|  | //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This is the internal per-function state used for llvm translation. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H | 
|  | #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H | 
|  |  | 
|  | #include "CGBuilder.h" | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CGLoopInfo.h" | 
|  | #include "CGValue.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "CodeGenPGO.h" | 
|  | #include "EHScopeStack.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/ExprOpenMP.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/Basic/ABI.h" | 
|  | #include "clang/Basic/CapturedStmt.h" | 
|  | #include "clang/Basic/OpenMPKinds.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Frontend/CodeGenOptions.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Transforms/Utils/SanitizerStats.h" | 
|  |  | 
|  | namespace llvm { | 
|  | class BasicBlock; | 
|  | class LLVMContext; | 
|  | class MDNode; | 
|  | class Module; | 
|  | class SwitchInst; | 
|  | class Twine; | 
|  | class Value; | 
|  | class CallSite; | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  | class ASTContext; | 
|  | class BlockDecl; | 
|  | class CXXDestructorDecl; | 
|  | class CXXForRangeStmt; | 
|  | class CXXTryStmt; | 
|  | class Decl; | 
|  | class LabelDecl; | 
|  | class EnumConstantDecl; | 
|  | class FunctionDecl; | 
|  | class FunctionProtoType; | 
|  | class LabelStmt; | 
|  | class ObjCContainerDecl; | 
|  | class ObjCInterfaceDecl; | 
|  | class ObjCIvarDecl; | 
|  | class ObjCMethodDecl; | 
|  | class ObjCImplementationDecl; | 
|  | class ObjCPropertyImplDecl; | 
|  | class TargetInfo; | 
|  | class VarDecl; | 
|  | class ObjCForCollectionStmt; | 
|  | class ObjCAtTryStmt; | 
|  | class ObjCAtThrowStmt; | 
|  | class ObjCAtSynchronizedStmt; | 
|  | class ObjCAutoreleasePoolStmt; | 
|  |  | 
|  | namespace CodeGen { | 
|  | class CodeGenTypes; | 
|  | class CGFunctionInfo; | 
|  | class CGRecordLayout; | 
|  | class CGBlockInfo; | 
|  | class CGCXXABI; | 
|  | class BlockByrefHelpers; | 
|  | class BlockByrefInfo; | 
|  | class BlockFlags; | 
|  | class BlockFieldFlags; | 
|  | class RegionCodeGenTy; | 
|  | class TargetCodeGenInfo; | 
|  | struct OMPTaskDataTy; | 
|  | struct CGCoroData; | 
|  |  | 
|  | /// The kind of evaluation to perform on values of a particular | 
|  | /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or | 
|  | /// CGExprAgg? | 
|  | /// | 
|  | /// TODO: should vectors maybe be split out into their own thing? | 
|  | enum TypeEvaluationKind { | 
|  | TEK_Scalar, | 
|  | TEK_Complex, | 
|  | TEK_Aggregate | 
|  | }; | 
|  |  | 
|  | /// CodeGenFunction - This class organizes the per-function state that is used | 
|  | /// while generating LLVM code. | 
|  | class CodeGenFunction : public CodeGenTypeCache { | 
|  | CodeGenFunction(const CodeGenFunction &) = delete; | 
|  | void operator=(const CodeGenFunction &) = delete; | 
|  |  | 
|  | friend class CGCXXABI; | 
|  | public: | 
|  | /// A jump destination is an abstract label, branching to which may | 
|  | /// require a jump out through normal cleanups. | 
|  | struct JumpDest { | 
|  | JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} | 
|  | JumpDest(llvm::BasicBlock *Block, | 
|  | EHScopeStack::stable_iterator Depth, | 
|  | unsigned Index) | 
|  | : Block(Block), ScopeDepth(Depth), Index(Index) {} | 
|  |  | 
|  | bool isValid() const { return Block != nullptr; } | 
|  | llvm::BasicBlock *getBlock() const { return Block; } | 
|  | EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } | 
|  | unsigned getDestIndex() const { return Index; } | 
|  |  | 
|  | // This should be used cautiously. | 
|  | void setScopeDepth(EHScopeStack::stable_iterator depth) { | 
|  | ScopeDepth = depth; | 
|  | } | 
|  |  | 
|  | private: | 
|  | llvm::BasicBlock *Block; | 
|  | EHScopeStack::stable_iterator ScopeDepth; | 
|  | unsigned Index; | 
|  | }; | 
|  |  | 
|  | CodeGenModule &CGM;  // Per-module state. | 
|  | const TargetInfo &Target; | 
|  |  | 
|  | typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; | 
|  | LoopInfoStack LoopStack; | 
|  | CGBuilderTy Builder; | 
|  |  | 
|  | /// \brief CGBuilder insert helper. This function is called after an | 
|  | /// instruction is created using Builder. | 
|  | void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, | 
|  | llvm::BasicBlock *BB, | 
|  | llvm::BasicBlock::iterator InsertPt) const; | 
|  |  | 
|  | /// CurFuncDecl - Holds the Decl for the current outermost | 
|  | /// non-closure context. | 
|  | const Decl *CurFuncDecl; | 
|  | /// CurCodeDecl - This is the inner-most code context, which includes blocks. | 
|  | const Decl *CurCodeDecl; | 
|  | const CGFunctionInfo *CurFnInfo; | 
|  | QualType FnRetTy; | 
|  | llvm::Function *CurFn; | 
|  |  | 
|  | // Holds coroutine data if the current function is a coroutine. We use a | 
|  | // wrapper to manage its lifetime, so that we don't have to define CGCoroData | 
|  | // in this header. | 
|  | struct CGCoroInfo { | 
|  | std::unique_ptr<CGCoroData> Data; | 
|  | CGCoroInfo(); | 
|  | ~CGCoroInfo(); | 
|  | }; | 
|  | CGCoroInfo CurCoro; | 
|  |  | 
|  | /// CurGD - The GlobalDecl for the current function being compiled. | 
|  | GlobalDecl CurGD; | 
|  |  | 
|  | /// PrologueCleanupDepth - The cleanup depth enclosing all the | 
|  | /// cleanups associated with the parameters. | 
|  | EHScopeStack::stable_iterator PrologueCleanupDepth; | 
|  |  | 
|  | /// ReturnBlock - Unified return block. | 
|  | JumpDest ReturnBlock; | 
|  |  | 
|  | /// ReturnValue - The temporary alloca to hold the return | 
|  | /// value. This is invalid iff the function has no return value. | 
|  | Address ReturnValue; | 
|  |  | 
|  | /// AllocaInsertPoint - This is an instruction in the entry block before which | 
|  | /// we prefer to insert allocas. | 
|  | llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; | 
|  |  | 
|  | /// \brief API for captured statement code generation. | 
|  | class CGCapturedStmtInfo { | 
|  | public: | 
|  | explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) | 
|  | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} | 
|  | explicit CGCapturedStmtInfo(const CapturedStmt &S, | 
|  | CapturedRegionKind K = CR_Default) | 
|  | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { | 
|  |  | 
|  | RecordDecl::field_iterator Field = | 
|  | S.getCapturedRecordDecl()->field_begin(); | 
|  | for (CapturedStmt::const_capture_iterator I = S.capture_begin(), | 
|  | E = S.capture_end(); | 
|  | I != E; ++I, ++Field) { | 
|  | if (I->capturesThis()) | 
|  | CXXThisFieldDecl = *Field; | 
|  | else if (I->capturesVariable()) | 
|  | CaptureFields[I->getCapturedVar()] = *Field; | 
|  | else if (I->capturesVariableByCopy()) | 
|  | CaptureFields[I->getCapturedVar()] = *Field; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual ~CGCapturedStmtInfo(); | 
|  |  | 
|  | CapturedRegionKind getKind() const { return Kind; } | 
|  |  | 
|  | virtual void setContextValue(llvm::Value *V) { ThisValue = V; } | 
|  | // \brief Retrieve the value of the context parameter. | 
|  | virtual llvm::Value *getContextValue() const { return ThisValue; } | 
|  |  | 
|  | /// \brief Lookup the captured field decl for a variable. | 
|  | virtual const FieldDecl *lookup(const VarDecl *VD) const { | 
|  | return CaptureFields.lookup(VD); | 
|  | } | 
|  |  | 
|  | bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } | 
|  | virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } | 
|  |  | 
|  | static bool classof(const CGCapturedStmtInfo *) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Emit the captured statement body. | 
|  | virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { | 
|  | CGF.incrementProfileCounter(S); | 
|  | CGF.EmitStmt(S); | 
|  | } | 
|  |  | 
|  | /// \brief Get the name of the capture helper. | 
|  | virtual StringRef getHelperName() const { return "__captured_stmt"; } | 
|  |  | 
|  | private: | 
|  | /// \brief The kind of captured statement being generated. | 
|  | CapturedRegionKind Kind; | 
|  |  | 
|  | /// \brief Keep the map between VarDecl and FieldDecl. | 
|  | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; | 
|  |  | 
|  | /// \brief The base address of the captured record, passed in as the first | 
|  | /// argument of the parallel region function. | 
|  | llvm::Value *ThisValue; | 
|  |  | 
|  | /// \brief Captured 'this' type. | 
|  | FieldDecl *CXXThisFieldDecl; | 
|  | }; | 
|  | CGCapturedStmtInfo *CapturedStmtInfo; | 
|  |  | 
|  | /// \brief RAII for correct setting/restoring of CapturedStmtInfo. | 
|  | class CGCapturedStmtRAII { | 
|  | private: | 
|  | CodeGenFunction &CGF; | 
|  | CGCapturedStmtInfo *PrevCapturedStmtInfo; | 
|  | public: | 
|  | CGCapturedStmtRAII(CodeGenFunction &CGF, | 
|  | CGCapturedStmtInfo *NewCapturedStmtInfo) | 
|  | : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { | 
|  | CGF.CapturedStmtInfo = NewCapturedStmtInfo; | 
|  | } | 
|  | ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } | 
|  | }; | 
|  |  | 
|  | /// \brief Sanitizers enabled for this function. | 
|  | SanitizerSet SanOpts; | 
|  |  | 
|  | /// \brief True if CodeGen currently emits code implementing sanitizer checks. | 
|  | bool IsSanitizerScope; | 
|  |  | 
|  | /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. | 
|  | class SanitizerScope { | 
|  | CodeGenFunction *CGF; | 
|  | public: | 
|  | SanitizerScope(CodeGenFunction *CGF); | 
|  | ~SanitizerScope(); | 
|  | }; | 
|  |  | 
|  | /// In C++, whether we are code generating a thunk.  This controls whether we | 
|  | /// should emit cleanups. | 
|  | bool CurFuncIsThunk; | 
|  |  | 
|  | /// In ARC, whether we should autorelease the return value. | 
|  | bool AutoreleaseResult; | 
|  |  | 
|  | /// Whether we processed a Microsoft-style asm block during CodeGen. These can | 
|  | /// potentially set the return value. | 
|  | bool SawAsmBlock; | 
|  |  | 
|  | const FunctionDecl *CurSEHParent = nullptr; | 
|  |  | 
|  | /// True if the current function is an outlined SEH helper. This can be a | 
|  | /// finally block or filter expression. | 
|  | bool IsOutlinedSEHHelper; | 
|  |  | 
|  | const CodeGen::CGBlockInfo *BlockInfo; | 
|  | llvm::Value *BlockPointer; | 
|  |  | 
|  | llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; | 
|  | FieldDecl *LambdaThisCaptureField; | 
|  |  | 
|  | /// \brief A mapping from NRVO variables to the flags used to indicate | 
|  | /// when the NRVO has been applied to this variable. | 
|  | llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; | 
|  |  | 
|  | EHScopeStack EHStack; | 
|  | llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; | 
|  | llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; | 
|  |  | 
|  | llvm::Instruction *CurrentFuncletPad = nullptr; | 
|  |  | 
|  | class CallLifetimeEnd final : public EHScopeStack::Cleanup { | 
|  | llvm::Value *Addr; | 
|  | llvm::Value *Size; | 
|  |  | 
|  | public: | 
|  | CallLifetimeEnd(Address addr, llvm::Value *size) | 
|  | : Addr(addr.getPointer()), Size(size) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | CGF.EmitLifetimeEnd(Size, Addr); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Header for data within LifetimeExtendedCleanupStack. | 
|  | struct LifetimeExtendedCleanupHeader { | 
|  | /// The size of the following cleanup object. | 
|  | unsigned Size; | 
|  | /// The kind of cleanup to push: a value from the CleanupKind enumeration. | 
|  | CleanupKind Kind; | 
|  |  | 
|  | size_t getSize() const { return Size; } | 
|  | CleanupKind getKind() const { return Kind; } | 
|  | }; | 
|  |  | 
|  | /// i32s containing the indexes of the cleanup destinations. | 
|  | llvm::AllocaInst *NormalCleanupDest; | 
|  |  | 
|  | unsigned NextCleanupDestIndex; | 
|  |  | 
|  | /// FirstBlockInfo - The head of a singly-linked-list of block layouts. | 
|  | CGBlockInfo *FirstBlockInfo; | 
|  |  | 
|  | /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. | 
|  | llvm::BasicBlock *EHResumeBlock; | 
|  |  | 
|  | /// The exception slot.  All landing pads write the current exception pointer | 
|  | /// into this alloca. | 
|  | llvm::Value *ExceptionSlot; | 
|  |  | 
|  | /// The selector slot.  Under the MandatoryCleanup model, all landing pads | 
|  | /// write the current selector value into this alloca. | 
|  | llvm::AllocaInst *EHSelectorSlot; | 
|  |  | 
|  | /// A stack of exception code slots. Entering an __except block pushes a slot | 
|  | /// on the stack and leaving pops one. The __exception_code() intrinsic loads | 
|  | /// a value from the top of the stack. | 
|  | SmallVector<Address, 1> SEHCodeSlotStack; | 
|  |  | 
|  | /// Value returned by __exception_info intrinsic. | 
|  | llvm::Value *SEHInfo = nullptr; | 
|  |  | 
|  | /// Emits a landing pad for the current EH stack. | 
|  | llvm::BasicBlock *EmitLandingPad(); | 
|  |  | 
|  | llvm::BasicBlock *getInvokeDestImpl(); | 
|  |  | 
|  | template <class T> | 
|  | typename DominatingValue<T>::saved_type saveValueInCond(T value) { | 
|  | return DominatingValue<T>::save(*this, value); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// ObjCEHValueStack - Stack of Objective-C exception values, used for | 
|  | /// rethrows. | 
|  | SmallVector<llvm::Value*, 8> ObjCEHValueStack; | 
|  |  | 
|  | /// A class controlling the emission of a finally block. | 
|  | class FinallyInfo { | 
|  | /// Where the catchall's edge through the cleanup should go. | 
|  | JumpDest RethrowDest; | 
|  |  | 
|  | /// A function to call to enter the catch. | 
|  | llvm::Constant *BeginCatchFn; | 
|  |  | 
|  | /// An i1 variable indicating whether or not the @finally is | 
|  | /// running for an exception. | 
|  | llvm::AllocaInst *ForEHVar; | 
|  |  | 
|  | /// An i8* variable into which the exception pointer to rethrow | 
|  | /// has been saved. | 
|  | llvm::AllocaInst *SavedExnVar; | 
|  |  | 
|  | public: | 
|  | void enter(CodeGenFunction &CGF, const Stmt *Finally, | 
|  | llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, | 
|  | llvm::Constant *rethrowFn); | 
|  | void exit(CodeGenFunction &CGF); | 
|  | }; | 
|  |  | 
|  | /// Returns true inside SEH __try blocks. | 
|  | bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } | 
|  |  | 
|  | /// Returns true while emitting a cleanuppad. | 
|  | bool isCleanupPadScope() const { | 
|  | return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); | 
|  | } | 
|  |  | 
|  | /// pushFullExprCleanup - Push a cleanup to be run at the end of the | 
|  | /// current full-expression.  Safe against the possibility that | 
|  | /// we're currently inside a conditionally-evaluated expression. | 
|  | template <class T, class... As> | 
|  | void pushFullExprCleanup(CleanupKind kind, As... A) { | 
|  | // If we're not in a conditional branch, or if none of the | 
|  | // arguments requires saving, then use the unconditional cleanup. | 
|  | if (!isInConditionalBranch()) | 
|  | return EHStack.pushCleanup<T>(kind, A...); | 
|  |  | 
|  | // Stash values in a tuple so we can guarantee the order of saves. | 
|  | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; | 
|  | SavedTuple Saved{saveValueInCond(A)...}; | 
|  |  | 
|  | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; | 
|  | EHStack.pushCleanupTuple<CleanupType>(kind, Saved); | 
|  | initFullExprCleanup(); | 
|  | } | 
|  |  | 
|  | /// \brief Queue a cleanup to be pushed after finishing the current | 
|  | /// full-expression. | 
|  | template <class T, class... As> | 
|  | void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { | 
|  | assert(!isInConditionalBranch() && "can't defer conditional cleanup"); | 
|  |  | 
|  | LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; | 
|  |  | 
|  | size_t OldSize = LifetimeExtendedCleanupStack.size(); | 
|  | LifetimeExtendedCleanupStack.resize( | 
|  | LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); | 
|  |  | 
|  | static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, | 
|  | "Cleanup will be allocated on misaligned address"); | 
|  | char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; | 
|  | new (Buffer) LifetimeExtendedCleanupHeader(Header); | 
|  | new (Buffer + sizeof(Header)) T(A...); | 
|  | } | 
|  |  | 
|  | /// Set up the last cleaup that was pushed as a conditional | 
|  | /// full-expression cleanup. | 
|  | void initFullExprCleanup(); | 
|  |  | 
|  | /// PushDestructorCleanup - Push a cleanup to call the | 
|  | /// complete-object destructor of an object of the given type at the | 
|  | /// given address.  Does nothing if T is not a C++ class type with a | 
|  | /// non-trivial destructor. | 
|  | void PushDestructorCleanup(QualType T, Address Addr); | 
|  |  | 
|  | /// PushDestructorCleanup - Push a cleanup to call the | 
|  | /// complete-object variant of the given destructor on the object at | 
|  | /// the given address. | 
|  | void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); | 
|  |  | 
|  | /// PopCleanupBlock - Will pop the cleanup entry on the stack and | 
|  | /// process all branch fixups. | 
|  | void PopCleanupBlock(bool FallThroughIsBranchThrough = false); | 
|  |  | 
|  | /// DeactivateCleanupBlock - Deactivates the given cleanup block. | 
|  | /// The block cannot be reactivated.  Pops it if it's the top of the | 
|  | /// stack. | 
|  | /// | 
|  | /// \param DominatingIP - An instruction which is known to | 
|  | ///   dominate the current IP (if set) and which lies along | 
|  | ///   all paths of execution between the current IP and the | 
|  | ///   the point at which the cleanup comes into scope. | 
|  | void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, | 
|  | llvm::Instruction *DominatingIP); | 
|  |  | 
|  | /// ActivateCleanupBlock - Activates an initially-inactive cleanup. | 
|  | /// Cannot be used to resurrect a deactivated cleanup. | 
|  | /// | 
|  | /// \param DominatingIP - An instruction which is known to | 
|  | ///   dominate the current IP (if set) and which lies along | 
|  | ///   all paths of execution between the current IP and the | 
|  | ///   the point at which the cleanup comes into scope. | 
|  | void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, | 
|  | llvm::Instruction *DominatingIP); | 
|  |  | 
|  | /// \brief Enters a new scope for capturing cleanups, all of which | 
|  | /// will be executed once the scope is exited. | 
|  | class RunCleanupsScope { | 
|  | EHScopeStack::stable_iterator CleanupStackDepth; | 
|  | size_t LifetimeExtendedCleanupStackSize; | 
|  | bool OldDidCallStackSave; | 
|  | protected: | 
|  | bool PerformCleanup; | 
|  | private: | 
|  |  | 
|  | RunCleanupsScope(const RunCleanupsScope &) = delete; | 
|  | void operator=(const RunCleanupsScope &) = delete; | 
|  |  | 
|  | protected: | 
|  | CodeGenFunction& CGF; | 
|  |  | 
|  | public: | 
|  | /// \brief Enter a new cleanup scope. | 
|  | explicit RunCleanupsScope(CodeGenFunction &CGF) | 
|  | : PerformCleanup(true), CGF(CGF) | 
|  | { | 
|  | CleanupStackDepth = CGF.EHStack.stable_begin(); | 
