|  | //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements folding of constants for LLVM.  This implements the | 
|  | // (internal) ConstantFold.h interface, which is used by the | 
|  | // ConstantExpr::get* methods to automatically fold constants when possible. | 
|  | // | 
|  | // The current constant folding implementation is implemented in two pieces: the | 
|  | // template-based folder for simple primitive constants like ConstantInt, and | 
|  | // the special case hackery that we use to symbolically evaluate expressions | 
|  | // that use ConstantExprs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ConstantFold.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalAlias.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <limits> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                ConstantFold*Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// BitCastConstantVector - Convert the specified ConstantVector node to the | 
|  | /// specified vector type.  At this point, we know that the elements of the | 
|  | /// input vector constant are all simple integer or FP values. | 
|  | static Constant *BitCastConstantVector(ConstantVector *CV, | 
|  | const VectorType *DstTy) { | 
|  | // If this cast changes element count then we can't handle it here: | 
|  | // doing so requires endianness information.  This should be handled by | 
|  | // Analysis/ConstantFolding.cpp | 
|  | unsigned NumElts = DstTy->getNumElements(); | 
|  | if (NumElts != CV->getNumOperands()) | 
|  | return 0; | 
|  |  | 
|  | // Check to verify that all elements of the input are simple. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (!isa<ConstantInt>(CV->getOperand(i)) && | 
|  | !isa<ConstantFP>(CV->getOperand(i))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Bitcast each element now. | 
|  | std::vector<Constant*> Result; | 
|  | const Type *DstEltTy = DstTy->getElementType(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy)); | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | /// This function determines which opcode to use to fold two constant cast | 
|  | /// expressions together. It uses CastInst::isEliminableCastPair to determine | 
|  | /// the opcode. Consequently its just a wrapper around that function. | 
|  | /// @brief Determine if it is valid to fold a cast of a cast | 
|  | static unsigned | 
|  | foldConstantCastPair( | 
|  | unsigned opc,          ///< opcode of the second cast constant expression | 
|  | const ConstantExpr*Op, ///< the first cast constant expression | 
|  | const Type *DstTy      ///< desintation type of the first cast | 
|  | ) { | 
|  | assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); | 
|  | assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); | 
|  | assert(CastInst::isCast(opc) && "Invalid cast opcode"); | 
|  |  | 
|  | // The the types and opcodes for the two Cast constant expressions | 
|  | const Type *SrcTy = Op->getOperand(0)->getType(); | 
|  | const Type *MidTy = Op->getType(); | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opc); | 
|  |  | 
|  | // Let CastInst::isEliminableCastPair do the heavy lifting. | 
|  | return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, | 
|  | Type::Int64Ty); | 
|  | } | 
|  |  | 
|  | static Constant *FoldBitCast(Constant *V, const Type *DestTy) { | 
|  | const Type *SrcTy = V->getType(); | 
|  | if (SrcTy == DestTy) | 
|  | return V; // no-op cast | 
|  |  | 
|  | // Check to see if we are casting a pointer to an aggregate to a pointer to | 
|  | // the first element.  If so, return the appropriate GEP instruction. | 
|  | if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) | 
|  | if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) | 
|  | if (PTy->getAddressSpace() == DPTy->getAddressSpace()) { | 
|  | SmallVector<Value*, 8> IdxList; | 
|  | IdxList.push_back(Constant::getNullValue(Type::Int32Ty)); | 
|  | const Type *ElTy = PTy->getElementType(); | 
|  | while (ElTy != DPTy->getElementType()) { | 
|  | if (const StructType *STy = dyn_cast<StructType>(ElTy)) { | 
|  | if (STy->getNumElements() == 0) break; | 
|  | ElTy = STy->getElementType(0); | 
|  | IdxList.push_back(Constant::getNullValue(Type::Int32Ty)); | 
|  | } else if (const SequentialType *STy = | 
|  | dyn_cast<SequentialType>(ElTy)) { | 
|  | if (isa<PointerType>(ElTy)) break;  // Can't index into pointers! | 
|  | ElTy = STy->getElementType(); | 
|  | IdxList.push_back(IdxList[0]); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ElTy == DPTy->getElementType()) | 
|  | return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size()); | 
|  | } | 
|  |  | 
|  | // Handle casts from one vector constant to another.  We know that the src | 
|  | // and dest type have the same size (otherwise its an illegal cast). | 
|  | if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { | 
|  | assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && | 
|  | "Not cast between same sized vectors!"); | 
|  | // First, check for null.  Undef is already handled. | 
|  | if (isa<ConstantAggregateZero>(V)) | 
|  | return Constant::getNullValue(DestTy); | 
|  |  | 
|  | if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) | 
|  | return BitCastConstantVector(CV, DestPTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, implement bitcast folding now.   The code below doesn't handle | 
|  | // bitcast right. | 
|  | if (isa<ConstantPointerNull>(V))  // ptr->ptr cast. | 
|  | return ConstantPointerNull::get(cast<PointerType>(DestTy)); | 
|  |  | 
|  | // Handle integral constant input. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (DestTy->isInteger()) | 
|  | // Integral -> Integral. This is a no-op because the bit widths must | 
|  | // be the same. Consequently, we just fold to V. | 
|  | return V; | 
|  |  | 
|  | if (DestTy->isFloatingPoint()) { | 
|  | assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) && | 
|  | "Unknown FP type!"); | 
|  | return ConstantFP::get(DestTy, APFloat(CI->getValue())); | 
|  | } | 
|  | // Otherwise, can't fold this (vector?) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Handle ConstantFP input. | 
|  | if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) { | 
|  | // FP -> Integral. | 
|  | if (DestTy == Type::Int32Ty) { | 
|  | return ConstantInt::get(FP->getValueAPF().convertToAPInt()); | 
|  | } else { | 
|  | assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!"); | 
|  | return ConstantInt::get(FP->getValueAPF().convertToAPInt()); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V, | 
|  | const Type *DestTy) { | 
|  | if (isa<UndefValue>(V)) { | 
|  | // zext(undef) = 0, because the top bits will be zero. | 
|  | // sext(undef) = 0, because the top bits will all be the same. | 
|  | // [us]itofp(undef) = 0, because the result value is bounded. | 
|  | if (opc == Instruction::ZExt || opc == Instruction::SExt || | 
|  | opc == Instruction::UIToFP || opc == Instruction::SIToFP) | 
|  | return Constant::getNullValue(DestTy); | 
|  | return UndefValue::get(DestTy); | 
|  | } | 
|  | // No compile-time operations on this type yet. | 
|  | if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty) | 
|  | return 0; | 
|  |  | 
|  | // If the cast operand is a constant expression, there's a few things we can | 
