && | 
|  | Offset <= Hexagon_MEMB_AUTOINC_MAX); | 
|  | } | 
|  | llvm_unreachable("Not an auto-inc opc!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isMemOp(const MachineInstr *MI) const { | 
|  | //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); | 
|  |  | 
|  | switch (MI->getOpcode()) | 
|  | { | 
|  | default: return false; | 
|  | case Hexagon::MemOPw_ADDi_V4 : | 
|  | case Hexagon::MemOPw_SUBi_V4 : | 
|  | case Hexagon::MemOPw_ADDr_V4 : | 
|  | case Hexagon::MemOPw_SUBr_V4 : | 
|  | case Hexagon::MemOPw_ANDr_V4 : | 
|  | case Hexagon::MemOPw_ORr_V4 : | 
|  | case Hexagon::MemOPh_ADDi_V4 : | 
|  | case Hexagon::MemOPh_SUBi_V4 : | 
|  | case Hexagon::MemOPh_ADDr_V4 : | 
|  | case Hexagon::MemOPh_SUBr_V4 : | 
|  | case Hexagon::MemOPh_ANDr_V4 : | 
|  | case Hexagon::MemOPh_ORr_V4 : | 
|  | case Hexagon::MemOPb_ADDi_V4 : | 
|  | case Hexagon::MemOPb_SUBi_V4 : | 
|  | case Hexagon::MemOPb_ADDr_V4 : | 
|  | case Hexagon::MemOPb_SUBr_V4 : | 
|  | case Hexagon::MemOPb_ANDr_V4 : | 
|  | case Hexagon::MemOPb_ORr_V4 : | 
|  | case Hexagon::MemOPb_SETBITi_V4: | 
|  | case Hexagon::MemOPh_SETBITi_V4: | 
|  | case Hexagon::MemOPw_SETBITi_V4: | 
|  | case Hexagon::MemOPb_CLRBITi_V4: | 
|  | case Hexagon::MemOPh_CLRBITi_V4: | 
|  | case Hexagon::MemOPw_CLRBITi_V4: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isSpillPredRegOp(const MachineInstr *MI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case Hexagon::STriw_pred : | 
|  | case Hexagon::LDriw_pred : | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case Hexagon::CMPEQrr: | 
|  | case Hexagon::CMPEQri: | 
|  | case Hexagon::CMPGTrr: | 
|  | case Hexagon::CMPGTri: | 
|  | case Hexagon::CMPGTUrr: | 
|  | case Hexagon::CMPGTUri: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isConditionalTransfer (const MachineInstr *MI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case Hexagon::TFR_cPt: | 
|  | case Hexagon::TFR_cNotPt: | 
|  | case Hexagon::TFRI_cPt: | 
|  | case Hexagon::TFRI_cNotPt: | 
|  | case Hexagon::TFR_cdnPt: | 
|  | case Hexagon::TFR_cdnNotPt: | 
|  | case Hexagon::TFRI_cdnPt: | 
|  | case Hexagon::TFRI_cdnNotPt: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { | 
|  | const HexagonRegisterInfo& QRI = getRegisterInfo(); | 
|  | switch (MI->getOpcode()) | 
|  | { | 
|  | default: return false; | 
|  | case Hexagon::A2_paddf: | 
|  | case Hexagon::A2_paddfnew: | 
|  | case Hexagon::A2_paddt: | 
|  | case Hexagon::A2_paddtnew: | 
|  | case Hexagon::A2_pandf: | 
|  | case Hexagon::A2_pandfnew: | 
|  | case Hexagon::A2_pandt: | 
|  | case Hexagon::A2_pandtnew: | 
|  | case Hexagon::A2_porf: | 
|  | case Hexagon::A2_porfnew: | 
|  | case Hexagon::A2_port: | 
|  | case Hexagon::A2_portnew: | 
|  | case Hexagon::A2_psubf: | 
|  | case Hexagon::A2_psubfnew: | 
|  | case Hexagon::A2_psubt: | 
|  | case Hexagon::A2_psubtnew: | 
|  | case Hexagon::A2_pxorf: | 
|  | case Hexagon::A2_pxorfnew: | 
|  | case Hexagon::A2_pxort: | 
|  | case Hexagon::A2_pxortnew: | 
|  | case Hexagon::A4_psxtbf: | 
|  | case Hexagon::A4_psxtbfnew: | 
|  | case Hexagon::A4_psxtbt: | 
|  | case Hexagon::A4_psxtbtnew: | 
|  | case Hexagon::ADD_ri_cPt: | 
|  | case Hexagon::ADD_ri_cNotPt: | 
|  | case Hexagon::COMBINE_rr_cPt: | 
|  | case Hexagon::COMBINE_rr_cNotPt: | 
|  | return true; | 
|  | case Hexagon::ASLH_cPt_V4: | 
|  | case Hexagon::ASLH_cNotPt_V4: | 
|  | case Hexagon::ASRH_cPt_V4: | 
|  | case Hexagon::ASRH_cNotPt_V4: | 
|  | case Hexagon::SXTH_cPt_V4: | 
|  | case Hexagon::SXTH_cNotPt_V4: | 
|  | case Hexagon::ZXTB_cPt_V4: | 
|  | case Hexagon::ZXTB_cNotPt_V4: | 
|  | case Hexagon::ZXTH_cPt_V4: | 
|  | case Hexagon::ZXTH_cNotPt_V4: | 
|  | return QRI.Subtarget.hasV4TOps(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo:: | 
|  | isConditionalLoad (const MachineInstr* MI) const { | 
|  | const HexagonRegisterInfo& QRI = getRegisterInfo(); | 
|  | switch (MI->getOpcode()) | 
|  | { | 
|  | default: return false; | 
|  | case Hexagon::LDrid_cPt : | 
