|  | //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // It contains the tablegen backend that emits the decoder functions for | 
|  | // targets with fixed length instruction set. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenInstruction.h" | 
|  | #include "CodeGenTarget.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/CachedHashString.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/MC/MCFixedLenDisassembler.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "decoder-emitter" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | STATISTIC(NumEncodings, "Number of encodings considered"); | 
|  | STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info"); | 
|  | STATISTIC(NumInstructions, "Number of instructions considered"); | 
|  | STATISTIC(NumEncodingsSupported, "Number of encodings supported"); | 
|  | STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); | 
|  |  | 
|  | struct EncodingField { | 
|  | unsigned Base, Width, Offset; | 
|  | EncodingField(unsigned B, unsigned W, unsigned O) | 
|  | : Base(B), Width(W), Offset(O) { } | 
|  | }; | 
|  |  | 
|  | struct OperandInfo { | 
|  | std::vector<EncodingField> Fields; | 
|  | std::string Decoder; | 
|  | bool HasCompleteDecoder; | 
|  |  | 
|  | OperandInfo(std::string D, bool HCD) | 
|  | : Decoder(std::move(D)), HasCompleteDecoder(HCD) {} | 
|  |  | 
|  | void addField(unsigned Base, unsigned Width, unsigned Offset) { | 
|  | Fields.push_back(EncodingField(Base, Width, Offset)); | 
|  | } | 
|  |  | 
|  | unsigned numFields() const { return Fields.size(); } | 
|  |  | 
|  | typedef std::vector<EncodingField>::const_iterator const_iterator; | 
|  |  | 
|  | const_iterator begin() const { return Fields.begin(); } | 
|  | const_iterator end() const   { return Fields.end();   } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<uint8_t> DecoderTable; | 
|  | typedef uint32_t DecoderFixup; | 
|  | typedef std::vector<DecoderFixup> FixupList; | 
|  | typedef std::vector<FixupList> FixupScopeList; | 
|  | typedef SmallSetVector<CachedHashString, 16> PredicateSet; | 
|  | typedef SmallSetVector<CachedHashString, 16> DecoderSet; | 
|  | struct DecoderTableInfo { | 
|  | DecoderTable Table; | 
|  | FixupScopeList FixupStack; | 
|  | PredicateSet Predicates; | 
|  | DecoderSet Decoders; | 
|  | }; | 
|  |  | 
|  | struct EncodingAndInst { | 
|  | const Record *EncodingDef; | 
|  | const CodeGenInstruction *Inst; | 
|  |  | 
|  | EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst) | 
|  | : EncodingDef(EncodingDef), Inst(Inst) {} | 
|  | }; | 
|  |  | 
|  | struct EncodingIDAndOpcode { | 
|  | unsigned EncodingID; | 
|  | unsigned Opcode; | 
|  |  | 
|  | EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {} | 
|  | EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode) | 
|  | : EncodingID(EncodingID), Opcode(Opcode) {} | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) { | 
|  | if (Value.EncodingDef != Value.Inst->TheDef) | 
|  | OS << Value.EncodingDef->getName() << ":"; | 
|  | OS << Value.Inst->TheDef->getName(); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | class FixedLenDecoderEmitter { | 
|  | RecordKeeper &RK; | 
|  | std::vector<EncodingAndInst> NumberedEncodings; | 
|  |  | 
|  | public: | 
|  | // Defaults preserved here for documentation, even though they aren't | 
|  | // strictly necessary given the way that this is currently being called. | 
|  | FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, | 
|  | std::string GPrefix = "if (", | 
|  | std::string GPostfix = " == MCDisassembler::Fail)", | 
|  | std::string ROK = "MCDisassembler::Success", | 
|  | std::string RFail = "MCDisassembler::Fail", | 
|  | std::string L = "") | 
|  | : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)), | 
|  | GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)), | 
|  | ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)), | 
|  | Locals(std::move(L)) {} | 
|  |  | 
|  | // Emit the decoder state machine table. | 
|  | void emitTable(formatted_raw_ostream &o, DecoderTable &Table, | 
|  | unsigned Indentation, unsigned BitWidth, | 
|  | StringRef Namespace) const; | 
|  | void emitPredicateFunction(formatted_raw_ostream &OS, | 
|  | PredicateSet &Predicates, | 
|  | unsigned Indentation) const; | 
|  | void emitDecoderFunction(formatted_raw_ostream &OS, | 
|  | DecoderSet &Decoders, | 
|  | unsigned Indentation) const; | 
|  |  | 
|  | // run - Output the code emitter | 
|  | void run(raw_ostream &o); | 
|  |  | 
|  | private: | 
|  | CodeGenTarget Target; | 
|  |  | 
|  | public: | 
|  | std::string PredicateNamespace; | 
|  | std::string GuardPrefix, GuardPostfix; | 
|  | std::string ReturnOK, ReturnFail; | 
|  | std::string Locals; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system | 
|  | // for a bit value. | 
|  | // | 
|  | // BIT_UNFILTERED is used as the init value for a filter position.  It is used | 
|  | // only for filter processings. | 
|  | typedef enum { | 
|  | BIT_TRUE,      // '1' | 
|  | BIT_FALSE,     // '0' | 
|  | BIT_UNSET,     // '?' | 
|  | BIT_UNFILTERED // unfiltered | 
|  | } bit_value_t; | 
|  |  | 
|  | static bool ValueSet(bit_value_t V) { | 
|  | return (V == BIT_TRUE || V == BIT_FALSE); | 
|  | } | 
|  |  | 
|  | static bool ValueNotSet(bit_value_t V) { | 
|  | return (V == BIT_UNSET); | 
|  | } | 
|  |  | 
|  | static int Value(bit_value_t V) { | 
|  | return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); | 
|  | } | 
|  |  | 
|  | static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { | 
|  | if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) | 
|  | return bit->getValue() ? BIT_TRUE : BIT_FALSE; | 
|  |  | 
|  | // The bit is uninitialized. | 
|  | return BIT_UNSET; | 
|  | } | 
|  |  | 
|  | // Prints the bit value for each position. | 
|  | static void dumpBits(raw_ostream &o, const BitsInit &bits) { | 
|  | for (unsigned index = bits.getNumBits(); index > 0; --index) { | 
|  | switch (bitFromBits(bits, index - 1)) { | 
|  | case BIT_TRUE: | 
|  | o << "1"; | 
|  | break; | 
|  | case BIT_FALSE: | 
|  | o << "0"; | 
|  | break; | 
|  | case BIT_UNSET: | 
|  | o << "_"; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unexpected return value from bitFromBits"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static BitsInit &getBitsField(const Record &def, StringRef str) { | 
|  | BitsInit *bits = def.getValueAsBitsInit(str); | 
|  | return *bits; | 
|  | } | 
|  |  | 
|  | // Representation of the instruction to work on. | 
|  | typedef std::vector<bit_value_t> insn_t; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class FilterChooser; | 
|  |  | 
|  | /// Filter - Filter works with FilterChooser to produce the decoding tree for | 
|  | /// the ISA. | 
|  | /// | 
|  | /// It is useful to think of a Filter as governing the switch stmts of the | 
|  | /// decoding tree in a certain level.  Each case stmt delegates to an inferior | 
|  | /// FilterChooser to decide what further decoding logic to employ, or in another | 
|  | /// words, what other remaining bits to look at.  The FilterChooser eventually | 
|  | /// chooses a best Filter to do its job. | 
|  | /// | 
|  | /// This recursive scheme ends when the number of Opcodes assigned to the | 
|  | /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when | 
|  | /// the Filter/FilterChooser combo does not know how to distinguish among the | 
|  | /// Opcodes assigned. | 
|  | /// | 
|  | /// An example of a conflict is | 
|  | /// | 
|  | /// Conflict: | 
|  | ///                     111101000.00........00010000.... | 
|  | ///                     111101000.00........0001........ | 
|  | ///                     1111010...00........0001........ | 
|  | ///                     1111010...00.................... | 
|  | ///                     1111010......................... | 
|  | ///                     1111............................ | 
|  | ///                     ................................ | 
|  | ///     VST4q8a         111101000_00________00010000____ | 
|  | ///     VST4q8b         111101000_00________00010000____ | 
|  | /// | 
|  | /// The Debug output shows the path that the decoding tree follows to reach the | 
|  | /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced | 
|  | /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. | 
|  | /// | 
|  | /// The encoding info in the .td files does not specify this meta information, | 
|  | /// which could have been used by the decoder to resolve the conflict.  The | 
|  | /// decoder could try to decode the even/odd register numbering and assign to | 
|  | /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" | 
|  | /// version and return the Opcode since the two have the same Asm format string. | 
|  | class Filter { | 
|  | protected: | 
|  | const FilterChooser *Owner;// points to the FilterChooser who owns this filter | 
|  | unsigned StartBit; // the starting bit position | 
|  | unsigned NumBits; // number of bits to filter | 
|  | bool Mixed; // a mixed region contains both set and unset bits | 
|  |  | 
|  | // Map of well-known segment value to the set of uid's with that value. | 
|  | std::map<uint64_t, std::vector<EncodingIDAndOpcode>> | 
|  | FilteredInstructions; | 
|  |  | 
|  | // Set of uid's with non-constant segment values. | 
|  | std::vector<EncodingIDAndOpcode> VariableInstructions; | 
|  |  | 
|  | // Map of well-known segment value to its delegate. | 
|  | std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap; | 
|  |  | 
|  | // Number of instructions which fall under FilteredInstructions category. | 
|  | unsigned NumFiltered; | 
|  |  | 
|  | // Keeps track of the last opcode in the filtered bucket. | 
|  | EncodingIDAndOpcode LastOpcFiltered; | 
|  |  | 
|  | public: | 
|  | Filter(Filter &&f); | 
|  | Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); | 
|  |  | 
|  | ~Filter() = default; | 
|  |  | 
|  | unsigned getNumFiltered() const { return NumFiltered; } | 
|  |  | 
|  | EncodingIDAndOpcode getSingletonOpc() const { | 
|  | assert(NumFiltered == 1); | 
|  | return LastOpcFiltered; | 
|  | } | 
|  |  | 
|  | // Return the filter chooser for the group of instructions without constant | 
|  | // segment values. | 
|  | const FilterChooser &getVariableFC() const { | 
|  | assert(NumFiltered == 1); | 
|  | assert(FilterChooserMap.size() == 1); | 
|  | return *(FilterChooserMap.find((unsigned)-1)->second); | 
|  | } | 
|  |  | 
|  | // Divides the decoding task into sub tasks and delegates them to the | 
|  | // inferior FilterChooser's. | 
|  | // | 
|  | // A special case arises when there's only one entry in the filtered | 
|  | // instructions.  In order to unambiguously decode the singleton, we need to | 
|  | // match the remaining undecoded encoding bits against the singleton. | 
|  | void recurse(); | 
|  |  | 
|  | // Emit table entries to decode instructions given a segment or segments of | 
|  | // bits. | 
|  | void emitTableEntry(DecoderTableInfo &TableInfo) const; | 
|  |  | 
|  | // Returns the number of fanout produced by the filter.  More fanout implies | 
|  | // the filter distinguishes more categories of instructions. | 
|  | unsigned usefulness() const; | 
|  | }; // end class Filter | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // These are states of our finite state machines used in FilterChooser's | 