|  | // do to try to simplify it. | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->isCast()) { | 
|  | // Try hard to fold cast of cast because they are often eliminable. | 
|  | if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) | 
|  | return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); | 
|  | } else if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // If all of the indexes in the GEP are null values, there is no pointer | 
|  | // adjustment going on.  We might as well cast the source pointer. | 
|  | bool isAllNull = true; | 
|  | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) | 
|  | if (!CE->getOperand(i)->isNullValue()) { | 
|  | isAllNull = false; | 
|  | break; | 
|  | } | 
|  | if (isAllNull) | 
|  | // This is casting one pointer type to another, always BitCast | 
|  | return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We actually have to do a cast now. Perform the cast according to the | 
|  | // opcode specified. | 
|  | switch (opc) { | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | APFloat Val = FPC->getValueAPF(); | 
|  | Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle : | 
|  | DestTy == Type::DoubleTy ? APFloat::IEEEdouble : | 
|  | DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended : | 
|  | DestTy == Type::FP128Ty ? APFloat::IEEEquad : | 
|  | APFloat::Bogus, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(DestTy, Val); | 
|  | } | 
|  | return 0; // Can't fold. | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | const APFloat &V = FPC->getValueAPF(); | 
|  | uint64_t x[2]; | 
|  | uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI, | 
|  | APFloat::rmTowardZero); | 
|  | APInt Val(DestBitWidth, 2, x); | 
|  | return ConstantInt::get(Val); | 
|  | } | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) { | 
|  | std::vector<Constant*> res; | 
|  | const VectorType *DestVecTy = cast<VectorType>(DestTy); | 
|  | const Type *DstEltTy = DestVecTy->getElementType(); | 
|  | for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) | 
|  | res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i), | 
|  | DstEltTy)); | 
|  | return ConstantVector::get(DestVecTy, res); | 
|  | } | 
|  | return 0; // Can't fold. | 
|  | case Instruction::IntToPtr:   //always treated as unsigned | 
|  | if (V->isNullValue())       // Is it an integral null value? | 
|  | return ConstantPointerNull::get(cast<PointerType>(DestTy)); | 
|  | return 0;                   // Other pointer types cannot be casted | 
|  | case Instruction::PtrToInt:   // always treated as unsigned | 
|  | if (V->isNullValue())       // is it a null pointer value? | 
|  | return ConstantInt::get(DestTy, 0); | 
|  | return 0;                   // Other pointer types cannot be casted | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | APInt api = CI->getValue(); | 
|  | const uint64_t zero[] = {0, 0}; | 
|  | APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(), | 
|  | 2, zero)); | 
|  | (void)apf.convertFromAPInt(api, | 
|  | opc==Instruction::SIToFP, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(DestTy, apf); | 
|  | } | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) { | 
|  | std::vector<Constant*> res; | 
|  | const VectorType *DestVecTy = cast<VectorType>(DestTy); | 
|  | const Type *DstEltTy = DestVecTy->getElementType(); | 
|  | for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) | 
|  | res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i), | 
|  | DstEltTy)); | 
|  | return ConstantVector::get(DestVecTy, res); | 
|  | } | 
|  | return 0; | 
|  | case Instruction::ZExt: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | APInt Result(CI->getValue()); | 
|  | Result.zext(BitWidth); | 
|  | return ConstantInt::get(Result); | 
|  | } | 
|  | return 0; | 
|  | case Instruction::SExt: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | APInt Result(CI->getValue()); | 
|  | Result.sext(BitWidth); | 
|  | return ConstantInt::get(Result); | 
|  | } | 
|  | return 0; | 
|  | case Instruction::Trunc: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | APInt Result(CI->getValue()); | 
|  | Result.trunc(BitWidth); | 
|  | return ConstantInt::get(Result); | 
|  | } | 
|  | return 0; | 
|  | case Instruction::BitCast: | 
|  | return FoldBitCast(const_cast<Constant*>(V), DestTy); | 
|  | default: | 
|  | assert(!"Invalid CE CastInst opcode"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(0 && "Failed to cast constant expression"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond, | 
|  | const Constant *V1, | 
|  | const Constant *V2) { | 
|  | if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond)) | 
|  | return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2); | 
|  |  | 
|  | if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2); | 
|  | if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1); | 
|  | if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1); | 
|  | if (V1 == V2) return const_cast<Constant*>(V1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val, | 
|  | const Constant *Idx) { | 
|  | if (isa<UndefValue>(Val))  // ee(undef, x) -> undef | 
|  | return UndefValue::get(cast<VectorType>(Val->getType())->getElementType()); | 
|  | if (Val->isNullValue())  // ee(zero, x) -> zero | 
|  | return Constant::getNullValue( | 
|  | cast<VectorType>(Val->getType())->getElementType()); | 
|  |  | 
|  | if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { | 
|  | if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { | 
|  | return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue())); | 
|  | } else if (isa<UndefValue>(Idx)) { | 
|  | // ee({w,x,y,z}, undef) -> w (an arbitrary value). | 
|  | return const_cast<Constant*>(CVal->getOperand(0)); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val, | 
|  | const Constant *Elt, | 
|  | const Constant *Idx) { | 
|  | const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); | 
|  | if (!CIdx) return 0; | 
|  | APInt idxVal = CIdx->getValue(); | 
|  | if (isa<UndefValue>(Val)) { | 
|  | // Insertion of scalar constant into vector undef | 
|  | // Optimize away insertion of undef | 
|  | if (isa<UndefValue>(Elt)) | 
|  | return const_cast<Constant*>(Val); | 
|  | // Otherwise break the aggregate undef into multiple undefs and do | 
|  | // the insertion | 
|  | unsigned numOps = | 
|  | cast<VectorType>(Val->getType())->getNumElements(); | 
|  | std::vector<Constant*> Ops; | 
|  | Ops.reserve(numOps); | 
|  | for (unsigned i = 0; i < numOps; ++i) { | 
|  | const Constant *Op = | 
|  | (idxVal == i) ? Elt : UndefValue::get(Elt->getType()); | 
|  | Ops.push_back(const_cast<Constant*>(Op)); | 
|  | } | 
|  | return ConstantVector::get(Ops); | 
|  | } | 
|  | if (isa<ConstantAggregateZero>(Val)) { | 
|  | // Insertion of scalar constant into vector aggregate zero | 
|  | // Optimize away insertion of zero | 
|  | if (Elt->isNullValue()) | 
|  | return const_cast<Constant*>(Val); | 
|  | // Otherwise break the aggregate zero into multiple zeros and do | 
|  | // the insertion | 
|  | unsigned numOps = | 
|  | cast<VectorType>(Val->getType())->getNumElements(); | 
|  | std::vector<Constant*> Ops; | 
|  | Ops.reserve(numOps); | 
|  | for (unsigned i = 0; i < numOps; ++i) { | 
|  | const Constant *Op = | 