|  | case Hexagon::LDrid_cNotPt : | 
|  | case Hexagon::LDrid_indexed_cPt : | 
|  | case Hexagon::LDrid_indexed_cNotPt : | 
|  | case Hexagon::LDriw_cPt : | 
|  | case Hexagon::LDriw_cNotPt : | 
|  | case Hexagon::LDriw_indexed_cPt : | 
|  | case Hexagon::LDriw_indexed_cNotPt : | 
|  | case Hexagon::LDrih_cPt : | 
|  | case Hexagon::LDrih_cNotPt : | 
|  | case Hexagon::LDrih_indexed_cPt : | 
|  | case Hexagon::LDrih_indexed_cNotPt : | 
|  | case Hexagon::LDrib_cPt : | 
|  | case Hexagon::LDrib_cNotPt : | 
|  | case Hexagon::LDrib_indexed_cPt : | 
|  | case Hexagon::LDrib_indexed_cNotPt : | 
|  | case Hexagon::LDriuh_cPt : | 
|  | case Hexagon::LDriuh_cNotPt : | 
|  | case Hexagon::LDriuh_indexed_cPt : | 
|  | case Hexagon::LDriuh_indexed_cNotPt : | 
|  | case Hexagon::LDriub_cPt : | 
|  | case Hexagon::LDriub_cNotPt : | 
|  | case Hexagon::LDriub_indexed_cPt : | 
|  | case Hexagon::LDriub_indexed_cNotPt : | 
|  | return true; | 
|  | case Hexagon::POST_LDrid_cPt : | 
|  | case Hexagon::POST_LDrid_cNotPt : | 
|  | case Hexagon::POST_LDriw_cPt : | 
|  | case Hexagon::POST_LDriw_cNotPt : | 
|  | case Hexagon::POST_LDrih_cPt : | 
|  | case Hexagon::POST_LDrih_cNotPt : | 
|  | case Hexagon::POST_LDrib_cPt : | 
|  | case Hexagon::POST_LDrib_cNotPt : | 
|  | case Hexagon::POST_LDriuh_cPt : | 
|  | case Hexagon::POST_LDriuh_cNotPt : | 
|  | case Hexagon::POST_LDriub_cPt : | 
|  | case Hexagon::POST_LDriub_cNotPt : | 
|  | return QRI.Subtarget.hasV4TOps(); | 
|  | case Hexagon::LDrid_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDrid_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::LDrib_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDrib_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::LDriub_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDriub_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::LDrih_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDrih_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::LDriuh_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDriuh_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::LDriw_indexed_shl_cPt_V4 : | 
|  | case Hexagon::LDriw_indexed_shl_cNotPt_V4 : | 
|  | return QRI.Subtarget.hasV4TOps(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if an instruction is a conditional store. | 
|  | // | 
|  | // Note: It doesn't include conditional new-value stores as they can't be | 
|  | // converted to .new predicate. | 
|  | // | 
|  | //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] | 
|  | //                ^           ^ | 
|  | //               /             \ (not OK. it will cause new-value store to be | 
|  | //              /               X conditional on p0.new while R2 producer is | 
|  | //             /                 \ on p0) | 
|  | //            /                   \. | 
|  | //     p.new store                 p.old NV store | 
|  | // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new] | 
|  | //            ^                  ^ | 
|  | //             \                / | 
|  | //              \              / | 
|  | //               \            / | 
|  | //                 p.old store | 
|  | //             [if (p0)memw(R0+#0)=R2] | 
|  | // | 
|  | // The above diagram shows the steps involoved in the conversion of a predicated | 
|  | // store instruction to its .new predicated new-value form. | 
|  | // | 
|  | // The following set of instructions further explains the scenario where | 
|  | // conditional new-value store becomes invalid when promoted to .new predicate | 
|  | // form. | 
|  | // | 
|  | // { 1) if (p0) r0 = add(r1, r2) | 
|  | //   2) p0 = cmp.eq(r3, #0) } | 
|  | // | 
|  | //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with | 
|  | // the first two instructions because in instr 1, r0 is conditional on old value | 
|  | // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which | 
|  | // is not valid for new-value stores. | 
|  | bool HexagonInstrInfo:: | 