|  | // filterProcessor() which produces the filter candidates to use. | 
|  | typedef enum { | 
|  | ATTR_NONE, | 
|  | ATTR_FILTERED, | 
|  | ATTR_ALL_SET, | 
|  | ATTR_ALL_UNSET, | 
|  | ATTR_MIXED | 
|  | } bitAttr_t; | 
|  |  | 
|  | /// FilterChooser - FilterChooser chooses the best filter among a set of Filters | 
|  | /// in order to perform the decoding of instructions at the current level. | 
|  | /// | 
|  | /// Decoding proceeds from the top down.  Based on the well-known encoding bits | 
|  | /// of instructions available, FilterChooser builds up the possible Filters that | 
|  | /// can further the task of decoding by distinguishing among the remaining | 
|  | /// candidate instructions. | 
|  | /// | 
|  | /// Once a filter has been chosen, it is called upon to divide the decoding task | 
|  | /// into sub-tasks and delegates them to its inferior FilterChoosers for further | 
|  | /// processings. | 
|  | /// | 
|  | /// It is useful to think of a Filter as governing the switch stmts of the | 
|  | /// decoding tree.  And each case is delegated to an inferior FilterChooser to | 
|  | /// decide what further remaining bits to look at. | 
|  | namespace { | 
|  |  | 
|  | class FilterChooser { | 
|  | protected: | 
|  | friend class Filter; | 
|  |  | 
|  | // Vector of codegen instructions to choose our filter. | 
|  | ArrayRef<EncodingAndInst> AllInstructions; | 
|  |  | 
|  | // Vector of uid's for this filter chooser to work on. | 
|  | // The first member of the pair is the opcode id being decoded, the second is | 
|  | // the opcode id that should be emitted. | 
|  | const std::vector<EncodingIDAndOpcode> &Opcodes; | 
|  |  | 
|  | // Lookup table for the operand decoding of instructions. | 
|  | const std::map<unsigned, std::vector<OperandInfo>> &Operands; | 
|  |  | 
|  | // Vector of candidate filters. | 
|  | std::vector<Filter> Filters; | 
|  |  | 
|  | // Array of bit values passed down from our parent. | 
|  | // Set to all BIT_UNFILTERED's for Parent == NULL. | 
|  | std::vector<bit_value_t> FilterBitValues; | 
|  |  | 
|  | // Links to the FilterChooser above us in the decoding tree. | 
|  | const FilterChooser *Parent; | 
|  |  | 
|  | // Index of the best filter from Filters. | 
|  | int BestIndex; | 
|  |  | 
|  | // Width of instructions | 
|  | unsigned BitWidth; | 
|  |  | 
|  | // Parent emitter | 
|  | const FixedLenDecoderEmitter *Emitter; | 
|  |  | 
|  | public: | 
|  | FilterChooser(ArrayRef<EncodingAndInst> Insts, | 
|  | const std::vector<EncodingIDAndOpcode> &IDs, | 
|  | const std::map<unsigned, std::vector<OperandInfo>> &Ops, | 
|  | unsigned BW, const FixedLenDecoderEmitter *E) | 
|  | : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), | 
|  | FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), | 
|  | BitWidth(BW), Emitter(E) { | 
|  | doFilter(); | 
|  | } | 
|  |  | 
|  | FilterChooser(ArrayRef<EncodingAndInst> Insts, | 
|  | const std::vector<EncodingIDAndOpcode> &IDs, | 
|  | const std::map<unsigned, std::vector<OperandInfo>> &Ops, | 
|  | const std::vector<bit_value_t> &ParentFilterBitValues, | 
|  | const FilterChooser &parent) | 
|  | : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), | 
|  | FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), | 
|  | BitWidth(parent.BitWidth), Emitter(parent.Emitter) { | 
|  | doFilter(); | 
|  | } | 
|  |  | 
|  | FilterChooser(const FilterChooser &) = delete; | 
|  | void operator=(const FilterChooser &) = delete; | 
|  |  | 
|  | unsigned getBitWidth() const { return BitWidth; } | 
|  |  | 
|  | protected: | 
|  | // Populates the insn given the uid. | 
|  | void insnWithID(insn_t &Insn, unsigned Opcode) const { | 
|  | BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst"); | 
|  |  | 
|  | // We may have a SoftFail bitmask, which specifies a mask where an encoding | 
|  | // may differ from the value in "Inst" and yet still be valid, but the | 
|  | // disassembler should return SoftFail instead of Success. | 
|  | // | 
|  | // This is used for marking UNPREDICTABLE instructions in the ARM world. | 
|  | BitsInit *SFBits = | 
|  | AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail"); | 
|  |  | 
|  | for (unsigned i = 0; i < BitWidth; ++i) { | 
|  | if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) | 
|  | Insn.push_back(BIT_UNSET); | 
|  | else | 
|  | Insn.push_back(bitFromBits(Bits, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the name of the encoding/instruction pair. | 
|  | void emitNameWithID(raw_ostream &OS, unsigned Opcode) const { | 
|  | const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; | 
|  | const Record *InstDef = AllInstructions[Opcode].Inst->TheDef; | 
|  | if (EncodingDef != InstDef) | 
|  | OS << EncodingDef->getName() << ":"; | 
|  | OS << InstDef->getName(); | 
|  | } | 
|  |  | 
|  | // Populates the field of the insn given the start position and the number of | 
|  | // consecutive bits to scan for. | 
|  | // | 
|  | // Returns false if there exists any uninitialized bit value in the range. | 
|  | // Returns true, otherwise. | 
|  | bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, | 
|  | unsigned NumBits) const; | 
|  |  | 
|  | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given | 
|  | /// filter array as a series of chars. | 
|  | void dumpFilterArray(raw_ostream &o, | 
|  | const std::vector<bit_value_t> & filter) const; | 
|  |  | 
|  | /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
|  | /// dumpFilterArray on each filter chooser up to the top level one. | 
|  | void dumpStack(raw_ostream &o, const char *prefix) const; | 
|  |  | 
|  | Filter &bestFilter() { | 
|  | assert(BestIndex != -1 && "BestIndex not set"); | 
|  | return Filters[BestIndex]; | 
|  | } | 
|  |  | 
|  | bool PositionFiltered(unsigned i) const { | 
|  | return ValueSet(FilterBitValues[i]); | 
|  | } | 
|  |  | 
|  | // Calculates the island(s) needed to decode the instruction. | 
|  | // This returns a lit of undecoded bits of an instructions, for example, | 
|  | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
|  | // decoded bits in order to verify that the instruction matches the Opcode. | 
|  | unsigned getIslands(std::vector<unsigned> &StartBits, | 
|  | std::vector<unsigned> &EndBits, | 
|  | std::vector<uint64_t> &FieldVals, | 
|  | const insn_t &Insn) const; | 
|  |  | 
|  | // Emits code to check the Predicates member of an instruction are true. | 
|  | // Returns true if predicate matches were emitted, false otherwise. | 
|  | bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, | 
|  | unsigned Opc) const; | 
|  |  | 
|  | bool doesOpcodeNeedPredicate(unsigned Opc) const; | 
|  | unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; | 
|  | void emitPredicateTableEntry(DecoderTableInfo &TableInfo, | 
|  | unsigned Opc) const; | 
|  |  | 
|  | void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, | 
|  | unsigned Opc) const; | 
|  |  | 
|  | // Emits table entries to decode the singleton. | 
|  | void emitSingletonTableEntry(DecoderTableInfo &TableInfo, | 
|  | EncodingIDAndOpcode Opc) const; | 
|  |  | 
|  | // Emits code to decode the singleton, and then to decode the rest. | 
|  | void emitSingletonTableEntry(DecoderTableInfo &TableInfo, | 
|  | const Filter &Best) const; | 
|  |  | 
|  | void emitBinaryParser(raw_ostream &o, unsigned &Indentation, | 
|  | const OperandInfo &OpInfo, | 
|  | bool &OpHasCompleteDecoder) const; | 
|  |  | 
|  | void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc, | 
|  | bool &HasCompleteDecoder) const; | 
|  | unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc, | 
|  | bool &HasCompleteDecoder) const; | 
|  |  | 
|  | // Assign a single filter and run with it. | 
|  | void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); | 
|  |  | 
|  | // reportRegion is a helper function for filterProcessor to mark a region as | 
|  | // eligible for use as a filter region. | 
|  | void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, | 
|  | bool AllowMixed); | 
|  |  | 
|  | // FilterProcessor scans the well-known encoding bits of the instructions and | 
|  | // builds up a list of candidate filters.  It chooses the best filter and | 
|  | // recursively descends down the decoding tree. | 
|  | bool filterProcessor(bool AllowMixed, bool Greedy = true); | 
|  |  | 
|  | // Decides on the best configuration of filter(s) to use in order to decode | 
|  | // the instructions.  A conflict of instructions may occur, in which case we | 
|  | // dump the conflict set to the standard error. | 
|  | void doFilter(); | 
|  |  | 
|  | public: | 
|  | // emitTableEntries - Emit state machine entries to decode our share of | 
|  | // instructions. | 
|  | void emitTableEntries(DecoderTableInfo &TableInfo) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /////////////////////////// | 
|  | //                       // | 
|  | // Filter Implementation // | 
|  | //                       // | 
|  | /////////////////////////// | 
|  |  | 
|  | Filter::Filter(Filter &&f) | 
|  | : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), | 
|  | FilteredInstructions(std::move(f.FilteredInstructions)), | 
|  | VariableInstructions(std::move(f.VariableInstructions)), | 
|  | FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), | 
|  | LastOpcFiltered(f.LastOpcFiltered) { | 
|  | } | 
|  |  | 
|  | Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, | 
|  | bool mixed) | 
|  | : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { | 
|  | assert(StartBit + NumBits - 1 < Owner->BitWidth); | 
|  |  | 
|  | NumFiltered = 0; | 
|  | LastOpcFiltered = {0, 0}; | 
|  |  | 
|  | for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { | 
|  | insn_t Insn; | 
|  |  | 
|  | // Populates the insn given the uid. | 
|  | Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID); | 
|  |  | 
|  | uint64_t Field; | 
|  | // Scans the segment for possibly well-specified encoding bits. | 
|  | bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); | 
|  |  | 
|  | if (ok) { | 
|  | // The encoding bits are well-known.  Lets add the uid of the | 
|  | // instruction into the bucket keyed off the constant field value. | 
|  | LastOpcFiltered = Owner->Opcodes[i]; | 
|  | FilteredInstructions[Field].push_back(LastOpcFiltered); | 
|  | ++NumFiltered; | 
|  | } else { | 
|  | // Some of the encoding bit(s) are unspecified.  This contributes to | 
|  | // one additional member of "Variable" instructions. | 
|  | VariableInstructions.push_back(Owner->Opcodes[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((FilteredInstructions.size() + VariableInstructions.size() > 0) | 
|  | && "Filter returns no instruction categories"); | 
|  | } | 
|  |  | 
|  | // Divides the decoding task into sub tasks and delegates them to the | 
|  | // inferior FilterChooser's. | 
|  | // | 
|  | // A special case arises when there's only one entry in the filtered | 
|  | // instructions.  In order to unambiguously decode the singleton, we need to | 
|  | // match the remaining undecoded encoding bits against the singleton. | 
|  | void Filter::recurse() { | 
|  | // Starts by inheriting our parent filter chooser's filter bit values. | 
|  | std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); | 
|  |  | 
|  | if (!VariableInstructions.empty()) { | 
|  | // Conservatively marks each segment position as BIT_UNSET. | 