|  | (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType()); | 
|  | Ops.push_back(const_cast<Constant*>(Op)); | 
|  | } | 
|  | return ConstantVector::get(Ops); | 
|  | } | 
|  | if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { | 
|  | // Insertion of scalar constant into vector constant | 
|  | std::vector<Constant*> Ops; | 
|  | Ops.reserve(CVal->getNumOperands()); | 
|  | for (unsigned i = 0; i < CVal->getNumOperands(); ++i) { | 
|  | const Constant *Op = | 
|  | (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i)); | 
|  | Ops.push_back(const_cast<Constant*>(Op)); | 
|  | } | 
|  | return ConstantVector::get(Ops); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef | 
|  | /// return the specified element value.  Otherwise return null. | 
|  | static Constant *GetVectorElement(const Constant *C, unsigned EltNo) { | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) | 
|  | return const_cast<Constant*>(CV->getOperand(EltNo)); | 
|  |  | 
|  | const Type *EltTy = cast<VectorType>(C->getType())->getElementType(); | 
|  | if (isa<ConstantAggregateZero>(C)) | 
|  | return Constant::getNullValue(EltTy); | 
|  | if (isa<UndefValue>(C)) | 
|  | return UndefValue::get(EltTy); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1, | 
|  | const Constant *V2, | 
|  | const Constant *Mask) { | 
|  | // Undefined shuffle mask -> undefined value. | 
|  | if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType()); | 
|  |  | 
|  | unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements(); | 
|  | const Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); | 
|  |  | 
|  | // Loop over the shuffle mask, evaluating each element. | 
|  | SmallVector<Constant*, 32> Result; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *InElt = GetVectorElement(Mask, i); | 
|  | if (InElt == 0) return 0; | 
|  |  | 
|  | if (isa<UndefValue>(InElt)) | 
|  | InElt = UndefValue::get(EltTy); | 
|  | else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) { | 
|  | unsigned Elt = CI->getZExtValue(); | 
|  | if (Elt >= NumElts*2) | 
|  | InElt = UndefValue::get(EltTy); | 
|  | else if (Elt >= NumElts) | 
|  | InElt = GetVectorElement(V2, Elt-NumElts); | 
|  | else | 
|  | InElt = GetVectorElement(V1, Elt); | 
|  | if (InElt == 0) return 0; | 
|  | } else { | 
|  | // Unknown value. | 
|  | return 0; | 
|  | } | 
|  | Result.push_back(InElt); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(&Result[0], Result.size()); | 
|  | } | 
|  |  | 
|  | /// EvalVectorOp - Given two vector constants and a function pointer, apply the | 
|  | /// function pointer to each element pair, producing a new ConstantVector | 
|  | /// constant. Either or both of V1 and V2 may be NULL, meaning a | 
|  | /// ConstantAggregateZero operand. | 
|  | static Constant *EvalVectorOp(const ConstantVector *V1, | 
|  | const ConstantVector *V2, | 
|  | const VectorType *VTy, | 
|  | Constant *(*FP)(Constant*, Constant*)) { | 
|  | std::vector<Constant*> Res; | 
|  | const Type *EltTy = VTy->getElementType(); | 
|  | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { | 
|  | const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy); | 
|  | const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy); | 
|  | Res.push_back(FP(const_cast<Constant*>(C1), | 
|  | const_cast<Constant*>(C2))); | 
|  | } | 
|  | return ConstantVector::get(Res); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, | 
|  | const Constant *C1, | 
|  | const Constant *C2) { | 
|  | // No compile-time operations on this type yet. | 
|  | if (C1->getType() == Type::PPC_FP128Ty) | 
|  | return 0; | 
|  |  | 
|  | // Handle UndefValue up front | 
|  | if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Xor: | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | // Handle undef ^ undef -> 0 special case. This is a common | 
|  | // idiom (misuse). | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | // Fallthrough | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return UndefValue::get(C1->getType()); | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | if (!isa<UndefValue>(C2))                    // undef / X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | return const_cast<Constant*>(C2);            // X / undef -> undef | 
|  | case Instruction::Or:                          // X | undef -> -1 | 
|  | if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType())) | 
|  | return ConstantVector::getAllOnesValue(PTy); | 
|  | return ConstantInt::getAllOnesValue(C1->getType()); | 
|  | case Instruction::LShr: | 
|  | if (isa<UndefValue>(C2) && isa<UndefValue>(C1)) | 
|  | return const_cast<Constant*>(C1);           // undef lshr undef -> undef | 
|  | return Constant::getNullValue(C1->getType()); // X lshr undef -> 0 | 
|  | // undef lshr X -> 0 | 
|  | case Instruction::AShr: | 
|  | if (!isa<UndefValue>(C2)) | 
|  | return const_cast<Constant*>(C1);           // undef ashr X --> undef | 
|  | else if (isa<UndefValue>(C1)) | 
|  | return const_cast<Constant*>(C1);           // undef ashr undef -> undef | 
|  | else | 
|  | return const_cast<Constant*>(C1);           // X ashr undef --> X | 
|  | case Instruction::Shl: | 
|  | // undef << X -> 0   or   X << undef -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | if (isa<ConstantExpr>(C2)) { | 
|  | // There are many possible foldings we could do here.  We should probably | 
|  | // at least fold add of a pointer with an integer into the appropriate | 
|  | // getelementptr.  This will improve alias analysis a bit. | 
|  | } else { | 
|  | // Just implement a couple of simple identities. | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X + 0 == X | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X - 0 == X | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (C2->isNullValue()) return const_cast<Constant*>(C2);  // X * 0 == 0 | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) | 
|  | if (CI->equalsInt(1)) | 
|  | return const_cast<Constant*>(C1);                     // X * 1 == X | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) | 
|  | if (CI->equalsInt(1)) | 
|  | return const_cast<Constant*>(C1);                     // X / 1 == X | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) | 
|  | if (CI->equalsInt(1)) | 
|  | return Constant::getNullValue(CI->getType());         // X % 1 == 0 | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) { | 
|  | if (CI->isZero()) return const_cast<Constant*>(C2);     // X & 0 == 0 | 
|  | if (CI->isAllOnesValue()) | 
|  | return const_cast<Constant*>(C1);                     // X & -1 == X | 
|  |  | 
|  | // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) | 
|  | if (CE1->getOpcode() == Instruction::ZExt) { | 
|  | APInt PossiblySetBits | 
|  | = cast<IntegerType>(CE1->getOperand(0)->getType())->getMask(); | 
|  | PossiblySetBits.zext(C1->getType()->getPrimitiveSizeInBits()); | 
|  | if ((PossiblySetBits & CI->getValue()) == PossiblySetBits) | 
|  | return const_cast<Constant*>(C1); | 
|  | } | 
|  | } | 
|  | if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) { | 
|  | GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0)); | 
|  |  | 
|  | // Functions are at least 4-byte aligned.  If and'ing the address of a | 
|  | // function with a constant < 4, fold it to zero. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) | 