|  | isConditionalStore (const MachineInstr* MI) const { | 
|  | const HexagonRegisterInfo& QRI = getRegisterInfo(); | 
|  | switch (MI->getOpcode()) | 
|  | { | 
|  | default: return false; | 
|  | case Hexagon::STrib_imm_cPt_V4 : | 
|  | case Hexagon::STrib_imm_cNotPt_V4 : | 
|  | case Hexagon::STrib_indexed_shl_cPt_V4 : | 
|  | case Hexagon::STrib_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::STrib_cPt : | 
|  | case Hexagon::STrib_cNotPt : | 
|  | case Hexagon::POST_STbri_cPt : | 
|  | case Hexagon::POST_STbri_cNotPt : | 
|  | case Hexagon::STrid_indexed_cPt : | 
|  | case Hexagon::STrid_indexed_cNotPt : | 
|  | case Hexagon::STrid_indexed_shl_cPt_V4 : | 
|  | case Hexagon::POST_STdri_cPt : | 
|  | case Hexagon::POST_STdri_cNotPt : | 
|  | case Hexagon::STrih_cPt : | 
|  | case Hexagon::STrih_cNotPt : | 
|  | case Hexagon::STrih_indexed_cPt : | 
|  | case Hexagon::STrih_indexed_cNotPt : | 
|  | case Hexagon::STrih_imm_cPt_V4 : | 
|  | case Hexagon::STrih_imm_cNotPt_V4 : | 
|  | case Hexagon::STrih_indexed_shl_cPt_V4 : | 
|  | case Hexagon::STrih_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::POST_SThri_cPt : | 
|  | case Hexagon::POST_SThri_cNotPt : | 
|  | case Hexagon::STriw_cPt : | 
|  | case Hexagon::STriw_cNotPt : | 
|  | case Hexagon::STriw_indexed_cPt : | 
|  | case Hexagon::STriw_indexed_cNotPt : | 
|  | case Hexagon::STriw_imm_cPt_V4 : | 
|  | case Hexagon::STriw_imm_cNotPt_V4 : | 
|  | case Hexagon::STriw_indexed_shl_cPt_V4 : | 
|  | case Hexagon::STriw_indexed_shl_cNotPt_V4 : | 
|  | case Hexagon::POST_STwri_cPt : | 
|  | case Hexagon::POST_STwri_cNotPt : | 
|  | return QRI.Subtarget.hasV4TOps(); | 
|  |  | 
|  | // V4 global address store before promoting to dot new. | 
|  | case Hexagon::STd_GP_cPt_V4 : | 
|  | case Hexagon::STd_GP_cNotPt_V4 : | 
|  | case Hexagon::STb_GP_cPt_V4 : | 
|  | case Hexagon::STb_GP_cNotPt_V4 : | 
|  | case Hexagon::STh_GP_cPt_V4 : | 
|  | case Hexagon::STh_GP_cNotPt_V4 : | 
|  | case Hexagon::STw_GP_cPt_V4 : | 
|  | case Hexagon::STw_GP_cNotPt_V4 : | 
|  | return QRI.Subtarget.hasV4TOps(); | 
|  |  | 
|  | // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded | 
|  | // from the "Conditional Store" list. Because a predicated new value store | 
|  | // would NOT be promoted to a double dot new store. See diagram below: | 
|  | // This function returns yes for those stores that are predicated but not | 
|  | // yet promoted to predicate dot new instructions. | 
|  | // | 
|  | //                          +---------------------+ | 
|  | //                    /-----| if (p0) memw(..)=r0 |---------\~ | 
|  | //                   ||     +---------------------+         || | 
|  | //          promote  ||       /\       /\                   ||  promote | 
|  | //                   ||      /||\     /||\                  || | 
|  | //                  \||/    demote     ||                  \||/ | 
|  | //                   \/       ||       ||                   \/ | 
|  | //       +-------------------------+   ||   +-------------------------+ | 
|  | //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new | | 
|  | //       +-------------------------+   ||   +-------------------------+ | 
|  | //                        ||           ||         || | 
|  | //                        ||         demote      \||/ | 
|  | //                      promote        ||         \/ NOT possible | 
|  | //                        ||           ||         /\~ | 
|  | //                       \||/          ||        /||\~ | 
|  | //                        \/           ||         || | 
|  | //                      +-----------------------------+ | 
|  | //                      | if (p0.new) memw(..)=r0.new | | 
|  | //                      +-----------------------------+ | 
|  | //                           Double Dot New Store | 
|  | // | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { | 
|  | if (isNewValue(MI) && isBranch(MI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { | 