|  | LifetimeExtendedCleanupStackSize = | 
|  | CGF.LifetimeExtendedCleanupStack.size(); | 
|  | OldDidCallStackSave = CGF.DidCallStackSave; | 
|  | CGF.DidCallStackSave = false; | 
|  | } | 
|  |  | 
|  | /// \brief Exit this cleanup scope, emitting any accumulated | 
|  | /// cleanups. | 
|  | ~RunCleanupsScope() { | 
|  | if (PerformCleanup) { | 
|  | CGF.DidCallStackSave = OldDidCallStackSave; | 
|  | CGF.PopCleanupBlocks(CleanupStackDepth, | 
|  | LifetimeExtendedCleanupStackSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether this scope requires any cleanups. | 
|  | bool requiresCleanups() const { | 
|  | return CGF.EHStack.stable_begin() != CleanupStackDepth; | 
|  | } | 
|  |  | 
|  | /// \brief Force the emission of cleanups now, instead of waiting | 
|  | /// until this object is destroyed. | 
|  | void ForceCleanup() { | 
|  | assert(PerformCleanup && "Already forced cleanup"); | 
|  | CGF.DidCallStackSave = OldDidCallStackSave; | 
|  | CGF.PopCleanupBlocks(CleanupStackDepth, | 
|  | LifetimeExtendedCleanupStackSize); | 
|  | PerformCleanup = false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class LexicalScope : public RunCleanupsScope { | 
|  | SourceRange Range; | 
|  | SmallVector<const LabelDecl*, 4> Labels; | 
|  | LexicalScope *ParentScope; | 
|  |  | 
|  | LexicalScope(const LexicalScope &) = delete; | 
|  | void operator=(const LexicalScope &) = delete; | 
|  |  | 
|  | public: | 
|  | /// \brief Enter a new cleanup scope. | 
|  | explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) | 
|  | : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { | 
|  | CGF.CurLexicalScope = this; | 
|  | if (CGDebugInfo *DI = CGF.getDebugInfo()) | 
|  | DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); | 
|  | } | 
|  |  | 
|  | void addLabel(const LabelDecl *label) { | 
|  | assert(PerformCleanup && "adding label to dead scope?"); | 
|  | Labels.push_back(label); | 
|  | } | 
|  |  | 
|  | /// \brief Exit this cleanup scope, emitting any accumulated | 
|  | /// cleanups. | 
|  | ~LexicalScope() { | 
|  | if (CGDebugInfo *DI = CGF.getDebugInfo()) | 
|  | DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); | 
|  |  | 
|  | // If we should perform a cleanup, force them now.  Note that | 
|  | // this ends the cleanup scope before rescoping any labels. | 
|  | if (PerformCleanup) { | 
|  | ApplyDebugLocation DL(CGF, Range.getEnd()); | 
|  | ForceCleanup(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Force the emission of cleanups now, instead of waiting | 
|  | /// until this object is destroyed. | 
|  | void ForceCleanup() { | 
|  | CGF.CurLexicalScope = ParentScope; | 
|  | RunCleanupsScope::ForceCleanup(); | 
|  |  | 
|  | if (!Labels.empty()) | 
|  | rescopeLabels(); | 
|  | } | 
|  |  | 
|  | void rescopeLabels(); | 
|  | }; | 
|  |  | 
|  | typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; | 
|  |  | 
|  | /// \brief The scope used to remap some variables as private in the OpenMP | 
|  | /// loop body (or other captured region emitted without outlining), and to | 
|  | /// restore old vars back on exit. | 
|  | class OMPPrivateScope : public RunCleanupsScope { | 
|  | DeclMapTy SavedLocals; | 
|  | DeclMapTy SavedPrivates; | 
|  |  | 
|  | private: | 
|  | OMPPrivateScope(const OMPPrivateScope &) = delete; | 
|  | void operator=(const OMPPrivateScope &) = delete; | 
|  |  | 
|  | public: | 
|  | /// \brief Enter a new OpenMP private scope. | 
|  | explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} | 
|  |  | 
|  | /// \brief Registers \a LocalVD variable as a private and apply \a | 
|  | /// PrivateGen function for it to generate corresponding private variable. | 
|  | /// \a PrivateGen returns an address of the generated private variable. | 
|  | /// \return true if the variable is registered as private, false if it has | 
|  | /// been privatized already. | 
|  | bool | 
|  | addPrivate(const VarDecl *LocalVD, | 
|  | llvm::function_ref<Address()> PrivateGen) { | 
|  | assert(PerformCleanup && "adding private to dead scope"); | 
|  |  | 
|  | // Only save it once. | 
|  | if (SavedLocals.count(LocalVD)) return false; | 
|  |  | 
|  | // Copy the existing local entry to SavedLocals. | 
|  | auto it = CGF.LocalDeclMap.find(LocalVD); | 
|  | if (it != CGF.LocalDeclMap.end()) { | 
|  | SavedLocals.insert({LocalVD, it->second}); | 
|  | } else { | 
|  | SavedLocals.insert({LocalVD, Address::invalid()}); | 
|  | } | 
|  |  | 
|  | // Generate the private entry. | 
|  | Address Addr = PrivateGen(); | 
|  | QualType VarTy = LocalVD->getType(); | 
|  | if (VarTy->isReferenceType()) { | 
|  | Address Temp = CGF.CreateMemTemp(VarTy); | 
|  | CGF.Builder.CreateStore(Addr.getPointer(), Temp); | 
|  | Addr = Temp; | 
|  | } | 
|  | SavedPrivates.insert({LocalVD, Addr}); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Privatizes local variables previously registered as private. | 
|  | /// Registration is separate from the actual privatization to allow | 
|  | /// initializers use values of the original variables, not the private one. | 
|  | /// This is important, for example, if the private variable is a class | 
|  | /// variable initialized by a constructor that references other private | 
|  | /// variables. But at initialization original variables must be used, not | 
|  | /// private copies. | 
|  | /// \return true if at least one variable was privatized, false otherwise. | 
|  | bool Privatize() { | 
|  | copyInto(SavedPrivates, CGF.LocalDeclMap); | 
|  | SavedPrivates.clear(); | 
|  | return !SavedLocals.empty(); | 
|  | } | 
|  |  | 
|  | void ForceCleanup() { | 
|  | RunCleanupsScope::ForceCleanup(); | 
|  | copyInto(SavedLocals, CGF.LocalDeclMap); | 
|  | SavedLocals.clear(); | 
|  | } | 
|  |  | 
|  | /// \brief Exit scope - all the mapped variables are restored. | 
|  | ~OMPPrivateScope() { | 
|  | if (PerformCleanup) | 
|  | ForceCleanup(); | 
|  | } | 
|  |  | 
|  | /// Checks if the global variable is captured in current function. | 
|  | bool isGlobalVarCaptured(const VarDecl *VD) const { | 
|  | return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Copy all the entries in the source map over the corresponding | 
|  | /// entries in the destination, which must exist. | 
|  | static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { | 
|  | for (auto &pair : src) { | 
|  | if (!pair.second.isValid()) { | 
|  | dest.erase(pair.first); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto it = dest.find(pair.first); | 
|  | if (it != dest.end()) { | 
|  | it->second = pair.second; | 
|  | } else { | 
|  | dest.insert(pair); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Takes the old cleanup stack size and emits the cleanup blocks | 
|  | /// that have been added. | 
|  | void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); | 
|  |  | 
|  | /// \brief Takes the old cleanup stack size and emits the cleanup blocks | 
|  | /// that have been added, then adds all lifetime-extended cleanups from | 
|  | /// the given position to the stack. | 
|  | void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, | 
|  | size_t OldLifetimeExtendedStackSize); | 
|  |  | 
|  | void ResolveBranchFixups(llvm::BasicBlock *Target); | 
|  |  | 
|  | /// The given basic block lies in the current EH scope, but may be a | 
|  | /// target of a potentially scope-crossing jump; get a stable handle | 
|  | /// to which we can perform this jump later. | 
|  | JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { | 
|  | return JumpDest(Target, | 
|  | EHStack.getInnermostNormalCleanup(), | 
|  | NextCleanupDestIndex++); | 
|  | } | 
|  |  | 
|  | /// The given basic block lies in the current EH scope, but may be a | 
|  | /// target of a potentially scope-crossing jump; get a stable handle | 
|  | /// to which we can perform this jump later. | 
|  | JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { | 
|  | return getJumpDestInCurrentScope(createBasicBlock(Name)); | 
|  | } | 
|  |  | 
|  | /// EmitBranchThroughCleanup - Emit a branch from the current insert | 
|  | /// block through the normal cleanup handling code (if any) and then | 
|  | /// on to \arg Dest. | 
|  | void EmitBranchThroughCleanup(JumpDest Dest); | 
|  |  | 
|  | /// isObviouslyBranchWithoutCleanups - Return true if a branch to the | 
|  | /// specified destination obviously has no cleanups to run.  'false' is always | 
|  | /// a conservatively correct answer for this method. | 
|  | bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; | 
|  |  | 
|  | /// popCatchScope - Pops the catch scope at the top of the EHScope | 
|  | /// stack, emitting any required code (other than the catch handlers | 
|  | /// themselves). | 
|  | void popCatchScope(); | 
|  |  | 
|  | llvm::BasicBlock *getEHResumeBlock(bool isCleanup); | 
|  | llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); | 
|  | llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); | 
|  |  | 
|  | /// An object to manage conditionally-evaluated expressions. | 
|  | class ConditionalEvaluation { | 
|  | llvm::BasicBlock *StartBB; | 
|  |  | 
|  | public: | 
|  | ConditionalEvaluation(CodeGenFunction &CGF) | 
|  | : StartBB(CGF.Builder.GetInsertBlock()) {} | 
|  |  | 
|  | void begin(CodeGenFunction &CGF) { | 
|  | assert(CGF.OutermostConditional != this); | 
|  | if (!CGF.OutermostConditional) | 
|  | CGF.OutermostConditional = this; | 
|  | } | 
|  |  | 
|  | void end(CodeGenFunction &CGF) { | 
|  | assert(CGF.OutermostConditional != nullptr); | 
|  | if (CGF.OutermostConditional == this) | 
|  | CGF.OutermostConditional = nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns a block which will be executed prior to each | 
|  | /// evaluation of the conditional code. | 
|  | llvm::BasicBlock *getStartingBlock() const { | 
|  | return StartBB; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// isInConditionalBranch - Return true if we're currently emitting | 
|  | /// one branch or the other of a conditional expression. | 
|  | bool isInConditionalBranch() const { return OutermostConditional != nullptr; } | 
|  |  | 
|  | void setBeforeOutermostConditional(llvm::Value *value, Address addr) { | 
|  | assert(isInConditionalBranch()); | 
|  | llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); | 
|  | auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); | 
|  | store->setAlignment(addr.getAlignment().getQuantity()); | 
|  | } | 
|  |  | 
|  | /// An RAII object to record that we're evaluating a statement | 
|  | /// expression. | 
|  | class StmtExprEvaluation { | 
|  | CodeGenFunction &CGF; | 
|  |  | 
|  | /// We have to save the outermost conditional: cleanups in a | 
|  | /// statement expression aren't conditional just because the | 
|  | /// StmtExpr is. | 
|  | ConditionalEvaluation *SavedOutermostConditional; | 
|  |  | 
|  | public: | 
|  | StmtExprEvaluation(CodeGenFunction &CGF) | 
|  | : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { | 
|  | CGF.OutermostConditional = nullptr; | 
|  | } | 
|  |  | 
|  | ~StmtExprEvaluation() { | 
|  | CGF.OutermostConditional = SavedOutermostConditional; | 
|  | CGF.EnsureInsertPoint(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// An object which temporarily prevents a value from being | 
|  | /// destroyed by aggressive peephole optimizations that assume that | 
|  | /// all uses of a value have been realized in the IR. | 
|  | class PeepholeProtection { | 
|  | llvm::Instruction *Inst; | 
|  | friend class CodeGenFunction; | 
|  |  | 
|  | public: | 
|  | PeepholeProtection() : Inst(nullptr) {} | 
|  | }; | 
|  |  | 
|  | /// A non-RAII class containing all the information about a bound | 
|  | /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for | 
|  | /// this which makes individual mappings very simple; using this | 
|  | /// class directly is useful when you have a variable number of | 
|  | /// opaque values or don't want the RAII functionality for some | 
|  | /// reason. | 
|  | class OpaqueValueMappingData { | 
|  | const OpaqueValueExpr *OpaqueValue; | 
|  | bool BoundLValue; | 
|  | CodeGenFunction::PeepholeProtection Protection; | 
|  |  | 
|  | OpaqueValueMappingData(const OpaqueValueExpr *ov, | 
|  | bool boundLValue) | 
|  | : OpaqueValue(ov), BoundLValue(boundLValue) {} | 
|  | public: | 
|  | OpaqueValueMappingData() : OpaqueValue(nullptr) {} | 
|  |  | 
|  | static bool shouldBindAsLValue(const Expr *expr) { | 
|  | // gl-values should be bound as l-values for obvious reasons. | 
|  | // Records should be bound as l-values because IR generation | 
|  | // always keeps them in memory.  Expressions of function type | 
|  | // act exactly like l-values but are formally required to be | 
|  | // r-values in C. | 
|  | return expr->isGLValue() || | 
|  | expr->getType()->isFunctionType() || | 
|  | hasAggregateEvaluationKind(expr->getType()); | 
|  | } | 
|  |  | 
|  | static OpaqueValueMappingData bind(CodeGenFunction &CGF, | 
|  | const OpaqueValueExpr *ov, | 
|  | const Expr *e) { | 
|  | if (shouldBindAsLValue(ov)) | 
|  | return bind(CGF, ov, CGF.EmitLValue(e)); | 
|  | return bind(CGF, ov, CGF.EmitAnyExpr(e)); | 
|  | } | 
|  |  | 
|  | static OpaqueValueMappingData bind(CodeGenFunction &CGF, | 
|  | const OpaqueValueExpr *ov, | 
|  | const LValue &lv) { | 
|  | assert(shouldBindAsLValue(ov)); | 
|  | CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); | 
|  | return OpaqueValueMappingData(ov, true); | 
|  | } | 
|  |  | 
|  | static OpaqueValueMappingData bind(CodeGenFunction &CGF, | 
|  | const OpaqueValueExpr *ov, | 
|  | const RValue &rv) { | 
|  | assert(!shouldBindAsLValue(ov)); | 
|  | CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); | 
|  |  | 
|  | OpaqueValueMappingData data(ov, false); | 
|  |  | 
|  | // Work around an extremely aggressive peephole optimization in | 
|  | // EmitScalarConversion which assumes that all other uses of a | 
|  | // value are extant. | 
|  | data.Protection = CGF.protectFromPeepholes(rv); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | bool isValid() const { return OpaqueValue != nullptr; } | 
|  | void clear() { OpaqueValue = nullptr; } | 
|  |  | 
|  | void unbind(CodeGenFunction &CGF) { | 
|  | assert(OpaqueValue && "no data to unbind!"); | 
|  |  | 
|  | if (BoundLValue) { | 
|  | CGF.OpaqueLValues.erase(OpaqueValue); | 
|  | } else { | 
|  | CGF.OpaqueRValues.erase(OpaqueValue); | 
|  | CGF.unprotectFromPeepholes(Protection); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. | 
|  | class OpaqueValueMapping { | 
|  | CodeGenFunction &CGF; | 
|  | OpaqueValueMappingData Data; | 
|  |  | 
|  | public: | 
|  | static bool shouldBindAsLValue(const Expr *expr) { | 
|  | return OpaqueValueMappingData::shouldBindAsLValue(expr); | 
|  | } | 
|  |  | 
|  | /// Build the opaque value mapping for the given conditional | 
|  | /// operator if it's the GNU ?: extension.  This is a common | 
|  | /// enough pattern that the convenience operator is really | 
|  | /// helpful. | 
|  | /// | 
|  | OpaqueValueMapping(CodeGenFunction &CGF, | 
|  | const AbstractConditionalOperator *op) : CGF(CGF) { | 
|  | if (isa<ConditionalOperator>(op)) | 
|  | // Leave Data empty. | 
|  | return; | 
|  |  | 
|  | const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); | 
|  | Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), | 
|  | e->getCommon()); | 
|  | } | 
|  |  | 
|  | OpaqueValueMapping(CodeGenFunction &CGF, | 
|  | const OpaqueValueExpr *opaqueValue, | 
|  | LValue lvalue) | 
|  | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { | 
|  | } | 
|  |  | 
|  | OpaqueValueMapping(CodeGenFunction &CGF, | 
|  | const OpaqueValueExpr *opaqueValue, | 
|  | RValue rvalue) | 
|  | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { | 
|  | } | 
|  |  | 
|  | void pop() { | 
|  | Data.unbind(CGF); | 
|  | Data.clear(); | 
|  | } | 
|  |  | 
|  | ~OpaqueValueMapping() { | 
|  | if (Data.isValid()) Data.unbind(CGF); | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | CGDebugInfo *DebugInfo; | 
|  | bool DisableDebugInfo; | 
|  |  | 
|  | /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid | 
|  | /// calling llvm.stacksave for multiple VLAs in the same scope. | 
|  | bool DidCallStackSave; | 
|  |  | 
|  | /// IndirectBranch - The first time an indirect goto is seen we create a block | 
|  | /// with an indirect branch.  Every time we see the address of a label taken, | 
|  | /// we add the label to the indirect goto.  Every subsequent indirect goto is | 
|  | /// codegen'd as a jump to the IndirectBranch's basic block. | 
|  | llvm::IndirectBrInst *IndirectBranch; | 
|  |  | 
|  | /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C | 
|  | /// decls. | 
|  | DeclMapTy LocalDeclMap; | 
|  |  | 
|  | /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this | 
|  | /// will contain a mapping from said ParmVarDecl to its implicit "object_size" | 
|  | /// parameter. | 
|  | llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> | 
|  | SizeArguments; | 
|  |  | 
|  | /// Track escaped local variables with auto storage. Used during SEH | 
|  | /// outlining to produce a call to llvm.localescape. | 
|  | llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; | 
|  |  | 
|  | /// LabelMap - This keeps track of the LLVM basic block for each C label. | 
|  | llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; | 
|  |  | 
|  | // BreakContinueStack - This keeps track of where break and continue | 
|  | // statements should jump to. | 
|  | struct BreakContinue { | 
|  | BreakContinue(JumpDest Break, JumpDest Continue) | 
|  | : BreakBlock(Break), ContinueBlock(Continue) {} | 
|  |  | 
|  | JumpDest BreakBlock; | 
|  | JumpDest ContinueBlock; | 
|  | }; | 
|  | SmallVector<BreakContinue, 8> BreakContinueStack; | 
|  |  | 
|  | CodeGenPGO PGO; | 
|  |  | 
|  | /// Calculate branch weights appropriate for PGO data | 
|  | llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); | 
|  | llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); | 
|  | llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, | 
|  | uint64_t LoopCount); | 
|  |  | 
|  | public: | 
|  | /// Increment the profiler's counter for the given statement. | 
|  | void incrementProfileCounter(const Stmt *S) { | 
|  | if (CGM.getCodeGenOpts().hasProfileClangInstr()) | 
|  | PGO.emitCounterIncrement(Builder, S); | 
|  | PGO.setCurrentStmt(S); | 
|  | } | 
|  |  | 
|  | /// Get the profiler's count for the given statement. | 
|  | uint64_t getProfileCount(const Stmt *S) { | 
|  | Optional<uint64_t> Count = PGO.getStmtCount(S); | 
|  | if (!Count.hasValue()) | 
|  | return 0; | 
|  | return *Count; | 
|  | } | 
|  |  | 
|  | /// Set the profiler's current count. | 
|  | void setCurrentProfileCount(uint64_t Count) { | 
|  | PGO.setCurrentRegionCount(Count); | 
|  | } | 
|  |  | 
|  | /// Get the profiler's current count. This is generally the count for the most | 
|  | /// recently incremented counter. | 
|  | uint64_t getCurrentProfileCount() { | 
|  | return PGO.getCurrentRegionCount(); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// SwitchInsn - This is nearest current switch instruction. It is null if | 