|  | if (CI->getValue().ult(APInt(CI->getType()->getBitWidth(),4)) && | 
|  | isa<Function>(CPR)) | 
|  | return Constant::getNullValue(CI->getType()); | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X | 0 == X | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) | 
|  | if (CI->isAllOnesValue()) | 
|  | return const_cast<Constant*>(C2);  // X | -1 == -1 | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X ^ 0 == X | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 | 
|  | if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero. | 
|  | return ConstantExpr::getLShr(const_cast<Constant*>(C1), | 
|  | const_cast<Constant*>(C2)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (isa<ConstantExpr>(C2)) { | 
|  | // If C2 is a constant expr and C1 isn't, flop them around and fold the | 
|  | // other way if possible. | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // No change of opcode required. | 
|  | return ConstantFoldBinaryInstruction(Opcode, C2, C1); | 
|  |  | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Sub: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | default:  // These instructions cannot be flopped around. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point we know neither constant is an UndefValue nor a ConstantExpr | 
|  | // so look at directly computing the value. | 
|  | if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { | 
|  | if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { | 
|  | using namespace APIntOps; | 
|  | APInt C1V = CI1->getValue(); | 
|  | APInt C2V = CI2->getValue(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | return ConstantInt::get(C1V + C2V); | 
|  | case Instruction::Sub: | 
|  | return ConstantInt::get(C1V - C2V); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(C1V * C2V); | 
|  | case Instruction::UDiv: | 
|  | if (CI2->isNullValue()) | 
|  | return 0;        // X / 0 -> can't fold | 
|  | return ConstantInt::get(C1V.udiv(C2V)); | 
|  | case Instruction::SDiv: | 
|  | if (CI2->isNullValue()) | 
|  | return 0;        // X / 0 -> can't fold | 
|  | if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) | 
|  | return 0;        // MIN_INT / -1 -> overflow | 
|  | return ConstantInt::get(C1V.sdiv(C2V)); | 
|  | case Instruction::URem: | 
|  | if (C2->isNullValue()) | 
|  | return 0;        // X / 0 -> can't fold | 
|  | return ConstantInt::get(C1V.urem(C2V)); | 
|  | case Instruction::SRem: | 
|  | if (CI2->isNullValue()) | 
|  | return 0;        // X % 0 -> can't fold | 
|  | if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) | 
|  | return 0;        // MIN_INT % -1 -> overflow | 
|  | return ConstantInt::get(C1V.srem(C2V)); | 
|  | case Instruction::And: | 
|  | return ConstantInt::get(C1V & C2V); | 
|  | case Instruction::Or: | 
|  | return ConstantInt::get(C1V | C2V); | 
|  | case Instruction::Xor: | 
|  | return ConstantInt::get(C1V ^ C2V); | 
|  | case Instruction::Shl: | 
|  | if (uint32_t shiftAmt = C2V.getZExtValue()) { | 
|  | if (shiftAmt < C1V.getBitWidth()) | 
|  | return ConstantInt::get(C1V.shl(shiftAmt)); | 
|  | else | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | } | 
|  | return const_cast<ConstantInt*>(CI1); // Zero shift is identity | 
|  | case Instruction::LShr: | 
|  | if (uint32_t shiftAmt = C2V.getZExtValue()) { | 
|  | if (shiftAmt < C1V.getBitWidth()) | 
|  | return ConstantInt::get(C1V.lshr(shiftAmt)); | 
|  | else | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | } | 
|  | return const_cast<ConstantInt*>(CI1); // Zero shift is identity | 
|  | case Instruction::AShr: | 
|  | if (uint32_t shiftAmt = C2V.getZExtValue()) { | 
|  | if (shiftAmt < C1V.getBitWidth()) | 
|  | return ConstantInt::get(C1V.ashr(shiftAmt)); | 
|  | else | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | } | 
|  | return const_cast<ConstantInt*>(CI1); // Zero shift is identity | 
|  | } | 
|  | } | 
|  | } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { | 
|  | if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { | 
|  | APFloat C1V = CFP1->getValueAPF(); | 
|  | APFloat C2V = CFP2->getValueAPF(); | 
|  | APFloat C3V = C1V;  // copy for modification | 
|  | bool isDouble = CFP1->getType()==Type::DoubleTy; | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(CFP1->getType(), C3V); | 
|  | case Instruction::Sub: | 
|  | (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(CFP1->getType(), C3V); | 
|  | case Instruction::Mul: | 
|  | (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(CFP1->getType(), C3V); | 
|  | case Instruction::FDiv: | 
|  | (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(CFP1->getType(), C3V); | 
|  | case Instruction::FRem: | 
|  | if (C2V.isZero()) | 
|  | // IEEE 754, Section 7.1, #5 | 
|  | return ConstantFP::get(CFP1->getType(), isDouble ? | 
|  | APFloat(std::numeric_limits<double>::quiet_NaN()) : | 
|  | APFloat(std::numeric_limits<float>::quiet_NaN())); | 
|  | (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(CFP1->getType(), C3V); | 
|  | } | 
|  | } | 
|  | } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { | 
|  | const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1); | 
|  | const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2); | 
|  | if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) && | 
|  | (CP2 != NULL || isa<ConstantAggregateZero>(C2))) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd); | 
|  | case Instruction::Sub: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub); | 
|  | case Instruction::Mul: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul); | 
|  | case Instruction::UDiv: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv); | 
|  | case Instruction::SDiv: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv); | 
|  | case Instruction::FDiv: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv); | 
|  | case Instruction::URem: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem); | 
|  | case Instruction::SRem: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem); | 
|  | case Instruction::FRem: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem); | 
|  | case Instruction::And: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd); | 
|  | case Instruction::Or: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr); | 
|  | case Instruction::Xor: | 
|  | return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't know how to fold this | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isZeroSizedType - This type is zero sized if its an array or structure of | 
|  | /// zero sized types.  The only leaf zero sized type is an empty structure. | 
|  | static bool isMaybeZeroSizedType(const Type *Ty) { | 
|  | if (isa<OpaqueType>(Ty)) return true;  // Can't say. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  |  | 
|  | // If all of elements have zero size, this does too. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; | 
|  | return true; | 
|  |  | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | return isMaybeZeroSizedType(ATy->getElementType()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IdxCompare - Compare the two constants as though they were getelementptr | 
|  | /// indices.  This allows coersion of the types to be the same thing. | 