|  | return (getAddrMode(MI) == HexagonII::PostInc); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); | 
|  | } | 
|  |  | 
|  | // Returns true, if any one of the operands is a dot new | 
|  | // insn, whether it is predicated dot new or register dot new. | 
|  | bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { | 
|  | return (isNewValueInst(MI) || | 
|  | (isPredicated(MI) && isPredicatedNew(MI))); | 
|  | } | 
|  |  | 
|  | // Returns the most basic instruction for the .new predicated instructions and | 
|  | // new-value stores. | 
|  | // For example, all of the following instructions will be converted back to the | 
|  | // same instruction: | 
|  | // 1) if (p0.new) memw(R0+#0) = R1.new  ---> | 
|  | // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1 | 
|  | // 3) if (p0.new) memw(R0+#0) = R1      ---> | 
|  | // | 
|  |  | 
|  | int HexagonInstrInfo::GetDotOldOp(const int opc) const { | 
|  | int NewOp = opc; | 
|  | if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form | 
|  | NewOp = Hexagon::getPredOldOpcode(NewOp); | 
|  | assert(NewOp >= 0 && | 
|  | "Couldn't change predicate new instruction to its old form."); | 
|  | } | 
|  |  | 
|  | if (isNewValueStore(NewOp)) { // Convert into non-new-value format | 
|  | NewOp = Hexagon::getNonNVStore(NewOp); | 
|  | assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); | 
|  | } | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // Return the new value instruction for a given store. | 
|  | int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { | 
|  | int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); | 
|  | if (NVOpcode >= 0) // Valid new-value store instruction. | 
|  | return NVOpcode; | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unknown .new type"); | 
|  | // store new value byte | 
|  | case Hexagon::STrib_shl_V4: | 
|  | return Hexagon::STrib_shl_nv_V4; | 
|  |  | 
|  | case Hexagon::STrih_shl_V4: | 
|  | return Hexagon::STrih_shl_nv_V4; | 
|  |  | 
|  | case Hexagon::STriw_f: | 
|  | return Hexagon::STriw_nv_V4; | 
|  |  | 
|  | case Hexagon::STriw_indexed_f: | 
|  | return Hexagon::STriw_indexed_nv_V4; | 
|  |  | 
|  | case Hexagon::STriw_shl_V4: | 
|  | return Hexagon::STriw_shl_nv_V4; | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return .new predicate version for an instruction. | 
|  | int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, | 
|  | const MachineBranchProbabilityInfo | 
|  | *MBPI) const { | 
|  |  | 
|  | int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); | 
|  | if (NewOpcode >= 0) // Valid predicate new instruction | 
|  | return NewOpcode; | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unknown .new type"); | 
|  | // Condtional Jumps | 
|  | case Hexagon::JMP_t: | 
|  | case Hexagon::JMP_f: | 
|  | return getDotNewPredJumpOp(MI, MBPI); | 
|  |  | 
|  | case Hexagon::JMPR_t: | 
|  | return Hexagon::JMPR_tnew_tV3; | 
|  |  | 
|  | case Hexagon::JMPR_f: | 
|  | return Hexagon::JMPR_fnew_tV3; | 
|  |  | 
|  | case Hexagon::JMPret_t: | 
|  | return Hexagon::JMPret_tnew_tV3; | 
|  |  | 
|  | case Hexagon::JMPret_f: | 
|  | return Hexagon::JMPret_fnew_tV3; | 
|  |  | 
|  |  | 
|  | // Conditional combine | 
|  | case Hexagon::COMBINE_rr_cPt : | 
|  | return Hexagon::COMBINE_rr_cdnPt; | 
|  | case Hexagon::COMBINE_rr_cNotPt : | 
|  | return Hexagon::COMBINE_rr_cdnNotPt; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); | 
|  | } | 
|  |  | 
|  | /// immediateExtend - Changes the instruction in place to one using an immediate | 
|  | /// extender. | 
|  | void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { | 
|  | assert((isExtendable(MI)||isConstExtended(MI)) && | 
|  | "Instruction must be extendable"); | 
|  | // Find which operand is extendable. | 
|  | short ExtOpNum = getCExtOpNum(MI); | 
|  | MachineOperand &MO = MI->getOperand(ExtOpNum); | 
|  | // This needs to be something we understand. | 
|  | assert((MO.isMBB() || MO.isImm()) && | 