|  | for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) | 
|  | BitValueArray[StartBit + bitIndex] = BIT_UNSET; | 
|  |  | 
|  | // Delegates to an inferior filter chooser for further processing on this | 
|  | // group of instructions whose segment values are variable. | 
|  | FilterChooserMap.insert( | 
|  | std::make_pair(-1U, llvm::make_unique<FilterChooser>( | 
|  | Owner->AllInstructions, VariableInstructions, | 
|  | Owner->Operands, BitValueArray, *Owner))); | 
|  | } | 
|  |  | 
|  | // No need to recurse for a singleton filtered instruction. | 
|  | // See also Filter::emit*(). | 
|  | if (getNumFiltered() == 1) { | 
|  | assert(FilterChooserMap.size() == 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, create sub choosers. | 
|  | for (const auto &Inst : FilteredInstructions) { | 
|  |  | 
|  | // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. | 
|  | for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { | 
|  | if (Inst.first & (1ULL << bitIndex)) | 
|  | BitValueArray[StartBit + bitIndex] = BIT_TRUE; | 
|  | else | 
|  | BitValueArray[StartBit + bitIndex] = BIT_FALSE; | 
|  | } | 
|  |  | 
|  | // Delegates to an inferior filter chooser for further processing on this | 
|  | // category of instructions. | 
|  | FilterChooserMap.insert(std::make_pair( | 
|  | Inst.first, llvm::make_unique<FilterChooser>( | 
|  | Owner->AllInstructions, Inst.second, | 
|  | Owner->Operands, BitValueArray, *Owner))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, | 
|  | uint32_t DestIdx) { | 
|  | // Any NumToSkip fixups in the current scope can resolve to the | 
|  | // current location. | 
|  | for (FixupList::const_reverse_iterator I = Fixups.rbegin(), | 
|  | E = Fixups.rend(); | 
|  | I != E; ++I) { | 
|  | // Calculate the distance from the byte following the fixup entry byte | 
|  | // to the destination. The Target is calculated from after the 16-bit | 
|  | // NumToSkip entry itself, so subtract two  from the displacement here | 
|  | // to account for that. | 
|  | uint32_t FixupIdx = *I; | 
|  | uint32_t Delta = DestIdx - FixupIdx - 3; | 
|  | // Our NumToSkip entries are 24-bits. Make sure our table isn't too | 
|  | // big. | 
|  | assert(Delta < (1u << 24)); | 
|  | Table[FixupIdx] = (uint8_t)Delta; | 
|  | Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); | 
|  | Table[FixupIdx + 2] = (uint8_t)(Delta >> 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit table entries to decode instructions given a segment or segments | 
|  | // of bits. | 
|  | void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { | 
|  | TableInfo.Table.push_back(MCD::OPC_ExtractField); | 
|  | TableInfo.Table.push_back(StartBit); | 
|  | TableInfo.Table.push_back(NumBits); | 
|  |  | 
|  | // A new filter entry begins a new scope for fixup resolution. | 
|  | TableInfo.FixupStack.emplace_back(); | 
|  |  | 
|  | DecoderTable &Table = TableInfo.Table; | 
|  |  | 
|  | size_t PrevFilter = 0; | 
|  | bool HasFallthrough = false; | 
|  | for (auto &Filter : FilterChooserMap) { | 
|  | // Field value -1 implies a non-empty set of variable instructions. | 
|  | // See also recurse(). | 
|  | if (Filter.first == (unsigned)-1) { | 
|  | HasFallthrough = true; | 
|  |  | 
|  | // Each scope should always have at least one filter value to check | 
|  | // for. | 
|  | assert(PrevFilter != 0 && "empty filter set!"); | 
|  | FixupList &CurScope = TableInfo.FixupStack.back(); | 
|  | // Resolve any NumToSkip fixups in the current scope. | 
|  | resolveTableFixups(Table, CurScope, Table.size()); | 
|  | CurScope.clear(); | 
|  | PrevFilter = 0;  // Don't re-process the filter's fallthrough. | 
|  | } else { | 
|  | Table.push_back(MCD::OPC_FilterValue); | 
|  | // Encode and emit the value to filter against. | 
|  | uint8_t Buffer[16]; | 
|  | unsigned Len = encodeULEB128(Filter.first, Buffer); | 
|  | Table.insert(Table.end(), Buffer, Buffer + Len); | 
|  | // Reserve space for the NumToSkip entry. We'll backpatch the value | 
|  | // later. | 
|  | PrevFilter = Table.size(); | 
|  | Table.push_back(0); | 
|  | Table.push_back(0); | 
|  | Table.push_back(0); | 
|  | } | 
|  |  | 
|  | // We arrive at a category of instructions with the same segment value. | 
|  | // Now delegate to the sub filter chooser for further decodings. | 
|  | // The case may fallthrough, which happens if the remaining well-known | 
|  | // encoding bits do not match exactly. | 
|  | Filter.second->emitTableEntries(TableInfo); | 
|  |  | 
|  | // Now that we've emitted the body of the handler, update the NumToSkip | 
|  | // of the filter itself to be able to skip forward when false. Subtract | 
|  | // two as to account for the width of the NumToSkip field itself. | 
|  | if (PrevFilter) { | 
|  | uint32_t NumToSkip = Table.size() - PrevFilter - 3; | 
|  | assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!"); | 
|  | Table[PrevFilter] = (uint8_t)NumToSkip; | 
|  | Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); | 
|  | Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Any remaining unresolved fixups bubble up to the parent fixup scope. | 
|  | assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); | 
|  | FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; | 
|  | FixupScopeList::iterator Dest = Source - 1; | 
|  | Dest->insert(Dest->end(), Source->begin(), Source->end()); | 
|  | TableInfo.FixupStack.pop_back(); | 
|  |  | 
|  | // If there is no fallthrough, then the final filter should get fixed | 
|  | // up according to the enclosing scope rather than the current position. | 
|  | if (!HasFallthrough) | 
|  | TableInfo.FixupStack.back().push_back(PrevFilter); | 
|  | } | 
|  |  | 
|  | // Returns the number of fanout produced by the filter.  More fanout implies | 
|  | // the filter distinguishes more categories of instructions. | 
|  | unsigned Filter::usefulness() const { | 
|  | if (!VariableInstructions.empty()) | 
|  | return FilteredInstructions.size(); | 
|  | else | 
|  | return FilteredInstructions.size() + 1; | 
|  | } | 
|  |  | 
|  | ////////////////////////////////// | 
|  | //                              // | 
|  | // Filterchooser Implementation // | 
|  | //                              // | 
|  | ////////////////////////////////// | 
|  |  | 
|  | // Emit the decoder state machine table. | 
|  | void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS, | 
|  | DecoderTable &Table, | 
|  | unsigned Indentation, | 
|  | unsigned BitWidth, | 
|  | StringRef Namespace) const { | 
|  | OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace | 
|  | << BitWidth << "[] = {\n"; | 
|  |  | 
|  | Indentation += 2; | 
|  |  | 
|  | // FIXME: We may be able to use the NumToSkip values to recover | 
|  | // appropriate indentation levels. | 
|  | DecoderTable::const_iterator I = Table.begin(); | 
|  | DecoderTable::const_iterator E = Table.end(); | 
|  | while (I != E) { | 
|  | assert (I < E && "incomplete decode table entry!"); | 
|  |  | 
|  | uint64_t Pos = I - Table.begin(); | 
|  | OS << "/* " << Pos << " */"; | 
|  | OS.PadToColumn(12); | 
|  |  | 
|  | switch (*I) { | 
|  | default: | 
|  | PrintFatalError("invalid decode table opcode"); | 
|  | case MCD::OPC_ExtractField: { | 
|  | ++I; | 
|  | unsigned Start = *I++; | 
|  | unsigned Len = *I++; | 
|  | OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " | 
|  | << Len << ",  // Inst{"; | 
|  | if (Len > 1) | 
|  | OS << (Start + Len - 1) << "-"; | 
|  | OS << Start << "} ...\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_FilterValue: { | 
|  | ++I; | 
|  | OS.indent(Indentation) << "MCD::OPC_FilterValue, "; | 
|  | // The filter value is ULEB128 encoded. | 
|  | while (*I >= 128) | 
|  | OS << (unsigned)*I++ << ", "; | 
|  | OS << (unsigned)*I++ << ", "; | 
|  |  | 
|  | // 24-bit numtoskip value. | 
|  | uint8_t Byte = *I++; | 
|  | uint32_t NumToSkip = Byte; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | Byte = *I++; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | NumToSkip |= Byte << 8; | 
|  | Byte = *I++; | 
|  | OS << utostr(Byte) << ", "; | 
|  | NumToSkip |= Byte << 16; | 
|  | OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_CheckField: { | 
|  | ++I; | 
|  | unsigned Start = *I++; | 
|  | unsigned Len = *I++; | 
|  | OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " | 
|  | << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; | 
|  | // ULEB128 encoded field value. | 
|  | for (; *I >= 128; ++I) | 
|  | OS << (unsigned)*I << ", "; | 
|  | OS << (unsigned)*I++ << ", "; | 
|  | // 24-bit numtoskip value. | 
|  | uint8_t Byte = *I++; | 
|  | uint32_t NumToSkip = Byte; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | Byte = *I++; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | NumToSkip |= Byte << 8; | 
|  | Byte = *I++; | 
|  | OS << utostr(Byte) << ", "; | 
|  | NumToSkip |= Byte << 16; | 
|  | OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_CheckPredicate: { | 
|  | ++I; | 
|  | OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; | 
|  | for (; *I >= 128; ++I) | 
|  | OS << (unsigned)*I << ", "; | 
|  | OS << (unsigned)*I++ << ", "; | 
|  |  | 
|  | // 24-bit numtoskip value. | 
|  | uint8_t Byte = *I++; | 
|  | uint32_t NumToSkip = Byte; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | Byte = *I++; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | NumToSkip |= Byte << 8; | 
|  | Byte = *I++; | 
|  | OS << utostr(Byte) << ", "; | 
|  | NumToSkip |= Byte << 16; | 
|  | OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_Decode: | 
|  | case MCD::OPC_TryDecode: { | 
|  | bool IsTry = *I == MCD::OPC_TryDecode; | 
|  | ++I; | 
|  | // Extract the ULEB128 encoded Opcode to a buffer. | 
|  | uint8_t Buffer[16], *p = Buffer; | 
|  | while ((*p++ = *I++) >= 128) | 
|  | assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) | 
|  | && "ULEB128 value too large!"); | 
|  | // Decode the Opcode value. | 
|  | unsigned Opc = decodeULEB128(Buffer); | 
|  | OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "") | 
|  | << "Decode, "; | 
|  | for (p = Buffer; *p >= 128; ++p) | 
|  | OS << (unsigned)*p << ", "; | 
|  | OS << (unsigned)*p << ", "; | 
|  |  | 
|  | // Decoder index. | 
|  | for (; *I >= 128; ++I) | 
|  | OS << (unsigned)*I << ", "; | 
|  | OS << (unsigned)*I++ << ", "; | 
|  |  | 
|  | if (!IsTry) { | 
|  | OS << "// Opcode: " << NumberedEncodings[Opc] << "\n"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Fallthrough for OPC_TryDecode. | 
|  |  | 
|  | // 24-bit numtoskip value. | 
|  | uint8_t Byte = *I++; | 
|  | uint32_t NumToSkip = Byte; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | Byte = *I++; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | NumToSkip |= Byte << 8; | 
|  | Byte = *I++; | 
|  | OS << utostr(Byte) << ", "; | 
|  | NumToSkip |= Byte << 16; | 
|  |  | 
|  | OS << "// Opcode: " << NumberedEncodings[Opc] | 
|  | << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_SoftFail: { | 
|  | ++I; | 
|  | OS.indent(Indentation) << "MCD::OPC_SoftFail"; | 
|  | // Positive mask | 
|  | uint64_t Value = 0; | 
|  | unsigned Shift = 0; | 
|  | do { | 
|  | OS << ", " << (unsigned)*I; | 
|  | Value += (*I & 0x7f) << Shift; | 
|  | Shift += 7; | 
|  | } while (*I++ >= 128); | 
|  | if (Value > 127) { | 
|  | OS << " /* 0x"; | 
|  | OS.write_hex(Value); | 
|  | OS << " */"; | 
|  | } | 
|  | // Negative mask | 