|  | /// | 
|  | /// If the two constants are the "same" (after coersion), return 0.  If the | 
|  | /// first is less than the second, return -1, if the second is less than the | 
|  | /// first, return 1.  If the constants are not integral, return -2. | 
|  | /// | 
|  | static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) { | 
|  | if (C1 == C2) return 0; | 
|  |  | 
|  | // Ok, we found a different index.  If they are not ConstantInt, we can't do | 
|  | // anything with them. | 
|  | if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) | 
|  | return -2; // don't know! | 
|  |  | 
|  | // Ok, we have two differing integer indices.  Sign extend them to be the same | 
|  | // type.  Long is always big enough, so we use it. | 
|  | if (C1->getType() != Type::Int64Ty) | 
|  | C1 = ConstantExpr::getSExt(C1, Type::Int64Ty); | 
|  |  | 
|  | if (C2->getType() != Type::Int64Ty) | 
|  | C2 = ConstantExpr::getSExt(C2, Type::Int64Ty); | 
|  |  | 
|  | if (C1 == C2) return 0;  // They are equal | 
|  |  | 
|  | // If the type being indexed over is really just a zero sized type, there is | 
|  | // no pointer difference being made here. | 
|  | if (isMaybeZeroSizedType(ElTy)) | 
|  | return -2; // dunno. | 
|  |  | 
|  | // If they are really different, now that they are the same type, then we | 
|  | // found a difference! | 
|  | if (cast<ConstantInt>(C1)->getSExtValue() < | 
|  | cast<ConstantInt>(C2)->getSExtValue()) | 
|  | return -1; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// evaluateFCmpRelation - This function determines if there is anything we can | 
|  | /// decide about the two constants provided.  This doesn't need to handle simple | 
|  | /// things like ConstantFP comparisons, but should instead handle ConstantExprs. | 
|  | /// If we can determine that the two constants have a particular relation to | 
|  | /// each other, we should return the corresponding FCmpInst predicate, | 
|  | /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in | 
|  | /// ConstantFoldCompareInstruction. | 
|  | /// | 
|  | /// To simplify this code we canonicalize the relation so that the first | 
|  | /// operand is always the most "complex" of the two.  We consider ConstantFP | 
|  | /// to be the simplest, and ConstantExprs to be the most complex. | 
|  | static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1, | 
|  | const Constant *V2) { | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Cannot compare values of different types!"); | 
|  |  | 
|  | // No compile-time operations on this type yet. | 
|  | if (V1->getType() == Type::PPC_FP128Ty) | 
|  | return FCmpInst::BAD_FCMP_PREDICATE; | 
|  |  | 
|  | // Handle degenerate case quickly | 
|  | if (V1 == V2) return FCmpInst::FCMP_OEQ; | 
|  |  | 
|  | if (!isa<ConstantExpr>(V1)) { | 
|  | if (!isa<ConstantExpr>(V2)) { | 
|  | // We distilled thisUse the standard constant folder for a few cases | 
|  | ConstantInt *R = 0; | 
|  | Constant *C1 = const_cast<Constant*>(V1); | 
|  | Constant *C2 = const_cast<Constant*>(V2); | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OEQ; | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OLT; | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OGT; | 
|  |  | 
|  | // Nothing more we can do | 
|  | return FCmpInst::BAD_FCMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // If the first operand is simple and second is ConstantExpr, swap operands. | 
|  | FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); | 
|  | if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) | 
|  | return FCmpInst::getSwappedPredicate(SwappedRelation); | 
|  | } else { | 
|  | // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a | 
|  | // constantexpr or a simple constant. | 
|  | const ConstantExpr *CE1 = cast<ConstantExpr>(V1); | 
|  | switch (CE1->getOpcode()) { | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | // We might be able to do something with these but we don't right now. | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | // There are MANY other foldings that we could perform here.  They will | 
|  | // probably be added on demand, as they seem needed. | 
|  | return FCmpInst::BAD_FCMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | /// evaluateICmpRelation - This function determines if there is anything we can | 
|  | /// decide about the two constants provided.  This doesn't need to handle simple | 
|  | /// things like integer comparisons, but should instead handle ConstantExprs | 
|  | /// and GlobalValues.  If we can determine that the two constants have a | 
|  | /// particular relation to each other, we should return the corresponding ICmp | 
|  | /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE. | 
|  | /// | 
|  | /// To simplify this code we canonicalize the relation so that the first | 
|  | /// operand is always the most "complex" of the two.  We consider simple | 
|  | /// constants (like ConstantInt) to be the simplest, followed by | 
|  | /// GlobalValues, followed by ConstantExpr's (the most complex). | 
|  | /// | 
|  | static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1, | 
|  | const Constant *V2, | 
|  | bool isSigned) { | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Cannot compare different types of values!"); | 
|  | if (V1 == V2) return ICmpInst::ICMP_EQ; | 
|  |  | 
|  | if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) { | 
|  | if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) { | 
|  | // We distilled this down to a simple case, use the standard constant | 
|  | // folder. | 
|  | ConstantInt *R = 0; | 
|  | Constant *C1 = const_cast<Constant*>(V1); | 
|  | Constant *C2 = const_cast<Constant*>(V2); | 
|  | ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  | pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  | pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  |  | 
|  | // If we couldn't figure it out, bail. | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // If the first operand is simple, swap operands. | 
|  | ICmpInst::Predicate SwappedRelation = | 
|  | evaluateICmpRelation(V2, V1, isSigned); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  |  | 
|  | } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) { | 
|  | if (isa<ConstantExpr>(V2)) {  // Swap as necessary. | 
|  | ICmpInst::Predicate SwappedRelation = | 
|  | evaluateICmpRelation(V2, V1, isSigned); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  | else | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // Now we know that the RHS is a GlobalValue or simple constant, | 
|  | // which (since the types must match) means that it's a ConstantPointerNull. | 
|  | if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) { | 
|  | // Don't try to decide equality of aliases. | 
|  | if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2)) | 
|  | if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage()) | 
|  | return ICmpInst::ICMP_NE; | 
|  | } else { | 
|  | assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); | 
|  | // GlobalVals can never be null.  Don't try to evaluate aliases. | 
|  | if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1)) | 
|  | return ICmpInst::ICMP_NE; | 
|  | } | 
|  | } else { | 
|  | // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a | 