|  | /// current context is not in a switch. | 
|  | llvm::SwitchInst *SwitchInsn; | 
|  | /// The branch weights of SwitchInsn when doing instrumentation based PGO. | 
|  | SmallVector<uint64_t, 16> *SwitchWeights; | 
|  |  | 
|  | /// CaseRangeBlock - This block holds if condition check for last case | 
|  | /// statement range in current switch instruction. | 
|  | llvm::BasicBlock *CaseRangeBlock; | 
|  |  | 
|  | /// OpaqueLValues - Keeps track of the current set of opaque value | 
|  | /// expressions. | 
|  | llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; | 
|  | llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; | 
|  |  | 
|  | // VLASizeMap - This keeps track of the associated size for each VLA type. | 
|  | // We track this by the size expression rather than the type itself because | 
|  | // in certain situations, like a const qualifier applied to an VLA typedef, | 
|  | // multiple VLA types can share the same size expression. | 
|  | // FIXME: Maybe this could be a stack of maps that is pushed/popped as we | 
|  | // enter/leave scopes. | 
|  | llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; | 
|  |  | 
|  | /// A block containing a single 'unreachable' instruction.  Created | 
|  | /// lazily by getUnreachableBlock(). | 
|  | llvm::BasicBlock *UnreachableBlock; | 
|  |  | 
|  | /// Counts of the number return expressions in the function. | 
|  | unsigned NumReturnExprs; | 
|  |  | 
|  | /// Count the number of simple (constant) return expressions in the function. | 
|  | unsigned NumSimpleReturnExprs; | 
|  |  | 
|  | /// The last regular (non-return) debug location (breakpoint) in the function. | 
|  | SourceLocation LastStopPoint; | 
|  |  | 
|  | public: | 
|  | /// A scope within which we are constructing the fields of an object which | 
|  | /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use | 
|  | /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. | 
|  | class FieldConstructionScope { | 
|  | public: | 
|  | FieldConstructionScope(CodeGenFunction &CGF, Address This) | 
|  | : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { | 
|  | CGF.CXXDefaultInitExprThis = This; | 
|  | } | 
|  | ~FieldConstructionScope() { | 
|  | CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; | 
|  | } | 
|  |  | 
|  | private: | 
|  | CodeGenFunction &CGF; | 
|  | Address OldCXXDefaultInitExprThis; | 
|  | }; | 
|  |  | 
|  | /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' | 
|  | /// is overridden to be the object under construction. | 
|  | class CXXDefaultInitExprScope { | 
|  | public: | 
|  | CXXDefaultInitExprScope(CodeGenFunction &CGF) | 
|  | : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), | 
|  | OldCXXThisAlignment(CGF.CXXThisAlignment) { | 
|  | CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); | 
|  | CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); | 
|  | } | 
|  | ~CXXDefaultInitExprScope() { | 
|  | CGF.CXXThisValue = OldCXXThisValue; | 
|  | CGF.CXXThisAlignment = OldCXXThisAlignment; | 
|  | } | 
|  |  | 
|  | public: | 
|  | CodeGenFunction &CGF; | 
|  | llvm::Value *OldCXXThisValue; | 
|  | CharUnits OldCXXThisAlignment; | 
|  | }; | 
|  |  | 
|  | class InlinedInheritingConstructorScope { | 
|  | public: | 
|  | InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) | 
|  | : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), | 
|  | OldCurCodeDecl(CGF.CurCodeDecl), | 
|  | OldCXXABIThisDecl(CGF.CXXABIThisDecl), | 
|  | OldCXXABIThisValue(CGF.CXXABIThisValue), | 
|  | OldCXXThisValue(CGF.CXXThisValue), | 
|  | OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), | 
|  | OldCXXThisAlignment(CGF.CXXThisAlignment), | 
|  | OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), | 
|  | OldCXXInheritedCtorInitExprArgs( | 
|  | std::move(CGF.CXXInheritedCtorInitExprArgs)) { | 
|  | CGF.CurGD = GD; | 
|  | CGF.CurFuncDecl = CGF.CurCodeDecl = | 
|  | cast<CXXConstructorDecl>(GD.getDecl()); | 
|  | CGF.CXXABIThisDecl = nullptr; | 
|  | CGF.CXXABIThisValue = nullptr; | 
|  | CGF.CXXThisValue = nullptr; | 
|  | CGF.CXXABIThisAlignment = CharUnits(); | 
|  | CGF.CXXThisAlignment = CharUnits(); | 
|  | CGF.ReturnValue = Address::invalid(); | 
|  | CGF.FnRetTy = QualType(); | 
|  | CGF.CXXInheritedCtorInitExprArgs.clear(); | 
|  | } | 
|  | ~InlinedInheritingConstructorScope() { | 
|  | CGF.CurGD = OldCurGD; | 
|  | CGF.CurFuncDecl = OldCurFuncDecl; | 
|  | CGF.CurCodeDecl = OldCurCodeDecl; | 
|  | CGF.CXXABIThisDecl = OldCXXABIThisDecl; | 
|  | CGF.CXXABIThisValue = OldCXXABIThisValue; | 
|  | CGF.CXXThisValue = OldCXXThisValue; | 
|  | CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; | 
|  | CGF.CXXThisAlignment = OldCXXThisAlignment; | 
|  | CGF.ReturnValue = OldReturnValue; | 
|  | CGF.FnRetTy = OldFnRetTy; | 
|  | CGF.CXXInheritedCtorInitExprArgs = | 
|  | std::move(OldCXXInheritedCtorInitExprArgs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | CodeGenFunction &CGF; | 
|  | GlobalDecl OldCurGD; | 
|  | const Decl *OldCurFuncDecl; | 
|  | const Decl *OldCurCodeDecl; | 
|  | ImplicitParamDecl *OldCXXABIThisDecl; | 
|  | llvm::Value *OldCXXABIThisValue; | 
|  | llvm::Value *OldCXXThisValue; | 
|  | CharUnits OldCXXABIThisAlignment; | 
|  | CharUnits OldCXXThisAlignment; | 
|  | Address OldReturnValue; | 
|  | QualType OldFnRetTy; | 
|  | CallArgList OldCXXInheritedCtorInitExprArgs; | 
|  | }; | 
|  |  | 
|  | private: | 
|  | /// CXXThisDecl - When generating code for a C++ member function, | 
|  | /// this will hold the implicit 'this' declaration. | 
|  | ImplicitParamDecl *CXXABIThisDecl; | 
|  | llvm::Value *CXXABIThisValue; | 
|  | llvm::Value *CXXThisValue; | 
|  | CharUnits CXXABIThisAlignment; | 
|  | CharUnits CXXThisAlignment; | 
|  |  | 
|  | /// The value of 'this' to use when evaluating CXXDefaultInitExprs within | 
|  | /// this expression. | 
|  | Address CXXDefaultInitExprThis = Address::invalid(); | 
|  |  | 
|  | /// The values of function arguments to use when evaluating | 
|  | /// CXXInheritedCtorInitExprs within this context. | 
|  | CallArgList CXXInheritedCtorInitExprArgs; | 
|  |  | 
|  | /// CXXStructorImplicitParamDecl - When generating code for a constructor or | 
|  | /// destructor, this will hold the implicit argument (e.g. VTT). | 
|  | ImplicitParamDecl *CXXStructorImplicitParamDecl; | 
|  | llvm::Value *CXXStructorImplicitParamValue; | 
|  |  | 
|  | /// OutermostConditional - Points to the outermost active | 
|  | /// conditional control.  This is used so that we know if a | 
|  | /// temporary should be destroyed conditionally. | 
|  | ConditionalEvaluation *OutermostConditional; | 
|  |  | 
|  | /// The current lexical scope. | 
|  | LexicalScope *CurLexicalScope; | 
|  |  | 
|  | /// The current source location that should be used for exception | 
|  | /// handling code. | 
|  | SourceLocation CurEHLocation; | 
|  |  | 
|  | /// BlockByrefInfos - For each __block variable, contains | 
|  | /// information about the layout of the variable. | 
|  | llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; | 
|  |  | 
|  | llvm::BasicBlock *TerminateLandingPad; | 
|  | llvm::BasicBlock *TerminateHandler; | 
|  | llvm::BasicBlock *TrapBB; | 
|  |  | 
|  | /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. | 
|  | /// In the kernel metadata node, reference the kernel function and metadata | 
|  | /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): | 
|  | /// - A node for the vec_type_hint(<type>) qualifier contains string | 
|  | ///   "vec_type_hint", an undefined value of the <type> data type, | 
|  | ///   and a Boolean that is true if the <type> is integer and signed. | 
|  | /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string | 
|  | ///   "work_group_size_hint", and three 32-bit integers X, Y and Z. | 
|  | /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string | 
|  | ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z. | 
|  | void EmitOpenCLKernelMetadata(const FunctionDecl *FD, | 
|  | llvm::Function *Fn); | 
|  |  | 
|  | public: | 
|  | CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); | 
|  | ~CodeGenFunction(); | 
|  |  | 
|  | CodeGenTypes &getTypes() const { return CGM.getTypes(); } | 
|  | ASTContext &getContext() const { return CGM.getContext(); } | 
|  | CGDebugInfo *getDebugInfo() { | 
|  | if (DisableDebugInfo) | 
|  | return nullptr; | 
|  | return DebugInfo; | 
|  | } | 
|  | void disableDebugInfo() { DisableDebugInfo = true; } | 
|  | void enableDebugInfo() { DisableDebugInfo = false; } | 
|  |  | 
|  | bool shouldUseFusedARCCalls() { | 
|  | return CGM.getCodeGenOpts().OptimizationLevel == 0; | 
|  | } | 
|  |  | 
|  | const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } | 
|  |  | 
|  | /// Returns a pointer to the function's exception object and selector slot, | 
|  | /// which is assigned in every landing pad. | 
|  | Address getExceptionSlot(); | 
|  | Address getEHSelectorSlot(); | 
|  |  | 
|  | /// Returns the contents of the function's exception object and selector | 
|  | /// slots. | 
|  | llvm::Value *getExceptionFromSlot(); | 
|  | llvm::Value *getSelectorFromSlot(); | 
|  |  | 
|  | Address getNormalCleanupDestSlot(); | 
|  |  | 
|  | llvm::BasicBlock *getUnreachableBlock() { | 
|  | if (!UnreachableBlock) { | 
|  | UnreachableBlock = createBasicBlock("unreachable"); | 
|  | new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); | 
|  | } | 
|  | return UnreachableBlock; | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *getInvokeDest() { | 
|  | if (!EHStack.requiresLandingPad()) return nullptr; | 
|  | return getInvokeDestImpl(); | 
|  | } | 
|  |  | 
|  | bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } | 
|  |  | 
|  | const TargetInfo &getTarget() const { return Target; } | 
|  | llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                                  Cleanups | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); | 
|  |  | 
|  | void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, | 
|  | Address arrayEndPointer, | 
|  | QualType elementType, | 
|  | CharUnits elementAlignment, | 
|  | Destroyer *destroyer); | 
|  | void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, | 
|  | llvm::Value *arrayEnd, | 
|  | QualType elementType, | 
|  | CharUnits elementAlignment, | 
|  | Destroyer *destroyer); | 
|  |  | 
|  | void pushDestroy(QualType::DestructionKind dtorKind, | 
|  | Address addr, QualType type); | 
|  | void pushEHDestroy(QualType::DestructionKind dtorKind, | 
|  | Address addr, QualType type); | 
|  | void pushDestroy(CleanupKind kind, Address addr, QualType type, | 
|  | Destroyer *destroyer, bool useEHCleanupForArray); | 
|  | void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, | 
|  | QualType type, Destroyer *destroyer, | 
|  | bool useEHCleanupForArray); | 
|  | void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, | 
|  | llvm::Value *CompletePtr, | 
|  | QualType ElementType); | 
|  | void pushStackRestore(CleanupKind kind, Address SPMem); | 
|  | void emitDestroy(Address addr, QualType type, Destroyer *destroyer, | 
|  | bool useEHCleanupForArray); | 
|  | llvm::Function *generateDestroyHelper(Address addr, QualType type, | 
|  | Destroyer *destroyer, | 
|  | bool useEHCleanupForArray, | 
|  | const VarDecl *VD); | 
|  | void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, | 
|  | QualType elementType, CharUnits elementAlign, | 
|  | Destroyer *destroyer, | 
|  | bool checkZeroLength, bool useEHCleanup); | 
|  |  | 
|  | Destroyer *getDestroyer(QualType::DestructionKind destructionKind); | 
|  |  | 
|  | /// Determines whether an EH cleanup is required to destroy a type | 
|  | /// with the given destruction kind. | 
|  | bool needsEHCleanup(QualType::DestructionKind kind) { | 
|  | switch (kind) { | 
|  | case QualType::DK_none: | 
|  | return false; | 
|  | case QualType::DK_cxx_destructor: | 
|  | case QualType::DK_objc_weak_lifetime: | 
|  | return getLangOpts().Exceptions; | 
|  | case QualType::DK_objc_strong_lifetime: | 
|  | return getLangOpts().Exceptions && | 
|  | CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; | 
|  | } | 
|  | llvm_unreachable("bad destruction kind"); | 
|  | } | 
|  |  | 
|  | CleanupKind getCleanupKind(QualType::DestructionKind kind) { | 
|  | return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                                  Objective-C | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | void GenerateObjCMethod(const ObjCMethodDecl *OMD); | 
|  |  | 
|  | void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); | 
|  |  | 
|  | /// GenerateObjCGetter - Synthesize an Objective-C property getter function. | 
|  | void GenerateObjCGetter(ObjCImplementationDecl *IMP, | 
|  | const ObjCPropertyImplDecl *PID); | 
|  | void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, | 
|  | const ObjCPropertyImplDecl *propImpl, | 
|  | const ObjCMethodDecl *GetterMothodDecl, | 
|  | llvm::Constant *AtomicHelperFn); | 
|  |  | 
|  | void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, | 
|  | ObjCMethodDecl *MD, bool ctor); | 
|  |  | 
|  | /// GenerateObjCSetter - Synthesize an Objective-C property setter function | 
|  | /// for the given property. | 
|  | void GenerateObjCSetter(ObjCImplementationDecl *IMP, | 
|  | const ObjCPropertyImplDecl *PID); | 
|  | void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, | 
|  | const ObjCPropertyImplDecl *propImpl, | 
|  | llvm::Constant *AtomicHelperFn); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                                  Block Bits | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | llvm::Value *EmitBlockLiteral(const BlockExpr *); | 
|  | llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); | 
|  | static void destroyBlockInfos(CGBlockInfo *info); | 
|  |  | 
|  | llvm::Function *GenerateBlockFunction(GlobalDecl GD, | 
|  | const CGBlockInfo &Info, | 
|  | const DeclMapTy &ldm, | 
|  | bool IsLambdaConversionToBlock); | 
|  |  | 
|  | llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); | 
|  | llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); | 
|  | llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( | 
|  | const ObjCPropertyImplDecl *PID); | 
|  | llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( | 
|  | const ObjCPropertyImplDecl *PID); | 
|  | llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); | 
|  |  | 
|  | void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); | 
|  |  | 
|  | class AutoVarEmission; | 
|  |  | 
|  | void emitByrefStructureInit(const AutoVarEmission &emission); | 
|  | void enterByrefCleanup(const AutoVarEmission &emission); | 
|  |  | 
|  | void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, | 
|  | llvm::Value *ptr); | 
|  |  | 
|  | Address LoadBlockStruct(); | 
|  | Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); | 
|  |  | 
|  | /// BuildBlockByrefAddress - Computes the location of the | 
|  | /// data in a variable which is declared as __block. | 
|  | Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, | 
|  | bool followForward = true); | 
|  | Address emitBlockByrefAddress(Address baseAddr, | 
|  | const BlockByrefInfo &info, | 
|  | bool followForward, | 
|  | const llvm::Twine &name); | 
|  |  | 
|  | const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); | 
|  |  | 
|  | QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); | 
|  |  | 
|  | void GenerateCode(GlobalDecl GD, llvm::Function *Fn, | 
|  | const CGFunctionInfo &FnInfo); | 
|  | /// \brief Emit code for the start of a function. | 
|  | /// \param Loc       The location to be associated with the function. | 
|  | /// \param StartLoc  The location of the function body. | 
|  | void StartFunction(GlobalDecl GD, | 
|  | QualType RetTy, | 
|  | llvm::Function *Fn, | 
|  | const CGFunctionInfo &FnInfo, | 
|  | const FunctionArgList &Args, | 
|  | SourceLocation Loc = SourceLocation(), | 
|  | SourceLocation StartLoc = SourceLocation()); | 
|  |  | 
|  | void EmitConstructorBody(FunctionArgList &Args); | 
|  | void EmitDestructorBody(FunctionArgList &Args); | 
|  | void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); | 
|  | void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); | 
|  | void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); | 
|  |  | 
|  | void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, | 
|  | CallArgList &CallArgs); | 
|  | void EmitLambdaToBlockPointerBody(FunctionArgList &Args); | 
|  | void EmitLambdaBlockInvokeBody(); | 
|  | void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); | 
|  | void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); | 
|  | void EmitAsanPrologueOrEpilogue(bool Prologue); | 
|  |  | 
|  | /// \brief Emit the unified return block, trying to avoid its emission when | 
|  | /// possible. | 
|  | /// \return The debug location of the user written return statement if the | 
|  | /// return block is is avoided. | 
|  | llvm::DebugLoc EmitReturnBlock(); | 
|  |  | 
|  | /// FinishFunction - Complete IR generation of the current function. It is | 
|  | /// legal to call this function even if there is no current insertion point. | 
|  | void FinishFunction(SourceLocation EndLoc=SourceLocation()); | 
|  |  | 
|  | void StartThunk(llvm::Function *Fn, GlobalDecl GD, | 
|  | const CGFunctionInfo &FnInfo); | 
|  |  | 
|  | void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); | 
|  |  | 
|  | void FinishThunk(); | 
|  |  | 
|  | /// Emit a musttail call for a thunk with a potentially adjusted this pointer. | 
|  | void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, | 
|  | llvm::Value *Callee); | 
|  |  | 
|  | /// Generate a thunk for the given method. | 
|  | void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, | 
|  | GlobalDecl GD, const ThunkInfo &Thunk); | 
|  |  | 
|  | llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, | 
|  | const CGFunctionInfo &FnInfo, | 
|  | GlobalDecl GD, const ThunkInfo &Thunk); | 
|  |  | 
|  | void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, | 
|  | FunctionArgList &Args); | 
|  |  | 
|  | void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, | 
|  | ArrayRef<VarDecl *> ArrayIndexes); | 
|  |  | 
|  | /// Struct with all informations about dynamic [sub]class needed to set vptr. | 
|  | struct VPtr { | 
|  | BaseSubobject Base; | 
|  | const CXXRecordDecl *NearestVBase; | 
|  | CharUnits OffsetFromNearestVBase; | 
|  | const CXXRecordDecl *VTableClass; | 
|  | }; | 
|  |  | 
|  | /// Initialize the vtable pointer of the given subobject. | 
|  | void InitializeVTablePointer(const VPtr &vptr); | 
|  |  | 
|  | typedef llvm::SmallVector<VPtr, 4> VPtrsVector; | 
|  |  | 
|  | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; | 
|  | VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); | 
|  |  | 
|  | void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, | 
|  | CharUnits OffsetFromNearestVBase, | 
|  | bool BaseIsNonVirtualPrimaryBase, | 
|  | const CXXRecordDecl *VTableClass, | 
|  | VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); | 
|  |  | 
|  | void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); | 
|  |  | 
|  | /// GetVTablePtr - Return the Value of the vtable pointer member pointed | 
|  | /// to by This. | 
|  | llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, | 
|  | const CXXRecordDecl *VTableClass); | 
|  |  | 
|  | enum CFITypeCheckKind { | 
|  | CFITCK_VCall, | 
|  | CFITCK_NVCall, | 
|  | CFITCK_DerivedCast, | 
|  | CFITCK_UnrelatedCast, | 
|  | CFITCK_ICall, | 
|  | }; | 
|  |  | 
|  | /// \brief Derived is the presumed address of an object of type T after a | 
|  | /// cast. If T is a polymorphic class type, emit a check that the virtual | 
|  | /// table for Derived belongs to a class derived from T. | 
|  | void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, | 
|  | bool MayBeNull, CFITypeCheckKind TCK, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. | 
|  | /// If vptr CFI is enabled, emit a check that VTable is valid. | 
|  | void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, | 
|  | CFITypeCheckKind TCK, SourceLocation Loc); | 
|  |  | 
|  | /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for | 
|  | /// RD using llvm.type.test. | 
|  | void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, | 
|  | CFITypeCheckKind TCK, SourceLocation Loc); | 
|  |  | 
|  | /// If whole-program virtual table optimization is enabled, emit an assumption | 
|  | /// that VTable is a member of RD's type identifier. Or, if vptr CFI is | 
|  | /// enabled, emit a check that VTable is a member of RD's type identifier. | 
|  | void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, | 
|  | llvm::Value *VTable, SourceLocation Loc); | 
|  |  | 
|  | /// Returns whether we should perform a type checked load when loading a | 
|  | /// virtual function for virtual calls to members of RD. This is generally | 
|  | /// true when both vcall CFI and whole-program-vtables are enabled. | 
|  | bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); | 
|  |  | 
|  | /// Emit a type checked load from the given vtable. | 
|  | llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, | 
|  | uint64_t VTableByteOffset); | 
|  |  | 
|  | /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given | 
|  | /// expr can be devirtualized. | 
|  | bool CanDevirtualizeMemberFunctionCall(const Expr *Base, | 
|  | const CXXMethodDecl *MD); | 
|  |  | 
|  | /// EnterDtorCleanups - Enter the cleanups necessary to complete the | 
|  | /// given phase of destruction for a destructor.  The end result | 
|  | /// should call destructors on members and base classes in reverse | 
|  | /// order of their construction. | 
|  | void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); | 
|  |  | 
|  | /// ShouldInstrumentFunction - Return true if the current function should be | 
|  | /// instrumented with __cyg_profile_func_* calls | 
|  | bool ShouldInstrumentFunction(); | 
|  |  | 
|  | /// ShouldXRayInstrument - Return true if the current function should be | 
|  | /// instrumented with XRay nop sleds. | 
|  | bool ShouldXRayInstrumentFunction() const; | 
|  |  | 
|  | /// EmitFunctionInstrumentation - Emit LLVM code to call the specified | 
|  | /// instrumentation function with the current function and the call site, if | 
|  | /// function instrumentation is enabled. | 
|  | void EmitFunctionInstrumentation(const char *Fn); | 
|  |  | 
|  | /// EmitMCountInstrumentation - Emit call to .mcount. | 
|  | void EmitMCountInstrumentation(); | 
|  |  | 
|  | /// EmitFunctionProlog - Emit the target specific LLVM code to load the | 
|  | /// arguments for the given function. This is also responsible for naming the | 
|  | /// LLVM function arguments. | 
|  | void EmitFunctionProlog(const CGFunctionInfo &FI, | 
|  | llvm::Function *Fn, | 
|  | const FunctionArgList &Args); | 
|  |  | 
|  | /// EmitFunctionEpilog - Emit the target specific LLVM code to return the | 
|  | /// given temporary. | 
|  | void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, | 
|  | SourceLocation EndLoc); | 
|  |  | 
|  | /// EmitStartEHSpec - Emit the start of the exception spec. | 
|  | void EmitStartEHSpec(const Decl *D); | 
|  |  | 
|  | /// EmitEndEHSpec - Emit the end of the exception spec. | 
|  | void EmitEndEHSpec(const Decl *D); | 
|  |  | 
|  | /// getTerminateLandingPad - Return a landing pad that just calls terminate. | 
|  | llvm::BasicBlock *getTerminateLandingPad(); | 
|  |  | 
|  | /// getTerminateHandler - Return a handler (not a landing pad, just | 
|  | /// a catch handler) that just calls terminate.  This is used when | 
|  | /// a terminate scope encloses a try. | 
|  | llvm::BasicBlock *getTerminateHandler(); | 
|  |  | 
|  | llvm::Type *ConvertTypeForMem(QualType T); | 
|  | llvm::Type *ConvertType(QualType T); | 
|  | llvm::Type *ConvertType(const TypeDecl *T) { | 
|  | return ConvertType(getContext().getTypeDeclType(T)); | 
|  | } | 
|  |  | 
|  | /// LoadObjCSelf - Load the value of self. This function is only valid while | 
|  | /// generating code for an Objective-C method. | 
|  | llvm::Value *LoadObjCSelf(); | 
|  |  | 
|  | /// TypeOfSelfObject - Return type of object that this self represents. | 
|  | QualType TypeOfSelfObject(); | 
|  |  | 
|  | /// hasAggregateLLVMType - Return true if the specified AST type will map into | 
|  | /// an aggregate LLVM type or is void. | 
|  | static TypeEvaluationKind getEvaluationKind(QualType T); | 
|  |  | 
|  | static bool hasScalarEvaluationKind(QualType T) { | 
|  | return getEvaluationKind(T) == TEK_Scalar; | 
|  | } | 
|  |  | 
|  | static bool hasAggregateEvaluationKind(QualType T) { | 
|  | return getEvaluationKind(T) == TEK_Aggregate; | 
|  | } | 
|  |  | 
|  | /// createBasicBlock - Create an LLVM basic block. | 
|  | llvm::BasicBlock *createBasicBlock(const Twine &name = "", | 
|  | llvm::Function *parent = nullptr, | 
|  | llvm::BasicBlock *before = nullptr) { | 
|  | #ifdef NDEBUG | 
|  | return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); | 
|  | #else | 
|  | return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// getBasicBlockForLabel - Return the LLVM basicblock that the specified | 
|  | /// label maps to. | 
|  | JumpDest getJumpDestForLabel(const LabelDecl *S); | 
|  |  | 
|  | /// SimplifyForwardingBlocks - If the given basic block is only a branch to | 
|  | /// another basic block, simplify it. This assumes that no other code could | 
|  | /// potentially reference the basic block. | 
|  | void SimplifyForwardingBlocks(llvm::BasicBlock *BB); | 
|  |  | 
|  | /// EmitBlock - Emit the given block \arg BB and set it as the insert point, | 
|  | /// adding a fall-through branch from the current insert block if | 
|  | /// necessary. It is legal to call this function even if there is no current | 
|  | /// insertion point. | 
|  | /// | 
|  | /// IsFinished - If true, indicates that the caller has finished emitting | 
|  | /// branches to the given block and does not expect to emit code into it. This | 
|  | /// means the block can be ignored if it is unreachable. | 
|  | void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); | 
|  |  | 
|  | /// EmitBlockAfterUses - Emit the given block somewhere hopefully | 
|  | /// near its uses, and leave the insertion point in it. | 
|  | void EmitBlockAfterUses(llvm::BasicBlock *BB); | 
|  |  | 
|  | /// EmitBranch - Emit a branch to the specified basic block from the current | 
|  | /// insert block, taking care to avoid creation of branches from dummy | 
|  | /// blocks. It is legal to call this function even if there is no current | 
|  | /// insertion point. | 
|  | /// | 
|  | /// This function clears the current insertion point. The caller should follow | 
|  | /// calls to this function with calls to Emit*Block prior to generation new | 
|  | /// code. | 
|  | void EmitBranch(llvm::BasicBlock *Block); | 
|  |  | 
|  | /// HaveInsertPoint - True if an insertion point is defined. If not, this | 
|  | /// indicates that the current code being emitted is unreachable. | 
|  | bool HaveInsertPoint() const { | 
|  | return Builder.GetInsertBlock() != nullptr; | 
|  | } | 
|  |  | 
|  | /// EnsureInsertPoint - Ensure that an insertion point is defined so that | 
|  | /// emitted IR has a place to go. Note that by definition, if this function | 
|  | /// creates a block then that block is unreachable; callers may do better to | 
|  | /// detect when no insertion point is defined and simply skip IR generation. | 
|  | void EnsureInsertPoint() { | 
|  | if (!HaveInsertPoint()) | 
|  | EmitBlock(createBasicBlock()); | 
|  | } | 
|  |  | 
|  | /// ErrorUnsupported - Print out an error that codegen doesn't support the | 
|  | /// specified stmt yet. | 
|  | void ErrorUnsupported(const Stmt *S, const char *Type); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                                  Helpers | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | LValue MakeAddrLValue(Address Addr, QualType T, | 
|  | AlignmentSource AlignSource = AlignmentSource::Type) { | 
|  | return LValue::MakeAddr(Addr, T, getContext(), AlignSource, | 
|  | CGM.getTBAAInfo(T)); | 
|  | } | 
|  |  | 
|  | LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, | 
|  | AlignmentSource AlignSource = AlignmentSource::Type) { | 
|  | return LValue::MakeAddr(Address(V, Alignment), T, getContext(), | 
|  | AlignSource, CGM.getTBAAInfo(T)); | 
|  | } | 
|  |  | 
|  | LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); | 
|  | LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); | 
|  | CharUnits getNaturalTypeAlignment(QualType T, | 
|  | AlignmentSource *Source = nullptr, | 
|  | bool forPointeeType = false); | 
|  | CharUnits getNaturalPointeeTypeAlignment(QualType T, | 
|  | AlignmentSource *Source = nullptr); | 
|  |  | 
|  | Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, | 
|  | AlignmentSource *Source = nullptr); | 
|  | LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); | 
|  |  | 
|  | Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, | 
|  | AlignmentSource *Source = nullptr); | 
|  | LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); | 
|  |  | 
|  | /// CreateTempAlloca - This creates a alloca and inserts it into the entry | 
|  | /// block. The caller is responsible for setting an appropriate alignment on | 
|  | /// the alloca. | 
|  | llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, | 
|  | const Twine &Name = "tmp"); | 
|  | Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, | 
|  | const Twine &Name = "tmp"); | 
|  |  | 
|  | /// CreateDefaultAlignedTempAlloca - This creates an alloca with the | 
|  | /// default ABI alignment of the given LLVM type. | 
|  | /// | 
|  | /// IMPORTANT NOTE: This is *not* generally the right alignment for | 
|  | /// any given AST type that happens to have been lowered to the | 
|  | /// given IR type.  This should only ever be used for function-local, | 
|  | /// IR-driven manipulations like saving and restoring a value.  Do | 
|  | /// not hand this address off to arbitrary IRGen routines, and especially | 
|  | /// do not pass it as an argument to a function that might expect a | 
|  | /// properly ABI-aligned value. | 
|  | Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, | 
|  | const Twine &Name = "tmp"); | 
|  |  | 
|  | /// InitTempAlloca - Provide an initial value for the given alloca which | 
|  | /// will be observable at all locations in the function. | 
|  | /// | 
|  | /// The address should be something that was returned from one of | 
|  | /// the CreateTempAlloca or CreateMemTemp routines, and the | 
|  | /// initializer must be valid in the entry block (i.e. it must | 
|  | /// either be a constant or an argument value). | 
|  | void InitTempAlloca(Address Alloca, llvm::Value *Value); | 
|  |  | 
|  | /// CreateIRTemp - Create a temporary IR object of the given type, with | 
|  | /// appropriate alignment. This routine should only be used when an temporary | 
|  | /// value needs to be stored into an alloca (for example, to avoid explicit | 
|  | /// PHI construction), but the type is the IR type, not the type appropriate | 
|  | /// for storing in memory. | 
|  | /// | 
|  | /// That is, this is exactly equivalent to CreateMemTemp, but calling | 
|  | /// ConvertType instead of ConvertTypeForMem. | 
|  | Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); | 
|  |  | 
|  | /// CreateMemTemp - Create a temporary memory object of the given type, with | 
|  | /// appropriate alignment. | 
|  | Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); | 
|  | Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); | 
|  |  | 
|  | /// CreateAggTemp - Create a temporary memory object for the given | 
|  | /// aggregate type. | 
|  | AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { | 
|  | return AggValueSlot::forAddr(CreateMemTemp(T, Name), | 
|  | T.getQualifiers(), | 
|  | AggValueSlot::IsNotDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased); | 
|  | } | 
|  |  | 
|  | /// Emit a cast to void* in the appropriate address space. | 
|  | llvm::Value *EmitCastToVoidPtr(llvm::Value *value); | 
|  |  | 
|  | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified | 
|  | /// expression and compare the result against zero, returning an Int1Ty value. | 
|  | llvm::Value *EvaluateExprAsBool(const Expr *E); | 
|  |  | 
|  | /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. | 
|  | void EmitIgnoredExpr(const Expr *E); | 
|  |  | 
|  | /// EmitAnyExpr - Emit code to compute the specified expression which can have | 
|  | /// any type.  The result is returned as an RValue struct.  If this is an | 
|  | /// aggregate expression, the aggloc/agglocvolatile arguments indicate where | 
|  | /// the result should be returned. | 
|  | /// | 
|  | /// \param ignoreResult True if the resulting value isn't used. | 
|  | RValue EmitAnyExpr(const Expr *E, | 
|  | AggValueSlot aggSlot = AggValueSlot::ignored(), | 
|  | bool ignoreResult = false); | 
|  |  | 
|  | // EmitVAListRef - Emit a "reference" to a va_list; this is either the address | 
|  | // or the value of the expression, depending on how va_list is defined. | 
|  | Address EmitVAListRef(const Expr *E); | 
|  |  | 
|  | /// Emit a "reference" to a __builtin_ms_va_list; this is | 
|  | /// always the value of the expression, because a __builtin_ms_va_list is a | 
|  | /// pointer to a char. | 
|  | Address EmitMSVAListRef(const Expr *E); | 
|  |  | 
|  | /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will | 
|  | /// always be accessible even if no aggregate location is provided. | 
|  | RValue EmitAnyExprToTemp(const Expr *E); | 
|  |  | 
|  | /// EmitAnyExprToMem - Emits the code necessary to evaluate an | 
|  | /// arbitrary expression into the given memory location. | 
|  | void EmitAnyExprToMem(const Expr *E, Address Location, | 
|  | Qualifiers Quals, bool IsInitializer); | 
|  |  | 
|  | void EmitAnyExprToExn(const Expr *E, Address Addr); | 
|  |  | 
|  | /// EmitExprAsInit - Emits the code necessary to initialize a | 
|  | /// location in memory with the given initializer. | 
|  | void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, | 
|  | bool capturedByInit); | 
|  |  | 
|  | /// hasVolatileMember - returns true if aggregate type has a volatile | 
|  | /// member. | 
|  | bool hasVolatileMember(QualType T) { | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); | 
|  | return RD->hasVolatileMember(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | /// EmitAggregateCopy - Emit an aggregate assignment. | 
|  | /// | 
|  | /// The difference to EmitAggregateCopy is that tail padding is not copied. | 
|  | /// This is required for correctness when assigning non-POD structures in C++. | 
|  | void EmitAggregateAssign(Address DestPtr, Address SrcPtr, | 
|  | QualType EltTy) { | 
|  | bool IsVolatile = hasVolatileMember(EltTy); | 
|  | EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); | 
|  | } | 
|  |  | 
|  | void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, | 
|  | QualType DestTy, QualType SrcTy) { | 
|  | EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, | 
|  | /*IsAssignment=*/false); | 
|  | } | 
|  |  | 
|  | /// EmitAggregateCopy - Emit an aggregate copy. | 
|  | /// | 
|  | /// \param isVolatile - True iff either the source or the destination is | 
|  | /// volatile. | 
|  | /// \param isAssignment - If false, allow padding to be copied.  This often | 
|  | /// yields more efficient. | 
|  | void EmitAggregateCopy(Address DestPtr, Address SrcPtr, | 
|  | QualType EltTy, bool isVolatile=false, | 
|  | bool isAssignment = false); | 
|  |  | 
|  | /// GetAddrOfLocalVar - Return the address of a local variable. | 
|  | Address GetAddrOfLocalVar(const VarDecl *VD) { | 
|  | auto it = LocalDeclMap.find(VD); | 
|  | assert(it != LocalDeclMap.end() && | 
|  | "Invalid argument to GetAddrOfLocalVar(), no decl!"); | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | /// getOpaqueLValueMapping - Given an opaque value expression (which | 
|  | /// must be mapped to an l-value), return its mapping. | 
|  | const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { | 
|  | assert(OpaqueValueMapping::shouldBindAsLValue(e)); | 
|  |  | 
|  | llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator | 
|  | it = OpaqueLValues.find(e); | 
|  | assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | /// getOpaqueRValueMapping - Given an opaque value expression (which | 
|  | /// must be mapped to an r-value), return its mapping. | 
|  | const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { | 
|  | assert(!OpaqueValueMapping::shouldBindAsLValue(e)); | 
|  |  | 
|  | llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator | 
|  | it = OpaqueRValues.find(e); | 
|  | assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | /// getAccessedFieldNo - Given an encoded value and a result number, return | 
|  | /// the input field number being accessed. | 
|  | static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); | 
|  |  | 
|  | llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); | 
|  | llvm::BasicBlock *GetIndirectGotoBlock(); | 
|  |  | 
|  | /// EmitNullInitialization - Generate code to set a value of the given type to | 
|  | /// null, If the type contains data member pointers, they will be initialized | 
|  | /// to -1 in accordance with the Itanium C++ ABI. | 
|  | void EmitNullInitialization(Address DestPtr, QualType Ty); | 
|  |  | 
|  | /// Emits a call to an LLVM variable-argument intrinsic, either | 
|  | /// \c llvm.va_start or \c llvm.va_end. | 
|  | /// \param ArgValue A reference to the \c va_list as emitted by either | 
|  | /// \c EmitVAListRef or \c EmitMSVAListRef. | 
|  | /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, | 
|  | /// calls \c llvm.va_end. | 
|  | llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); | 
|  |  | 
|  | /// Generate code to get an argument from the passed in pointer | 
|  | /// and update it accordingly. | 
|  | /// \param VE The \c VAArgExpr for which to generate code. | 