|  | Value = 0; | 
|  | Shift = 0; | 
|  | do { | 
|  | OS << ", " << (unsigned)*I; | 
|  | Value += (*I & 0x7f) << Shift; | 
|  | Shift += 7; | 
|  | } while (*I++ >= 128); | 
|  | if (Value > 127) { | 
|  | OS << " /* 0x"; | 
|  | OS.write_hex(Value); | 
|  | OS << " */"; | 
|  | } | 
|  | OS << ",\n"; | 
|  | break; | 
|  | } | 
|  | case MCD::OPC_Fail: { | 
|  | ++I; | 
|  | OS.indent(Indentation) << "MCD::OPC_Fail,\n"; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | OS.indent(Indentation) << "0\n"; | 
|  |  | 
|  | Indentation -= 2; | 
|  |  | 
|  | OS.indent(Indentation) << "};\n\n"; | 
|  | } | 
|  |  | 
|  | void FixedLenDecoderEmitter:: | 
|  | emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, | 
|  | unsigned Indentation) const { | 
|  | // The predicate function is just a big switch statement based on the | 
|  | // input predicate index. | 
|  | OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " | 
|  | << "const FeatureBitset& Bits) {\n"; | 
|  | Indentation += 2; | 
|  | if (!Predicates.empty()) { | 
|  | OS.indent(Indentation) << "switch (Idx) {\n"; | 
|  | OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; | 
|  | unsigned Index = 0; | 
|  | for (const auto &Predicate : Predicates) { | 
|  | OS.indent(Indentation) << "case " << Index++ << ":\n"; | 
|  | OS.indent(Indentation+2) << "return (" << Predicate << ");\n"; | 
|  | } | 
|  | OS.indent(Indentation) << "}\n"; | 
|  | } else { | 
|  | // No case statement to emit | 
|  | OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n"; | 
|  | } | 
|  | Indentation -= 2; | 
|  | OS.indent(Indentation) << "}\n\n"; | 
|  | } | 
|  |  | 
|  | void FixedLenDecoderEmitter:: | 
|  | emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, | 
|  | unsigned Indentation) const { | 
|  | // The decoder function is just a big switch statement based on the | 
|  | // input decoder index. | 
|  | OS.indent(Indentation) << "template<typename InsnType>\n"; | 
|  | OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," | 
|  | << " unsigned Idx, InsnType insn, MCInst &MI,\n"; | 
|  | OS.indent(Indentation) << "                                   uint64_t " | 
|  | << "Address, const void *Decoder, bool &DecodeComplete) {\n"; | 
|  | Indentation += 2; | 
|  | OS.indent(Indentation) << "DecodeComplete = true;\n"; | 
|  | OS.indent(Indentation) << "InsnType tmp;\n"; | 
|  | OS.indent(Indentation) << "switch (Idx) {\n"; | 
|  | OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; | 
|  | unsigned Index = 0; | 
|  | for (const auto &Decoder : Decoders) { | 
|  | OS.indent(Indentation) << "case " << Index++ << ":\n"; | 
|  | OS << Decoder; | 
|  | OS.indent(Indentation+2) << "return S;\n"; | 
|  | } | 
|  | OS.indent(Indentation) << "}\n"; | 
|  | Indentation -= 2; | 
|  | OS.indent(Indentation) << "}\n\n"; | 
|  | } | 
|  |  | 
|  | // Populates the field of the insn given the start position and the number of | 
|  | // consecutive bits to scan for. | 
|  | // | 
|  | // Returns false if and on the first uninitialized bit value encountered. | 
|  | // Returns true, otherwise. | 
|  | bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, | 
|  | unsigned StartBit, unsigned NumBits) const { | 
|  | Field = 0; | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) { | 
|  | if (Insn[StartBit + i] == BIT_UNSET) | 
|  | return false; | 
|  |  | 
|  | if (Insn[StartBit + i] == BIT_TRUE) | 
|  | Field = Field | (1ULL << i); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given | 
|  | /// filter array as a series of chars. | 
|  | void FilterChooser::dumpFilterArray(raw_ostream &o, | 
|  | const std::vector<bit_value_t> &filter) const { | 
|  | for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { | 
|  | switch (filter[bitIndex - 1]) { | 
|  | case BIT_UNFILTERED: | 
|  | o << "."; | 
|  | break; | 
|  | case BIT_UNSET: | 
|  | o << "_"; | 
|  | break; | 
|  | case BIT_TRUE: | 
|  | o << "1"; | 
|  | break; | 
|  | case BIT_FALSE: | 
|  | o << "0"; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
|  | /// dumpFilterArray on each filter chooser up to the top level one. | 
|  | void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { | 
|  | const FilterChooser *current = this; | 
|  |  | 
|  | while (current) { | 
|  | o << prefix; | 
|  | dumpFilterArray(o, current->FilterBitValues); | 
|  | o << '\n'; | 
|  | current = current->Parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculates the island(s) needed to decode the instruction. | 
|  | // This returns a list of undecoded bits of an instructions, for example, | 
|  | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
|  | // decoded bits in order to verify that the instruction matches the Opcode. | 
|  | unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, | 
|  | std::vector<unsigned> &EndBits, | 
|  | std::vector<uint64_t> &FieldVals, | 
|  | const insn_t &Insn) const { | 
|  | unsigned Num, BitNo; | 
|  | Num = BitNo = 0; | 
|  |  | 
|  | uint64_t FieldVal = 0; | 
|  |  | 
|  | // 0: Init | 
|  | // 1: Water (the bit value does not affect decoding) | 
|  | // 2: Island (well-known bit value needed for decoding) | 
|  | int State = 0; | 
|  | int64_t Val = -1; | 
|  |  | 
|  | for (unsigned i = 0; i < BitWidth; ++i) { | 
|  | Val = Value(Insn[i]); | 
|  | bool Filtered = PositionFiltered(i); | 
|  | switch (State) { | 
|  | default: llvm_unreachable("Unreachable code!"); | 
|  | case 0: | 
|  | case 1: | 
|  | if (Filtered || Val == -1) | 
|  | State = 1; // Still in Water | 
|  | else { | 
|  | State = 2; // Into the Island | 
|  | BitNo = 0; | 
|  | StartBits.push_back(i); | 
|  | FieldVal = Val; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | if (Filtered || Val == -1) { | 
|  | State = 1; // Into the Water | 
|  | EndBits.push_back(i - 1); | 
|  | FieldVals.push_back(FieldVal); | 
|  | ++Num; | 
|  | } else { | 
|  | State = 2; // Still in Island | 
|  | ++BitNo; | 
|  | FieldVal = FieldVal | Val << BitNo; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we are still in Island after the loop, do some housekeeping. | 
|  | if (State == 2) { | 
|  | EndBits.push_back(BitWidth - 1); | 
|  | FieldVals.push_back(FieldVal); | 
|  | ++Num; | 
|  | } | 
|  |  | 
|  | assert(StartBits.size() == Num && EndBits.size() == Num && | 
|  | FieldVals.size() == Num); | 
|  | return Num; | 
|  | } | 
|  |  | 
|  | void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, | 
|  | const OperandInfo &OpInfo, | 
|  | bool &OpHasCompleteDecoder) const { | 
|  | const std::string &Decoder = OpInfo.Decoder; | 
|  |  | 
|  | if (OpInfo.numFields() != 1) | 
|  | o.indent(Indentation) << "tmp = 0;\n"; | 
|  |  | 
|  | for (const EncodingField &EF : OpInfo) { | 
|  | o.indent(Indentation) << "tmp "; | 
|  | if (OpInfo.numFields() != 1) o << '|'; | 
|  | o << "= fieldFromInstruction" | 
|  | << "(insn, " << EF.Base << ", " << EF.Width << ')'; | 
|  | if (OpInfo.numFields() != 1 || EF.Offset != 0) | 
|  | o << " << " << EF.Offset; | 
|  | o << ";\n"; | 
|  | } | 
|  |  | 
|  | if (Decoder != "") { | 
|  | OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; | 
|  | o.indent(Indentation) << Emitter->GuardPrefix << Decoder | 
|  | << "(MI, tmp, Address, Decoder)" | 
|  | << Emitter->GuardPostfix | 
|  | << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") | 
|  | << "return MCDisassembler::Fail; }\n"; | 
|  | } else { | 
|  | OpHasCompleteDecoder = true; | 
|  | o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, | 
|  | unsigned Opc, bool &HasCompleteDecoder) const { | 
|  | HasCompleteDecoder = true; | 
|  |  | 
|  | for (const auto &Op : Operands.find(Opc)->second) { | 
|  | // If a custom instruction decoder was specified, use that. | 
|  | if (Op.numFields() == 0 && !Op.Decoder.empty()) { | 
|  | HasCompleteDecoder = Op.HasCompleteDecoder; | 
|  | OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder | 
|  | << "(MI, insn, Address, Decoder)" | 
|  | << Emitter->GuardPostfix | 
|  | << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") | 
|  | << "return MCDisassembler::Fail; }\n"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool OpHasCompleteDecoder; | 
|  | emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder); | 
|  | if (!OpHasCompleteDecoder) | 
|  | HasCompleteDecoder = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, | 
|  | unsigned Opc, | 
|  | bool &HasCompleteDecoder) const { | 
|  | // Build up the predicate string. | 
|  | SmallString<256> Decoder; | 
|  | // FIXME: emitDecoder() function can take a buffer directly rather than | 
|  | // a stream. | 
|  | raw_svector_ostream S(Decoder); | 
|  | unsigned I = 4; | 
|  | emitDecoder(S, I, Opc, HasCompleteDecoder); | 
|  |  | 
|  | // Using the full decoder string as the key value here is a bit | 
|  | // heavyweight, but is effective. If the string comparisons become a | 
|  | // performance concern, we can implement a mangling of the predicate | 
|  | // data easily enough with a map back to the actual string. That's | 
|  | // overkill for now, though. | 
|  |  | 
|  | // Make sure the predicate is in the table. | 
|  | Decoders.insert(CachedHashString(Decoder)); | 
|  | // Now figure out the index for when we write out the table. | 
|  | DecoderSet::const_iterator P = find(Decoders, Decoder.str()); | 
|  | return (unsigned)(P - Decoders.begin()); | 
|  | } | 
|  |  | 
|  | static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, | 
|  | const std::string &PredicateNamespace) { | 
|  | if (str[0] == '!') | 
|  | o << "!Bits[" << PredicateNamespace << "::" | 
|  | << str.slice(1,str.size()) << "]"; | 
|  | else | 
|  | o << "Bits[" << PredicateNamespace << "::" << str << "]"; | 
|  | } | 
|  |  | 
|  | bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, | 
|  | unsigned Opc) const { | 
|  | ListInit *Predicates = | 
|  | AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); | 
|  | bool IsFirstEmission = true; | 
|  | for (unsigned i = 0; i < Predicates->size(); ++i) { | 
|  | Record *Pred = Predicates->getElementAsRecord(i); | 
|  | if (!Pred->getValue("AssemblerMatcherPredicate")) | 
|  | continue; | 
|  |  | 
|  | StringRef P = Pred->getValueAsString("AssemblerCondString"); | 
|  |  | 
|  | if (P.empty()) | 
|  | continue; | 
|  |  | 
|  | if (!IsFirstEmission) | 
|  | o << " && "; | 
|  |  | 
|  | std::pair<StringRef, StringRef> pairs = P.split(','); | 
|  | while (!pairs.second.empty()) { | 
|  | emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); | 
|  | o << " && "; | 
|  | pairs = pairs.second.split(','); | 
|  | } | 
|  | emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); | 
|  | IsFirstEmission = false; | 
|  | } | 
|  | return !Predicates->empty(); | 
|  | } | 
|  |  | 
|  | bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { | 
|  | ListInit *Predicates = | 
|  | AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); | 
|  | for (unsigned i = 0; i < Predicates->size(); ++i) { | 
|  | Record *Pred = Predicates->getElementAsRecord(i); | 
|  | if (!Pred->getValue("AssemblerMatcherPredicate")) | 
|  | continue; | 
|  |  | 
|  | StringRef P = Pred->getValueAsString("AssemblerCondString"); | 
|  |  | 
|  | if (P.empty()) | 
|  | continue; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, | 
|  | StringRef Predicate) const { | 
|  | // Using the full predicate string as the key value here is a bit | 