|  | // constantexpr, a CPR, or a simple constant. | 
|  | const ConstantExpr *CE1 = cast<ConstantExpr>(V1); | 
|  | const Constant *CE1Op0 = CE1->getOperand(0); | 
|  |  | 
|  | switch (CE1->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | break; // We can't evaluate floating point casts or truncations. | 
|  |  | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // If the cast is not actually changing bits, and the second operand is a | 
|  | // null pointer, do the comparison with the pre-casted value. | 
|  | if (V2->isNullValue() && | 
|  | (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) { | 
|  | bool sgnd = isSigned; | 
|  | if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; | 
|  | if (CE1->getOpcode() == Instruction::SExt) isSigned = true; | 
|  | return evaluateICmpRelation(CE1Op0, | 
|  | Constant::getNullValue(CE1Op0->getType()), | 
|  | sgnd); | 
|  | } | 
|  |  | 
|  | // If the dest type is a pointer type, and the RHS is a constantexpr cast | 
|  | // from the same type as the src of the LHS, evaluate the inputs.  This is | 
|  | // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)", | 
|  | // which happens a lot in compilers with tagged integers. | 
|  | if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) | 
|  | if (CE2->isCast() && isa<PointerType>(CE1->getType()) && | 
|  | CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() && | 
|  | CE1->getOperand(0)->getType()->isInteger()) { | 
|  | bool sgnd = isSigned; | 
|  | if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; | 
|  | if (CE1->getOpcode() == Instruction::SExt) isSigned = true; | 
|  | return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0), | 
|  | sgnd); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::GetElementPtr: | 
|  | // Ok, since this is a getelementptr, we know that the constant has a | 
|  | // pointer type.  Check the various cases. | 
|  | if (isa<ConstantPointerNull>(V2)) { | 
|  | // If we are comparing a GEP to a null pointer, check to see if the base | 
|  | // of the GEP equals the null pointer. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | if (GV->hasExternalWeakLinkage()) | 
|  | // Weak linkage GVals could be zero or not. We're comparing that | 
|  | // to null pointer so its greater-or-equal | 
|  | return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | 
|  | else | 
|  | // If its not weak linkage, the GVal must have a non-zero address | 
|  | // so the result is greater-than | 
|  | return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT; | 
|  | } else if (isa<ConstantPointerNull>(CE1Op0)) { | 
|  | // If we are indexing from a null pointer, check to see if we have any | 
|  | // non-zero indices. | 
|  | for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) | 
|  | if (!CE1->getOperand(i)->isNullValue()) | 
|  | // Offsetting from null, must not be equal. | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | // Only zero indexes from null, must still be zero. | 
|  | return ICmpInst::ICMP_EQ; | 
|  | } | 
|  | // Otherwise, we can't really say if the first operand is null or not. | 
|  | } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) { | 
|  | if (isa<ConstantPointerNull>(CE1Op0)) { | 
|  | if (CPR2->hasExternalWeakLinkage()) | 
|  | // Weak linkage GVals could be zero or not. We're comparing it to | 
|  | // a null pointer, so its less-or-equal | 
|  | return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | 
|  | else | 
|  | // If its not weak linkage, the GVal must have a non-zero address | 
|  | // so the result is less-than | 
|  | return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | if (CPR1 == CPR2) { | 
|  | // If this is a getelementptr of the same global, then it must be | 
|  | // different.  Because the types must match, the getelementptr could | 
|  | // only have at most one index, and because we fold getelementptr's | 
|  | // with a single zero index, it must be nonzero. | 
|  | assert(CE1->getNumOperands() == 2 && | 
|  | !CE1->getOperand(1)->isNullValue() && | 
|  | "Suprising getelementptr!"); | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | } else { | 
|  | // If they are different globals, we don't know what the value is, | 
|  | // but they can't be equal. | 
|  | return ICmpInst::ICMP_NE; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | const ConstantExpr *CE2 = cast<ConstantExpr>(V2); | 
|  | const Constant *CE2Op0 = CE2->getOperand(0); | 
|  |  | 
|  | // There are MANY other foldings that we could perform here.  They will | 
|  | // probably be added on demand, as they seem needed. | 
|  | switch (CE2->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::GetElementPtr: | 
|  | // By far the most common case to handle is when the base pointers are | 
|  | // obviously to the same or different globals. | 
|  | if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { | 
|  | if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal | 
|  | return ICmpInst::ICMP_NE; | 
|  | // Ok, we know that both getelementptr instructions are based on the | 
|  | // same global.  From this, we can precisely determine the relative | 
|  | // ordering of the resultant pointers. | 
|  | unsigned i = 1; | 
|  |  | 
|  | // Compare all of the operands the GEP's have in common. | 
|  | gep_type_iterator GTI = gep_type_begin(CE1); | 
|  | for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); | 
|  | ++i, ++GTI) | 
|  | switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i), | 
|  | GTI.getIndexedType())) { | 
|  | case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; | 
|  | case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; | 
|  | case -2: return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // Ok, we ran out of things they have in common.  If any leftovers | 
|  | // are non-zero then we have a difference, otherwise we are equal. | 
|  | for (; i < CE1->getNumOperands(); ++i) | 
|  | if (!CE1->getOperand(i)->isNullValue()) { | 
|  | if (isa<ConstantInt>(CE1->getOperand(i))) | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | else | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. | 
|  | } | 
|  |  | 
|  | for (; i < CE2->getNumOperands(); ++i) | 
|  | if (!CE2->getOperand(i)->isNullValue()) { | 
|  | if (isa<ConstantInt>(CE2->getOperand(i))) | 
|  | return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | else | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. | 
|  | } | 
|  | return ICmpInst::ICMP_EQ; | 
|  | } | 
|  | } | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, | 
|  | const Constant *C1, | 
|  | const Constant *C2) { | 
|  |  | 
|  | // Handle some degenerate cases first | 
|  | if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) | 
|  | return UndefValue::get(Type::Int1Ty); | 
|  |  | 
|  | // No compile-time operations on this type yet. | 
|  | if (C1->getType() == Type::PPC_FP128Ty) | 
|  | return 0; | 
|  |  | 
|  | // icmp eq/ne(null,GV) -> false/true | 
|  | if (C1->isNullValue()) { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) | 
|  | // Don't try to evaluate aliases.  External weak GV can be null. | 
|  | if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { | 
|  | if (pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(); | 
|  | else if (pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(); | 
|  | } | 
|  | // icmp eq/ne(GV,null) -> false/true | 
|  | } else if (C2->isNullValue()) { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) | 
|  | // Don't try to evaluate aliases.  External weak GV can be null. | 
|  | if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { | 
|  | if (pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(); | 
|  | else if (pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { | 
|  | APInt V1 = cast<ConstantInt>(C1)->getValue(); | 
|  | APInt V2 = cast<ConstantInt>(C2)->getValue(); | 
|  | switch (pred) { | 
|  | default: assert(0 && "Invalid ICmp Predicate"); return 0; | 
|  | case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2); | 
|  | case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2); | 
|  | case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2)); | 
|  | case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2)); | 
|  | case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2)); | 
|  | case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2)); | 
|  | case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2)); | 
|  | case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2)); | 
|  | case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2)); | 
|  | case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2)); | 
|  | } | 
|  | } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { | 
|  | APFloat C1V = cast<ConstantFP>(C1)->getValueAPF(); | 
|  | APFloat C2V = cast<ConstantFP>(C2)->getValueAPF(); | 
|  | APFloat::cmpResult R = C1V.compare(C2V); | 
|  | switch (pred) { | 
|  | default: assert(0 && "Invalid FCmp Predicate"); return 0; | 
|  | case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(); | 
|  | case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue(); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered); | 
|  | case FCmpInst::FCMP_ORD: | 
|  | return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered); | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_UNE: | 
|  | return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_ONE: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan || | 
|  | R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_ULT: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_OLT: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_UGT: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_OGT: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_ULE: | 
|  | return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_OLE: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan || | 
|  | R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_UGE: | 
|  | return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_OGE: | 
|  | return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan || | 
|  | R==APFloat::cmpEqual); | 
|  | } | 
|  | } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) { | 
|  | if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) { | 
|  | if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) { | 
|  | for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) { | 
|  | Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, | 
|  | const_cast<Constant*>(CP1->getOperand(i)), | 
|  | const_cast<Constant*>(CP2->getOperand(i))); | 
|  | if (ConstantInt *CB = dyn_cast<ConstantInt>(C)) | 
|  | return CB; | 
|  | } | 
|  | // Otherwise, could not decide from any element pairs. | 
|  | return 0; | 
|  | } else if (pred == ICmpInst::ICMP_EQ) { | 
|  | for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) { | 
|  | Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, | 
|  | const_cast<Constant*>(CP1->getOperand(i)), | 
|  | const_cast<Constant*>(CP2->getOperand(i))); | 
|  | if (ConstantInt *CB = dyn_cast<ConstantInt>(C)) | 
|  | return CB; | 
|  | } | 
|  | // Otherwise, could not decide from any element pairs. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C1->getType()->isFloatingPoint()) { | 
|  | switch (evaluateFCmpRelation(C1, C2)) { | 
|  | default: assert(0 && "Unknown relation!"); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | case FCmpInst::FCMP_ORD: | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_ULT: | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_TRUE: | 
|  | case FCmpInst::FCMP_FALSE: | 
|  | case FCmpInst::BAD_FCMP_PREDICATE: | 
|  | break; // Couldn't determine anything about these constants. | 
|  | case FCmpInst::FCMP_OEQ: // We know that C1 == C2 | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || | 
|  | pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || | 
|  | pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); | 
|  | case FCmpInst::FCMP_OLT: // We know that C1 < C2 | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || | 
|  | pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || | 
|  | pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); | 
|  | case FCmpInst::FCMP_OGT: // We know that C1 > C2 | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || | 
|  | pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || | 
|  | pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); | 
|  | case FCmpInst::FCMP_OLE: // We know that C1 <= C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) | 
|  | return ConstantInt::getFalse(); | 
|  | if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) | 
|  | return ConstantInt::getTrue(); | 
|  | break; | 
|  | case FCmpInst::FCMP_OGE: // We known that C1 >= C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) | 
|  | return ConstantInt::getFalse(); | 
|  | if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) | 
|  | return ConstantInt::getTrue(); | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: // We know that C1 != C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) | 
|  | return ConstantInt::getFalse(); | 
|  | if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) | 
|  | return ConstantInt::getTrue(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Evaluate the relation between the two constants, per the predicate. | 
|  | switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) { | 
|  | default: assert(0 && "Unknown relational!"); | 
|  | case ICmpInst::BAD_ICMP_PREDICATE: | 
|  | break;  // Couldn't determine anything about these constants. | 
|  | case ICmpInst::ICMP_EQ:   // We know the constants are equal! | 
|  | // If we know the constants are equal, we can decide the result of this | 
|  | // computation precisely. | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == ICmpInst::ICMP_EQ  || | 
|  | pred == ICmpInst::ICMP_ULE || | 
|  | pred == ICmpInst::ICMP_SLE || | 
|  | pred == ICmpInst::ICMP_UGE || | 
|  | pred == ICmpInst::ICMP_SGE); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | // If we know that C1 < C2, we can decide the result of this computation | 
|  | // precisely. | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == ICmpInst::ICMP_ULT || | 
|  | pred == ICmpInst::ICMP_NE  || | 
|  | pred == ICmpInst::ICMP_ULE); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // If we know that C1 < C2, we can decide the result of this computation | 
|  | // precisely. | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == ICmpInst::ICMP_SLT || | 
|  | pred == ICmpInst::ICMP_NE  || | 