|  | "Branch with unknown extendable field type"); | 
|  | // Mark given operand as extended. | 
|  | MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); | 
|  | } | 
|  |  | 
|  | DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( | 
|  | const TargetSubtargetInfo &STI) const { | 
|  | const InstrItineraryData *II = STI.getInstrItineraryData(); | 
|  | return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Debug info is never a scheduling boundary. It's necessary to be explicit | 
|  | // due to the special treatment of IT instructions below, otherwise a | 
|  | // dbg_value followed by an IT will result in the IT instruction being | 
|  | // considered a scheduling hazard, which is wrong. It should be the actual | 
|  | // instruction preceding the dbg_value instruction(s), just like it is | 
|  | // when debug info is not present. | 
|  | if (MI->isDebugValue()) | 
|  | return false; | 
|  |  | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const { | 
|  |  | 
|  | // Constant extenders are allowed only for V4 and above. | 
|  | if (!Subtarget.hasV4TOps()) | 
|  | return false; | 
|  |  | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; | 
|  | if (isExtended) // Instruction must be extended. | 
|  | return true; | 
|  |  | 
|  | unsigned isExtendable = (F >> HexagonII::ExtendablePos) | 
|  | & HexagonII::ExtendableMask; | 
|  | if (!isExtendable) | 
|  | return false; | 
|  |  | 
|  | short ExtOpNum = getCExtOpNum(MI); | 
|  | const MachineOperand &MO = MI->getOperand(ExtOpNum); | 
|  | // Use MO operand flags to determine if MO | 
|  | // has the HMOTF_ConstExtended flag set. | 
|  | if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) | 
|  | return true; | 
|  | // If this is a Machine BB address we are talking about, and it is | 
|  | // not marked as extended, say so. | 
|  | if (MO.isMBB()) | 
|  | return false; | 
|  |  | 
|  | // We could be using an instruction with an extendable immediate and shoehorn | 
|  | // a global address into it. If it is a global address it will be constant | 
|  | // extended. We do this for COMBINE. | 
|  | // We currently only handle isGlobal() because it is the only kind of | 
|  | // object we are going to end up with here for now. | 
|  | // In the future we probably should add isSymbol(), etc. | 
|  | if (MO.isGlobal() || MO.isSymbol()) | 
|  | return true; | 
|  |  | 
|  | // If the extendable operand is not 'Immediate' type, the instruction should | 
|  | // have 'isExtended' flag set. | 
|  | assert(MO.isImm() && "Extendable operand must be Immediate type"); | 
|  |  | 
|  | int MinValue = getMinValue(MI); | 
|  | int MaxValue = getMaxValue(MI); | 
|  | int ImmValue = MO.getImm(); | 
|  |  | 
|  | return (ImmValue < MinValue || ImmValue > MaxValue); | 
|  | } | 
|  |  | 
|  | // Returns the opcode to use when converting MI, which is a conditional jump, | 
|  | // into a conditional instruction which uses the .new value of the predicate. | 
|  | // We also use branch probabilities to add a hint to the jump. | 
|  | int | 
|  | HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, | 
|  | const | 
|  | MachineBranchProbabilityInfo *MBPI) const { | 
|  |  | 
|  | // We assume that block can have at most two successors. | 
|  | bool taken = false; | 
|  | MachineBasicBlock *Src = MI->getParent(); | 
|  | MachineOperand *BrTarget = &MI->getOperand(1); | 
|  | MachineBasicBlock *Dst = BrTarget->getMBB(); | 
|  |  | 
|  | const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); | 
|  | if (Prediction >= BranchProbability(1,2)) | 
|  | taken = true; | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | case Hexagon::JMP_t: | 
|  | return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt; | 
|  | case Hexagon::JMP_f: | 
|  | return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Unexpected jump instruction."); | 
|  | } | 
|  | } | 
|  | // Returns true if a particular operand is extendable for an instruction. | 
|  | bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, | 