|  | // heavyweight, but is effective. If the string comparisons become a | 
|  | // performance concern, we can implement a mangling of the predicate | 
|  | // data easily enough with a map back to the actual string. That's | 
|  | // overkill for now, though. | 
|  |  | 
|  | // Make sure the predicate is in the table. | 
|  | TableInfo.Predicates.insert(CachedHashString(Predicate)); | 
|  | // Now figure out the index for when we write out the table. | 
|  | PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); | 
|  | return (unsigned)(P - TableInfo.Predicates.begin()); | 
|  | } | 
|  |  | 
|  | void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, | 
|  | unsigned Opc) const { | 
|  | if (!doesOpcodeNeedPredicate(Opc)) | 
|  | return; | 
|  |  | 
|  | // Build up the predicate string. | 
|  | SmallString<256> Predicate; | 
|  | // FIXME: emitPredicateMatch() functions can take a buffer directly rather | 
|  | // than a stream. | 
|  | raw_svector_ostream PS(Predicate); | 
|  | unsigned I = 0; | 
|  | emitPredicateMatch(PS, I, Opc); | 
|  |  | 
|  | // Figure out the index into the predicate table for the predicate just | 
|  | // computed. | 
|  | unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); | 
|  | SmallString<16> PBytes; | 
|  | raw_svector_ostream S(PBytes); | 
|  | encodeULEB128(PIdx, S); | 
|  |  | 
|  | TableInfo.Table.push_back(MCD::OPC_CheckPredicate); | 
|  | // Predicate index | 
|  | for (unsigned i = 0, e = PBytes.size(); i != e; ++i) | 
|  | TableInfo.Table.push_back(PBytes[i]); | 
|  | // Push location for NumToSkip backpatching. | 
|  | TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | } | 
|  |  | 
|  | void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, | 
|  | unsigned Opc) const { | 
|  | BitsInit *SFBits = | 
|  | AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail"); | 
|  | if (!SFBits) return; | 
|  | BitsInit *InstBits = | 
|  | AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst"); | 
|  |  | 
|  | APInt PositiveMask(BitWidth, 0ULL); | 
|  | APInt NegativeMask(BitWidth, 0ULL); | 
|  | for (unsigned i = 0; i < BitWidth; ++i) { | 
|  | bit_value_t B = bitFromBits(*SFBits, i); | 
|  | bit_value_t IB = bitFromBits(*InstBits, i); | 
|  |  | 
|  | if (B != BIT_TRUE) continue; | 
|  |  | 
|  | switch (IB) { | 
|  | case BIT_FALSE: | 
|  | // The bit is meant to be false, so emit a check to see if it is true. | 
|  | PositiveMask.setBit(i); | 
|  | break; | 
|  | case BIT_TRUE: | 
|  | // The bit is meant to be true, so emit a check to see if it is false. | 
|  | NegativeMask.setBit(i); | 
|  | break; | 
|  | default: | 
|  | // The bit is not set; this must be an error! | 
|  | errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " | 
|  | << AllInstructions[Opc] << " is set but Inst{" << i | 
|  | << "} is unset!\n" | 
|  | << "  - You can only mark a bit as SoftFail if it is fully defined" | 
|  | << " (1/0 - not '?') in Inst\n"; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool NeedPositiveMask = PositiveMask.getBoolValue(); | 
|  | bool NeedNegativeMask = NegativeMask.getBoolValue(); | 
|  |  | 
|  | if (!NeedPositiveMask && !NeedNegativeMask) | 
|  | return; | 
|  |  | 
|  | TableInfo.Table.push_back(MCD::OPC_SoftFail); | 
|  |  | 
|  | SmallString<16> MaskBytes; | 
|  | raw_svector_ostream S(MaskBytes); | 
|  | if (NeedPositiveMask) { | 
|  | encodeULEB128(PositiveMask.getZExtValue(), S); | 
|  | for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) | 
|  | TableInfo.Table.push_back(MaskBytes[i]); | 
|  | } else | 
|  | TableInfo.Table.push_back(0); | 
|  | if (NeedNegativeMask) { | 
|  | MaskBytes.clear(); | 
|  | encodeULEB128(NegativeMask.getZExtValue(), S); | 
|  | for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) | 
|  | TableInfo.Table.push_back(MaskBytes[i]); | 
|  | } else | 
|  | TableInfo.Table.push_back(0); | 
|  | } | 
|  |  | 
|  | // Emits table entries to decode the singleton. | 
|  | void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, | 
|  | EncodingIDAndOpcode Opc) const { | 
|  | std::vector<unsigned> StartBits; | 
|  | std::vector<unsigned> EndBits; | 
|  | std::vector<uint64_t> FieldVals; | 
|  | insn_t Insn; | 
|  | insnWithID(Insn, Opc.EncodingID); | 
|  |  | 
|  | // Look for islands of undecoded bits of the singleton. | 
|  | getIslands(StartBits, EndBits, FieldVals, Insn); | 
|  |  | 
|  | unsigned Size = StartBits.size(); | 
|  |  | 
|  | // Emit the predicate table entry if one is needed. | 
|  | emitPredicateTableEntry(TableInfo, Opc.EncodingID); | 
|  |  | 
|  | // Check any additional encoding fields needed. | 
|  | for (unsigned I = Size; I != 0; --I) { | 
|  | unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; | 
|  | TableInfo.Table.push_back(MCD::OPC_CheckField); | 
|  | TableInfo.Table.push_back(StartBits[I-1]); | 
|  | TableInfo.Table.push_back(NumBits); | 
|  | uint8_t Buffer[16], *p; | 
|  | encodeULEB128(FieldVals[I-1], Buffer); | 
|  | for (p = Buffer; *p >= 128 ; ++p) | 
|  | TableInfo.Table.push_back(*p); | 
|  | TableInfo.Table.push_back(*p); | 
|  | // Push location for NumToSkip backpatching. | 
|  | TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); | 
|  | // The fixup is always 24-bits, so go ahead and allocate the space | 
|  | // in the table so all our relative position calculations work OK even | 
|  | // before we fully resolve the real value here. | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | } | 
|  |  | 
|  | // Check for soft failure of the match. | 
|  | emitSoftFailTableEntry(TableInfo, Opc.EncodingID); | 
|  |  | 
|  | bool HasCompleteDecoder; | 
|  | unsigned DIdx = | 
|  | getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder); | 
|  |  | 
|  | // Produce OPC_Decode or OPC_TryDecode opcode based on the information | 
|  | // whether the instruction decoder is complete or not. If it is complete | 
|  | // then it handles all possible values of remaining variable/unfiltered bits | 
|  | // and for any value can determine if the bitpattern is a valid instruction | 
|  | // or not. This means OPC_Decode will be the final step in the decoding | 
|  | // process. If it is not complete, then the Fail return code from the | 
|  | // decoder method indicates that additional processing should be done to see | 
|  | // if there is any other instruction that also matches the bitpattern and | 
|  | // can decode it. | 
|  | TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode : | 
|  | MCD::OPC_TryDecode); | 
|  | NumEncodingsSupported++; | 
|  | uint8_t Buffer[16], *p; | 
|  | encodeULEB128(Opc.Opcode, Buffer); | 
|  | for (p = Buffer; *p >= 128 ; ++p) | 
|  | TableInfo.Table.push_back(*p); | 
|  | TableInfo.Table.push_back(*p); | 
|  |  | 
|  | SmallString<16> Bytes; | 
|  | raw_svector_ostream S(Bytes); | 
|  | encodeULEB128(DIdx, S); | 
|  |  | 
|  | // Decoder index | 
|  | for (unsigned i = 0, e = Bytes.size(); i != e; ++i) | 
|  | TableInfo.Table.push_back(Bytes[i]); | 
|  |  | 
|  | if (!HasCompleteDecoder) { | 
|  | // Push location for NumToSkip backpatching. | 
|  | TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); | 
|  | // Allocate the space for the fixup. | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | TableInfo.Table.push_back(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emits table entries to decode the singleton, and then to decode the rest. | 
|  | void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, | 
|  | const Filter &Best) const { | 
|  | EncodingIDAndOpcode Opc = Best.getSingletonOpc(); | 
|  |  | 
|  | // complex singletons need predicate checks from the first singleton | 
|  | // to refer forward to the variable filterchooser that follows. | 
|  | TableInfo.FixupStack.emplace_back(); | 
|  |  | 
|  | emitSingletonTableEntry(TableInfo, Opc); | 
|  |  | 
|  | resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), | 
|  | TableInfo.Table.size()); | 
|  | TableInfo.FixupStack.pop_back(); | 
|  |  | 
|  | Best.getVariableFC().emitTableEntries(TableInfo); | 
|  | } | 
|  |  | 
|  | // Assign a single filter and run with it.  Top level API client can initialize | 
|  | // with a single filter to start the filtering process. | 
|  | void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, | 
|  | bool mixed) { | 
|  | Filters.clear(); | 
|  | Filters.emplace_back(*this, startBit, numBit, true); | 
|  | BestIndex = 0; // Sole Filter instance to choose from. | 
|  | bestFilter().recurse(); | 
|  | } | 
|  |  | 
|  | // reportRegion is a helper function for filterProcessor to mark a region as | 
|  | // eligible for use as a filter region. | 
|  | void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, | 
|  | unsigned BitIndex, bool AllowMixed) { | 
|  | if (RA == ATTR_MIXED && AllowMixed) | 
|  | Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); | 
|  | else if (RA == ATTR_ALL_SET && !AllowMixed) | 
|  | Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); | 
|  | } | 
|  |  | 
|  | // FilterProcessor scans the well-known encoding bits of the instructions and | 
|  | // builds up a list of candidate filters.  It chooses the best filter and | 
|  | // recursively descends down the decoding tree. | 
|  | bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { | 
|  | Filters.clear(); | 
|  | BestIndex = -1; | 
|  | unsigned numInstructions = Opcodes.size(); | 
|  |  | 
|  | assert(numInstructions && "Filter created with no instructions"); | 
|  |  | 
|  | // No further filtering is necessary. | 
|  | if (numInstructions == 1) | 
|  | return true; | 
|  |  | 
|  | // Heuristics.  See also doFilter()'s "Heuristics" comment when num of | 
|  | // instructions is 3. | 
|  | if (AllowMixed && !Greedy) { | 
|  | assert(numInstructions == 3); | 
|  |  | 
|  | for (unsigned i = 0; i < Opcodes.size(); ++i) { | 
|  | std::vector<unsigned> StartBits; | 
|  | std::vector<unsigned> EndBits; | 
|  | std::vector<uint64_t> FieldVals; | 
|  | insn_t Insn; | 
|  |  | 
|  | insnWithID(Insn, Opcodes[i].EncodingID); | 
|  |  | 
|  | // Look for islands of undecoded bits of any instruction. | 
|  | if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { | 
|  | // Found an instruction with island(s).  Now just assign a filter. | 
|  | runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned BitIndex; | 
|  |  | 
|  | // We maintain BIT_WIDTH copies of the bitAttrs automaton. | 
|  | // The automaton consumes the corresponding bit from each | 
|  | // instruction. | 
|  | // | 
|  | //   Input symbols: 0, 1, and _ (unset). | 
|  | //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. | 
|  | //   Initial state: NONE. | 
|  | // | 
|  | // (NONE) ------- [01] -> (ALL_SET) | 
|  | // (NONE) ------- _ ----> (ALL_UNSET) | 
|  | // (ALL_SET) ---- [01] -> (ALL_SET) | 
|  | // (ALL_SET) ---- _ ----> (MIXED) | 
|  | // (ALL_UNSET) -- [01] -> (MIXED) | 
|  | // (ALL_UNSET) -- _ ----> (ALL_UNSET) | 
|  | // (MIXED) ------ . ----> (MIXED) | 
|  | // (FILTERED)---- . ----> (FILTERED) | 
|  |  | 
|  | std::vector<bitAttr_t> bitAttrs; | 
|  |  | 
|  | // FILTERED bit positions provide no entropy and are not worthy of pursuing. | 
|  | // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. | 
|  | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) | 
|  | if (FilterBitValues[BitIndex] == BIT_TRUE || | 
|  | FilterBitValues[BitIndex] == BIT_FALSE) | 
|  | bitAttrs.push_back(ATTR_FILTERED); | 
|  | else | 