|  | pred == ICmpInst::ICMP_SLE); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // If we know that C1 > C2, we can decide the result of this computation | 
|  | // precisely. | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == ICmpInst::ICMP_UGT || | 
|  | pred == ICmpInst::ICMP_NE  || | 
|  | pred == ICmpInst::ICMP_UGE); | 
|  | case ICmpInst::ICMP_SGT: | 
|  | // If we know that C1 > C2, we can decide the result of this computation | 
|  | // precisely. | 
|  | return ConstantInt::get(Type::Int1Ty, | 
|  | pred == ICmpInst::ICMP_SGT || | 
|  | pred == ICmpInst::ICMP_NE  || | 
|  | pred == ICmpInst::ICMP_SGE); | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // If we know that C1 <= C2, we can only partially decide this relation. | 
|  | if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse(); | 
|  | if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue(); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // If we know that C1 <= C2, we can only partially decide this relation. | 
|  | if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse(); | 
|  | if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue(); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // If we know that C1 >= C2, we can only partially decide this relation. | 
|  | if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse(); | 
|  | if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue(); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // If we know that C1 >= C2, we can only partially decide this relation. | 
|  | if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse(); | 
|  | if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue(); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_NE: | 
|  | // If we know that C1 != C2, we can only partially decide this relation. | 
|  | if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse(); | 
|  | if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) { | 
|  | // If C2 is a constant expr and C1 isn't, flop them around and fold the | 
|  | // other way if possible. | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_NE: | 
|  | // No change of predicate required. | 
|  | return ConstantFoldCompareInstruction(pred, C2, C1); | 
|  |  | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // Change the predicate as necessary to swap the operands. | 
|  | pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); | 
|  | return ConstantFoldCompareInstruction(pred, C2, C1); | 
|  |  | 
|  | default:  // These predicates cannot be flopped around. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldGetElementPtr(const Constant *C, | 
|  | Constant* const *Idxs, | 
|  | unsigned NumIdx) { | 
|  | if (NumIdx == 0 || | 
|  | (NumIdx == 1 && Idxs[0]->isNullValue())) | 
|  | return const_cast<Constant*>(C); | 
|  |  | 
|  | if (isa<UndefValue>(C)) { | 
|  | const PointerType *Ptr = cast<PointerType>(C->getType()); | 
|  | const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, | 
|  | (Value **)Idxs, | 
|  | (Value **)Idxs+NumIdx, | 
|  | true); | 
|  | assert(Ty != 0 && "Invalid indices for GEP!"); | 
|  | return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace())); | 
|  | } | 
|  |  | 
|  | Constant *Idx0 = Idxs[0]; | 
|  | if (C->isNullValue()) { | 
|  | bool isNull = true; | 
|  | for (unsigned i = 0, e = NumIdx; i != e; ++i) | 
|  | if (!Idxs[i]->isNullValue()) { | 
|  | isNull = false; | 
|  | break; | 
|  | } | 
|  | if (isNull) { | 
|  | const PointerType *Ptr = cast<PointerType>(C->getType()); | 
|  | const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, | 
|  | (Value**)Idxs, | 
|  | (Value**)Idxs+NumIdx, | 
|  | true); | 
|  | assert(Ty != 0 && "Invalid indices for GEP!"); | 
|  | return | 
|  | ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) { | 
|  | // Combine Indices - If the source pointer to this getelementptr instruction | 
|  | // is a getelementptr instruction, combine the indices of the two | 
|  | // getelementptr instructions into a single instruction. | 
|  | // | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | const Type *LastTy = 0; | 
|  | for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); | 
|  | I != E; ++I) | 
|  | LastTy = *I; | 
|  |  | 
|  | if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) { | 
|  | SmallVector<Value*, 16> NewIndices; | 
|  | NewIndices.reserve(NumIdx + CE->getNumOperands()); | 
|  | for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i) | 
|  | NewIndices.push_back(CE->getOperand(i)); | 
|  |  | 
|  | // Add the last index of the source with the first index of the new GEP. | 
|  | // Make sure to handle the case when they are actually different types. | 
|  | Constant *Combined = CE->getOperand(CE->getNumOperands()-1); | 
|  | // Otherwise it must be an array. | 
|  | if (!Idx0->isNullValue()) { | 
|  | const Type *IdxTy = Combined->getType(); | 
|  | if (IdxTy != Idx0->getType()) { | 
|  | Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty); | 
|  | Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, | 
|  | Type::Int64Ty); | 
|  | Combined = ConstantExpr::get(Instruction::Add, C1, C2); | 
|  | } else { | 
|  | Combined = | 
|  | ConstantExpr::get(Instruction::Add, Idx0, Combined); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewIndices.push_back(Combined); | 
|  | NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx); | 
|  | return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0], | 
|  | NewIndices.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Implement folding of: | 
|  | //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*), | 
|  | //                        long 0, long 0) | 
|  | // To: int* getelementptr ([3 x int]* %X, long 0, long 0) | 
|  | // | 
|  | if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) { | 
|  | if (const PointerType *SPT = | 
|  | dyn_cast<PointerType>(CE->getOperand(0)->getType())) | 
|  | if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType())) | 
|  | if (const ArrayType *CAT = | 
|  | dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType())) | 
|  | if (CAT->getElementType() == SAT->getElementType()) | 
|  | return ConstantExpr::getGetElementPtr( | 
|  | (Constant*)CE->getOperand(0), Idxs, NumIdx); | 
|  | } | 
|  |  | 
|  | // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1) | 
|  | // Into: inttoptr (i64 0 to i8*) | 
|  | // This happens with pointers to member functions in C++. | 
|  | if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 && | 
|  | isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) && | 
|  | cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) { | 
|  | Constant *Base = CE->getOperand(0); | 
|  | Constant *Offset = Idxs[0]; | 
|  |  | 
|  | // Convert the smaller integer to the larger type. | 
|  | if (Offset->getType()->getPrimitiveSizeInBits() < | 
|  | Base->getType()->getPrimitiveSizeInBits()) | 
|  | Offset = ConstantExpr::getSExt(Offset, Base->getType()); | 
|  | else if (Base->getType()->getPrimitiveSizeInBits() < | 
|  | Offset->getType()->getPrimitiveSizeInBits()) | 
|  | Base = ConstantExpr::getZExt(Base, Base->getType()); | 
|  |  | 
|  | Base = ConstantExpr::getAdd(Base, Offset); | 
|  | return ConstantExpr::getIntToPtr(Base, CE->getType()); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  |