|  | /// \param VAListAddr Receives a reference to the \c va_list as emitted by | 
|  | /// either \c EmitVAListRef or \c EmitMSVAListRef. | 
|  | /// \returns A pointer to the argument. | 
|  | // FIXME: We should be able to get rid of this method and use the va_arg | 
|  | // instruction in LLVM instead once it works well enough. | 
|  | Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); | 
|  |  | 
|  | /// emitArrayLength - Compute the length of an array, even if it's a | 
|  | /// VLA, and drill down to the base element type. | 
|  | llvm::Value *emitArrayLength(const ArrayType *arrayType, | 
|  | QualType &baseType, | 
|  | Address &addr); | 
|  |  | 
|  | /// EmitVLASize - Capture all the sizes for the VLA expressions in | 
|  | /// the given variably-modified type and store them in the VLASizeMap. | 
|  | /// | 
|  | /// This function can be called with a null (unreachable) insert point. | 
|  | void EmitVariablyModifiedType(QualType Ty); | 
|  |  | 
|  | /// getVLASize - Returns an LLVM value that corresponds to the size, | 
|  | /// in non-variably-sized elements, of a variable length array type, | 
|  | /// plus that largest non-variably-sized element type.  Assumes that | 
|  | /// the type has already been emitted with EmitVariablyModifiedType. | 
|  | std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); | 
|  | std::pair<llvm::Value*,QualType> getVLASize(QualType vla); | 
|  |  | 
|  | /// LoadCXXThis - Load the value of 'this'. This function is only valid while | 
|  | /// generating code for an C++ member function. | 
|  | llvm::Value *LoadCXXThis() { | 
|  | assert(CXXThisValue && "no 'this' value for this function"); | 
|  | return CXXThisValue; | 
|  | } | 
|  | Address LoadCXXThisAddress(); | 
|  |  | 
|  | /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have | 
|  | /// virtual bases. | 
|  | // FIXME: Every place that calls LoadCXXVTT is something | 
|  | // that needs to be abstracted properly. | 
|  | llvm::Value *LoadCXXVTT() { | 
|  | assert(CXXStructorImplicitParamValue && "no VTT value for this function"); | 
|  | return CXXStructorImplicitParamValue; | 
|  | } | 
|  |  | 
|  | /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a | 
|  | /// complete class to the given direct base. | 
|  | Address | 
|  | GetAddressOfDirectBaseInCompleteClass(Address Value, | 
|  | const CXXRecordDecl *Derived, | 
|  | const CXXRecordDecl *Base, | 
|  | bool BaseIsVirtual); | 
|  |  | 
|  | static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); | 
|  |  | 
|  | /// GetAddressOfBaseClass - This function will add the necessary delta to the | 
|  | /// load of 'this' and returns address of the base class. | 
|  | Address GetAddressOfBaseClass(Address Value, | 
|  | const CXXRecordDecl *Derived, | 
|  | CastExpr::path_const_iterator PathBegin, | 
|  | CastExpr::path_const_iterator PathEnd, | 
|  | bool NullCheckValue, SourceLocation Loc); | 
|  |  | 
|  | Address GetAddressOfDerivedClass(Address Value, | 
|  | const CXXRecordDecl *Derived, | 
|  | CastExpr::path_const_iterator PathBegin, | 
|  | CastExpr::path_const_iterator PathEnd, | 
|  | bool NullCheckValue); | 
|  |  | 
|  | /// GetVTTParameter - Return the VTT parameter that should be passed to a | 
|  | /// base constructor/destructor with virtual bases. | 
|  | /// FIXME: VTTs are Itanium ABI-specific, so the definition should move | 
|  | /// to ItaniumCXXABI.cpp together with all the references to VTT. | 
|  | llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, | 
|  | bool Delegating); | 
|  |  | 
|  | void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, | 
|  | CXXCtorType CtorType, | 
|  | const FunctionArgList &Args, | 
|  | SourceLocation Loc); | 
|  | // It's important not to confuse this and the previous function. Delegating | 
|  | // constructors are the C++0x feature. The constructor delegate optimization | 
|  | // is used to reduce duplication in the base and complete consturctors where | 
|  | // they are substantially the same. | 
|  | void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, | 
|  | const FunctionArgList &Args); | 
|  |  | 
|  | /// Emit a call to an inheriting constructor (that is, one that invokes a | 
|  | /// constructor inherited from a base class) by inlining its definition. This | 
|  | /// is necessary if the ABI does not support forwarding the arguments to the | 
|  | /// base class constructor (because they're variadic or similar). | 
|  | void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, | 
|  | CXXCtorType CtorType, | 
|  | bool ForVirtualBase, | 
|  | bool Delegating, | 
|  | CallArgList &Args); | 
|  |  | 
|  | /// Emit a call to a constructor inherited from a base class, passing the | 
|  | /// current constructor's arguments along unmodified (without even making | 
|  | /// a copy). | 
|  | void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, | 
|  | bool ForVirtualBase, Address This, | 
|  | bool InheritedFromVBase, | 
|  | const CXXInheritedCtorInitExpr *E); | 
|  |  | 
|  | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, | 
|  | bool ForVirtualBase, bool Delegating, | 
|  | Address This, const CXXConstructExpr *E); | 
|  |  | 
|  | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, | 
|  | bool ForVirtualBase, bool Delegating, | 
|  | Address This, CallArgList &Args); | 
|  |  | 
|  | /// Emit assumption load for all bases. Requires to be be called only on | 
|  | /// most-derived class and not under construction of the object. | 
|  | void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); | 
|  |  | 
|  | /// Emit assumption that vptr load == global vtable. | 
|  | void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); | 
|  |  | 
|  | void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, | 
|  | Address This, Address Src, | 
|  | const CXXConstructExpr *E); | 
|  |  | 
|  | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, | 
|  | const ArrayType *ArrayTy, | 
|  | Address ArrayPtr, | 
|  | const CXXConstructExpr *E, | 
|  | bool ZeroInitialization = false); | 
|  |  | 
|  | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, | 
|  | llvm::Value *NumElements, | 
|  | Address ArrayPtr, | 
|  | const CXXConstructExpr *E, | 
|  | bool ZeroInitialization = false); | 
|  |  | 
|  | static Destroyer destroyCXXObject; | 
|  |  | 
|  | void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, | 
|  | bool ForVirtualBase, bool Delegating, | 
|  | Address This); | 
|  |  | 
|  | void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, | 
|  | llvm::Type *ElementTy, Address NewPtr, | 
|  | llvm::Value *NumElements, | 
|  | llvm::Value *AllocSizeWithoutCookie); | 
|  |  | 
|  | void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, | 
|  | Address Ptr); | 
|  |  | 
|  | llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); | 
|  | void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); | 
|  |  | 
|  | llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); | 
|  | void EmitCXXDeleteExpr(const CXXDeleteExpr *E); | 
|  |  | 
|  | void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, | 
|  | QualType DeleteTy, llvm::Value *NumElements = nullptr, | 
|  | CharUnits CookieSize = CharUnits()); | 
|  |  | 
|  | RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, | 
|  | const Expr *Arg, bool IsDelete); | 
|  |  | 
|  | llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); | 
|  | llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); | 
|  | Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); | 
|  |  | 
|  | /// \brief Situations in which we might emit a check for the suitability of a | 
|  | ///        pointer or glvalue. | 
|  | enum TypeCheckKind { | 
|  | /// Checking the operand of a load. Must be suitably sized and aligned. | 
|  | TCK_Load, | 
|  | /// Checking the destination of a store. Must be suitably sized and aligned. | 
|  | TCK_Store, | 
|  | /// Checking the bound value in a reference binding. Must be suitably sized | 
|  | /// and aligned, but is not required to refer to an object (until the | 
|  | /// reference is used), per core issue 453. | 
|  | TCK_ReferenceBinding, | 
|  | /// Checking the object expression in a non-static data member access. Must | 
|  | /// be an object within its lifetime. | 
|  | TCK_MemberAccess, | 
|  | /// Checking the 'this' pointer for a call to a non-static member function. | 
|  | /// Must be an object within its lifetime. | 
|  | TCK_MemberCall, | 
|  | /// Checking the 'this' pointer for a constructor call. | 
|  | TCK_ConstructorCall, | 
|  | /// Checking the operand of a static_cast to a derived pointer type. Must be | 
|  | /// null or an object within its lifetime. | 
|  | TCK_DowncastPointer, | 
|  | /// Checking the operand of a static_cast to a derived reference type. Must | 
|  | /// be an object within its lifetime. | 
|  | TCK_DowncastReference, | 
|  | /// Checking the operand of a cast to a base object. Must be suitably sized | 
|  | /// and aligned. | 
|  | TCK_Upcast, | 
|  | /// Checking the operand of a cast to a virtual base object. Must be an | 
|  | /// object within its lifetime. | 
|  | TCK_UpcastToVirtualBase | 
|  | }; | 
|  |  | 
|  | /// \brief Whether any type-checking sanitizers are enabled. If \c false, | 
|  | /// calls to EmitTypeCheck can be skipped. | 
|  | bool sanitizePerformTypeCheck() const; | 
|  |  | 
|  | /// \brief Emit a check that \p V is the address of storage of the | 
|  | /// appropriate size and alignment for an object of type \p Type. | 
|  | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, | 
|  | QualType Type, CharUnits Alignment = CharUnits::Zero(), | 
|  | bool SkipNullCheck = false); | 
|  |  | 
|  | /// \brief Emit a check that \p Base points into an array object, which | 
|  | /// we can access at index \p Index. \p Accessed should be \c false if we | 
|  | /// this expression is used as an lvalue, for instance in "&Arr[Idx]". | 
|  | void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, | 
|  | QualType IndexType, bool Accessed); | 
|  |  | 
|  | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre); | 
|  | ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre); | 
|  |  | 
|  | void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, | 
|  | llvm::Value *OffsetValue = nullptr) { | 
|  | Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, | 
|  | OffsetValue); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Declaration Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitDecl - Emit a declaration. | 
|  | /// | 
|  | /// This function can be called with a null (unreachable) insert point. | 
|  | void EmitDecl(const Decl &D); | 
|  |  | 
|  | /// EmitVarDecl - Emit a local variable declaration. | 
|  | /// | 
|  | /// This function can be called with a null (unreachable) insert point. | 
|  | void EmitVarDecl(const VarDecl &D); | 
|  |  | 
|  | void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, | 
|  | bool capturedByInit); | 
|  |  | 
|  | typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, | 
|  | llvm::Value *Address); | 
|  |  | 
|  | /// \brief Determine whether the given initializer is trivial in the sense | 
|  | /// that it requires no code to be generated. | 
|  | bool isTrivialInitializer(const Expr *Init); | 
|  |  | 
|  | /// EmitAutoVarDecl - Emit an auto variable declaration. | 
|  | /// | 
|  | /// This function can be called with a null (unreachable) insert point. | 
|  | void EmitAutoVarDecl(const VarDecl &D); | 
|  |  | 
|  | class AutoVarEmission { | 
|  | friend class CodeGenFunction; | 
|  |  | 
|  | const VarDecl *Variable; | 
|  |  | 
|  | /// The address of the alloca.  Invalid if the variable was emitted | 
|  | /// as a global constant. | 
|  | Address Addr; | 
|  |  | 
|  | llvm::Value *NRVOFlag; | 
|  |  | 
|  | /// True if the variable is a __block variable. | 
|  | bool IsByRef; | 
|  |  | 
|  | /// True if the variable is of aggregate type and has a constant | 
|  | /// initializer. | 
|  | bool IsConstantAggregate; | 
|  |  | 
|  | /// Non-null if we should use lifetime annotations. | 
|  | llvm::Value *SizeForLifetimeMarkers; | 
|  |  | 
|  | struct Invalid {}; | 
|  | AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} | 
|  |  | 
|  | AutoVarEmission(const VarDecl &variable) | 
|  | : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), | 
|  | IsByRef(false), IsConstantAggregate(false), | 
|  | SizeForLifetimeMarkers(nullptr) {} | 
|  |  | 
|  | bool wasEmittedAsGlobal() const { return !Addr.isValid(); } | 
|  |  | 
|  | public: | 
|  | static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } | 
|  |  | 
|  | bool useLifetimeMarkers() const { | 
|  | return SizeForLifetimeMarkers != nullptr; | 
|  | } | 
|  | llvm::Value *getSizeForLifetimeMarkers() const { | 
|  | assert(useLifetimeMarkers()); | 
|  | return SizeForLifetimeMarkers; | 
|  | } | 
|  |  | 
|  | /// Returns the raw, allocated address, which is not necessarily | 
|  | /// the address of the object itself. | 
|  | Address getAllocatedAddress() const { | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | /// Returns the address of the object within this declaration. | 
|  | /// Note that this does not chase the forwarding pointer for | 
|  | /// __block decls. | 
|  | Address getObjectAddress(CodeGenFunction &CGF) const { | 
|  | if (!IsByRef) return Addr; | 
|  |  | 
|  | return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); | 
|  | } | 
|  | }; | 
|  | AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); | 
|  | void EmitAutoVarInit(const AutoVarEmission &emission); | 
|  | void EmitAutoVarCleanups(const AutoVarEmission &emission); | 
|  | void emitAutoVarTypeCleanup(const AutoVarEmission &emission, | 
|  | QualType::DestructionKind dtorKind); | 
|  |  | 
|  | void EmitStaticVarDecl(const VarDecl &D, | 
|  | llvm::GlobalValue::LinkageTypes Linkage); | 
|  |  | 
|  | class ParamValue { | 
|  | llvm::Value *Value; | 
|  | unsigned Alignment; | 
|  | ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} | 
|  | public: | 
|  | static ParamValue forDirect(llvm::Value *value) { | 
|  | return ParamValue(value, 0); | 
|  | } | 
|  | static ParamValue forIndirect(Address addr) { | 
|  | assert(!addr.getAlignment().isZero()); | 
|  | return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); | 
|  | } | 
|  |  | 
|  | bool isIndirect() const { return Alignment != 0; } | 
|  | llvm::Value *getAnyValue() const { return Value; } | 
|  |  | 
|  | llvm::Value *getDirectValue() const { | 
|  | assert(!isIndirect()); | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | Address getIndirectAddress() const { | 
|  | assert(isIndirect()); | 
|  | return Address(Value, CharUnits::fromQuantity(Alignment)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. | 
|  | void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); | 
|  |  | 
|  | /// protectFromPeepholes - Protect a value that we're intending to | 
|  | /// store to the side, but which will probably be used later, from | 
|  | /// aggressive peepholing optimizations that might delete it. | 
|  | /// | 
|  | /// Pass the result to unprotectFromPeepholes to declare that | 
|  | /// protection is no longer required. | 
|  | /// | 
|  | /// There's no particular reason why this shouldn't apply to | 
|  | /// l-values, it's just that no existing peepholes work on pointers. | 
|  | PeepholeProtection protectFromPeepholes(RValue rvalue); | 
|  | void unprotectFromPeepholes(PeepholeProtection protection); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                             Statement Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. | 
|  | void EmitStopPoint(const Stmt *S); | 
|  |  | 
|  | /// EmitStmt - Emit the code for the statement \arg S. It is legal to call | 
|  | /// this function even if there is no current insertion point. | 
|  | /// | 
|  | /// This function may clear the current insertion point; callers should use | 
|  | /// EnsureInsertPoint if they wish to subsequently generate code without first | 
|  | /// calling EmitBlock, EmitBranch, or EmitStmt. | 
|  | void EmitStmt(const Stmt *S); | 
|  |  | 
|  | /// EmitSimpleStmt - Try to emit a "simple" statement which does not | 
|  | /// necessarily require an insertion point or debug information; typically | 
|  | /// because the statement amounts to a jump or a container of other | 
|  | /// statements. | 
|  | /// | 
|  | /// \return True if the statement was handled. | 
|  | bool EmitSimpleStmt(const Stmt *S); | 
|  |  | 
|  | Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, | 
|  | AggValueSlot AVS = AggValueSlot::ignored()); | 
|  | Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, | 
|  | bool GetLast = false, | 
|  | AggValueSlot AVS = | 
|  | AggValueSlot::ignored()); | 
|  |  | 
|  | /// EmitLabel - Emit the block for the given label. It is legal to call this | 
|  | /// function even if there is no current insertion point. | 
|  | void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. | 
|  |  | 
|  | void EmitLabelStmt(const LabelStmt &S); | 
|  | void EmitAttributedStmt(const AttributedStmt &S); | 
|  | void EmitGotoStmt(const GotoStmt &S); | 
|  | void EmitIndirectGotoStmt(const IndirectGotoStmt &S); | 
|  | void EmitIfStmt(const IfStmt &S); | 
|  |  | 
|  | void EmitWhileStmt(const WhileStmt &S, | 
|  | ArrayRef<const Attr *> Attrs = None); | 
|  | void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); | 
|  | void EmitForStmt(const ForStmt &S, | 
|  | ArrayRef<const Attr *> Attrs = None); | 
|  | void EmitReturnStmt(const ReturnStmt &S); | 
|  | void EmitDeclStmt(const DeclStmt &S); | 
|  | void EmitBreakStmt(const BreakStmt &S); | 
|  | void EmitContinueStmt(const ContinueStmt &S); | 
|  | void EmitSwitchStmt(const SwitchStmt &S); | 
|  | void EmitDefaultStmt(const DefaultStmt &S); | 
|  | void EmitCaseStmt(const CaseStmt &S); | 
|  | void EmitCaseStmtRange(const CaseStmt &S); | 
|  | void EmitAsmStmt(const AsmStmt &S); | 
|  |  | 
|  | void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); | 
|  | void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); | 
|  | void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); | 
|  | void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); | 
|  | void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); | 
|  |  | 
|  | RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); | 
|  |  | 
|  | void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); | 
|  | void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); | 
|  |  | 
|  | void EmitCXXTryStmt(const CXXTryStmt &S); | 
|  | void EmitSEHTryStmt(const SEHTryStmt &S); | 
|  | void EmitSEHLeaveStmt(const SEHLeaveStmt &S); | 
|  | void EnterSEHTryStmt(const SEHTryStmt &S); | 
|  | void ExitSEHTryStmt(const SEHTryStmt &S); | 
|  |  | 
|  | void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, | 
|  | const Stmt *OutlinedStmt); | 
|  |  | 
|  | llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, | 
|  | const SEHExceptStmt &Except); | 
|  |  | 
|  | llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, | 
|  | const SEHFinallyStmt &Finally); | 
|  |  | 
|  | void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, | 
|  | llvm::Value *ParentFP, | 
|  | llvm::Value *EntryEBP); | 
|  | llvm::Value *EmitSEHExceptionCode(); | 
|  | llvm::Value *EmitSEHExceptionInfo(); | 
|  | llvm::Value *EmitSEHAbnormalTermination(); | 
|  |  | 
|  | /// Scan the outlined statement for captures from the parent function. For | 
|  | /// each capture, mark the capture as escaped and emit a call to | 
|  | /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. | 
|  | void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, | 
|  | bool IsFilter); | 
|  |  | 
|  | /// Recovers the address of a local in a parent function. ParentVar is the | 
|  | /// address of the variable used in the immediate parent function. It can | 
|  | /// either be an alloca or a call to llvm.localrecover if there are nested | 
|  | /// outlined functions. ParentFP is the frame pointer of the outermost parent | 
|  | /// frame. | 
|  | Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, | 
|  | Address ParentVar, | 
|  | llvm::Value *ParentFP); | 
|  |  | 
|  | void EmitCXXForRangeStmt(const CXXForRangeStmt &S, | 
|  | ArrayRef<const Attr *> Attrs = None); | 
|  |  | 
|  | /// Returns calculated size of the specified type. | 
|  | llvm::Value *getTypeSize(QualType Ty); | 
|  | LValue InitCapturedStruct(const CapturedStmt &S); | 
|  | llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); | 
|  | llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); | 
|  | Address GenerateCapturedStmtArgument(const CapturedStmt &S); | 
|  | llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); | 
|  | void GenerateOpenMPCapturedVars(const CapturedStmt &S, | 
|  | SmallVectorImpl<llvm::Value *> &CapturedVars); | 
|  | void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, | 
|  | SourceLocation Loc); | 
|  | /// \brief Perform element by element copying of arrays with type \a | 
|  | /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure | 
|  | /// generated by \a CopyGen. | 
|  | /// | 
|  | /// \param DestAddr Address of the destination array. | 
|  | /// \param SrcAddr Address of the source array. | 
|  | /// \param OriginalType Type of destination and source arrays. | 
|  | /// \param CopyGen Copying procedure that copies value of single array element | 
|  | /// to another single array element. | 
|  | void EmitOMPAggregateAssign( | 
|  | Address DestAddr, Address SrcAddr, QualType OriginalType, | 
|  | const llvm::function_ref<void(Address, Address)> &CopyGen); | 
|  | /// \brief Emit proper copying of data from one variable to another. | 
|  | /// | 
|  | /// \param OriginalType Original type of the copied variables. | 
|  | /// \param DestAddr Destination address. | 
|  | /// \param SrcAddr Source address. | 
|  | /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has | 
|  | /// type of the base array element). | 
|  | /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of | 
|  | /// the base array element). | 
|  | /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a | 
|  | /// DestVD. | 
|  | void EmitOMPCopy(QualType OriginalType, | 
|  | Address DestAddr, Address SrcAddr, | 
|  | const VarDecl *DestVD, const VarDecl *SrcVD, | 
|  | const Expr *Copy); | 
|  | /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or | 
|  | /// \a X = \a E \a BO \a E. | 
|  | /// | 
|  | /// \param X Value to be updated. | 
|  | /// \param E Update value. | 
|  | /// \param BO Binary operation for update operation. | 
|  | /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update | 
|  | /// expression, false otherwise. | 
|  | /// \param AO Atomic ordering of the generated atomic instructions. | 
|  | /// \param CommonGen Code generator for complex expressions that cannot be | 
|  | /// expressed through atomicrmw instruction. | 
|  | /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was | 
|  | /// generated, <false, RValue::get(nullptr)> otherwise. | 
|  | std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( | 
|  | LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, | 
|  | llvm::AtomicOrdering AO, SourceLocation Loc, | 
|  | const llvm::function_ref<RValue(RValue)> &CommonGen); | 
|  | bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, | 
|  | OMPPrivateScope &PrivateScope); | 
|  | void EmitOMPPrivateClause(const OMPExecutableDirective &D, | 
|  | OMPPrivateScope &PrivateScope); | 
|  | void EmitOMPUseDevicePtrClause( | 
|  | const OMPClause &C, OMPPrivateScope &PrivateScope, | 
|  | const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); | 
|  | /// \brief Emit code for copyin clause in \a D directive. The next code is | 
|  | /// generated at the start of outlined functions for directives: | 
|  | /// \code | 
|  | /// threadprivate_var1 = master_threadprivate_var1; | 
|  | /// operator=(threadprivate_var2, master_threadprivate_var2); | 
|  | /// ... | 
|  | /// __kmpc_barrier(&loc, global_tid); | 
|  | /// \endcode | 
|  | /// | 
|  | /// \param D OpenMP directive possibly with 'copyin' clause(s). | 
|  | /// \returns true if at least one copyin variable is found, false otherwise. | 
|  | bool EmitOMPCopyinClause(const OMPExecutableDirective &D); | 
|  | /// \brief Emit initial code for lastprivate variables. If some variable is | 
|  | /// not also firstprivate, then the default initialization is used. Otherwise | 
|  | /// initialization of this variable is performed by EmitOMPFirstprivateClause | 
|  | /// method. | 
|  | /// | 
|  | /// \param D Directive that may have 'lastprivate' directives. | 
|  | /// \param PrivateScope Private scope for capturing lastprivate variables for | 
|  | /// proper codegen in internal captured statement. | 
|  | /// | 
|  | /// \returns true if there is at least one lastprivate variable, false | 
|  | /// otherwise. | 
|  | bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, | 
|  | OMPPrivateScope &PrivateScope); | 
|  | /// \brief Emit final copying of lastprivate values to original variables at | 
|  | /// the end of the worksharing or simd directive. | 
|  | /// | 
|  | /// \param D Directive that has at least one 'lastprivate' directives. | 
|  | /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if | 
|  | /// it is the last iteration of the loop code in associated directive, or to | 
|  | /// 'i1 false' otherwise. If this item is nullptr, no final check is required. | 
|  | void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, | 
|  | bool NoFinals, | 
|  | llvm::Value *IsLastIterCond = nullptr); | 
|  | /// Emit initial code for linear clauses. | 
|  | void EmitOMPLinearClause(const OMPLoopDirective &D, | 
|  | CodeGenFunction::OMPPrivateScope &PrivateScope); | 
|  | /// Emit final code for linear clauses. | 
|  | /// \param CondGen Optional conditional code for final part of codegen for | 
|  | /// linear clause. | 
|  | void EmitOMPLinearClauseFinal( | 
|  | const OMPLoopDirective &D, | 
|  | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); | 
|  | /// \brief Emit initial code for reduction variables. Creates reduction copies | 
|  | /// and initializes them with the values according to OpenMP standard. | 
|  | /// | 
|  | /// \param D Directive (possibly) with the 'reduction' clause. | 
|  | /// \param PrivateScope Private scope for capturing reduction variables for | 
|  | /// proper codegen in internal captured statement. | 
|  | /// | 
|  | void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, | 
|  | OMPPrivateScope &PrivateScope); | 
|  | /// \brief Emit final update of reduction values to original variables at | 
|  | /// the end of the directive. | 
|  | /// | 
|  | /// \param D Directive that has at least one 'reduction' directives. | 
|  | void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); | 
|  | /// \brief Emit initial code for linear variables. Creates private copies | 
|  | /// and initializes them with the values according to OpenMP standard. | 
|  | /// | 
|  | /// \param D Directive (possibly) with the 'linear' clause. | 
|  | void EmitOMPLinearClauseInit(const OMPLoopDirective &D); | 
|  |  | 
|  | typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, | 
|  | llvm::Value * /*OutlinedFn*/, | 
|  | const OMPTaskDataTy & /*Data*/)> | 
|  | TaskGenTy; | 
|  | void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, | 
|  | const RegionCodeGenTy &BodyGen, | 
|  | const TaskGenTy &TaskGen, OMPTaskDataTy &Data); | 
|  |  | 
|  | void EmitOMPParallelDirective(const OMPParallelDirective &S); | 
|  | void EmitOMPSimdDirective(const OMPSimdDirective &S); | 
|  | void EmitOMPForDirective(const OMPForDirective &S); | 
|  | void EmitOMPForSimdDirective(const OMPForSimdDirective &S); | 
|  | void EmitOMPSectionsDirective(const OMPSectionsDirective &S); | 
|  | void EmitOMPSectionDirective(const OMPSectionDirective &S); | 
|  | void EmitOMPSingleDirective(const OMPSingleDirective &S); | 
|  | void EmitOMPMasterDirective(const OMPMasterDirective &S); | 
|  | void EmitOMPCriticalDirective(const OMPCriticalDirective &S); | 
|  | void EmitOMPParallelForDirective(const OMPParallelForDirective &S); | 
|  | void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); | 
|  | void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); | 
|  | void EmitOMPTaskDirective(const OMPTaskDirective &S); | 
|  | void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); | 
|  | void EmitOMPBarrierDirective(const OMPBarrierDirective &S); | 
|  | void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); | 
|  | void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); | 
|  | void EmitOMPFlushDirective(const OMPFlushDirective &S); | 
|  | void EmitOMPOrderedDirective(const OMPOrderedDirective &S); | 
|  | void EmitOMPAtomicDirective(const OMPAtomicDirective &S); | 
|  | void EmitOMPTargetDirective(const OMPTargetDirective &S); | 
|  | void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); | 
|  | void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); | 
|  | void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); | 
|  | void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); | 
|  | void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); | 
|  | void | 
|  | EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); | 
|  | void EmitOMPTeamsDirective(const OMPTeamsDirective &S); | 
|  | void | 
|  | EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); | 
|  | void EmitOMPCancelDirective(const OMPCancelDirective &S); | 
|  | void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); | 
|  | void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); | 
|  | void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); | 
|  | void EmitOMPDistributeDirective(const OMPDistributeDirective &S); | 
|  | void EmitOMPDistributeLoop(const OMPDistributeDirective &S); | 
|  | void EmitOMPDistributeParallelForDirective( | 
|  | const OMPDistributeParallelForDirective &S); | 
|  | void EmitOMPDistributeParallelForSimdDirective( | 
|  | const OMPDistributeParallelForSimdDirective &S); | 
|  | void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); | 
|  | void EmitOMPTargetParallelForSimdDirective( | 
|  | const OMPTargetParallelForSimdDirective &S); | 
|  | void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); | 
|  | void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); | 
|  |  | 
|  | /// Emit outlined function for the target directive. | 
|  | static std::pair<llvm::Function * /*OutlinedFn*/, | 
|  | llvm::Constant * /*OutlinedFnID*/> | 
|  | EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM, | 
|  | const OMPTargetDirective &S, | 
|  | StringRef ParentName, | 
|  | bool IsOffloadEntry); | 
|  | /// \brief Emit inner loop of the worksharing/simd construct. | 
|  | /// | 
|  | /// \param S Directive, for which the inner loop must be emitted. | 
|  | /// \param RequiresCleanup true, if directive has some associated private | 
|  | /// variables. | 
|  | /// \param LoopCond Bollean condition for loop continuation. | 
|  | /// \param IncExpr Increment expression for loop control variable. | 
|  | /// \param BodyGen Generator for the inner body of the inner loop. | 
|  | /// \param PostIncGen Genrator for post-increment code (required for ordered | 
|  | /// loop directvies). | 
|  | void EmitOMPInnerLoop( | 
|  | const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, | 
|  | const Expr *IncExpr, | 
|  | const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, | 
|  | const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); | 
|  |  | 
|  | JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); | 
|  | /// Emit initial code for loop counters of loop-based directives. | 
|  | void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, | 
|  | OMPPrivateScope &LoopScope); | 
|  |  | 
|  | private: | 
|  | /// Helpers for the OpenMP loop directives. | 
|  | void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); | 
|  | void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); | 
|  | void EmitOMPSimdFinal( | 
|  | const OMPLoopDirective &D, | 
|  | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); | 
|  | /// \brief Emit code for the worksharing loop-based directive. | 
|  | /// \return true, if this construct has any lastprivate clause, false - | 
|  | /// otherwise. | 
|  | bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); | 
|  | void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, | 
|  | const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, | 
|  | Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); | 
|  | void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, | 
|  | bool IsMonotonic, const OMPLoopDirective &S, | 
|  | OMPPrivateScope &LoopScope, bool Ordered, Address LB, | 
|  | Address UB, Address ST, Address IL, | 
|  | llvm::Value *Chunk); | 
|  | void EmitOMPDistributeOuterLoop( | 
|  | OpenMPDistScheduleClauseKind ScheduleKind, | 
|  | const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, | 
|  | Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); | 
|  | /// \brief Emit code for sections directive. | 
|  | void EmitSections(const OMPExecutableDirective &S); | 
|  |  | 
|  | public: | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                         LValue Expression Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. | 
|  | RValue GetUndefRValue(QualType Ty); | 
|  |  | 
|  | /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E | 
|  | /// and issue an ErrorUnsupported style diagnostic (using the | 
|  | /// provided Name). | 
|  | RValue EmitUnsupportedRValue(const Expr *E, | 
|  | const char *Name); | 
|  |  | 
|  | /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue | 
|  | /// an ErrorUnsupported style diagnostic (using the provided Name). | 
|  | LValue EmitUnsupportedLValue(const Expr *E, | 
|  | const char *Name); | 
|  |  | 
|  | /// EmitLValue - Emit code to compute a designator that specifies the location | 
|  | /// of the expression. | 
|  | /// | 
|  | /// This can return one of two things: a simple address or a bitfield | 
|  | /// reference.  In either case, the LLVM Value* in the LValue structure is | 
|  | /// guaranteed to be an LLVM pointer type. | 
|  | /// | 
|  | /// If this returns a bitfield reference, nothing about the pointee type of | 
|  | /// the LLVM value is known: For example, it may not be a pointer to an | 
|  | /// integer. | 
|  | /// | 
|  | /// If this returns a normal address, and if the lvalue's C type is fixed | 
|  | /// size, this method guarantees that the returned pointer type will point to | 
|  | /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a | 
|  | /// variable length type, this is not possible. | 
|  | /// | 
|  | LValue EmitLValue(const Expr *E); | 
|  |  | 
|  | /// \brief Same as EmitLValue but additionally we generate checking code to | 
|  | /// guard against undefined behavior.  This is only suitable when we know | 
|  | /// that the address will be used to access the object. | 
|  | LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); | 
|  |  | 
|  | RValue convertTempToRValue(Address addr, QualType type, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | void EmitAtomicInit(Expr *E, LValue lvalue); | 
|  |  | 
|  | bool LValueIsSuitableForInlineAtomic(LValue Src); | 
|  |  | 
|  | RValue EmitAtomicLoad(LValue LV, SourceLocation SL, | 
|  | AggValueSlot Slot = AggValueSlot::ignored()); | 
|  |  | 
|  | RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, | 
|  | llvm::AtomicOrdering AO, bool IsVolatile = false, | 
|  | AggValueSlot slot = AggValueSlot::ignored()); | 
|  |  | 
|  | void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); | 
|  |  | 
|  | void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, | 
|  | bool IsVolatile, bool isInit); | 
|  |  | 
|  | std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( | 
|  | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, | 
|  | llvm::AtomicOrdering Success = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | llvm::AtomicOrdering Failure = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); | 
|  |  | 
|  | void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile); | 
|  |  | 
|  | /// EmitToMemory - Change a scalar value from its value | 
|  | /// representation to its in-memory representation. | 
|  | llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); | 
|  |  | 
|  | /// EmitFromMemory - Change a scalar value from its memory | 
|  | /// representation to its value representation. | 
|  | llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); | 
|  |  | 
|  | /// EmitLoadOfScalar - Load a scalar value from an address, taking | 
|  | /// care to appropriately convert from the memory representation to | 
|  | /// the LLVM value representation. | 
|  | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, | 
|  | SourceLocation Loc, | 
|  | AlignmentSource AlignSource = | 
|  | AlignmentSource::Type, | 
|  | llvm::MDNode *TBAAInfo = nullptr, | 
|  | QualType TBAABaseTy = QualType(), | 
|  | uint64_t TBAAOffset = 0, | 
|  | bool isNontemporal = false); | 
|  |  | 
|  | /// EmitLoadOfScalar - Load a scalar value from an address, taking | 
|  | /// care to appropriately convert from the memory representation to | 
|  | /// the LLVM value representation.  The l-value must be a simple | 
|  | /// l-value. | 
|  | llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); | 
|  |  | 
|  | /// EmitStoreOfScalar - Store a scalar value to an address, taking | 
|  | /// care to appropriately convert from the memory representation to | 
|  | /// the LLVM value representation. | 
|  | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, | 
|  | bool Volatile, QualType Ty, | 
|  | AlignmentSource AlignSource = AlignmentSource::Type, | 
|  | llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, | 
|  | QualType TBAABaseTy = QualType(), | 
|  | uint64_t TBAAOffset = 0, bool isNontemporal = false); | 
|  |  | 
|  | /// EmitStoreOfScalar - Store a scalar value to an address, taking | 
|  | /// care to appropriately convert from the memory representation to | 
|  | /// the LLVM value representation.  The l-value must be a simple | 
|  | /// l-value.  The isInit flag indicates whether this is an initialization. | 
|  | /// If so, atomic qualifiers are ignored and the store is always non-atomic. | 
|  | void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); | 
|  |  | 
|  | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, | 
|  | /// this method emits the address of the lvalue, then loads the result as an | 
|  | /// rvalue, returning the rvalue. | 
|  | RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); | 
|  | RValue EmitLoadOfExtVectorElementLValue(LValue V); | 
|  | RValue EmitLoadOfBitfieldLValue(LValue LV); | 
|  | RValue EmitLoadOfGlobalRegLValue(LValue LV); | 
|  |  | 
|  | /// EmitStoreThroughLValue - Store the specified rvalue into the specified | 
|  | /// lvalue, where both are guaranteed to the have the same type, and that type | 
|  | /// is 'Ty'. | 
|  | void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); | 
|  | void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); | 
|  | void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); | 
|  |  | 
|  | /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints | 
|  | /// as EmitStoreThroughLValue. | 
|  | /// | 
|  | /// \param Result [out] - If non-null, this will be set to a Value* for the | 
|  | /// bit-field contents after the store, appropriate for use as the result of | 
|  | /// an assignment to the bit-field. | 
|  | void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, | 
|  | llvm::Value **Result=nullptr); | 
|  |  | 
|  | /// Emit an l-value for an assignment (simple or compound) of complex type. | 
|  | LValue EmitComplexAssignmentLValue(const BinaryOperator *E); | 
|  | LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); | 
|  | LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, | 
|  | llvm::Value *&Result); | 
|  |  | 
|  | // Note: only available for agg return types | 
|  | LValue EmitBinaryOperatorLValue(const BinaryOperator *E); | 
|  | LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); | 
|  | // Note: only available for agg return types | 
|  | LValue EmitCallExprLValue(const CallExpr *E); | 
|  | // Note: only available for agg return types | 
|  | LValue EmitVAArgExprLValue(const VAArgExpr *E); | 
|  | LValue EmitDeclRefLValue(const DeclRefExpr *E); | 
|  | LValue EmitStringLiteralLValue(const StringLiteral *E); | 
|  | LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); | 
|  | LValue EmitPredefinedLValue(const PredefinedExpr *E); | 
|  | LValue EmitUnaryOpLValue(const UnaryOperator *E); | 
|  | LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, | 
|  | bool Accessed = false); | 
|  | LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, | 
|  | bool IsLowerBound = true); | 
|  | LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); | 
|  | LValue EmitMemberExpr(const MemberExpr *E); | 
|  | LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); | 
|  | LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); | 
|  | LValue EmitInitListLValue(const InitListExpr *E); | 
|  | LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); | 
|  | LValue EmitCastLValue(const CastExpr *E); | 
|  | LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); | 
|  | LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); | 
|  |  | 
|  | Address EmitExtVectorElementLValue(LValue V); | 
|  |  | 
|  | RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); | 
|  |  | 
|  | Address EmitArrayToPointerDecay(const Expr *Array, | 
|  | AlignmentSource *AlignSource = nullptr); | 
|  |  | 
|  | class ConstantEmission { | 
|  | llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; | 
|  | ConstantEmission(llvm::Constant *C, bool isReference) | 
|  | : ValueAndIsReference(C, isReference) {} | 
|  | public: | 
|  | ConstantEmission() {} | 
|  | static ConstantEmission forReference(llvm::Constant *C) { | 
|  | return ConstantEmission(C, true); | 
|  | } | 
|  | static ConstantEmission forValue(llvm::Constant *C) { | 
|  | return ConstantEmission(C, false); | 
|  | } | 
|  |  | 
|  | explicit operator bool() const { | 
|  | return ValueAndIsReference.getOpaqueValue() != nullptr; | 
|  | } | 
|  |  | 
|  | bool isReference() const { return ValueAndIsReference.getInt(); } | 
|  | LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { | 
|  | assert(isReference()); | 
|  | return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), | 
|  | refExpr->getType()); | 
|  | } | 
|  |  | 
|  | llvm::Constant *getValue() const { | 
|  | assert(!isReference()); | 
|  | return ValueAndIsReference.getPointer(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); | 
|  |  | 
|  | RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, | 
|  | AggValueSlot slot = AggValueSlot::ignored()); | 
|  | LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); | 
|  |  | 
|  | llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, | 
|  | const ObjCIvarDecl *Ivar); | 
|  | LValue EmitLValueForField(LValue Base, const FieldDecl* Field); | 
|  | LValue EmitLValueForLambdaField(const FieldDecl *Field); | 
|  |  | 
|  | /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that | 
|  | /// if the Field is a reference, this will return the address of the reference | 
|  | /// and not the address of the value stored in the reference. | 
|  | LValue EmitLValueForFieldInitialization(LValue Base, | 
|  | const FieldDecl* Field); | 
|  |  | 
|  | LValue EmitLValueForIvar(QualType ObjectTy, | 
|  | llvm::Value* Base, const ObjCIvarDecl *Ivar, | 
|  | unsigned CVRQualifiers); | 
|  |  | 
|  | LValue EmitCXXConstructLValue(const CXXConstructExpr *E); | 
|  | LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); | 
|  | LValue EmitLambdaLValue(const LambdaExpr *E); | 
|  | LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); | 
|  | LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); | 
|  |  | 
|  | LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); | 
|  | LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); | 
|  | LValue EmitStmtExprLValue(const StmtExpr *E); | 
|  | LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); | 
|  | LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); | 
|  | void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                         Scalar Expression Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitCall - Generate a call of the given function, expecting the given | 
|  | /// result type, and using the given argument list which specifies both the | 
|  | /// LLVM arguments and the types they were derived from. | 
|  | RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, | 
|  | ReturnValueSlot ReturnValue, const CallArgList &Args, | 
|  | CGCalleeInfo CalleeInfo = CGCalleeInfo(), | 
|  | llvm::Instruction **callOrInvoke = nullptr); | 
|  |  | 
|  | RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue, | 
|  | CGCalleeInfo CalleeInfo = CGCalleeInfo(), | 
|  | llvm::Value *Chain = nullptr); | 
|  | RValue EmitCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue = ReturnValueSlot()); | 
|  |  | 
|  | void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); | 
|  |  | 
|  | llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, | 
|  | const Twine &name = ""); | 
|  | llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, | 
|  | ArrayRef<llvm::Value*> args, | 
|  | const Twine &name = ""); | 
|  | llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, | 
|  | const Twine &name = ""); | 
|  | llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, | 
|  | ArrayRef<llvm::Value*> args, | 
|  | const Twine &name = ""); | 
|  |  | 
|  | llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, | 
|  | ArrayRef<llvm::Value *> Args, | 
|  | const Twine &Name = ""); | 
|  | llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, | 
|  | ArrayRef<llvm::Value*> args, | 
|  | const Twine &name = ""); | 
|  | llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, | 
|  | const Twine &name = ""); | 
|  | void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, | 
|  | ArrayRef<llvm::Value*> args); | 
|  |  | 
|  | llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, | 
|  | NestedNameSpecifier *Qual, | 
|  | llvm::Type *Ty); | 
|  |  | 
|  | llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, | 
|  | CXXDtorType Type, | 
|  | const CXXRecordDecl *RD); | 
|  |  | 
|  | RValue | 
|  | EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, | 
|  | ReturnValueSlot ReturnValue, llvm::Value *This, | 
|  | llvm::Value *ImplicitParam, | 
|  | QualType ImplicitParamTy, const CallExpr *E, | 
|  | CallArgList *RtlArgs); | 
|  | RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee, | 
|  | llvm::Value *This, llvm::Value *ImplicitParam, | 
|  | QualType ImplicitParamTy, const CallExpr *E, | 
|  | StructorType Type); | 
|  | RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, | 
|  | ReturnValueSlot ReturnValue); | 
|  | RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, | 
|  | const CXXMethodDecl *MD, | 
|  | ReturnValueSlot ReturnValue, | 
|  | bool HasQualifier, | 
|  | NestedNameSpecifier *Qualifier, | 
|  | bool IsArrow, const Expr *Base); | 
|  | // Compute the object pointer. | 
|  | Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, | 
|  | llvm::Value *memberPtr, | 
|  | const MemberPointerType *memberPtrType, | 
|  | AlignmentSource *AlignSource = nullptr); | 
|  | RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, | 
|  | ReturnValueSlot ReturnValue); | 
|  |  | 
|  | RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, | 
|  | const CXXMethodDecl *MD, | 
|  | ReturnValueSlot ReturnValue); | 
|  |  | 
|  | RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, | 
|  | ReturnValueSlot ReturnValue); | 
|  |  | 
|  | RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue); | 
|  |  | 
|  | RValue EmitBuiltinExpr(const FunctionDecl *FD, | 
|  | unsigned BuiltinID, const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue); | 
|  |  | 
|  | RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); | 
|  |  | 
|  | /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call | 
|  | /// is unhandled by the current target. | 
|  | llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  |  | 
|  | llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, | 
|  | const llvm::CmpInst::Predicate Fp, | 
|  | const llvm::CmpInst::Predicate Ip, | 
|  | const llvm::Twine &Name = ""); | 
|  | llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  |  | 
|  | llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, | 
|  | unsigned LLVMIntrinsic, | 
|  | unsigned AltLLVMIntrinsic, | 
|  | const char *NameHint, | 
|  | unsigned Modifier, | 
|  | const CallExpr *E, | 
|  | SmallVectorImpl<llvm::Value *> &Ops, | 
|  | Address PtrOp0, Address PtrOp1); | 
|  | llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, | 
|  | unsigned Modifier, llvm::Type *ArgTy, | 
|  | const CallExpr *E); | 
|  | llvm::Value *EmitNeonCall(llvm::Function *F, | 
|  | SmallVectorImpl<llvm::Value*> &O, | 
|  | const char *name, | 
|  | unsigned shift = 0, bool rightshift = false); | 
|  | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); | 
|  | llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, | 
|  | bool negateForRightShift); | 
|  | llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, | 
|  | llvm::Type *Ty, bool usgn, const char *name); | 
|  | llvm::Value *vectorWrapScalar16(llvm::Value *Op); | 
|  | llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  |  | 
|  | llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); | 
|  | llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  | llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  | llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  | llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  | llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); | 
|  | llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, | 
|  | const CallExpr *E); | 
|  |  | 
|  | private: | 
|  | enum class MSVCIntrin; | 
|  |  | 
|  | public: | 
|  | llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); | 
|  |  | 
|  | llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); | 
|  | llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); | 
|  | llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); | 
|  | llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); | 
|  | llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); | 
|  | llvm::Value *EmitObjCCollectionLiteral(const Expr *E, | 
|  | const ObjCMethodDecl *MethodWithObjects); | 
|  | llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); | 
|  | RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, | 
|  | ReturnValueSlot Return = ReturnValueSlot()); | 
|  |  | 
|  | /// Retrieves the default cleanup kind for an ARC cleanup. | 
|  | /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. | 
|  | CleanupKind getARCCleanupKind() { | 
|  | return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions | 
|  | ? NormalAndEHCleanup : NormalCleanup; | 
|  | } | 
|  |  | 
|  | // ARC primitives. | 
|  | void EmitARCInitWeak(Address addr, llvm::Value *value); | 
|  | void EmitARCDestroyWeak(Address addr); | 
|  | llvm::Value *EmitARCLoadWeak(Address addr); | 
|  | llvm::Value *EmitARCLoadWeakRetained(Address addr); | 
|  | llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); | 
|  | void EmitARCCopyWeak(Address dst, Address src); | 
|  | void EmitARCMoveWeak(Address dst, Address src); | 
|  | llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); | 
|  | llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); | 
|  | llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, | 
|  | bool resultIgnored); | 
|  | llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, | 
|  | bool resultIgnored); | 
|  | llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); | 
|  | llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); | 
|  | llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); | 
|  | void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); | 
|  | void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); | 
|  | llvm::Value *EmitARCAutorelease(llvm::Value *value); | 
|  | llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); | 
|  | llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); | 
|  | llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); | 
|  | llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); | 
|  |  | 
|  | std::pair<LValue,llvm::Value*> | 
|  | EmitARCStoreAutoreleasing(const BinaryOperator *e); | 
|  | std::pair<LValue,llvm::Value*> | 
|  | EmitARCStoreStrong(const BinaryOperator *e, bool ignored); | 
|  | std::pair<LValue,llvm::Value*> | 
|  | EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); | 
|  |  | 
|  | llvm::Value *EmitObjCThrowOperand(const Expr *expr); | 
|  | llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); | 
|  | llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); | 
|  |  | 
|  | llvm::Value *EmitARCExtendBlockObject(const Expr *expr); | 
|  | llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, | 
|  | bool allowUnsafeClaim); | 
|  | llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); | 
|  | llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); | 
|  | llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); | 
|  |  | 
|  | void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); | 
|  |  | 
|  | static Destroyer destroyARCStrongImprecise; | 
|  | static Destroyer destroyARCStrongPrecise; | 
|  | static Destroyer destroyARCWeak; | 
|  |  | 
|  | void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); | 
|  | llvm::Value *EmitObjCAutoreleasePoolPush(); | 
|  | llvm::Value *EmitObjCMRRAutoreleasePoolPush(); | 
|  | void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); | 
|  | void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); | 
|  |  | 
|  | /// \brief Emits a reference binding to the passed in expression. | 
|  | RValue EmitReferenceBindingToExpr(const Expr *E); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                           Expression Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | // Expressions are broken into three classes: scalar, complex, aggregate. | 
|  |  | 
|  | /// EmitScalarExpr - Emit the computation of the specified expression of LLVM | 
|  | /// scalar type, returning the result. | 
|  | llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); | 
|  |  | 
|  | /// Emit a conversion from the specified type to the specified destination | 
|  | /// type, both of which are LLVM scalar types. | 
|  | llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, | 
|  | QualType DstTy, SourceLocation Loc); | 
|  |  | 
|  | /// Emit a conversion from the specified complex type to the specified | 
|  | /// destination type, where the destination type is an LLVM scalar type. | 
|  | llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, | 
|  | QualType DstTy, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | /// EmitAggExpr - Emit the computation of the specified expression | 
|  | /// of aggregate type.  The result is computed into the given slot, | 
|  | /// which may be null to indicate that the value is not needed. | 
|  | void EmitAggExpr(const Expr *E, AggValueSlot AS); | 
|  |  | 
|  | /// EmitAggExprToLValue - Emit the computation of the specified expression of | 
|  | /// aggregate type into a temporary LValue. | 
|  | LValue EmitAggExprToLValue(const Expr *E); | 
|  |  | 
|  | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, | 
|  | /// make sure it survives garbage collection until this point. | 
|  | void EmitExtendGCLifetime(llvm::Value *object); | 
|  |  | 
|  | /// EmitComplexExpr - Emit the computation of the specified expression of | 
|  | /// complex type, returning the result. | 
|  | ComplexPairTy EmitComplexExpr(const Expr *E, | 
|  | bool IgnoreReal = false, | 
|  | bool IgnoreImag = false); | 
|  |  | 
|  | /// EmitComplexExprIntoLValue - Emit the given expression of complex | 
|  | /// type and place its result into the specified l-value. | 
|  | void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); | 
|  |  | 
|  | /// EmitStoreOfComplex - Store a complex number into the specified l-value. | 
|  | void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); | 
|  |  | 
|  | /// EmitLoadOfComplex - Load a complex number from the specified l-value. | 
|  | ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); | 
|  |  | 
|  | Address emitAddrOfRealComponent(Address complex, QualType complexType); | 
|  | Address emitAddrOfImagComponent(Address complex, QualType complexType); | 
|  |  | 
|  | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the | 
|  | /// global variable that has already been created for it.  If the initializer | 
|  | /// has a different type than GV does, this may free GV and return a different | 
|  | /// one.  Otherwise it just returns GV. | 
|  | llvm::GlobalVariable * | 
|  | AddInitializerToStaticVarDecl(const VarDecl &D, | 
|  | llvm::GlobalVariable *GV); | 
|  |  | 
|  |  | 
|  | /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ | 
|  | /// variable with global storage. | 
|  | void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, | 
|  | bool PerformInit); | 
|  |  | 
|  | llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, | 
|  | llvm::Constant *Addr); | 
|  |  | 
|  | /// Call atexit() with a function that passes the given argument to | 
|  | /// the given function. | 
|  | void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, | 
|  | llvm::Constant *addr); | 
|  |  | 
|  | /// Emit code in this function to perform a guarded variable | 
|  | /// initialization.  Guarded initializations are used when it's not | 
|  | /// possible to prove that an initialization will be done exactly | 
|  | /// once, e.g. with a static local variable or a static data member | 
|  | /// of a class template. | 
|  | void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, | 
|  | bool PerformInit); | 
|  |  | 
|  | /// GenerateCXXGlobalInitFunc - Generates code for initializing global | 
|  | /// variables. | 
|  | void GenerateCXXGlobalInitFunc(llvm::Function *Fn, | 
|  | ArrayRef<llvm::Function *> CXXThreadLocals, | 
|  | Address Guard = Address::invalid()); | 
|  |  | 
|  | /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global | 
|  | /// variables. | 
|  | void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, | 
|  | const std::vector<std::pair<llvm::WeakVH, | 
|  | llvm::Constant*> > &DtorsAndObjects); | 
|  |  | 
|  | void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, | 
|  | const VarDecl *D, | 
|  | llvm::GlobalVariable *Addr, | 
|  | bool PerformInit); | 
|  |  | 
|  | void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); | 
|  |  | 
|  | void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); | 
|  |  | 
|  | void enterFullExpression(const ExprWithCleanups *E) { | 
|  | if (E->getNumObjects() == 0) return; | 
|  | enterNonTrivialFullExpression(E); | 
|  | } | 
|  | void enterNonTrivialFullExpression(const ExprWithCleanups *E); | 
|  |  | 
|  | void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); | 
|  |  | 
|  | void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); | 
|  |  | 
|  | RValue EmitAtomicExpr(AtomicExpr *E); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                         Annotations Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Emit an annotation call (intrinsic or builtin). | 
|  | llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, | 
|  | llvm::Value *AnnotatedVal, | 
|  | StringRef AnnotationStr, | 
|  | SourceLocation Location); | 
|  |  | 
|  | /// Emit local annotations for the local variable V, declared by D. | 
|  | void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); | 
|  |  | 
|  | /// Emit field annotations for the given field & value. Returns the | 
|  | /// annotation result. | 
|  | Address EmitFieldAnnotations(const FieldDecl *D, Address V); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                             Internal Helpers | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// ContainsLabel - Return true if the statement contains a label in it.  If | 
|  | /// this statement is not executed normally, it not containing a label means | 
|  | /// that we can just remove the code. | 
|  | static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); | 
|  |  | 
|  | /// containsBreak - Return true if the statement contains a break out of it. | 
|  | /// If the statement (recursively) contains a switch or loop with a break | 
|  | /// inside of it, this is fine. | 
|  | static bool containsBreak(const Stmt *S); | 
|  |  | 
|  | /// Determine if the given statement might introduce a declaration into the | 
|  | /// current scope, by being a (possibly-labelled) DeclStmt. | 
|  | static bool mightAddDeclToScope(const Stmt *S); | 
|  |  | 
|  | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold | 
|  | /// to a constant, or if it does but contains a label, return false.  If it | 
|  | /// constant folds return true and set the boolean result in Result. | 
|  | bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, | 
|  | bool AllowLabels = false); | 
|  |  | 
|  | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold | 
|  | /// to a constant, or if it does but contains a label, return false.  If it | 
|  | /// constant folds return true and set the folded value. | 
|  | bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, | 
|  | bool AllowLabels = false); | 
|  |  | 
|  | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an | 
|  | /// if statement) to the specified blocks.  Based on the condition, this might | 
|  | /// try to simplify the codegen of the conditional based on the branch. | 
|  | /// TrueCount should be the number of times we expect the condition to | 
|  | /// evaluate to true based on PGO data. | 
|  | void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, | 
|  | llvm::BasicBlock *FalseBlock, uint64_t TrueCount); | 
|  |  | 
|  | /// \brief Emit a description of a type in a format suitable for passing to | 
|  | /// a runtime sanitizer handler. | 
|  | llvm::Constant *EmitCheckTypeDescriptor(QualType T); | 
|  |  | 
|  | /// \brief Convert a value into a format suitable for passing to a runtime | 
|  | /// sanitizer handler. | 
|  | llvm::Value *EmitCheckValue(llvm::Value *V); | 
|  |  | 
|  | /// \brief Emit a description of a source location in a format suitable for | 
|  | /// passing to a runtime sanitizer handler. | 
|  | llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); | 
|  |  | 
|  | /// \brief Create a basic block that will call a handler function in a | 
|  | /// sanitizer runtime with the provided arguments, and create a conditional | 
|  | /// branch to it. | 
|  | void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, | 
|  | StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, | 
|  | ArrayRef<llvm::Value *> DynamicArgs); | 
|  |  | 
|  | /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath | 
|  | /// if Cond if false. | 
|  | void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, | 
|  | llvm::ConstantInt *TypeId, llvm::Value *Ptr, | 
|  | ArrayRef<llvm::Constant *> StaticArgs); | 
|  |  | 
|  | /// \brief Create a basic block that will call the trap intrinsic, and emit a | 
|  | /// conditional branch to it, for the -ftrapv checks. | 
|  | void EmitTrapCheck(llvm::Value *Checked); | 
|  |  | 
|  | /// \brief Emit a call to trap or debugtrap and attach function attribute | 
|  | /// "trap-func-name" if specified. | 
|  | llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); | 
|  |  | 
|  | /// \brief Emit a cross-DSO CFI failure handling function. | 
|  | void EmitCfiCheckFail(); | 
|  |  | 
|  | /// \brief Create a check for a function parameter that may potentially be | 
|  | /// declared as non-null. | 
|  | void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, | 
|  | const FunctionDecl *FD, unsigned ParmNum); | 
|  |  | 
|  | /// EmitCallArg - Emit a single call argument. | 
|  | void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); | 
|  |  | 
|  | /// EmitDelegateCallArg - We are performing a delegate call; that | 
|  | /// is, the current function is delegating to another one.  Produce | 
|  | /// a r-value suitable for passing the given parameter. | 
|  | void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, | 
|  | SourceLocation loc); | 
|  |  | 
|  | /// SetFPAccuracy - Set the minimum required accuracy of the given floating | 
|  | /// point operation, expressed as the maximum relative error in ulp. | 
|  | void SetFPAccuracy(llvm::Value *Val, float Accuracy); | 
|  |  | 
|  | private: | 
|  | llvm::MDNode *getRangeForLoadFromType(QualType Ty); | 
|  | void EmitReturnOfRValue(RValue RV, QualType Ty); | 
|  |  | 
|  | void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); | 
|  |  | 
|  | llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> | 
|  | DeferredReplacements; | 
|  |  | 
|  | /// Set the address of a local variable. | 
|  | void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { | 
|  | assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); | 
|  | LocalDeclMap.insert({VD, Addr}); | 
|  | } | 
|  |  | 
|  | /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty | 
|  | /// from function arguments into \arg Dst. See ABIArgInfo::Expand. | 
|  | /// | 
|  | /// \param AI - The first function argument of the expansion. | 
|  | void ExpandTypeFromArgs(QualType Ty, LValue Dst, | 
|  | SmallVectorImpl<llvm::Value *>::iterator &AI); | 
|  |  | 
|  | /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg | 
|  | /// Ty, into individual arguments on the provided vector \arg IRCallArgs, | 
|  | /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. | 
|  | void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, | 
|  | SmallVectorImpl<llvm::Value *> &IRCallArgs, | 
|  | unsigned &IRCallArgPos); | 
|  |  | 
|  | llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, | 
|  | const Expr *InputExpr, std::string &ConstraintStr); | 
|  |  | 
|  | llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, | 
|  | LValue InputValue, QualType InputType, | 
|  | std::string &ConstraintStr, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | /// \brief Attempts to statically evaluate the object size of E. If that | 
|  | /// fails, emits code to figure the size of E out for us. This is | 
|  | /// pass_object_size aware. | 
|  | llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, | 
|  | llvm::IntegerType *ResType); | 
|  |  | 
|  | /// \brief Emits the size of E, as required by __builtin_object_size. This | 
|  | /// function is aware of pass_object_size parameters, and will act accordingly | 
|  | /// if E is a parameter with the pass_object_size attribute. | 
|  | llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, | 
|  | llvm::IntegerType *ResType); | 
|  |  | 
|  | public: | 
|  | #ifndef NDEBUG | 
|  | // Determine whether the given argument is an Objective-C method | 
|  | // that may have type parameters in its signature. | 
|  | static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { | 
|  | const DeclContext *dc = method->getDeclContext(); | 
|  | if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { | 
|  | return classDecl->getTypeParamListAsWritten(); | 
|  | } | 
|  |  | 
|  | if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { | 
|  | return catDecl->getTypeParamList(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static bool isObjCMethodWithTypeParams(const T *) { return false; } | 
|  | #endif | 
|  |  | 
|  | enum class EvaluationOrder { | 
|  | ///! No language constraints on evaluation order. | 
|  | Default, | 
|  | ///! Language semantics require left-to-right evaluation. | 
|  | ForceLeftToRight, | 
|  | ///! Language semantics require right-to-left evaluation. | 
|  | ForceRightToLeft | 
|  | }; | 
|  |  | 
|  | /// EmitCallArgs - Emit call arguments for a function. | 
|  | template <typename T> | 
|  | void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, | 
|  | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, | 
|  | const FunctionDecl *CalleeDecl = nullptr, | 
|  | unsigned ParamsToSkip = 0, | 
|  | EvaluationOrder Order = EvaluationOrder::Default) { | 
|  | SmallVector<QualType, 16> ArgTypes; | 
|  | CallExpr::const_arg_iterator Arg = ArgRange.begin(); | 
|  |  | 
|  | assert((ParamsToSkip == 0 || CallArgTypeInfo) && | 
|  | "Can't skip parameters if type info is not provided"); | 
|  | if (CallArgTypeInfo) { | 
|  | #ifndef NDEBUG | 
|  | bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); | 
|  | #endif | 
|  |  | 
|  | // First, use the argument types that the type info knows about | 
|  | for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, | 
|  | E = CallArgTypeInfo->param_type_end(); | 
|  | I != E; ++I, ++Arg) { | 
|  | assert(Arg != ArgRange.end() && "Running over edge of argument list!"); | 
|  | assert((isGenericMethod || | 
|  | ((*I)->isVariablyModifiedType() || | 
|  | (*I).getNonReferenceType()->isObjCRetainableType() || | 
|  | getContext() | 
|  | .getCanonicalType((*I).getNonReferenceType()) | 
|  | .getTypePtr() == | 
|  | getContext() | 
|  | .getCanonicalType((*Arg)->getType()) | 
|  | .getTypePtr())) && | 
|  | "type mismatch in call argument!"); | 
|  | ArgTypes.push_back(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Either we've emitted all the call args, or we have a call to variadic | 
|  | // function. | 
|  | assert((Arg == ArgRange.end() || !CallArgTypeInfo || | 
|  | CallArgTypeInfo->isVariadic()) && | 
|  | "Extra arguments in non-variadic function!"); | 
|  |  | 
|  | // If we still have any arguments, emit them using the type of the argument. | 
|  | for (auto *A : llvm::make_range(Arg, ArgRange.end())) | 
|  | ArgTypes.push_back(getVarArgType(A)); | 
|  |  | 
|  | EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order); | 
|  | } | 
|  |  | 
|  | void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, | 
|  | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, | 
|  | const FunctionDecl *CalleeDecl = nullptr, | 
|  | unsigned ParamsToSkip = 0, | 
|  | EvaluationOrder Order = EvaluationOrder::Default); | 
|  |  | 
|  | /// EmitPointerWithAlignment - Given an expression with a pointer | 
|  | /// type, emit the value and compute our best estimate of the | 
|  | /// alignment of the pointee. | 
|  | /// | 
|  | /// Note that this function will conservatively fall back on the type | 
|  | /// when it doesn't | 
|  | /// | 
|  | /// \param Source - If non-null, this will be initialized with | 
|  | ///   information about the source of the alignment.  Note that this | 
|  | ///   function will conservatively fall back on the type when it | 
|  | ///   doesn't recognize the expression, which means that sometimes | 
|  | /// | 
|  | ///   a worst-case One | 
|  | ///   reasonable way to use this information is when there's a | 
|  | ///   language guarantee that the pointer must be aligned to some | 
|  | ///   stricter value, and we're simply trying to ensure that | 
|  | ///   sufficiently obvious uses of under-aligned objects don't get | 
|  | ///   miscompiled; for example, a placement new into the address of | 
|  | ///   a local variable.  In such a case, it's quite reasonable to | 
|  | ///   just ignore the returned alignment when it isn't from an | 
|  | ///   explicit source. | 
|  | Address EmitPointerWithAlignment(const Expr *Addr, | 
|  | AlignmentSource *Source = nullptr); | 
|  |  | 
|  | void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); | 
|  |  | 
|  | private: | 
|  | QualType getVarArgType(const Expr *Arg); | 
|  |  | 
|  | const TargetCodeGenInfo &getTargetHooks() const { | 
|  | return CGM.getTargetCodeGenInfo(); | 
|  | } | 
|  |  | 
|  | void EmitDeclMetadata(); | 
|  |  | 
|  | BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, | 
|  | const AutoVarEmission &emission); | 
|  |  | 
|  | void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); | 
|  |  | 
|  | llvm::Value *GetValueForARMHint(unsigned BuiltinID); | 
|  | }; | 
|  |  | 
|  | /// Helper class with most of the code for saving a value for a | 
|  | /// conditional expression cleanup. | 
|  | struct DominatingLLVMValue { | 
|  | typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; | 
|  |  | 
|  | /// Answer whether the given value needs extra work to be saved. | 
|  | static bool needsSaving(llvm::Value *value) { | 
|  | // If it's not an instruction, we don't need to save. | 
|  | if (!isa<llvm::Instruction>(value)) return false; | 
|  |  | 
|  | // If it's an instruction in the entry block, we don't need to save. | 
|  | llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); | 
|  | return (block != &block->getParent()->getEntryBlock()); | 
|  | } | 
|  |  | 
|  | /// Try to save the given value. | 
|  | static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { | 
|  | if (!needsSaving(value)) return saved_type(value, false); | 
|  |  | 
|  | // Otherwise, we need an alloca. | 
|  | auto align = CharUnits::fromQuantity( | 
|  | CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); | 
|  | Address alloca = | 
|  | CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); | 
|  | CGF.Builder.CreateStore(value, alloca); | 
|  |  | 
|  | return saved_type(alloca.getPointer(), true); | 
|  | } | 
|  |  | 
|  | static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { | 
|  | // If the value says it wasn't saved, trust that it's still dominating. | 
|  | if (!value.getInt()) return value.getPointer(); | 
|  |  | 
|  | // Otherwise, it should be an alloca instruction, as set up in save(). | 
|  | auto alloca = cast<llvm::AllocaInst>(value.getPointer()); | 
|  | return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A partial specialization of DominatingValue for llvm::Values that | 
|  | /// might be llvm::Instructions. | 
|  | template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { | 
|  | typedef T *type; | 
|  | static type restore(CodeGenFunction &CGF, saved_type value) { | 
|  | return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A specialization of DominatingValue for Address. | 
|  | template <> struct DominatingValue<Address> { | 
|  | typedef Address type; | 
|  |  | 
|  | struct saved_type { | 
|  | DominatingLLVMValue::saved_type SavedValue; | 
|  | CharUnits Alignment; | 
|  | }; | 
|  |  | 
|  | static bool needsSaving(type value) { | 
|  | return DominatingLLVMValue::needsSaving(value.getPointer()); | 
|  | } | 
|  | static saved_type save(CodeGenFunction &CGF, type value) { | 
|  | return { DominatingLLVMValue::save(CGF, value.getPointer()), | 
|  | value.getAlignment() }; | 
|  | } | 
|  | static type restore(CodeGenFunction &CGF, saved_type value) { | 
|  | return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), | 
|  | value.Alignment); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A specialization of DominatingValue for RValue. | 
|  | template <> struct DominatingValue<RValue> { | 
|  | typedef RValue type; | 
|  | class saved_type { | 
|  | enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, | 
|  | AggregateAddress, ComplexAddress }; | 
|  |  | 
|  | llvm::Value *Value; | 
|  | unsigned K : 3; | 
|  | unsigned Align : 29; | 
|  | saved_type(llvm::Value *v, Kind k, unsigned a = 0) | 
|  | : Value(v), K(k), Align(a) {} | 
|  |  | 
|  | public: | 
|  | static bool needsSaving(RValue value); | 
|  | static saved_type save(CodeGenFunction &CGF, RValue value); | 
|  | RValue restore(CodeGenFunction &CGF); | 
|  |  | 
|  | // implementations in CGCleanup.cpp | 
|  | }; | 
|  |  | 
|  | static bool needsSaving(type value) { | 
|  | return saved_type::needsSaving(value); | 
|  | } | 
|  | static saved_type save(CodeGenFunction &CGF, type value) { | 
|  | return saved_type::save(CGF, value); | 
|  | } | 
|  | static type restore(CodeGenFunction &CGF, saved_type value) { | 
|  | return value.restore(CGF); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace CodeGen | 
|  | }  // end namespace clang | 
|  |  | 
|  | #endif |