|  | bitAttrs.push_back(ATTR_NONE); | 
|  |  | 
|  | for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { | 
|  | insn_t insn; | 
|  |  | 
|  | insnWithID(insn, Opcodes[InsnIndex].EncodingID); | 
|  |  | 
|  | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { | 
|  | switch (bitAttrs[BitIndex]) { | 
|  | case ATTR_NONE: | 
|  | if (insn[BitIndex] == BIT_UNSET) | 
|  | bitAttrs[BitIndex] = ATTR_ALL_UNSET; | 
|  | else | 
|  | bitAttrs[BitIndex] = ATTR_ALL_SET; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | if (insn[BitIndex] == BIT_UNSET) | 
|  | bitAttrs[BitIndex] = ATTR_MIXED; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | if (insn[BitIndex] != BIT_UNSET) | 
|  | bitAttrs[BitIndex] = ATTR_MIXED; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The regionAttr automaton consumes the bitAttrs automatons' state, | 
|  | // lowest-to-highest. | 
|  | // | 
|  | //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) | 
|  | //   States:        NONE, ALL_SET, MIXED | 
|  | //   Initial state: NONE | 
|  | // | 
|  | // (NONE) ----- F --> (NONE) | 
|  | // (NONE) ----- S --> (ALL_SET)     ; and set region start | 
|  | // (NONE) ----- U --> (NONE) | 
|  | // (NONE) ----- M --> (MIXED)       ; and set region start | 
|  | // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region | 
|  | // (ALL_SET) -- S --> (ALL_SET) | 
|  | // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region | 
|  | // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region | 
|  | // (MIXED) ---- F --> (NONE)        ; and report a MIXED region | 
|  | // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region | 
|  | // (MIXED) ---- U --> (NONE)        ; and report a MIXED region | 
|  | // (MIXED) ---- M --> (MIXED) | 
|  |  | 
|  | bitAttr_t RA = ATTR_NONE; | 
|  | unsigned StartBit = 0; | 
|  |  | 
|  | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { | 
|  | bitAttr_t bitAttr = bitAttrs[BitIndex]; | 
|  |  | 
|  | assert(bitAttr != ATTR_NONE && "Bit without attributes"); | 
|  |  | 
|  | switch (RA) { | 
|  | case ATTR_NONE: | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_ALL_SET; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_MIXED; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_MIXED; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_ALL_SET; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); | 
|  | case ATTR_FILTERED: | 
|  | llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At the end, if we're still in ALL_SET or MIXED states, report a region | 
|  | switch (RA) { | 
|  | case ATTR_NONE: | 
|  | break; | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We have finished with the filter processings.  Now it's time to choose | 
|  | // the best performing filter. | 
|  | BestIndex = 0; | 
|  | bool AllUseless = true; | 
|  | unsigned BestScore = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Filters.size(); i != e; ++i) { | 
|  | unsigned Usefulness = Filters[i].usefulness(); | 
|  |  | 
|  | if (Usefulness) | 
|  | AllUseless = false; | 
|  |  | 
|  | if (Usefulness > BestScore) { | 
|  | BestIndex = i; | 
|  | BestScore = Usefulness; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AllUseless) | 
|  | bestFilter().recurse(); | 
|  |  | 
|  | return !AllUseless; | 
|  | } // end of FilterChooser::filterProcessor(bool) | 
|  |  | 
|  | // Decides on the best configuration of filter(s) to use in order to decode | 
|  | // the instructions.  A conflict of instructions may occur, in which case we | 
|  | // dump the conflict set to the standard error. | 
|  | void FilterChooser::doFilter() { | 
|  | unsigned Num = Opcodes.size(); | 
|  | assert(Num && "FilterChooser created with no instructions"); | 
|  |  | 
|  | // Try regions of consecutive known bit values first. | 
|  | if (filterProcessor(false)) | 
|  | return; | 
|  |  | 
|  | // Then regions of mixed bits (both known and unitialized bit values allowed). | 
|  | if (filterProcessor(true)) | 
|  | return; | 
|  |  | 
|  | // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where | 
|  | // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a | 
|  | // well-known encoding pattern.  In such case, we backtrack and scan for the | 
|  | // the very first consecutive ATTR_ALL_SET region and assign a filter to it. | 
|  | if (Num == 3 && filterProcessor(true, false)) | 
|  | return; | 
|  |  | 
|  | // If we come to here, the instruction decoding has failed. | 
|  | // Set the BestIndex to -1 to indicate so. | 
|  | BestIndex = -1; | 
|  | } | 
|  |  | 
|  | // emitTableEntries - Emit state machine entries to decode our share of | 
|  | // instructions. | 
|  | void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { | 
|  | if (Opcodes.size() == 1) { | 
|  | // There is only one instruction in the set, which is great! | 
|  | // Call emitSingletonDecoder() to see whether there are any remaining | 
|  | // encodings bits. | 
|  | emitSingletonTableEntry(TableInfo, Opcodes[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Choose the best filter to do the decodings! | 
|  | if (BestIndex != -1) { | 
|  | const Filter &Best = Filters[BestIndex]; | 
|  | if (Best.getNumFiltered() == 1) | 
|  | emitSingletonTableEntry(TableInfo, Best); | 
|  | else | 
|  | Best.emitTableEntry(TableInfo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We don't know how to decode these instructions!  Dump the | 
|  | // conflict set and bail. | 
|  |  | 
|  | // Print out useful conflict information for postmortem analysis. | 
|  | errs() << "Decoding Conflict:\n"; | 
|  |  | 
|  | dumpStack(errs(), "\t\t"); | 
|  |  | 
|  | for (unsigned i = 0; i < Opcodes.size(); ++i) { | 
|  | errs() << '\t'; | 
|  | emitNameWithID(errs(), Opcodes[i].EncodingID); | 
|  | errs() << " "; | 
|  | dumpBits( | 
|  | errs(), | 
|  | getBitsField(*AllInstructions[Opcodes[i].EncodingID].EncodingDef, "Inst")); | 
|  | errs() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::string findOperandDecoderMethod(TypedInit *TI) { | 
|  | std::string Decoder; | 
|  |  | 
|  | Record *Record = cast<DefInit>(TI)->getDef(); | 
|  |  | 
|  | RecordVal *DecoderString = Record->getValue("DecoderMethod"); | 
|  | StringInit *String = DecoderString ? | 
|  | dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; | 
|  | if (String) { | 
|  | Decoder = String->getValue(); | 
|  | if (!Decoder.empty()) | 
|  | return Decoder; | 
|  | } | 
|  |  | 
|  | if (Record->isSubClassOf("RegisterOperand")) | 
|  | Record = Record->getValueAsDef("RegClass"); | 
|  |  | 
|  | if (Record->isSubClassOf("RegisterClass")) { | 
|  | Decoder = "Decode" + Record->getName().str() + "RegisterClass"; | 
|  | } else if (Record->isSubClassOf("PointerLikeRegClass")) { | 
|  | Decoder = "DecodePointerLikeRegClass" + | 
|  | utostr(Record->getValueAsInt("RegClassKind")); | 
|  | } | 
|  |  | 
|  | return Decoder; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | populateInstruction(CodeGenTarget &Target, const Record &EncodingDef, | 
|  | const CodeGenInstruction &CGI, unsigned Opc, | 
|  | std::map<unsigned, std::vector<OperandInfo>> &Operands) { | 
|  | const Record &Def = *CGI.TheDef; | 
|  | // If all the bit positions are not specified; do not decode this instruction. | 
|  | // We are bound to fail!  For proper disassembly, the well-known encoding bits | 
|  | // of the instruction must be fully specified. | 
|  |  | 
|  | BitsInit &Bits = getBitsField(EncodingDef, "Inst"); | 
|  | if (Bits.allInComplete()) return false; | 
|  |  | 
|  | std::vector<OperandInfo> InsnOperands; | 
|  |  | 
|  | // If the instruction has specified a custom decoding hook, use that instead | 
|  | // of trying to auto-generate the decoder. | 
|  | StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod"); | 
|  | if (InstDecoder != "") { | 
|  | bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder"); | 
|  | InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder)); | 
|  | Operands[Opc] = InsnOperands; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Generate a description of the operand of the instruction that we know | 
|  | // how to decode automatically. | 
|  | // FIXME: We'll need to have a way to manually override this as needed. | 
|  |  | 
|  | // Gather the outputs/inputs of the instruction, so we can find their | 
|  | // positions in the encoding.  This assumes for now that they appear in the | 
|  | // MCInst in the order that they're listed. | 
|  | std::vector<std::pair<Init*, StringRef>> InOutOperands; | 
|  | DagInit *Out  = Def.getValueAsDag("OutOperandList"); | 
|  | DagInit *In  = Def.getValueAsDag("InOperandList"); | 
|  | for (unsigned i = 0; i < Out->getNumArgs(); ++i) | 
|  | InOutOperands.push_back(std::make_pair(Out->getArg(i), | 
|  | Out->getArgNameStr(i))); | 
|  | for (unsigned i = 0; i < In->getNumArgs(); ++i) | 
|  | InOutOperands.push_back(std::make_pair(In->getArg(i), | 
|  | In->getArgNameStr(i))); | 
|  |  | 
|  | // Search for tied operands, so that we can correctly instantiate | 
|  | // operands that are not explicitly represented in the encoding. | 
|  | std::map<std::string, std::string> TiedNames; | 
|  | for (unsigned i = 0; i < CGI.Operands.size(); ++i) { | 
|  | int tiedTo = CGI.Operands[i].getTiedRegister(); | 
|  | if (tiedTo != -1) { | 
|  | std::pair<unsigned, unsigned> SO = | 
|  | CGI.Operands.getSubOperandNumber(tiedTo); | 
|  | TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second; | 
|  | TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands; | 
|  | std::set<std::string> NumberedInsnOperandsNoTie; | 
|  | if (Target.getInstructionSet()-> | 
|  | getValueAsBit("decodePositionallyEncodedOperands")) { | 
|  | const std::vector<RecordVal> &Vals = Def.getValues(); | 
|  | unsigned NumberedOp = 0; | 
|  |  | 
|  | std::set<unsigned> NamedOpIndices; | 
|  | if (Target.getInstructionSet()-> | 
|  | getValueAsBit("noNamedPositionallyEncodedOperands")) | 
|  | // Collect the set of operand indices that might correspond to named | 
|  | // operand, and skip these when assigning operands based on position. | 
|  | for (unsigned i = 0, e = Vals.size(); i != e; ++i) { | 
|  | unsigned OpIdx; | 
|  | if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) | 
|  | continue; | 
|  |  | 
|  | NamedOpIndices.insert(OpIdx); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = Vals.size(); i != e; ++i) { | 
|  | // Ignore fixed fields in the record, we're looking for values like: | 
|  | //    bits<5> RST = { ?, ?, ?, ?, ? }; | 
|  | if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) | 
|  | continue; | 
|  |  | 
|  | // Determine if Vals[i] actually contributes to the Inst encoding. | 
|  | unsigned bi = 0; | 
|  | for (; bi < Bits.getNumBits(); ++bi) { | 
|  | VarInit *Var = nullptr; | 
|  | VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); | 
|  | if (BI) | 
|  | Var = dyn_cast<VarInit>(BI->getBitVar()); | 
|  | else | 
|  | Var = dyn_cast<VarInit>(Bits.getBit(bi)); | 
|  |  | 
|  | if (Var && Var->getName() == Vals[i].getName()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bi == Bits.getNumBits()) | 
|  | continue; | 
|  |  | 
|  | // Skip variables that correspond to explicitly-named operands. | 
|  | unsigned OpIdx; | 
|  | if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) | 
|  | continue; | 
|  |  | 
|  | // Get the bit range for this operand: | 
|  | unsigned bitStart = bi++, bitWidth = 1; | 