|  | unsigned short OperandNum) const { | 
|  | // Constant extenders are allowed only for V4 and above. | 
|  | if (!Subtarget.hasV4TOps()) | 
|  | return false; | 
|  |  | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  |  | 
|  | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) | 
|  | == OperandNum; | 
|  | } | 
|  |  | 
|  | // Returns Operand Index for the constant extended instruction. | 
|  | unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); | 
|  | } | 
|  |  | 
|  | // Returns the min value that doesn't need to be extended. | 
|  | int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | 
|  | & HexagonII::ExtentSignedMask; | 
|  | unsigned bits =  (F >> HexagonII::ExtentBitsPos) | 
|  | & HexagonII::ExtentBitsMask; | 
|  |  | 
|  | if (isSigned) // if value is signed | 
|  | return -1U << (bits - 1); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns the max value that doesn't need to be extended. | 
|  | int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { | 
|  | const uint64_t F = MI->getDesc().TSFlags; | 
|  | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | 
|  | & HexagonII::ExtentSignedMask; | 
|  | unsigned bits =  (F >> HexagonII::ExtentBitsPos) | 
|  | & HexagonII::ExtentBitsMask; | 
|  |  | 
|  | if (isSigned) // if value is signed | 
|  | return ~(-1U << (bits - 1)); | 
|  | else | 
|  | return ~(-1U << bits); | 
|  | } | 
|  |  | 
|  | // Returns true if an instruction can be converted into a non-extended | 
|  | // equivalent instruction. | 
|  | bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { | 
|  |  | 
|  | short NonExtOpcode; | 
|  | // Check if the instruction has a register form that uses register in place | 
|  | // of the extended operand, if so return that as the non-extended form. | 
|  | if (Hexagon::getRegForm(MI->getOpcode()) >= 0) | 
|  | return true; | 
|  |  | 
|  | if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { | 
|  | // Check addressing mode and retrieve non-ext equivalent instruction. | 
|  |  | 
|  | switch (getAddrMode(MI)) { | 
|  | case HexagonII::Absolute : | 
|  | // Load/store with absolute addressing mode can be converted into | 
|  | // base+offset mode. | 
|  | NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); | 
|  | break; | 
|  | case HexagonII::BaseImmOffset : | 
|  | // Load/store with base+offset addressing mode can be converted into | 
|  | // base+register offset addressing mode. However left shift operand should | 
|  | // be set to 0. | 
|  | NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | if (NonExtOpcode < 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns opcode of the non-extended equivalent instruction. | 
|  | short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { | 
|  |  | 
|  | // Check if the instruction has a register form that uses register in place | 
|  | // of the extended operand, if so return that as the non-extended form. | 
|  | short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); | 
|  | if (NonExtOpcode >= 0) | 
|  | return NonExtOpcode; | 
|  |  | 
|  | if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { | 
|  | // Check addressing mode and retrieve non-ext equivalent instruction. | 
|  | switch (getAddrMode(MI)) { | 
|  | case HexagonII::Absolute : | 
|  | return Hexagon::getBasedWithImmOffset(MI->getOpcode()); | 
|  | case HexagonII::BaseImmOffset : | 
|  | return Hexagon::getBaseWithRegOffset(MI->getOpcode()); | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { | 
|  | return (Opcode == Hexagon::JMP_t) || | 
|  | (Opcode == Hexagon::JMP_f) || | 
|  | (Opcode == Hexagon::JMP_tnew_t) || | 
|  | (Opcode == Hexagon::JMP_fnew_t) || | 
|  | (Opcode == Hexagon::JMP_tnew_nt) || | 
|  | (Opcode == Hexagon::JMP_fnew_nt); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const { | 
|  | return (Opcode == Hexagon::JMP_f) || | 
|  | (Opcode == Hexagon::JMP_fnew_t) || | 
|  | (Opcode == Hexagon::JMP_fnew_nt); | 
|  | } |