|  | for (; bi < Bits.getNumBits(); ++bi) { | 
|  | VarInit *Var = nullptr; | 
|  | VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); | 
|  | if (BI) | 
|  | Var = dyn_cast<VarInit>(BI->getBitVar()); | 
|  | else | 
|  | Var = dyn_cast<VarInit>(Bits.getBit(bi)); | 
|  |  | 
|  | if (!Var) | 
|  | break; | 
|  |  | 
|  | if (Var->getName() != Vals[i].getName()) | 
|  | break; | 
|  |  | 
|  | ++bitWidth; | 
|  | } | 
|  |  | 
|  | unsigned NumberOps = CGI.Operands.size(); | 
|  | while (NumberedOp < NumberOps && | 
|  | (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || | 
|  | (!NamedOpIndices.empty() && NamedOpIndices.count( | 
|  | CGI.Operands.getSubOperandNumber(NumberedOp).first)))) | 
|  | ++NumberedOp; | 
|  |  | 
|  | OpIdx = NumberedOp++; | 
|  |  | 
|  | // OpIdx now holds the ordered operand number of Vals[i]. | 
|  | std::pair<unsigned, unsigned> SO = | 
|  | CGI.Operands.getSubOperandNumber(OpIdx); | 
|  | const std::string &Name = CGI.Operands[SO.first].Name; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() | 
|  | << ": " << Name << "(" << SO.first << ", " << SO.second | 
|  | << ") => " << Vals[i].getName() << "\n"); | 
|  |  | 
|  | std::string Decoder; | 
|  | Record *TypeRecord = CGI.Operands[SO.first].Rec; | 
|  |  | 
|  | RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); | 
|  | StringInit *String = DecoderString ? | 
|  | dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; | 
|  | if (String && String->getValue() != "") | 
|  | Decoder = String->getValue(); | 
|  |  | 
|  | if (Decoder == "" && | 
|  | CGI.Operands[SO.first].MIOperandInfo && | 
|  | CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) { | 
|  | Init *Arg = CGI.Operands[SO.first].MIOperandInfo-> | 
|  | getArg(SO.second); | 
|  | if (DefInit *DI = cast<DefInit>(Arg)) | 
|  | TypeRecord = DI->getDef(); | 
|  | } | 
|  |  | 
|  | bool isReg = false; | 
|  | if (TypeRecord->isSubClassOf("RegisterOperand")) | 
|  | TypeRecord = TypeRecord->getValueAsDef("RegClass"); | 
|  | if (TypeRecord->isSubClassOf("RegisterClass")) { | 
|  | Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; | 
|  | isReg = true; | 
|  | } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { | 
|  | Decoder = "DecodePointerLikeRegClass" + | 
|  | utostr(TypeRecord->getValueAsInt("RegClassKind")); | 
|  | isReg = true; | 
|  | } | 
|  |  | 
|  | DecoderString = TypeRecord->getValue("DecoderMethod"); | 
|  | String = DecoderString ? | 
|  | dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; | 
|  | if (!isReg && String && String->getValue() != "") | 
|  | Decoder = String->getValue(); | 
|  |  | 
|  | RecordVal *HasCompleteDecoderVal = | 
|  | TypeRecord->getValue("hasCompleteDecoder"); | 
|  | BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? | 
|  | dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; | 
|  | bool HasCompleteDecoder = HasCompleteDecoderBit ? | 
|  | HasCompleteDecoderBit->getValue() : true; | 
|  |  | 
|  | OperandInfo OpInfo(Decoder, HasCompleteDecoder); | 
|  | OpInfo.addField(bitStart, bitWidth, 0); | 
|  |  | 
|  | NumberedInsnOperands[Name].push_back(OpInfo); | 
|  |  | 
|  | // FIXME: For complex operands with custom decoders we can't handle tied | 
|  | // sub-operands automatically. Skip those here and assume that this is | 
|  | // fixed up elsewhere. | 
|  | if (CGI.Operands[SO.first].MIOperandInfo && | 
|  | CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && | 
|  | String && String->getValue() != "") | 
|  | NumberedInsnOperandsNoTie.insert(Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each operand, see if we can figure out where it is encoded. | 
|  | for (const auto &Op : InOutOperands) { | 
|  | if (!NumberedInsnOperands[Op.second].empty()) { | 
|  | InsnOperands.insert(InsnOperands.end(), | 
|  | NumberedInsnOperands[Op.second].begin(), | 
|  | NumberedInsnOperands[Op.second].end()); | 
|  | continue; | 
|  | } | 
|  | if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) { | 
|  | if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) { | 
|  | // Figure out to which (sub)operand we're tied. | 
|  | unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]); | 
|  | int tiedTo = CGI.Operands[i].getTiedRegister(); | 
|  | if (tiedTo == -1) { | 
|  | i = CGI.Operands.getOperandNamed(Op.second); | 
|  | tiedTo = CGI.Operands[i].getTiedRegister(); | 
|  | } | 
|  |  | 
|  | if (tiedTo != -1) { | 
|  | std::pair<unsigned, unsigned> SO = | 
|  | CGI.Operands.getSubOperandNumber(tiedTo); | 
|  |  | 
|  | InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]] | 
|  | [SO.second]); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TypedInit *TI = cast<TypedInit>(Op.first); | 
|  |  | 
|  | // At this point, we can locate the decoder field, but we need to know how | 
|  | // to interpret it.  As a first step, require the target to provide | 
|  | // callbacks for decoding register classes. | 
|  | std::string Decoder = findOperandDecoderMethod(TI); | 
|  | Record *TypeRecord = cast<DefInit>(TI)->getDef(); | 
|  |  | 
|  | RecordVal *HasCompleteDecoderVal = | 
|  | TypeRecord->getValue("hasCompleteDecoder"); | 
|  | BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? | 
|  | dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; | 
|  | bool HasCompleteDecoder = HasCompleteDecoderBit ? | 
|  | HasCompleteDecoderBit->getValue() : true; | 
|  |  | 
|  | OperandInfo OpInfo(Decoder, HasCompleteDecoder); | 
|  | unsigned Base = ~0U; | 
|  | unsigned Width = 0; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { | 
|  | VarInit *Var = nullptr; | 
|  | VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); | 
|  | if (BI) | 
|  | Var = dyn_cast<VarInit>(BI->getBitVar()); | 
|  | else | 
|  | Var = dyn_cast<VarInit>(Bits.getBit(bi)); | 
|  |  | 
|  | if (!Var) { | 
|  | if (Base != ~0U) { | 
|  | OpInfo.addField(Base, Width, Offset); | 
|  | Base = ~0U; | 
|  | Width = 0; | 
|  | Offset = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Var->getName() != Op.second && | 
|  | Var->getName() != TiedNames[Op.second]) { | 
|  | if (Base != ~0U) { | 
|  | OpInfo.addField(Base, Width, Offset); | 
|  | Base = ~0U; | 
|  | Width = 0; | 
|  | Offset = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Base == ~0U) { | 
|  | Base = bi; | 
|  | Width = 1; | 
|  | Offset = BI ? BI->getBitNum() : 0; | 
|  | } else if (BI && BI->getBitNum() != Offset + Width) { | 
|  | OpInfo.addField(Base, Width, Offset); | 
|  | Base = bi; | 
|  | Width = 1; | 
|  | Offset = BI->getBitNum(); | 
|  | } else { | 
|  | ++Width; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Base != ~0U) | 
|  | OpInfo.addField(Base, Width, Offset); | 
|  |  | 
|  | if (OpInfo.numFields() > 0) | 
|  | InsnOperands.push_back(OpInfo); | 
|  | } | 
|  |  | 
|  | Operands[Opc] = InsnOperands; | 
|  |  | 
|  | #if 0 | 
|  | LLVM_DEBUG({ | 
|  | // Dumps the instruction encoding bits. | 
|  | dumpBits(errs(), Bits); | 
|  |  | 
|  | errs() << '\n'; | 
|  |  | 
|  | // Dumps the list of operand info. | 
|  | for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { | 
|  | const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; | 
|  | const std::string &OperandName = Info.Name; | 
|  | const Record &OperandDef = *Info.Rec; | 
|  |  | 
|  | errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; | 
|  | } | 
|  | }); | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // emitFieldFromInstruction - Emit the templated helper function | 
|  | // fieldFromInstruction(). | 
|  | // On Windows we make sure that this function is not inlined when | 
|  | // using the VS compiler. It has a bug which causes the function | 
|  | // to be optimized out in some circustances. See llvm.org/pr38292 | 
|  | static void emitFieldFromInstruction(formatted_raw_ostream &OS) { | 
|  | OS << "// Helper functions for extracting fields from encoded instructions.\n" | 
|  | << "// InsnType must either be integral or an APInt-like object that " | 
|  | "must:\n" | 
|  | << "// * Have a static const max_size_in_bits equal to the number of bits " | 
|  | "in the\n" | 
|  | << "//   encoding.\n" | 
|  | << "// * be default-constructible and copy-constructible\n" | 
|  | << "// * be constructible from a uint64_t\n" | 
|  | << "// * be constructible from an APInt (this can be private)\n" | 
|  | << "// * Support getBitsSet(loBit, hiBit)\n" | 
|  | << "// * be convertible to uint64_t\n" | 
|  | << "// * Support the ~, &, ==, !=, and |= operators with other objects of " | 
|  | "the same type\n" | 
|  | << "// * Support shift (<<, >>) with signed and unsigned integers on the " | 
|  | "RHS\n" | 
|  | << "// * Support put (<<) to raw_ostream&\n" | 
|  | << "template<typename InsnType>\n" | 
|  | << "#if defined(_MSC_VER) && !defined(__clang__)\n" | 
|  | << "__declspec(noinline)\n" | 
|  | << "#endif\n" | 
|  | << "static InsnType fieldFromInstruction(InsnType insn, unsigned " | 
|  | "startBit,\n" | 
|  | << "                                     unsigned numBits, " | 
|  | "std::true_type) {\n" | 
|  | << "  assert(startBit + numBits <= 64 && \"Cannot support >64-bit " | 
|  | "extractions!\");\n" | 
|  | << "  assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n" | 
|  | << "         \"Instruction field out of bounds!\");\n" | 
|  | << "  InsnType fieldMask;\n" | 
|  | << "  if (numBits == sizeof(InsnType) * 8)\n" | 
|  | << "    fieldMask = (InsnType)(-1LL);\n" | 
|  | << "  else\n" | 
|  | << "    fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" | 
|  | << "  return (insn & fieldMask) >> startBit;\n" | 
|  | << "}\n" | 
|  | << "\n" | 
|  | << "template<typename InsnType>\n" | 
|  | << "static InsnType fieldFromInstruction(InsnType insn, unsigned " | 
|  | "startBit,\n" | 
|  | << "                                     unsigned numBits, " | 
|  | "std::false_type) {\n" | 
|  | << "  assert(startBit + numBits <= InsnType::max_size_in_bits && " | 
|  | "\"Instruction field out of bounds!\");\n" | 
|  | << "  InsnType fieldMask = InsnType::getBitsSet(0, numBits);\n" | 
|  | << "  return (insn >> startBit) & fieldMask;\n" | 
|  | << "}\n" | 
|  | << "\n" | 
|  | << "template<typename InsnType>\n" | 
|  | << "static InsnType fieldFromInstruction(InsnType insn, unsigned " | 
|  | "startBit,\n" | 
|  | << "                                     unsigned numBits) {\n" | 
|  | << "  return fieldFromInstruction(insn, startBit, numBits, " | 
|  | "std::is_integral<InsnType>());\n" | 
|  | << "}\n\n"; | 
|  | } | 
|  |  | 
|  | // emitDecodeInstruction - Emit the templated helper function | 
|  | // decodeInstruction(). | 
|  | static void emitDecodeInstruction(formatted_raw_ostream &OS) { | 
|  | OS << "template<typename InsnType>\n" | 
|  | << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], " | 
|  | "MCInst &MI,\n" | 
|  | << "                                      InsnType insn, uint64_t " | 
|  | "Address,\n" | 
|  | << "                                      const void *DisAsm,\n" | 
|  | << "                                      const MCSubtargetInfo &STI) {\n" | 
|  | << "  const FeatureBitset& Bits = STI.getFeatureBits();\n" | 
|  | << "\n" | 
|  | << "  const uint8_t *Ptr = DecodeTable;\n" | 
|  | << "  InsnType CurFieldValue = 0;\n" | 
|  | << "  DecodeStatus S = MCDisassembler::Success;\n" | 
|  | << "  while (true) {\n" | 
|  | << "    ptrdiff_t Loc = Ptr - DecodeTable;\n" | 
|  | << "    switch (*Ptr) {\n" | 
|  | << "    default:\n" | 
|  | << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" | 
|  | << "      return MCDisassembler::Fail;\n" | 
|  | << "    case MCD::OPC_ExtractField: {\n" | 
|  | << "      unsigned Start = *++Ptr;\n" | 
|  | << "      unsigned Len = *++Ptr;\n" | 
|  | << "      ++Ptr;\n" | 
|  | << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << " | 
|  | "\", \"\n" | 
|  | << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_FilterValue: {\n" | 
|  | << "      // Decode the field value.\n" | 
|  | << "      unsigned Len;\n" | 
|  | << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      // NumToSkip is a plain 24-bit integer.\n" | 
|  | << "      unsigned NumToSkip = *Ptr++;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 8;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 16;\n" | 
|  | << "\n" | 
|  | << "      // Perform the filter operation.\n" | 
|  | << "      if (Val != CurFieldValue)\n" | 
|  | << "        Ptr += NumToSkip;\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << " | 
|  | "\", \" << NumToSkip\n" | 
|  | << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" " | 
|  | ": \"PASS:\")\n" | 
|  | << "                   << \" continuing at \" << (Ptr - DecodeTable) << " | 
|  | "\"\\n\");\n" | 
|  | << "\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_CheckField: {\n" | 
|  | << "      unsigned Start = *++Ptr;\n" | 
|  | << "      unsigned Len = *++Ptr;\n" | 
|  | << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n" | 
|  | << "      // Decode the field value.\n" | 
|  | << "      InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      // NumToSkip is a plain 24-bit integer.\n" | 
|  | << "      unsigned NumToSkip = *Ptr++;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 8;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 16;\n" | 
|  | << "\n" | 
|  | << "      // If the actual and expected values don't match, skip.\n" | 
|  | << "      if (ExpectedValue != FieldValue)\n" | 
|  | << "        Ptr += NumToSkip;\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << " | 
|  | "\", \"\n" | 
|  | << "                   << Len << \", \" << ExpectedValue << \", \" << " | 
|  | "NumToSkip\n" | 
|  | << "                   << \"): FieldValue = \" << FieldValue << \", " | 
|  | "ExpectedValue = \"\n" | 
|  | << "                   << ExpectedValue << \": \"\n" | 
|  | << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : " | 
|  | "\"FAIL\\n\"));\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_CheckPredicate: {\n" | 
|  | << "      unsigned Len;\n" | 
|  | << "      // Decode the Predicate Index value.\n" | 
|  | << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      // NumToSkip is a plain 24-bit integer.\n" | 
|  | << "      unsigned NumToSkip = *Ptr++;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 8;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 16;\n" | 
|  | << "      // Check the predicate.\n" | 
|  | << "      bool Pred;\n" | 
|  | << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" | 
|  | << "        Ptr += NumToSkip;\n" | 
|  | << "      (void)Pred;\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx " | 
|  | "<< \"): \"\n" | 
|  | << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" | 
|  | << "\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_Decode: {\n" | 
|  | << "      unsigned Len;\n" | 
|  | << "      // Decode the Opcode value.\n" | 
|  | << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "\n" | 
|  | << "      MI.clear();\n" | 
|  | << "      MI.setOpcode(Opc);\n" | 
|  | << "      bool DecodeComplete;\n" | 
|  | << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, " | 
|  | "DecodeComplete);\n" | 
|  | << "      assert(DecodeComplete);\n" | 
|  | << "\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" | 
|  | << "                   << \", using decoder \" << DecodeIdx << \": \"\n" | 
|  | << "                   << (S != MCDisassembler::Fail ? \"PASS\" : " | 
|  | "\"FAIL\") << \"\\n\");\n" | 
|  | << "      return S;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_TryDecode: {\n" | 
|  | << "      unsigned Len;\n" | 
|  | << "      // Decode the Opcode value.\n" | 
|  | << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      // NumToSkip is a plain 24-bit integer.\n" | 
|  | << "      unsigned NumToSkip = *Ptr++;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 8;\n" | 
|  | << "      NumToSkip |= (*Ptr++) << 16;\n" | 
|  | << "\n" | 
|  | << "      // Perform the decode operation.\n" | 
|  | << "      MCInst TmpMI;\n" | 
|  | << "      TmpMI.setOpcode(Opc);\n" | 
|  | << "      bool DecodeComplete;\n" | 
|  | << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, " | 
|  | "DecodeComplete);\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << " | 
|  | "Opc\n" | 
|  | << "                   << \", using decoder \" << DecodeIdx << \": \");\n" | 
|  | << "\n" | 
|  | << "      if (DecodeComplete) {\n" | 
|  | << "        // Decoding complete.\n" | 
|  | << "        LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : " | 
|  | "\"FAIL\") << \"\\n\");\n" | 
|  | << "        MI = TmpMI;\n" | 
|  | << "        return S;\n" | 
|  | << "      } else {\n" | 
|  | << "        assert(S == MCDisassembler::Fail);\n" | 
|  | << "        // If the decoding was incomplete, skip.\n" | 
|  | << "        Ptr += NumToSkip;\n" | 
|  | << "        LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - " | 
|  | "DecodeTable) << \"\\n\");\n" | 
|  | << "        // Reset decode status. This also drops a SoftFail status " | 
|  | "that could be\n" | 
|  | << "        // set before the decode attempt.\n" | 
|  | << "        S = MCDisassembler::Success;\n" | 
|  | << "      }\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_SoftFail: {\n" | 
|  | << "      // Decode the mask values.\n" | 
|  | << "      unsigned Len;\n" | 
|  | << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n" | 
|  | << "      Ptr += Len;\n" | 
|  | << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n" | 
|  | << "      if (Fail)\n" | 
|  | << "        S = MCDisassembler::SoftFail;\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? " | 
|  | "\"FAIL\\n\":\"PASS\\n\"));\n" | 
|  | << "      break;\n" | 
|  | << "    }\n" | 
|  | << "    case MCD::OPC_Fail: {\n" | 
|  | << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" | 
|  | << "      return MCDisassembler::Fail;\n" | 
|  | << "    }\n" | 
|  | << "    }\n" | 
|  | << "  }\n" | 
|  | << "  llvm_unreachable(\"bogosity detected in disassembler state " | 
|  | "machine!\");\n" | 
|  | << "}\n\n"; | 
|  | } | 
|  |  | 
|  | // Emits disassembler code for instruction decoding. | 
|  | void FixedLenDecoderEmitter::run(raw_ostream &o) { | 
|  | formatted_raw_ostream OS(o); | 
|  | OS << "#include \"llvm/MC/MCInst.h\"\n"; | 
|  | OS << "#include \"llvm/Support/Debug.h\"\n"; | 
|  | OS << "#include \"llvm/Support/DataTypes.h\"\n"; | 
|  | OS << "#include \"llvm/Support/LEB128.h\"\n"; | 
|  | OS << "#include \"llvm/Support/raw_ostream.h\"\n"; | 
|  | OS << "#include <assert.h>\n"; | 
|  | OS << '\n'; | 
|  | OS << "namespace llvm {\n\n"; | 
|  |  | 
|  | emitFieldFromInstruction(OS); | 
|  |  | 
|  | Target.reverseBitsForLittleEndianEncoding(); | 
|  |  | 
|  | // Parameterize the decoders based on namespace and instruction width. | 
|  | const auto &NumberedInstructions = Target.getInstructionsByEnumValue(); | 
|  | NumberedEncodings.reserve(NumberedInstructions.size()); | 
|  | DenseMap<Record *, unsigned> IndexOfInstruction; | 
|  | for (const auto &NumberedInstruction : NumberedInstructions) { | 
|  | IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size(); | 
|  | NumberedEncodings.emplace_back(NumberedInstruction->TheDef, NumberedInstruction); | 
|  | } | 
|  | for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding")) | 
|  | NumberedEncodings.emplace_back( | 
|  | NumberedAlias, | 
|  | &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf"))); | 
|  |  | 
|  | std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>> | 
|  | OpcMap; | 
|  | std::map<unsigned, std::vector<OperandInfo>> Operands; | 
|  |  | 
|  | for (unsigned i = 0; i < NumberedEncodings.size(); ++i) { | 
|  | const Record *EncodingDef = NumberedEncodings[i].EncodingDef; | 
|  | const CodeGenInstruction *Inst = NumberedEncodings[i].Inst; | 
|  | const Record *Def = Inst->TheDef; | 
|  | unsigned Size = EncodingDef->getValueAsInt("Size"); | 
|  | if (Def->getValueAsString("Namespace") == "TargetOpcode" || | 
|  | Def->getValueAsBit("isPseudo") || | 
|  | Def->getValueAsBit("isAsmParserOnly") || | 
|  | Def->getValueAsBit("isCodeGenOnly")) { | 
|  | NumEncodingsLackingDisasm++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (i < NumberedInstructions.size()) | 
|  | NumInstructions++; | 
|  | NumEncodings++; | 
|  |  | 
|  | StringRef DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace"); | 
|  |  | 
|  | if (Size) { | 
|  | if (populateInstruction(Target, *EncodingDef, *Inst, i, Operands)) { | 
|  | OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(i, IndexOfInstruction.find(Def)->second); | 
|  | } else | 
|  | NumEncodingsOmitted++; | 
|  | } | 
|  | } | 
|  |  | 
|  | DecoderTableInfo TableInfo; | 
|  | for (const auto &Opc : OpcMap) { | 
|  | // Emit the decoder for this namespace+width combination. | 
|  | ArrayRef<EncodingAndInst> NumberedEncodingsRef( | 
|  | NumberedEncodings.data(), NumberedEncodings.size()); | 
|  | FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands, | 
|  | 8 * Opc.first.second, this); | 
|  |  | 
|  | // The decode table is cleared for each top level decoder function. The | 
|  | // predicates and decoders themselves, however, are shared across all | 
|  | // decoders to give more opportunities for uniqueing. | 
|  | TableInfo.Table.clear(); | 
|  | TableInfo.FixupStack.clear(); | 
|  | TableInfo.Table.reserve(16384); | 
|  | TableInfo.FixupStack.emplace_back(); | 
|  | FC.emitTableEntries(TableInfo); | 
|  | // Any NumToSkip fixups in the top level scope can resolve to the | 
|  | // OPC_Fail at the end of the table. | 
|  | assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); | 
|  | // Resolve any NumToSkip fixups in the current scope. | 
|  | resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), | 
|  | TableInfo.Table.size()); | 
|  | TableInfo.FixupStack.clear(); | 
|  |  | 
|  | TableInfo.Table.push_back(MCD::OPC_Fail); | 
|  |  | 
|  | // Print the table to the output stream. | 
|  | emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first); | 
|  | OS.flush(); | 
|  | } | 
|  |  | 
|  | // Emit the predicate function. | 
|  | emitPredicateFunction(OS, TableInfo.Predicates, 0); | 
|  |  | 
|  | // Emit the decoder function. | 
|  | emitDecoderFunction(OS, TableInfo.Decoders, 0); | 
|  |  | 
|  | // Emit the main entry point for the decoder, decodeInstruction(). | 
|  | emitDecodeInstruction(OS); | 
|  |  | 
|  | OS << "\n} // End llvm namespace\n"; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, | 
|  | const std::string &PredicateNamespace, | 
|  | const std::string &GPrefix, | 
|  | const std::string &GPostfix, const std::string &ROK, | 
|  | const std::string &RFail, const std::string &L) { | 
|  | FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, | 
|  | ROK, RFail, L).run(OS); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |