//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// | |
// | |
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
// See https://llvm.org/LICENSE.txt for license information. | |
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This contains code to emit Builtin calls as LLVM code. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "CGCXXABI.h" | |
#include "CGObjCRuntime.h" | |
#include "CGOpenCLRuntime.h" | |
#include "CGRecordLayout.h" | |
#include "CodeGenFunction.h" | |
#include "CodeGenModule.h" | |
#include "ConstantEmitter.h" | |
#include "PatternInit.h" | |
#include "TargetInfo.h" | |
#include "clang/AST/ASTContext.h" | |
#include "clang/AST/Decl.h" | |
#include "clang/AST/OSLog.h" | |
#include "clang/Basic/TargetBuiltins.h" | |
#include "clang/Basic/TargetInfo.h" | |
#include "clang/CodeGen/CGFunctionInfo.h" | |
#include "llvm/ADT/SmallPtrSet.h" | |
#include "llvm/ADT/StringExtras.h" | |
#include "llvm/IR/DataLayout.h" | |
#include "llvm/IR/InlineAsm.h" | |
#include "llvm/IR/Intrinsics.h" | |
#include "llvm/IR/MDBuilder.h" | |
#include "llvm/Support/ConvertUTF.h" | |
#include "llvm/Support/ScopedPrinter.h" | |
#include "llvm/Support/TargetParser.h" | |
#include <sstream> | |
using namespace clang; | |
using namespace CodeGen; | |
using namespace llvm; | |
static | |
int64_t clamp(int64_t Value, int64_t Low, int64_t High) { | |
return std::min(High, std::max(Low, Value)); | |
} | |
static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) { | |
ConstantInt *Byte; | |
switch (CGF.getLangOpts().getTrivialAutoVarInit()) { | |
case LangOptions::TrivialAutoVarInitKind::Uninitialized: | |
// Nothing to initialize. | |
return; | |
case LangOptions::TrivialAutoVarInitKind::Zero: | |
Byte = CGF.Builder.getInt8(0x00); | |
break; | |
case LangOptions::TrivialAutoVarInitKind::Pattern: { | |
llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); | |
Byte = llvm::dyn_cast<llvm::ConstantInt>( | |
initializationPatternFor(CGF.CGM, Int8)); | |
break; | |
} | |
} | |
CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); | |
} | |
/// getBuiltinLibFunction - Given a builtin id for a function like | |
/// "__builtin_fabsf", return a Function* for "fabsf". | |
llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, | |
unsigned BuiltinID) { | |
assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); | |
// Get the name, skip over the __builtin_ prefix (if necessary). | |
StringRef Name; | |
GlobalDecl D(FD); | |
// If the builtin has been declared explicitly with an assembler label, | |
// use the mangled name. This differs from the plain label on platforms | |
// that prefix labels. | |
if (FD->hasAttr<AsmLabelAttr>()) | |
Name = getMangledName(D); | |
else | |
Name = Context.BuiltinInfo.getName(BuiltinID) + 10; | |
llvm::FunctionType *Ty = | |
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); | |
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); | |
} | |
/// Emit the conversions required to turn the given value into an | |
/// integer of the given size. | |
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, | |
QualType T, llvm::IntegerType *IntType) { | |
V = CGF.EmitToMemory(V, T); | |
if (V->getType()->isPointerTy()) | |
return CGF.Builder.CreatePtrToInt(V, IntType); | |
assert(V->getType() == IntType); | |
return V; | |
} | |
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, | |
QualType T, llvm::Type *ResultType) { | |
V = CGF.EmitFromMemory(V, T); | |
if (ResultType->isPointerTy()) | |
return CGF.Builder.CreateIntToPtr(V, ResultType); | |
assert(V->getType() == ResultType); | |
return V; | |
} | |
/// Utility to insert an atomic instruction based on Intrinsic::ID | |
/// and the expression node. | |
static Value *MakeBinaryAtomicValue( | |
CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, | |
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { | |
QualType T = E->getType(); | |
assert(E->getArg(0)->getType()->isPointerType()); | |
assert(CGF.getContext().hasSameUnqualifiedType(T, | |
E->getArg(0)->getType()->getPointeeType())); | |
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); | |
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); | |
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); | |
llvm::IntegerType *IntType = | |
llvm::IntegerType::get(CGF.getLLVMContext(), | |
CGF.getContext().getTypeSize(T)); | |
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); | |
llvm::Value *Args[2]; | |
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); | |
Args[1] = CGF.EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ValueType = Args[1]->getType(); | |
Args[1] = EmitToInt(CGF, Args[1], T, IntType); | |
llvm::Value *Result = CGF.Builder.CreateAtomicRMW( | |
Kind, Args[0], Args[1], Ordering); | |
return EmitFromInt(CGF, Result, T, ValueType); | |
} | |
static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { | |
Value *Val = CGF.EmitScalarExpr(E->getArg(0)); | |
Value *Address = CGF.EmitScalarExpr(E->getArg(1)); | |
// Convert the type of the pointer to a pointer to the stored type. | |
Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); | |
Value *BC = CGF.Builder.CreateBitCast( | |
Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); | |
LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); | |
LV.setNontemporal(true); | |
CGF.EmitStoreOfScalar(Val, LV, false); | |
return nullptr; | |
} | |
static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { | |
Value *Address = CGF.EmitScalarExpr(E->getArg(0)); | |
LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); | |
LV.setNontemporal(true); | |
return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); | |
} | |
static RValue EmitBinaryAtomic(CodeGenFunction &CGF, | |
llvm::AtomicRMWInst::BinOp Kind, | |
const CallExpr *E) { | |
return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); | |
} | |
/// Utility to insert an atomic instruction based Intrinsic::ID and | |
/// the expression node, where the return value is the result of the | |
/// operation. | |
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, | |
llvm::AtomicRMWInst::BinOp Kind, | |
const CallExpr *E, | |
Instruction::BinaryOps Op, | |
bool Invert = false) { | |
QualType T = E->getType(); | |
assert(E->getArg(0)->getType()->isPointerType()); | |
assert(CGF.getContext().hasSameUnqualifiedType(T, | |
E->getArg(0)->getType()->getPointeeType())); | |
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); | |
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); | |
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); | |
llvm::IntegerType *IntType = | |
llvm::IntegerType::get(CGF.getLLVMContext(), | |
CGF.getContext().getTypeSize(T)); | |
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); | |
llvm::Value *Args[2]; | |
Args[1] = CGF.EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ValueType = Args[1]->getType(); | |
Args[1] = EmitToInt(CGF, Args[1], T, IntType); | |
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); | |
llvm::Value *Result = CGF.Builder.CreateAtomicRMW( | |
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); | |
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); | |
if (Invert) | |
Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, | |
llvm::ConstantInt::get(IntType, -1)); | |
Result = EmitFromInt(CGF, Result, T, ValueType); | |
return RValue::get(Result); | |
} | |
/// Utility to insert an atomic cmpxchg instruction. | |
/// | |
/// @param CGF The current codegen function. | |
/// @param E Builtin call expression to convert to cmpxchg. | |
/// arg0 - address to operate on | |
/// arg1 - value to compare with | |
/// arg2 - new value | |
/// @param ReturnBool Specifies whether to return success flag of | |
/// cmpxchg result or the old value. | |
/// | |
/// @returns result of cmpxchg, according to ReturnBool | |
/// | |
/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics | |
/// invoke the function EmitAtomicCmpXchgForMSIntrin. | |
static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, | |
bool ReturnBool) { | |
QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); | |
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); | |
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); | |
llvm::IntegerType *IntType = llvm::IntegerType::get( | |
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); | |
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); | |
Value *Args[3]; | |
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); | |
Args[1] = CGF.EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ValueType = Args[1]->getType(); | |
Args[1] = EmitToInt(CGF, Args[1], T, IntType); | |
Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); | |
Value *Pair = CGF.Builder.CreateAtomicCmpXchg( | |
Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, | |
llvm::AtomicOrdering::SequentiallyConsistent); | |
if (ReturnBool) | |
// Extract boolean success flag and zext it to int. | |
return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), | |
CGF.ConvertType(E->getType())); | |
else | |
// Extract old value and emit it using the same type as compare value. | |
return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, | |
ValueType); | |
} | |
/// This function should be invoked to emit atomic cmpxchg for Microsoft's | |
/// _InterlockedCompareExchange* intrinsics which have the following signature: | |
/// T _InterlockedCompareExchange(T volatile *Destination, | |
/// T Exchange, | |
/// T Comparand); | |
/// | |
/// Whereas the llvm 'cmpxchg' instruction has the following syntax: | |
/// cmpxchg *Destination, Comparand, Exchange. | |
/// So we need to swap Comparand and Exchange when invoking | |
/// CreateAtomicCmpXchg. That is the reason we could not use the above utility | |
/// function MakeAtomicCmpXchgValue since it expects the arguments to be | |
/// already swapped. | |
static | |
Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, | |
AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { | |
assert(E->getArg(0)->getType()->isPointerType()); | |
assert(CGF.getContext().hasSameUnqualifiedType( | |
E->getType(), E->getArg(0)->getType()->getPointeeType())); | |
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), | |
E->getArg(1)->getType())); | |
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), | |
E->getArg(2)->getType())); | |
auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); | |
auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); | |
auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); | |
// For Release ordering, the failure ordering should be Monotonic. | |
auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? | |
AtomicOrdering::Monotonic : | |
SuccessOrdering; | |
auto *Result = CGF.Builder.CreateAtomicCmpXchg( | |
Destination, Comparand, Exchange, | |
SuccessOrdering, FailureOrdering); | |
Result->setVolatile(true); | |
return CGF.Builder.CreateExtractValue(Result, 0); | |
} | |
static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, | |
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { | |
assert(E->getArg(0)->getType()->isPointerType()); | |
auto *IntTy = CGF.ConvertType(E->getType()); | |
auto *Result = CGF.Builder.CreateAtomicRMW( | |
AtomicRMWInst::Add, | |
CGF.EmitScalarExpr(E->getArg(0)), | |
ConstantInt::get(IntTy, 1), | |
Ordering); | |
return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); | |
} | |
static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, | |
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { | |
assert(E->getArg(0)->getType()->isPointerType()); | |
auto *IntTy = CGF.ConvertType(E->getType()); | |
auto *Result = CGF.Builder.CreateAtomicRMW( | |
AtomicRMWInst::Sub, | |
CGF.EmitScalarExpr(E->getArg(0)), | |
ConstantInt::get(IntTy, 1), | |
Ordering); | |
return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); | |
} | |
// Build a plain volatile load. | |
static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { | |
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); | |
QualType ElTy = E->getArg(0)->getType()->getPointeeType(); | |
CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); | |
llvm::Type *ITy = | |
llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); | |
Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); | |
llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize); | |
Load->setVolatile(true); | |
return Load; | |
} | |
// Build a plain volatile store. | |
static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { | |
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); | |
Value *Value = CGF.EmitScalarExpr(E->getArg(1)); | |
QualType ElTy = E->getArg(0)->getType()->getPointeeType(); | |
CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); | |
llvm::Type *ITy = | |
llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); | |
Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); | |
llvm::StoreInst *Store = | |
CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); | |
Store->setVolatile(true); | |
return Store; | |
} | |
// Emit a simple mangled intrinsic that has 1 argument and a return type | |
// matching the argument type. | |
static Value *emitUnaryBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
unsigned IntrinsicID) { | |
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); | |
return CGF.Builder.CreateCall(F, Src0); | |
} | |
// Emit an intrinsic that has 2 operands of the same type as its result. | |
static Value *emitBinaryBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
unsigned IntrinsicID) { | |
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); | |
return CGF.Builder.CreateCall(F, { Src0, Src1 }); | |
} | |
// Emit an intrinsic that has 3 operands of the same type as its result. | |
static Value *emitTernaryBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
unsigned IntrinsicID) { | |
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); | |
return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); | |
} | |
// Emit an intrinsic that has 1 float or double operand, and 1 integer. | |
static Value *emitFPIntBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
unsigned IntrinsicID) { | |
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); | |
return CGF.Builder.CreateCall(F, {Src0, Src1}); | |
} | |
// Emit an intrinsic that has overloaded integer result and fp operand. | |
static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
unsigned IntrinsicID) { | |
llvm::Type *ResultType = CGF.ConvertType(E->getType()); | |
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, | |
{ResultType, Src0->getType()}); | |
return CGF.Builder.CreateCall(F, Src0); | |
} | |
/// EmitFAbs - Emit a call to @llvm.fabs(). | |
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { | |
Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); | |
llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); | |
Call->setDoesNotAccessMemory(); | |
return Call; | |
} | |
/// Emit the computation of the sign bit for a floating point value. Returns | |
/// the i1 sign bit value. | |
static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { | |
LLVMContext &C = CGF.CGM.getLLVMContext(); | |
llvm::Type *Ty = V->getType(); | |
int Width = Ty->getPrimitiveSizeInBits(); | |
llvm::Type *IntTy = llvm::IntegerType::get(C, Width); | |
V = CGF.Builder.CreateBitCast(V, IntTy); | |
if (Ty->isPPC_FP128Ty()) { | |
// We want the sign bit of the higher-order double. The bitcast we just | |
// did works as if the double-double was stored to memory and then | |
// read as an i128. The "store" will put the higher-order double in the | |
// lower address in both little- and big-Endian modes, but the "load" | |
// will treat those bits as a different part of the i128: the low bits in | |
// little-Endian, the high bits in big-Endian. Therefore, on big-Endian | |
// we need to shift the high bits down to the low before truncating. | |
Width >>= 1; | |
if (CGF.getTarget().isBigEndian()) { | |
Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); | |
V = CGF.Builder.CreateLShr(V, ShiftCst); | |
} | |
// We are truncating value in order to extract the higher-order | |
// double, which we will be using to extract the sign from. | |
IntTy = llvm::IntegerType::get(C, Width); | |
V = CGF.Builder.CreateTrunc(V, IntTy); | |
} | |
Value *Zero = llvm::Constant::getNullValue(IntTy); | |
return CGF.Builder.CreateICmpSLT(V, Zero); | |
} | |
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, | |
const CallExpr *E, llvm::Constant *calleeValue) { | |
CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); | |
return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); | |
} | |
/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* | |
/// depending on IntrinsicID. | |
/// | |
/// \arg CGF The current codegen function. | |
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate. | |
/// \arg X The first argument to the llvm.*.with.overflow.*. | |
/// \arg Y The second argument to the llvm.*.with.overflow.*. | |
/// \arg Carry The carry returned by the llvm.*.with.overflow.*. | |
/// \returns The result (i.e. sum/product) returned by the intrinsic. | |
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, | |
const llvm::Intrinsic::ID IntrinsicID, | |
llvm::Value *X, llvm::Value *Y, | |
llvm::Value *&Carry) { | |
// Make sure we have integers of the same width. | |
assert(X->getType() == Y->getType() && | |
"Arguments must be the same type. (Did you forget to make sure both " | |
"arguments have the same integer width?)"); | |
Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); | |
llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); | |
Carry = CGF.Builder.CreateExtractValue(Tmp, 1); | |
return CGF.Builder.CreateExtractValue(Tmp, 0); | |
} | |
static Value *emitRangedBuiltin(CodeGenFunction &CGF, | |
unsigned IntrinsicID, | |
int low, int high) { | |
llvm::MDBuilder MDHelper(CGF.getLLVMContext()); | |
llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); | |
llvm::Instruction *Call = CGF.Builder.CreateCall(F); | |
Call->setMetadata(llvm::LLVMContext::MD_range, RNode); | |
return Call; | |
} | |
namespace { | |
struct WidthAndSignedness { | |
unsigned Width; | |
bool Signed; | |
}; | |
} | |
static WidthAndSignedness | |
getIntegerWidthAndSignedness(const clang::ASTContext &context, | |
const clang::QualType Type) { | |
assert(Type->isIntegerType() && "Given type is not an integer."); | |
unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width; | |
bool Signed = Type->isSignedIntegerType(); | |
return {Width, Signed}; | |
} | |
// Given one or more integer types, this function produces an integer type that | |
// encompasses them: any value in one of the given types could be expressed in | |
// the encompassing type. | |
static struct WidthAndSignedness | |
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { | |
assert(Types.size() > 0 && "Empty list of types."); | |
// If any of the given types is signed, we must return a signed type. | |
bool Signed = false; | |
for (const auto &Type : Types) { | |
Signed |= Type.Signed; | |
} | |
// The encompassing type must have a width greater than or equal to the width | |
// of the specified types. Additionally, if the encompassing type is signed, | |
// its width must be strictly greater than the width of any unsigned types | |
// given. | |
unsigned Width = 0; | |
for (const auto &Type : Types) { | |
unsigned MinWidth = Type.Width + (Signed && !Type.Signed); | |
if (Width < MinWidth) { | |
Width = MinWidth; | |
} | |
} | |
return {Width, Signed}; | |
} | |
Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { | |
llvm::Type *DestType = Int8PtrTy; | |
if (ArgValue->getType() != DestType) | |
ArgValue = | |
Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); | |
Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; | |
return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); | |
} | |
/// Checks if using the result of __builtin_object_size(p, @p From) in place of | |
/// __builtin_object_size(p, @p To) is correct | |
static bool areBOSTypesCompatible(int From, int To) { | |
// Note: Our __builtin_object_size implementation currently treats Type=0 and | |
// Type=2 identically. Encoding this implementation detail here may make | |
// improving __builtin_object_size difficult in the future, so it's omitted. | |
return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); | |
} | |
static llvm::Value * | |
getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { | |
return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); | |
} | |
llvm::Value * | |
CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, | |
llvm::IntegerType *ResType, | |
llvm::Value *EmittedE, | |
bool IsDynamic) { | |
uint64_t ObjectSize; | |
if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) | |
return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); | |
return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); | |
} | |
/// Returns a Value corresponding to the size of the given expression. | |
/// This Value may be either of the following: | |
/// - A llvm::Argument (if E is a param with the pass_object_size attribute on | |
/// it) | |
/// - A call to the @llvm.objectsize intrinsic | |
/// | |
/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null | |
/// and we wouldn't otherwise try to reference a pass_object_size parameter, | |
/// we'll call @llvm.objectsize on EmittedE, rather than emitting E. | |
llvm::Value * | |
CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, | |
llvm::IntegerType *ResType, | |
llvm::Value *EmittedE, bool IsDynamic) { | |
// We need to reference an argument if the pointer is a parameter with the | |
// pass_object_size attribute. | |
if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { | |
auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); | |
auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); | |
if (Param != nullptr && PS != nullptr && | |
areBOSTypesCompatible(PS->getType(), Type)) { | |
auto Iter = SizeArguments.find(Param); | |
assert(Iter != SizeArguments.end()); | |
const ImplicitParamDecl *D = Iter->second; | |
auto DIter = LocalDeclMap.find(D); | |
assert(DIter != LocalDeclMap.end()); | |
return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, | |
getContext().getSizeType(), E->getBeginLoc()); | |
} | |
} | |
// LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't | |
// evaluate E for side-effects. In either case, we shouldn't lower to | |
// @llvm.objectsize. | |
if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) | |
return getDefaultBuiltinObjectSizeResult(Type, ResType); | |
Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); | |
assert(Ptr->getType()->isPointerTy() && | |
"Non-pointer passed to __builtin_object_size?"); | |
Function *F = | |
CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); | |
// LLVM only supports 0 and 2, make sure that we pass along that as a boolean. | |
Value *Min = Builder.getInt1((Type & 2) != 0); | |
// For GCC compatibility, __builtin_object_size treat NULL as unknown size. | |
Value *NullIsUnknown = Builder.getTrue(); | |
Value *Dynamic = Builder.getInt1(IsDynamic); | |
return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); | |
} | |
namespace { | |
/// A struct to generically describe a bit test intrinsic. | |
struct BitTest { | |
enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; | |
enum InterlockingKind : uint8_t { | |
Unlocked, | |
Sequential, | |
Acquire, | |
Release, | |
NoFence | |
}; | |
ActionKind Action; | |
InterlockingKind Interlocking; | |
bool Is64Bit; | |
static BitTest decodeBitTestBuiltin(unsigned BuiltinID); | |
}; | |
} // namespace | |
BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { | |
switch (BuiltinID) { | |
// Main portable variants. | |
case Builtin::BI_bittest: | |
return {TestOnly, Unlocked, false}; | |
case Builtin::BI_bittestandcomplement: | |
return {Complement, Unlocked, false}; | |
case Builtin::BI_bittestandreset: | |
return {Reset, Unlocked, false}; | |
case Builtin::BI_bittestandset: | |
return {Set, Unlocked, false}; | |
case Builtin::BI_interlockedbittestandreset: | |
return {Reset, Sequential, false}; | |
case Builtin::BI_interlockedbittestandset: | |
return {Set, Sequential, false}; | |
// X86-specific 64-bit variants. | |
case Builtin::BI_bittest64: | |
return {TestOnly, Unlocked, true}; | |
case Builtin::BI_bittestandcomplement64: | |
return {Complement, Unlocked, true}; | |
case Builtin::BI_bittestandreset64: | |
return {Reset, Unlocked, true}; | |
case Builtin::BI_bittestandset64: | |
return {Set, Unlocked, true}; | |
case Builtin::BI_interlockedbittestandreset64: | |
return {Reset, Sequential, true}; | |
case Builtin::BI_interlockedbittestandset64: | |
return {Set, Sequential, true}; | |
// ARM/AArch64-specific ordering variants. | |
case Builtin::BI_interlockedbittestandset_acq: | |
return {Set, Acquire, false}; | |
case Builtin::BI_interlockedbittestandset_rel: | |
return {Set, Release, false}; | |
case Builtin::BI_interlockedbittestandset_nf: | |
return {Set, NoFence, false}; | |
case Builtin::BI_interlockedbittestandreset_acq: | |
return {Reset, Acquire, false}; | |
case Builtin::BI_interlockedbittestandreset_rel: | |
return {Reset, Release, false}; | |
case Builtin::BI_interlockedbittestandreset_nf: | |
return {Reset, NoFence, false}; | |
} | |
llvm_unreachable("expected only bittest intrinsics"); | |
} | |
static char bitActionToX86BTCode(BitTest::ActionKind A) { | |
switch (A) { | |
case BitTest::TestOnly: return '\0'; | |
case BitTest::Complement: return 'c'; | |
case BitTest::Reset: return 'r'; | |
case BitTest::Set: return 's'; | |
} | |
llvm_unreachable("invalid action"); | |
} | |
static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, | |
BitTest BT, | |
const CallExpr *E, Value *BitBase, | |
Value *BitPos) { | |
char Action = bitActionToX86BTCode(BT.Action); | |
char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; | |
// Build the assembly. | |
SmallString<64> Asm; | |
raw_svector_ostream AsmOS(Asm); | |
if (BT.Interlocking != BitTest::Unlocked) | |
AsmOS << "lock "; | |
AsmOS << "bt"; | |
if (Action) | |
AsmOS << Action; | |
AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}"; | |
// Build the constraints. FIXME: We should support immediates when possible. | |
std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}"; | |
llvm::IntegerType *IntType = llvm::IntegerType::get( | |
CGF.getLLVMContext(), | |
CGF.getContext().getTypeSize(E->getArg(1)->getType())); | |
llvm::Type *IntPtrType = IntType->getPointerTo(); | |
llvm::FunctionType *FTy = | |
llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); | |
llvm::InlineAsm *IA = | |
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); | |
return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); | |
} | |
static llvm::AtomicOrdering | |
getBitTestAtomicOrdering(BitTest::InterlockingKind I) { | |
switch (I) { | |
case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; | |
case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; | |
case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; | |
case BitTest::Release: return llvm::AtomicOrdering::Release; | |
case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; | |
} | |
llvm_unreachable("invalid interlocking"); | |
} | |
/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of | |
/// bits and a bit position and read and optionally modify the bit at that | |
/// position. The position index can be arbitrarily large, i.e. it can be larger | |
/// than 31 or 63, so we need an indexed load in the general case. | |
static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, | |
unsigned BuiltinID, | |
const CallExpr *E) { | |
Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); | |
Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); | |
BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); | |
// X86 has special BT, BTC, BTR, and BTS instructions that handle the array | |
// indexing operation internally. Use them if possible. | |
llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch(); | |
if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64) | |
return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); | |
// Otherwise, use generic code to load one byte and test the bit. Use all but | |
// the bottom three bits as the array index, and the bottom three bits to form | |
// a mask. | |
// Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; | |
Value *ByteIndex = CGF.Builder.CreateAShr( | |
BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); | |
Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); | |
Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, | |
ByteIndex, "bittest.byteaddr"), | |
CharUnits::One()); | |
Value *PosLow = | |
CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), | |
llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); | |
// The updating instructions will need a mask. | |
Value *Mask = nullptr; | |
if (BT.Action != BitTest::TestOnly) { | |
Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, | |
"bittest.mask"); | |
} | |
// Check the action and ordering of the interlocked intrinsics. | |
llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); | |
Value *OldByte = nullptr; | |
if (Ordering != llvm::AtomicOrdering::NotAtomic) { | |
// Emit a combined atomicrmw load/store operation for the interlocked | |
// intrinsics. | |
llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; | |
if (BT.Action == BitTest::Reset) { | |
Mask = CGF.Builder.CreateNot(Mask); | |
RMWOp = llvm::AtomicRMWInst::And; | |
} | |
OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, | |
Ordering); | |
} else { | |
// Emit a plain load for the non-interlocked intrinsics. | |
OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); | |
Value *NewByte = nullptr; | |
switch (BT.Action) { | |
case BitTest::TestOnly: | |
// Don't store anything. | |
break; | |
case BitTest::Complement: | |
NewByte = CGF.Builder.CreateXor(OldByte, Mask); | |
break; | |
case BitTest::Reset: | |
NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); | |
break; | |
case BitTest::Set: | |
NewByte = CGF.Builder.CreateOr(OldByte, Mask); | |
break; | |
} | |
if (NewByte) | |
CGF.Builder.CreateStore(NewByte, ByteAddr); | |
} | |
// However we loaded the old byte, either by plain load or atomicrmw, shift | |
// the bit into the low position and mask it to 0 or 1. | |
Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); | |
return CGF.Builder.CreateAnd( | |
ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); | |
} | |
namespace { | |
enum class MSVCSetJmpKind { | |
_setjmpex, | |
_setjmp3, | |
_setjmp | |
}; | |
} | |
/// MSVC handles setjmp a bit differently on different platforms. On every | |
/// architecture except 32-bit x86, the frame address is passed. On x86, extra | |
/// parameters can be passed as variadic arguments, but we always pass none. | |
static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, | |
const CallExpr *E) { | |
llvm::Value *Arg1 = nullptr; | |
llvm::Type *Arg1Ty = nullptr; | |
StringRef Name; | |
bool IsVarArg = false; | |
if (SJKind == MSVCSetJmpKind::_setjmp3) { | |
Name = "_setjmp3"; | |
Arg1Ty = CGF.Int32Ty; | |
Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); | |
IsVarArg = true; | |
} else { | |
Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; | |
Arg1Ty = CGF.Int8PtrTy; | |
if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { | |
Arg1 = CGF.Builder.CreateCall( | |
CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); | |
} else | |
Arg1 = CGF.Builder.CreateCall( | |
CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), | |
llvm::ConstantInt::get(CGF.Int32Ty, 0)); | |
} | |
// Mark the call site and declaration with ReturnsTwice. | |
llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; | |
llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( | |
CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, | |
llvm::Attribute::ReturnsTwice); | |
llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( | |
llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, | |
ReturnsTwiceAttr, /*Local=*/true); | |
llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( | |
CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); | |
llvm::Value *Args[] = {Buf, Arg1}; | |
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); | |
CB->setAttributes(ReturnsTwiceAttr); | |
return RValue::get(CB); | |
} | |
// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, | |
// we handle them here. | |
enum class CodeGenFunction::MSVCIntrin { | |
_BitScanForward, | |
_BitScanReverse, | |
_InterlockedAnd, | |
_InterlockedDecrement, | |
_InterlockedExchange, | |
_InterlockedExchangeAdd, | |
_InterlockedExchangeSub, | |
_InterlockedIncrement, | |
_InterlockedOr, | |
_InterlockedXor, | |
_InterlockedExchangeAdd_acq, | |
_InterlockedExchangeAdd_rel, | |
_InterlockedExchangeAdd_nf, | |
_InterlockedExchange_acq, | |
_InterlockedExchange_rel, | |
_InterlockedExchange_nf, | |
_InterlockedCompareExchange_acq, | |
_InterlockedCompareExchange_rel, | |
_InterlockedCompareExchange_nf, | |
_InterlockedOr_acq, | |
_InterlockedOr_rel, | |
_InterlockedOr_nf, | |
_InterlockedXor_acq, | |
_InterlockedXor_rel, | |
_InterlockedXor_nf, | |
_InterlockedAnd_acq, | |
_InterlockedAnd_rel, | |
_InterlockedAnd_nf, | |
_InterlockedIncrement_acq, | |
_InterlockedIncrement_rel, | |
_InterlockedIncrement_nf, | |
_InterlockedDecrement_acq, | |
_InterlockedDecrement_rel, | |
_InterlockedDecrement_nf, | |
__fastfail, | |
}; | |
Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, | |
const CallExpr *E) { | |
switch (BuiltinID) { | |
case MSVCIntrin::_BitScanForward: | |
case MSVCIntrin::_BitScanReverse: { | |
Value *ArgValue = EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
llvm::Type *IndexType = | |
EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType(); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *ArgZero = llvm::Constant::getNullValue(ArgType); | |
Value *ResZero = llvm::Constant::getNullValue(ResultType); | |
Value *ResOne = llvm::ConstantInt::get(ResultType, 1); | |
BasicBlock *Begin = Builder.GetInsertBlock(); | |
BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); | |
Builder.SetInsertPoint(End); | |
PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); | |
Builder.SetInsertPoint(Begin); | |
Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); | |
BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); | |
Builder.CreateCondBr(IsZero, End, NotZero); | |
Result->addIncoming(ResZero, Begin); | |
Builder.SetInsertPoint(NotZero); | |
Address IndexAddress = EmitPointerWithAlignment(E->getArg(0)); | |
if (BuiltinID == MSVCIntrin::_BitScanForward) { | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); | |
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); | |
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); | |
Builder.CreateStore(ZeroCount, IndexAddress, false); | |
} else { | |
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); | |
Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); | |
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); | |
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); | |
Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); | |
Builder.CreateStore(Index, IndexAddress, false); | |
} | |
Builder.CreateBr(End); | |
Result->addIncoming(ResOne, NotZero); | |
Builder.SetInsertPoint(End); | |
return Result; | |
} | |
case MSVCIntrin::_InterlockedAnd: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); | |
case MSVCIntrin::_InterlockedExchange: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); | |
case MSVCIntrin::_InterlockedExchangeAdd: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); | |
case MSVCIntrin::_InterlockedExchangeSub: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); | |
case MSVCIntrin::_InterlockedOr: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); | |
case MSVCIntrin::_InterlockedXor: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); | |
case MSVCIntrin::_InterlockedExchangeAdd_acq: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, | |
AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedExchangeAdd_rel: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, | |
AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedExchangeAdd_nf: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, | |
AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedExchange_acq: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, | |
AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedExchange_rel: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, | |
AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedExchange_nf: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, | |
AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedCompareExchange_acq: | |
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedCompareExchange_rel: | |
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedCompareExchange_nf: | |
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedOr_acq: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, | |
AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedOr_rel: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, | |
AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedOr_nf: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, | |
AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedXor_acq: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, | |
AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedXor_rel: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, | |
AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedXor_nf: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, | |
AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedAnd_acq: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, | |
AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedAnd_rel: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, | |
AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedAnd_nf: | |
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, | |
AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedIncrement_acq: | |
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedIncrement_rel: | |
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedIncrement_nf: | |
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedDecrement_acq: | |
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); | |
case MSVCIntrin::_InterlockedDecrement_rel: | |
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); | |
case MSVCIntrin::_InterlockedDecrement_nf: | |
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); | |
case MSVCIntrin::_InterlockedDecrement: | |
return EmitAtomicDecrementValue(*this, E); | |
case MSVCIntrin::_InterlockedIncrement: | |
return EmitAtomicIncrementValue(*this, E); | |
case MSVCIntrin::__fastfail: { | |
// Request immediate process termination from the kernel. The instruction | |
// sequences to do this are documented on MSDN: | |
// https://msdn.microsoft.com/en-us/library/dn774154.aspx | |
llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); | |
StringRef Asm, Constraints; | |
switch (ISA) { | |
default: | |
ErrorUnsupported(E, "__fastfail call for this architecture"); | |
break; | |
case llvm::Triple::x86: | |
case llvm::Triple::x86_64: | |
Asm = "int $$0x29"; | |
Constraints = "{cx}"; | |
break; | |
case llvm::Triple::thumb: | |
Asm = "udf #251"; | |
Constraints = "{r0}"; | |
break; | |
case llvm::Triple::aarch64: | |
Asm = "brk #0xF003"; | |
Constraints = "{w0}"; | |
} | |
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); | |
llvm::InlineAsm *IA = | |
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); | |
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( | |
getLLVMContext(), llvm::AttributeList::FunctionIndex, | |
llvm::Attribute::NoReturn); | |
llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); | |
CI->setAttributes(NoReturnAttr); | |
return CI; | |
} | |
} | |
llvm_unreachable("Incorrect MSVC intrinsic!"); | |
} | |
namespace { | |
// ARC cleanup for __builtin_os_log_format | |
struct CallObjCArcUse final : EHScopeStack::Cleanup { | |
CallObjCArcUse(llvm::Value *object) : object(object) {} | |
llvm::Value *object; | |
void Emit(CodeGenFunction &CGF, Flags flags) override { | |
CGF.EmitARCIntrinsicUse(object); | |
} | |
}; | |
} | |
Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, | |
BuiltinCheckKind Kind) { | |
assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) | |
&& "Unsupported builtin check kind"); | |
Value *ArgValue = EmitScalarExpr(E); | |
if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) | |
return ArgValue; | |
SanitizerScope SanScope(this); | |
Value *Cond = Builder.CreateICmpNE( | |
ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); | |
EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), | |
SanitizerHandler::InvalidBuiltin, | |
{EmitCheckSourceLocation(E->getExprLoc()), | |
llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, | |
None); | |
return ArgValue; | |
} | |
/// Get the argument type for arguments to os_log_helper. | |
static CanQualType getOSLogArgType(ASTContext &C, int Size) { | |
QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); | |
return C.getCanonicalType(UnsignedTy); | |
} | |
llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( | |
const analyze_os_log::OSLogBufferLayout &Layout, | |
CharUnits BufferAlignment) { | |
ASTContext &Ctx = getContext(); | |
llvm::SmallString<64> Name; | |
{ | |
raw_svector_ostream OS(Name); | |
OS << "__os_log_helper"; | |
OS << "_" << BufferAlignment.getQuantity(); | |
OS << "_" << int(Layout.getSummaryByte()); | |
OS << "_" << int(Layout.getNumArgsByte()); | |
for (const auto &Item : Layout.Items) | |
OS << "_" << int(Item.getSizeByte()) << "_" | |
<< int(Item.getDescriptorByte()); | |
} | |
if (llvm::Function *F = CGM.getModule().getFunction(Name)) | |
return F; | |
llvm::SmallVector<QualType, 4> ArgTys; | |
FunctionArgList Args; | |
Args.push_back(ImplicitParamDecl::Create( | |
Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, | |
ImplicitParamDecl::Other)); | |
ArgTys.emplace_back(Ctx.VoidPtrTy); | |
for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { | |
char Size = Layout.Items[I].getSizeByte(); | |
if (!Size) | |
continue; | |
QualType ArgTy = getOSLogArgType(Ctx, Size); | |
Args.push_back(ImplicitParamDecl::Create( | |
Ctx, nullptr, SourceLocation(), | |
&Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, | |
ImplicitParamDecl::Other)); | |
ArgTys.emplace_back(ArgTy); | |
} | |
QualType ReturnTy = Ctx.VoidTy; | |
QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {}); | |
// The helper function has linkonce_odr linkage to enable the linker to merge | |
// identical functions. To ensure the merging always happens, 'noinline' is | |
// attached to the function when compiling with -Oz. | |
const CGFunctionInfo &FI = | |
CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); | |
llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); | |
llvm::Function *Fn = llvm::Function::Create( | |
FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); | |
Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); | |
CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn); | |
CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); | |
Fn->setDoesNotThrow(); | |
// Attach 'noinline' at -Oz. | |
if (CGM.getCodeGenOpts().OptimizeSize == 2) | |
Fn->addFnAttr(llvm::Attribute::NoInline); | |
auto NL = ApplyDebugLocation::CreateEmpty(*this); | |
IdentifierInfo *II = &Ctx.Idents.get(Name); | |
FunctionDecl *FD = FunctionDecl::Create( | |
Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, | |
FuncionTy, nullptr, SC_PrivateExtern, false, false); | |
StartFunction(FD, ReturnTy, Fn, FI, Args); | |
// Create a scope with an artificial location for the body of this function. | |
auto AL = ApplyDebugLocation::CreateArtificial(*this); | |
CharUnits Offset; | |
Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), | |
BufferAlignment); | |
Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), | |
Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); | |
Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), | |
Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); | |
unsigned I = 1; | |
for (const auto &Item : Layout.Items) { | |
Builder.CreateStore( | |
Builder.getInt8(Item.getDescriptorByte()), | |
Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); | |
Builder.CreateStore( | |
Builder.getInt8(Item.getSizeByte()), | |
Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); | |
CharUnits Size = Item.size(); | |
if (!Size.getQuantity()) | |
continue; | |
Address Arg = GetAddrOfLocalVar(Args[I]); | |
Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); | |
Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), | |
"argDataCast"); | |
Builder.CreateStore(Builder.CreateLoad(Arg), Addr); | |
Offset += Size; | |
++I; | |
} | |
FinishFunction(); | |
return Fn; | |
} | |
RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { | |
assert(E.getNumArgs() >= 2 && | |
"__builtin_os_log_format takes at least 2 arguments"); | |
ASTContext &Ctx = getContext(); | |
analyze_os_log::OSLogBufferLayout Layout; | |
analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); | |
Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); | |
llvm::SmallVector<llvm::Value *, 4> RetainableOperands; | |
// Ignore argument 1, the format string. It is not currently used. | |
CallArgList Args; | |
Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); | |
for (const auto &Item : Layout.Items) { | |
int Size = Item.getSizeByte(); | |
if (!Size) | |
continue; | |
llvm::Value *ArgVal; | |
if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { | |
uint64_t Val = 0; | |
for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) | |
Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; | |
ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); | |
} else if (const Expr *TheExpr = Item.getExpr()) { | |
ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); | |
// Check if this is a retainable type. | |
if (TheExpr->getType()->isObjCRetainableType()) { | |
assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && | |
"Only scalar can be a ObjC retainable type"); | |
// Check if the object is constant, if not, save it in | |
// RetainableOperands. | |
if (!isa<Constant>(ArgVal)) | |
RetainableOperands.push_back(ArgVal); | |
} | |
} else { | |
ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); | |
} | |
unsigned ArgValSize = | |
CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); | |
llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), | |
ArgValSize); | |
ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); | |
CanQualType ArgTy = getOSLogArgType(Ctx, Size); | |
// If ArgVal has type x86_fp80, zero-extend ArgVal. | |
ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); | |
Args.add(RValue::get(ArgVal), ArgTy); | |
} | |
const CGFunctionInfo &FI = | |
CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); | |
llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( | |
Layout, BufAddr.getAlignment()); | |
EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); | |
// Push a clang.arc.use cleanup for each object in RetainableOperands. The | |
// cleanup will cause the use to appear after the final log call, keeping | |
// the object valid while it’s held in the log buffer. Note that if there’s | |
// a release cleanup on the object, it will already be active; since | |
// cleanups are emitted in reverse order, the use will occur before the | |
// object is released. | |
if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount && | |
CGM.getCodeGenOpts().OptimizationLevel != 0) | |
for (llvm::Value *Object : RetainableOperands) | |
pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object); | |
return RValue::get(BufAddr.getPointer()); | |
} | |
/// Determine if a binop is a checked mixed-sign multiply we can specialize. | |
static bool isSpecialMixedSignMultiply(unsigned BuiltinID, | |
WidthAndSignedness Op1Info, | |
WidthAndSignedness Op2Info, | |
WidthAndSignedness ResultInfo) { | |
return BuiltinID == Builtin::BI__builtin_mul_overflow && | |
std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && | |
Op1Info.Signed != Op2Info.Signed; | |
} | |
/// Emit a checked mixed-sign multiply. This is a cheaper specialization of | |
/// the generic checked-binop irgen. | |
static RValue | |
EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, | |
WidthAndSignedness Op1Info, const clang::Expr *Op2, | |
WidthAndSignedness Op2Info, | |
const clang::Expr *ResultArg, QualType ResultQTy, | |
WidthAndSignedness ResultInfo) { | |
assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, | |
Op2Info, ResultInfo) && | |
"Not a mixed-sign multipliction we can specialize"); | |
// Emit the signed and unsigned operands. | |
const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; | |
const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; | |
llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); | |
llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); | |
unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; | |
unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; | |
// One of the operands may be smaller than the other. If so, [s|z]ext it. | |
if (SignedOpWidth < UnsignedOpWidth) | |
Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); | |
if (UnsignedOpWidth < SignedOpWidth) | |
Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); | |
llvm::Type *OpTy = Signed->getType(); | |
llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); | |
Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); | |
llvm::Type *ResTy = ResultPtr.getElementType(); | |
unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); | |
// Take the absolute value of the signed operand. | |
llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); | |
llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); | |
llvm::Value *AbsSigned = | |
CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); | |
// Perform a checked unsigned multiplication. | |
llvm::Value *UnsignedOverflow; | |
llvm::Value *UnsignedResult = | |
EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, | |
Unsigned, UnsignedOverflow); | |
llvm::Value *Overflow, *Result; | |
if (ResultInfo.Signed) { | |
// Signed overflow occurs if the result is greater than INT_MAX or lesser | |
// than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). | |
auto IntMax = | |
llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); | |
llvm::Value *MaxResult = | |
CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), | |
CGF.Builder.CreateZExt(IsNegative, OpTy)); | |
llvm::Value *SignedOverflow = | |
CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); | |
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); | |
// Prepare the signed result (possibly by negating it). | |
llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); | |
llvm::Value *SignedResult = | |
CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); | |
Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); | |
} else { | |
// Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. | |
llvm::Value *Underflow = CGF.Builder.CreateAnd( | |
IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); | |
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); | |
if (ResultInfo.Width < OpWidth) { | |
auto IntMax = | |
llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); | |
llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( | |
UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); | |
Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); | |
} | |
// Negate the product if it would be negative in infinite precision. | |
Result = CGF.Builder.CreateSelect( | |
IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); | |
Result = CGF.Builder.CreateTrunc(Result, ResTy); | |
} | |
assert(Overflow && Result && "Missing overflow or result"); | |
bool isVolatile = | |
ResultArg->getType()->getPointeeType().isVolatileQualified(); | |
CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, | |
isVolatile); | |
return RValue::get(Overflow); | |
} | |
static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, | |
Value *&RecordPtr, CharUnits Align, | |
llvm::FunctionCallee Func, int Lvl) { | |
ASTContext &Context = CGF.getContext(); | |
RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); | |
std::string Pad = std::string(Lvl * 4, ' '); | |
Value *GString = | |
CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); | |
Value *Res = CGF.Builder.CreateCall(Func, {GString}); | |
static llvm::DenseMap<QualType, const char *> Types; | |
if (Types.empty()) { | |
Types[Context.CharTy] = "%c"; | |
Types[Context.BoolTy] = "%d"; | |
Types[Context.SignedCharTy] = "%hhd"; | |
Types[Context.UnsignedCharTy] = "%hhu"; | |
Types[Context.IntTy] = "%d"; | |
Types[Context.UnsignedIntTy] = "%u"; | |
Types[Context.LongTy] = "%ld"; | |
Types[Context.UnsignedLongTy] = "%lu"; | |
Types[Context.LongLongTy] = "%lld"; | |
Types[Context.UnsignedLongLongTy] = "%llu"; | |
Types[Context.ShortTy] = "%hd"; | |
Types[Context.UnsignedShortTy] = "%hu"; | |
Types[Context.VoidPtrTy] = "%p"; | |
Types[Context.FloatTy] = "%f"; | |
Types[Context.DoubleTy] = "%f"; | |
Types[Context.LongDoubleTy] = "%Lf"; | |
Types[Context.getPointerType(Context.CharTy)] = "%s"; | |
Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; | |
} | |
for (const auto *FD : RD->fields()) { | |
Value *FieldPtr = RecordPtr; | |
if (RD->isUnion()) | |
FieldPtr = CGF.Builder.CreatePointerCast( | |
FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); | |
else | |
FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, | |
FD->getFieldIndex()); | |
GString = CGF.Builder.CreateGlobalStringPtr( | |
llvm::Twine(Pad) | |
.concat(FD->getType().getAsString()) | |
.concat(llvm::Twine(' ')) | |
.concat(FD->getNameAsString()) | |
.concat(" : ") | |
.str()); | |
Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); | |
Res = CGF.Builder.CreateAdd(Res, TmpRes); | |
QualType CanonicalType = | |
FD->getType().getUnqualifiedType().getCanonicalType(); | |
// We check whether we are in a recursive type | |
if (CanonicalType->isRecordType()) { | |
Value *TmpRes = | |
dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); | |
Res = CGF.Builder.CreateAdd(TmpRes, Res); | |
continue; | |
} | |
// We try to determine the best format to print the current field | |
llvm::Twine Format = Types.find(CanonicalType) == Types.end() | |
? Types[Context.VoidPtrTy] | |
: Types[CanonicalType]; | |
Address FieldAddress = Address(FieldPtr, Align); | |
FieldPtr = CGF.Builder.CreateLoad(FieldAddress); | |
// FIXME Need to handle bitfield here | |
GString = CGF.Builder.CreateGlobalStringPtr( | |
Format.concat(llvm::Twine('\n')).str()); | |
TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); | |
Res = CGF.Builder.CreateAdd(Res, TmpRes); | |
} | |
GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); | |
Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); | |
Res = CGF.Builder.CreateAdd(Res, TmpRes); | |
return Res; | |
} | |
static bool | |
TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, | |
llvm::SmallPtrSetImpl<const Decl *> &Seen) { | |
if (const auto *Arr = Ctx.getAsArrayType(Ty)) | |
Ty = Ctx.getBaseElementType(Arr); | |
const auto *Record = Ty->getAsCXXRecordDecl(); | |
if (!Record) | |
return false; | |
// We've already checked this type, or are in the process of checking it. | |
if (!Seen.insert(Record).second) | |
return false; | |
assert(Record->hasDefinition() && | |
"Incomplete types should already be diagnosed"); | |
if (Record->isDynamicClass()) | |
return true; | |
for (FieldDecl *F : Record->fields()) { | |
if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) | |
return true; | |
} | |
return false; | |
} | |
/// Determine if the specified type requires laundering by checking if it is a | |
/// dynamic class type or contains a subobject which is a dynamic class type. | |
static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { | |
if (!CGM.getCodeGenOpts().StrictVTablePointers) | |
return false; | |
llvm::SmallPtrSet<const Decl *, 16> Seen; | |
return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); | |
} | |
RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { | |
llvm::Value *Src = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); | |
// The builtin's shift arg may have a different type than the source arg and | |
// result, but the LLVM intrinsic uses the same type for all values. | |
llvm::Type *Ty = Src->getType(); | |
ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); | |
// Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. | |
unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; | |
Function *F = CGM.getIntrinsic(IID, Ty); | |
return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); | |
} | |
RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, | |
const CallExpr *E, | |
ReturnValueSlot ReturnValue) { | |
const FunctionDecl *FD = GD.getDecl()->getAsFunction(); | |
// See if we can constant fold this builtin. If so, don't emit it at all. | |
Expr::EvalResult Result; | |
if (E->EvaluateAsRValue(Result, CGM.getContext()) && | |
!Result.hasSideEffects()) { | |
if (Result.Val.isInt()) | |
return RValue::get(llvm::ConstantInt::get(getLLVMContext(), | |
Result.Val.getInt())); | |
if (Result.Val.isFloat()) | |
return RValue::get(llvm::ConstantFP::get(getLLVMContext(), | |
Result.Val.getFloat())); | |
} | |
// There are LLVM math intrinsics/instructions corresponding to math library | |
// functions except the LLVM op will never set errno while the math library | |
// might. Also, math builtins have the same semantics as their math library | |
// twins. Thus, we can transform math library and builtin calls to their | |
// LLVM counterparts if the call is marked 'const' (known to never set errno). | |
if (FD->hasAttr<ConstAttr>()) { | |
switch (BuiltinID) { | |
case Builtin::BIceil: | |
case Builtin::BIceilf: | |
case Builtin::BIceill: | |
case Builtin::BI__builtin_ceil: | |
case Builtin::BI__builtin_ceilf: | |
case Builtin::BI__builtin_ceilf16: | |
case Builtin::BI__builtin_ceill: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil)); | |
case Builtin::BIcopysign: | |
case Builtin::BIcopysignf: | |
case Builtin::BIcopysignl: | |
case Builtin::BI__builtin_copysign: | |
case Builtin::BI__builtin_copysignf: | |
case Builtin::BI__builtin_copysignf16: | |
case Builtin::BI__builtin_copysignl: | |
case Builtin::BI__builtin_copysignf128: | |
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); | |
case Builtin::BIcos: | |
case Builtin::BIcosf: | |
case Builtin::BIcosl: | |
case Builtin::BI__builtin_cos: | |
case Builtin::BI__builtin_cosf: | |
case Builtin::BI__builtin_cosf16: | |
case Builtin::BI__builtin_cosl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos)); | |
case Builtin::BIexp: | |
case Builtin::BIexpf: | |
case Builtin::BIexpl: | |
case Builtin::BI__builtin_exp: | |
case Builtin::BI__builtin_expf: | |
case Builtin::BI__builtin_expf16: | |
case Builtin::BI__builtin_expl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp)); | |
case Builtin::BIexp2: | |
case Builtin::BIexp2f: | |
case Builtin::BIexp2l: | |
case Builtin::BI__builtin_exp2: | |
case Builtin::BI__builtin_exp2f: | |
case Builtin::BI__builtin_exp2f16: | |
case Builtin::BI__builtin_exp2l: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2)); | |
case Builtin::BIfabs: | |
case Builtin::BIfabsf: | |
case Builtin::BIfabsl: | |
case Builtin::BI__builtin_fabs: | |
case Builtin::BI__builtin_fabsf: | |
case Builtin::BI__builtin_fabsf16: | |
case Builtin::BI__builtin_fabsl: | |
case Builtin::BI__builtin_fabsf128: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); | |
case Builtin::BIfloor: | |
case Builtin::BIfloorf: | |
case Builtin::BIfloorl: | |
case Builtin::BI__builtin_floor: | |
case Builtin::BI__builtin_floorf: | |
case Builtin::BI__builtin_floorf16: | |
case Builtin::BI__builtin_floorl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor)); | |
case Builtin::BIfma: | |
case Builtin::BIfmaf: | |
case Builtin::BIfmal: | |
case Builtin::BI__builtin_fma: | |
case Builtin::BI__builtin_fmaf: | |
case Builtin::BI__builtin_fmaf16: | |
case Builtin::BI__builtin_fmal: | |
return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma)); | |
case Builtin::BIfmax: | |
case Builtin::BIfmaxf: | |
case Builtin::BIfmaxl: | |
case Builtin::BI__builtin_fmax: | |
case Builtin::BI__builtin_fmaxf: | |
case Builtin::BI__builtin_fmaxf16: | |
case Builtin::BI__builtin_fmaxl: | |
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum)); | |
case Builtin::BIfmin: | |
case Builtin::BIfminf: | |
case Builtin::BIfminl: | |
case Builtin::BI__builtin_fmin: | |
case Builtin::BI__builtin_fminf: | |
case Builtin::BI__builtin_fminf16: | |
case Builtin::BI__builtin_fminl: | |
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum)); | |
// fmod() is a special-case. It maps to the frem instruction rather than an | |
// LLVM intrinsic. | |
case Builtin::BIfmod: | |
case Builtin::BIfmodf: | |
case Builtin::BIfmodl: | |
case Builtin::BI__builtin_fmod: | |
case Builtin::BI__builtin_fmodf: | |
case Builtin::BI__builtin_fmodf16: | |
case Builtin::BI__builtin_fmodl: { | |
Value *Arg1 = EmitScalarExpr(E->getArg(0)); | |
Value *Arg2 = EmitScalarExpr(E->getArg(1)); | |
return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); | |
} | |
case Builtin::BIlog: | |
case Builtin::BIlogf: | |
case Builtin::BIlogl: | |
case Builtin::BI__builtin_log: | |
case Builtin::BI__builtin_logf: | |
case Builtin::BI__builtin_logf16: | |
case Builtin::BI__builtin_logl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log)); | |
case Builtin::BIlog10: | |
case Builtin::BIlog10f: | |
case Builtin::BIlog10l: | |
case Builtin::BI__builtin_log10: | |
case Builtin::BI__builtin_log10f: | |
case Builtin::BI__builtin_log10f16: | |
case Builtin::BI__builtin_log10l: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10)); | |
case Builtin::BIlog2: | |
case Builtin::BIlog2f: | |
case Builtin::BIlog2l: | |
case Builtin::BI__builtin_log2: | |
case Builtin::BI__builtin_log2f: | |
case Builtin::BI__builtin_log2f16: | |
case Builtin::BI__builtin_log2l: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2)); | |
case Builtin::BInearbyint: | |
case Builtin::BInearbyintf: | |
case Builtin::BInearbyintl: | |
case Builtin::BI__builtin_nearbyint: | |
case Builtin::BI__builtin_nearbyintf: | |
case Builtin::BI__builtin_nearbyintl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint)); | |
case Builtin::BIpow: | |
case Builtin::BIpowf: | |
case Builtin::BIpowl: | |
case Builtin::BI__builtin_pow: | |
case Builtin::BI__builtin_powf: | |
case Builtin::BI__builtin_powf16: | |
case Builtin::BI__builtin_powl: | |
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow)); | |
case Builtin::BIrint: | |
case Builtin::BIrintf: | |
case Builtin::BIrintl: | |
case Builtin::BI__builtin_rint: | |
case Builtin::BI__builtin_rintf: | |
case Builtin::BI__builtin_rintf16: | |
case Builtin::BI__builtin_rintl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint)); | |
case Builtin::BIround: | |
case Builtin::BIroundf: | |
case Builtin::BIroundl: | |
case Builtin::BI__builtin_round: | |
case Builtin::BI__builtin_roundf: | |
case Builtin::BI__builtin_roundf16: | |
case Builtin::BI__builtin_roundl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round)); | |
case Builtin::BIsin: | |
case Builtin::BIsinf: | |
case Builtin::BIsinl: | |
case Builtin::BI__builtin_sin: | |
case Builtin::BI__builtin_sinf: | |
case Builtin::BI__builtin_sinf16: | |
case Builtin::BI__builtin_sinl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin)); | |
case Builtin::BIsqrt: | |
case Builtin::BIsqrtf: | |
case Builtin::BIsqrtl: | |
case Builtin::BI__builtin_sqrt: | |
case Builtin::BI__builtin_sqrtf: | |
case Builtin::BI__builtin_sqrtf16: | |
case Builtin::BI__builtin_sqrtl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt)); | |
case Builtin::BItrunc: | |
case Builtin::BItruncf: | |
case Builtin::BItruncl: | |
case Builtin::BI__builtin_trunc: | |
case Builtin::BI__builtin_truncf: | |
case Builtin::BI__builtin_truncf16: | |
case Builtin::BI__builtin_truncl: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc)); | |
case Builtin::BIlround: | |
case Builtin::BIlroundf: | |
case Builtin::BIlroundl: | |
case Builtin::BI__builtin_lround: | |
case Builtin::BI__builtin_lroundf: | |
case Builtin::BI__builtin_lroundl: | |
return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround)); | |
case Builtin::BIllround: | |
case Builtin::BIllroundf: | |
case Builtin::BIllroundl: | |
case Builtin::BI__builtin_llround: | |
case Builtin::BI__builtin_llroundf: | |
case Builtin::BI__builtin_llroundl: | |
return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround)); | |
case Builtin::BIlrint: | |
case Builtin::BIlrintf: | |
case Builtin::BIlrintl: | |
case Builtin::BI__builtin_lrint: | |
case Builtin::BI__builtin_lrintf: | |
case Builtin::BI__builtin_lrintl: | |
return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint)); | |
case Builtin::BIllrint: | |
case Builtin::BIllrintf: | |
case Builtin::BIllrintl: | |
case Builtin::BI__builtin_llrint: | |
case Builtin::BI__builtin_llrintf: | |
case Builtin::BI__builtin_llrintl: | |
return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint)); | |
default: | |
break; | |
} | |
} | |
switch (BuiltinID) { | |
default: break; | |
case Builtin::BI__builtin___CFStringMakeConstantString: | |
case Builtin::BI__builtin___NSStringMakeConstantString: | |
return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); | |
case Builtin::BI__builtin_stdarg_start: | |
case Builtin::BI__builtin_va_start: | |
case Builtin::BI__va_start: | |
case Builtin::BI__builtin_va_end: | |
return RValue::get( | |
EmitVAStartEnd(BuiltinID == Builtin::BI__va_start | |
? EmitScalarExpr(E->getArg(0)) | |
: EmitVAListRef(E->getArg(0)).getPointer(), | |
BuiltinID != Builtin::BI__builtin_va_end)); | |
case Builtin::BI__builtin_va_copy: { | |
Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); | |
Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); | |
llvm::Type *Type = Int8PtrTy; | |
DstPtr = Builder.CreateBitCast(DstPtr, Type); | |
SrcPtr = Builder.CreateBitCast(SrcPtr, Type); | |
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), | |
{DstPtr, SrcPtr})); | |
} | |
case Builtin::BI__builtin_abs: | |
case Builtin::BI__builtin_labs: | |
case Builtin::BI__builtin_llabs: { | |
// X < 0 ? -X : X | |
// The negation has 'nsw' because abs of INT_MIN is undefined. | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); | |
Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); | |
Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); | |
Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_conj: | |
case Builtin::BI__builtin_conjf: | |
case Builtin::BI__builtin_conjl: { | |
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); | |
Value *Real = ComplexVal.first; | |
Value *Imag = ComplexVal.second; | |
Value *Zero = | |
Imag->getType()->isFPOrFPVectorTy() | |
? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) | |
: llvm::Constant::getNullValue(Imag->getType()); | |
Imag = Builder.CreateFSub(Zero, Imag, "sub"); | |
return RValue::getComplex(std::make_pair(Real, Imag)); | |
} | |
case Builtin::BI__builtin_creal: | |
case Builtin::BI__builtin_crealf: | |
case Builtin::BI__builtin_creall: | |
case Builtin::BIcreal: | |
case Builtin::BIcrealf: | |
case Builtin::BIcreall: { | |
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); | |
return RValue::get(ComplexVal.first); | |
} | |
case Builtin::BI__builtin_dump_struct: { | |
llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); | |
llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( | |
LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); | |
Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); | |
CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); | |
const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); | |
QualType Arg0Type = Arg0->getType()->getPointeeType(); | |
Value *RecordPtr = EmitScalarExpr(Arg0); | |
Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, | |
{LLVMFuncType, Func}, 0); | |
return RValue::get(Res); | |
} | |
case Builtin::BI__builtin_preserve_access_index: { | |
// Only enabled preserved access index region when debuginfo | |
// is available as debuginfo is needed to preserve user-level | |
// access pattern. | |
if (!getDebugInfo()) { | |
CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); | |
return RValue::get(EmitScalarExpr(E->getArg(0))); | |
} | |
// Nested builtin_preserve_access_index() not supported | |
if (IsInPreservedAIRegion) { | |
CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); | |
return RValue::get(EmitScalarExpr(E->getArg(0))); | |
} | |
IsInPreservedAIRegion = true; | |
Value *Res = EmitScalarExpr(E->getArg(0)); | |
IsInPreservedAIRegion = false; | |
return RValue::get(Res); | |
} | |
case Builtin::BI__builtin_cimag: | |
case Builtin::BI__builtin_cimagf: | |
case Builtin::BI__builtin_cimagl: | |
case Builtin::BIcimag: | |
case Builtin::BIcimagf: | |
case Builtin::BIcimagl: { | |
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); | |
return RValue::get(ComplexVal.second); | |
} | |
case Builtin::BI__builtin_clrsb: | |
case Builtin::BI__builtin_clrsbl: | |
case Builtin::BI__builtin_clrsbll: { | |
// clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Zero = llvm::Constant::getNullValue(ArgType); | |
Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); | |
Value *Inverse = Builder.CreateNot(ArgValue, "not"); | |
Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); | |
Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); | |
Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_ctzs: | |
case Builtin::BI__builtin_ctz: | |
case Builtin::BI__builtin_ctzl: | |
case Builtin::BI__builtin_ctzll: { | |
Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); | |
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_clzs: | |
case Builtin::BI__builtin_clz: | |
case Builtin::BI__builtin_clzl: | |
case Builtin::BI__builtin_clzll: { | |
Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); | |
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_ffs: | |
case Builtin::BI__builtin_ffsl: | |
case Builtin::BI__builtin_ffsll: { | |
// ffs(x) -> x ? cttz(x) + 1 : 0 | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Tmp = | |
Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), | |
llvm::ConstantInt::get(ArgType, 1)); | |
Value *Zero = llvm::Constant::getNullValue(ArgType); | |
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); | |
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_parity: | |
case Builtin::BI__builtin_parityl: | |
case Builtin::BI__builtin_parityll: { | |
// parity(x) -> ctpop(x) & 1 | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Tmp = Builder.CreateCall(F, ArgValue); | |
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__lzcnt16: | |
case Builtin::BI__lzcnt: | |
case Builtin::BI__lzcnt64: { | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__popcnt16: | |
case Builtin::BI__popcnt: | |
case Builtin::BI__popcnt64: | |
case Builtin::BI__builtin_popcount: | |
case Builtin::BI__builtin_popcountl: | |
case Builtin::BI__builtin_popcountll: { | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Result = Builder.CreateCall(F, ArgValue); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_unpredictable: { | |
// Always return the argument of __builtin_unpredictable. LLVM does not | |
// handle this builtin. Metadata for this builtin should be added directly | |
// to instructions such as branches or switches that use it. | |
return RValue::get(EmitScalarExpr(E->getArg(0))); | |
} | |
case Builtin::BI__builtin_expect: { | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ArgType = ArgValue->getType(); | |
Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); | |
// Don't generate llvm.expect on -O0 as the backend won't use it for | |
// anything. | |
// Note, we still IRGen ExpectedValue because it could have side-effects. | |
if (CGM.getCodeGenOpts().OptimizationLevel == 0) | |
return RValue::get(ArgValue); | |
Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); | |
Value *Result = | |
Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_assume_aligned: { | |
const Expr *Ptr = E->getArg(0); | |
Value *PtrValue = EmitScalarExpr(Ptr); | |
Value *OffsetValue = | |
(E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; | |
Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); | |
ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); | |
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) | |
AlignmentCI = ConstantInt::get(AlignmentCI->getType(), | |
llvm::Value::MaximumAlignment); | |
EmitAlignmentAssumption(PtrValue, Ptr, | |
/*The expr loc is sufficient.*/ SourceLocation(), | |
AlignmentCI, OffsetValue); | |
return RValue::get(PtrValue); | |
} | |
case Builtin::BI__assume: | |
case Builtin::BI__builtin_assume: { | |
if (E->getArg(0)->HasSideEffects(getContext())) | |
return RValue::get(nullptr); | |
Value *ArgValue = EmitScalarExpr(E->getArg(0)); | |
Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); | |
return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); | |
} | |
case Builtin::BI__builtin_bswap16: | |
case Builtin::BI__builtin_bswap32: | |
case Builtin::BI__builtin_bswap64: { | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); | |
} | |
case Builtin::BI__builtin_bitreverse8: | |
case Builtin::BI__builtin_bitreverse16: | |
case Builtin::BI__builtin_bitreverse32: | |
case Builtin::BI__builtin_bitreverse64: { | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); | |
} | |
case Builtin::BI__builtin_rotateleft8: | |
case Builtin::BI__builtin_rotateleft16: | |
case Builtin::BI__builtin_rotateleft32: | |
case Builtin::BI__builtin_rotateleft64: | |
case Builtin::BI_rotl8: // Microsoft variants of rotate left | |
case Builtin::BI_rotl16: | |
case Builtin::BI_rotl: | |
case Builtin::BI_lrotl: | |
case Builtin::BI_rotl64: | |
return emitRotate(E, false); | |
case Builtin::BI__builtin_rotateright8: | |
case Builtin::BI__builtin_rotateright16: | |
case Builtin::BI__builtin_rotateright32: | |
case Builtin::BI__builtin_rotateright64: | |
case Builtin::BI_rotr8: // Microsoft variants of rotate right | |
case Builtin::BI_rotr16: | |
case Builtin::BI_rotr: | |
case Builtin::BI_lrotr: | |
case Builtin::BI_rotr64: | |
return emitRotate(E, true); | |
case Builtin::BI__builtin_constant_p: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
const Expr *Arg = E->getArg(0); | |
QualType ArgType = Arg->getType(); | |
// FIXME: The allowance for Obj-C pointers and block pointers is historical | |
// and likely a mistake. | |
if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && | |
!ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) | |
// Per the GCC documentation, only numeric constants are recognized after | |
// inlining. | |
return RValue::get(ConstantInt::get(ResultType, 0)); | |
if (Arg->HasSideEffects(getContext())) | |
// The argument is unevaluated, so be conservative if it might have | |
// side-effects. | |
return RValue::get(ConstantInt::get(ResultType, 0)); | |
Value *ArgValue = EmitScalarExpr(Arg); | |
if (ArgType->isObjCObjectPointerType()) { | |
// Convert Objective-C objects to id because we cannot distinguish between | |
// LLVM types for Obj-C classes as they are opaque. | |
ArgType = CGM.getContext().getObjCIdType(); | |
ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); | |
} | |
Function *F = | |
CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); | |
Value *Result = Builder.CreateCall(F, ArgValue); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_dynamic_object_size: | |
case Builtin::BI__builtin_object_size: { | |
unsigned Type = | |
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); | |
auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); | |
// We pass this builtin onto the optimizer so that it can figure out the | |
// object size in more complex cases. | |
bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; | |
return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, | |
/*EmittedE=*/nullptr, IsDynamic)); | |
} | |
case Builtin::BI__builtin_prefetch: { | |
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); | |
// FIXME: Technically these constants should of type 'int', yes? | |
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : | |
llvm::ConstantInt::get(Int32Ty, 0); | |
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : | |
llvm::ConstantInt::get(Int32Ty, 3); | |
Value *Data = llvm::ConstantInt::get(Int32Ty, 1); | |
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); | |
return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); | |
} | |
case Builtin::BI__builtin_readcyclecounter: { | |
Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); | |
return RValue::get(Builder.CreateCall(F)); | |
} | |
case Builtin::BI__builtin___clear_cache: { | |
Value *Begin = EmitScalarExpr(E->getArg(0)); | |
Value *End = EmitScalarExpr(E->getArg(1)); | |
Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); | |
return RValue::get(Builder.CreateCall(F, {Begin, End})); | |
} | |
case Builtin::BI__builtin_trap: | |
return RValue::get(EmitTrapCall(Intrinsic::trap)); | |
case Builtin::BI__debugbreak: | |
return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); | |
case Builtin::BI__builtin_unreachable: { | |
EmitUnreachable(E->getExprLoc()); | |
// We do need to preserve an insertion point. | |
EmitBlock(createBasicBlock("unreachable.cont")); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__builtin_powi: | |
case Builtin::BI__builtin_powif: | |
case Builtin::BI__builtin_powil: { | |
Value *Base = EmitScalarExpr(E->getArg(0)); | |
Value *Exponent = EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ArgType = Base->getType(); | |
Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); | |
return RValue::get(Builder.CreateCall(F, {Base, Exponent})); | |
} | |
case Builtin::BI__builtin_isgreater: | |
case Builtin::BI__builtin_isgreaterequal: | |
case Builtin::BI__builtin_isless: | |
case Builtin::BI__builtin_islessequal: | |
case Builtin::BI__builtin_islessgreater: | |
case Builtin::BI__builtin_isunordered: { | |
// Ordered comparisons: we know the arguments to these are matching scalar | |
// floating point values. | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unknown ordered comparison"); | |
case Builtin::BI__builtin_isgreater: | |
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); | |
break; | |
case Builtin::BI__builtin_isgreaterequal: | |
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); | |
break; | |
case Builtin::BI__builtin_isless: | |
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); | |
break; | |
case Builtin::BI__builtin_islessequal: | |
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); | |
break; | |
case Builtin::BI__builtin_islessgreater: | |
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); | |
break; | |
case Builtin::BI__builtin_isunordered: | |
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); | |
break; | |
} | |
// ZExt bool to int type. | |
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); | |
} | |
case Builtin::BI__builtin_isnan: { | |
Value *V = EmitScalarExpr(E->getArg(0)); | |
V = Builder.CreateFCmpUNO(V, V, "cmp"); | |
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); | |
} | |
case Builtin::BIfinite: | |
case Builtin::BI__finite: | |
case Builtin::BIfinitef: | |
case Builtin::BI__finitef: | |
case Builtin::BIfinitel: | |
case Builtin::BI__finitel: | |
case Builtin::BI__builtin_isinf: | |
case Builtin::BI__builtin_isfinite: { | |
// isinf(x) --> fabs(x) == infinity | |
// isfinite(x) --> fabs(x) != infinity | |
// x != NaN via the ordered compare in either case. | |
Value *V = EmitScalarExpr(E->getArg(0)); | |
Value *Fabs = EmitFAbs(*this, V); | |
Constant *Infinity = ConstantFP::getInfinity(V->getType()); | |
CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) | |
? CmpInst::FCMP_OEQ | |
: CmpInst::FCMP_ONE; | |
Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); | |
return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); | |
} | |
case Builtin::BI__builtin_isinf_sign: { | |
// isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 | |
Value *Arg = EmitScalarExpr(E->getArg(0)); | |
Value *AbsArg = EmitFAbs(*this, Arg); | |
Value *IsInf = Builder.CreateFCmpOEQ( | |
AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); | |
Value *IsNeg = EmitSignBit(*this, Arg); | |
llvm::Type *IntTy = ConvertType(E->getType()); | |
Value *Zero = Constant::getNullValue(IntTy); | |
Value *One = ConstantInt::get(IntTy, 1); | |
Value *NegativeOne = ConstantInt::get(IntTy, -1); | |
Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); | |
Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_isnormal: { | |
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min | |
Value *V = EmitScalarExpr(E->getArg(0)); | |
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); | |
Value *Abs = EmitFAbs(*this, V); | |
Value *IsLessThanInf = | |
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); | |
APFloat Smallest = APFloat::getSmallestNormalized( | |
getContext().getFloatTypeSemantics(E->getArg(0)->getType())); | |
Value *IsNormal = | |
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), | |
"isnormal"); | |
V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); | |
V = Builder.CreateAnd(V, IsNormal, "and"); | |
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); | |
} | |
case Builtin::BI__builtin_flt_rounds: { | |
Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Result = Builder.CreateCall(F); | |
if (Result->getType() != ResultType) | |
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, | |
"cast"); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_fpclassify: { | |
Value *V = EmitScalarExpr(E->getArg(5)); | |
llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); | |
// Create Result | |
BasicBlock *Begin = Builder.GetInsertBlock(); | |
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); | |
Builder.SetInsertPoint(End); | |
PHINode *Result = | |
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, | |
"fpclassify_result"); | |
// if (V==0) return FP_ZERO | |
Builder.SetInsertPoint(Begin); | |
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), | |
"iszero"); | |
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); | |
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); | |
Builder.CreateCondBr(IsZero, End, NotZero); | |
Result->addIncoming(ZeroLiteral, Begin); | |
// if (V != V) return FP_NAN | |
Builder.SetInsertPoint(NotZero); | |
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); | |
Value *NanLiteral = EmitScalarExpr(E->getArg(0)); | |
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); | |
Builder.CreateCondBr(IsNan, End, NotNan); | |
Result->addIncoming(NanLiteral, NotZero); | |
// if (fabs(V) == infinity) return FP_INFINITY | |
Builder.SetInsertPoint(NotNan); | |
Value *VAbs = EmitFAbs(*this, V); | |
Value *IsInf = | |
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), | |
"isinf"); | |
Value *InfLiteral = EmitScalarExpr(E->getArg(1)); | |
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); | |
Builder.CreateCondBr(IsInf, End, NotInf); | |
Result->addIncoming(InfLiteral, NotNan); | |
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL | |
Builder.SetInsertPoint(NotInf); | |
APFloat Smallest = APFloat::getSmallestNormalized( | |
getContext().getFloatTypeSemantics(E->getArg(5)->getType())); | |
Value *IsNormal = | |
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), | |
"isnormal"); | |
Value *NormalResult = | |
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), | |
EmitScalarExpr(E->getArg(3))); | |
Builder.CreateBr(End); | |
Result->addIncoming(NormalResult, NotInf); | |
// return Result | |
Builder.SetInsertPoint(End); | |
return RValue::get(Result); | |
} | |
case Builtin::BIalloca: | |
case Builtin::BI_alloca: | |
case Builtin::BI__builtin_alloca: { | |
Value *Size = EmitScalarExpr(E->getArg(0)); | |
const TargetInfo &TI = getContext().getTargetInfo(); | |
// The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. | |
unsigned SuitableAlignmentInBytes = | |
CGM.getContext() | |
.toCharUnitsFromBits(TI.getSuitableAlign()) | |
.getQuantity(); | |
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); | |
AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes)); | |
initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); | |
return RValue::get(AI); | |
} | |
case Builtin::BI__builtin_alloca_with_align: { | |
Value *Size = EmitScalarExpr(E->getArg(0)); | |
Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); | |
auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); | |
unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); | |
unsigned AlignmentInBytes = | |
CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity(); | |
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); | |
AI->setAlignment(MaybeAlign(AlignmentInBytes)); | |
initializeAlloca(*this, AI, Size, AlignmentInBytes); | |
return RValue::get(AI); | |
} | |
case Builtin::BIbzero: | |
case Builtin::BI__builtin_bzero: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Value *SizeVal = EmitScalarExpr(E->getArg(1)); | |
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), | |
E->getArg(0)->getExprLoc(), FD, 0); | |
Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BImemcpy: | |
case Builtin::BI__builtin_memcpy: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Address Src = EmitPointerWithAlignment(E->getArg(1)); | |
Value *SizeVal = EmitScalarExpr(E->getArg(2)); | |
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), | |
E->getArg(0)->getExprLoc(), FD, 0); | |
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), | |
E->getArg(1)->getExprLoc(), FD, 1); | |
Builder.CreateMemCpy(Dest, Src, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BI__builtin_char_memchr: | |
BuiltinID = Builtin::BI__builtin_memchr; | |
break; | |
case Builtin::BI__builtin___memcpy_chk: { | |
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. | |
Expr::EvalResult SizeResult, DstSizeResult; | |
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || | |
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) | |
break; | |
llvm::APSInt Size = SizeResult.Val.getInt(); | |
llvm::APSInt DstSize = DstSizeResult.Val.getInt(); | |
if (Size.ugt(DstSize)) | |
break; | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Address Src = EmitPointerWithAlignment(E->getArg(1)); | |
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); | |
Builder.CreateMemCpy(Dest, Src, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BI__builtin_objc_memmove_collectable: { | |
Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); | |
Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); | |
Value *SizeVal = EmitScalarExpr(E->getArg(2)); | |
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, | |
DestAddr, SrcAddr, SizeVal); | |
return RValue::get(DestAddr.getPointer()); | |
} | |
case Builtin::BI__builtin___memmove_chk: { | |
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. | |
Expr::EvalResult SizeResult, DstSizeResult; | |
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || | |
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) | |
break; | |
llvm::APSInt Size = SizeResult.Val.getInt(); | |
llvm::APSInt DstSize = DstSizeResult.Val.getInt(); | |
if (Size.ugt(DstSize)) | |
break; | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Address Src = EmitPointerWithAlignment(E->getArg(1)); | |
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); | |
Builder.CreateMemMove(Dest, Src, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BImemmove: | |
case Builtin::BI__builtin_memmove: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Address Src = EmitPointerWithAlignment(E->getArg(1)); | |
Value *SizeVal = EmitScalarExpr(E->getArg(2)); | |
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), | |
E->getArg(0)->getExprLoc(), FD, 0); | |
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), | |
E->getArg(1)->getExprLoc(), FD, 1); | |
Builder.CreateMemMove(Dest, Src, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BImemset: | |
case Builtin::BI__builtin_memset: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), | |
Builder.getInt8Ty()); | |
Value *SizeVal = EmitScalarExpr(E->getArg(2)); | |
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), | |
E->getArg(0)->getExprLoc(), FD, 0); | |
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BI__builtin___memset_chk: { | |
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. | |
Expr::EvalResult SizeResult, DstSizeResult; | |
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || | |
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) | |
break; | |
llvm::APSInt Size = SizeResult.Val.getInt(); | |
llvm::APSInt DstSize = DstSizeResult.Val.getInt(); | |
if (Size.ugt(DstSize)) | |
break; | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), | |
Builder.getInt8Ty()); | |
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); | |
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); | |
return RValue::get(Dest.getPointer()); | |
} | |
case Builtin::BI__builtin_wmemcmp: { | |
// The MSVC runtime library does not provide a definition of wmemcmp, so we | |
// need an inline implementation. | |
if (!getTarget().getTriple().isOSMSVCRT()) | |
break; | |
llvm::Type *WCharTy = ConvertType(getContext().WCharTy); | |
Value *Dst = EmitScalarExpr(E->getArg(0)); | |
Value *Src = EmitScalarExpr(E->getArg(1)); | |
Value *Size = EmitScalarExpr(E->getArg(2)); | |
BasicBlock *Entry = Builder.GetInsertBlock(); | |
BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); | |
BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); | |
BasicBlock *Next = createBasicBlock("wmemcmp.next"); | |
BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); | |
Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); | |
Builder.CreateCondBr(SizeEq0, Exit, CmpGT); | |
EmitBlock(CmpGT); | |
PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); | |
DstPhi->addIncoming(Dst, Entry); | |
PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); | |
SrcPhi->addIncoming(Src, Entry); | |
PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); | |
SizePhi->addIncoming(Size, Entry); | |
CharUnits WCharAlign = | |
getContext().getTypeAlignInChars(getContext().WCharTy); | |
Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); | |
Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); | |
Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); | |
Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); | |
EmitBlock(CmpLT); | |
Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); | |
Builder.CreateCondBr(DstLtSrc, Exit, Next); | |
EmitBlock(Next); | |
Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); | |
Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); | |
Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); | |
Value *NextSizeEq0 = | |
Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); | |
Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); | |
DstPhi->addIncoming(NextDst, Next); | |
SrcPhi->addIncoming(NextSrc, Next); | |
SizePhi->addIncoming(NextSize, Next); | |
EmitBlock(Exit); | |
PHINode *Ret = Builder.CreatePHI(IntTy, 4); | |
Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); | |
Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); | |
Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); | |
Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); | |
return RValue::get(Ret); | |
} | |
case Builtin::BI__builtin_dwarf_cfa: { | |
// The offset in bytes from the first argument to the CFA. | |
// | |
// Why on earth is this in the frontend? Is there any reason at | |
// all that the backend can't reasonably determine this while | |
// lowering llvm.eh.dwarf.cfa()? | |
// | |
// TODO: If there's a satisfactory reason, add a target hook for | |
// this instead of hard-coding 0, which is correct for most targets. | |
int32_t Offset = 0; | |
Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); | |
return RValue::get(Builder.CreateCall(F, | |
llvm::ConstantInt::get(Int32Ty, Offset))); | |
} | |
case Builtin::BI__builtin_return_address: { | |
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), | |
getContext().UnsignedIntTy); | |
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); | |
return RValue::get(Builder.CreateCall(F, Depth)); | |
} | |
case Builtin::BI_ReturnAddress: { | |
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); | |
return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); | |
} | |
case Builtin::BI__builtin_frame_address: { | |
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), | |
getContext().UnsignedIntTy); | |
Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); | |
return RValue::get(Builder.CreateCall(F, Depth)); | |
} | |
case Builtin::BI__builtin_extract_return_addr: { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_frob_return_addr: { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); | |
return RValue::get(Result); | |
} | |
case Builtin::BI__builtin_dwarf_sp_column: { | |
llvm::IntegerType *Ty | |
= cast<llvm::IntegerType>(ConvertType(E->getType())); | |
int Column = getTargetHooks().getDwarfEHStackPointer(CGM); | |
if (Column == -1) { | |
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); | |
return RValue::get(llvm::UndefValue::get(Ty)); | |
} | |
return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); | |
} | |
case Builtin::BI__builtin_init_dwarf_reg_size_table: { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) | |
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); | |
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); | |
} | |
case Builtin::BI__builtin_eh_return: { | |
Value *Int = EmitScalarExpr(E->getArg(0)); | |
Value *Ptr = EmitScalarExpr(E->getArg(1)); | |
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); | |
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && | |
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); | |
Function *F = | |
CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 | |
: Intrinsic::eh_return_i64); | |
Builder.CreateCall(F, {Int, Ptr}); | |
Builder.CreateUnreachable(); | |
// We do need to preserve an insertion point. | |
EmitBlock(createBasicBlock("builtin_eh_return.cont")); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__builtin_unwind_init: { | |
Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); | |
return RValue::get(Builder.CreateCall(F)); | |
} | |
case Builtin::BI__builtin_extend_pointer: { | |
// Extends a pointer to the size of an _Unwind_Word, which is | |
// uint64_t on all platforms. Generally this gets poked into a | |
// register and eventually used as an address, so if the | |
// addressing registers are wider than pointers and the platform | |
// doesn't implicitly ignore high-order bits when doing | |
// addressing, we need to make sure we zext / sext based on | |
// the platform's expectations. | |
// | |
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html | |
// Cast the pointer to intptr_t. | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); | |
// If that's 64 bits, we're done. | |
if (IntPtrTy->getBitWidth() == 64) | |
return RValue::get(Result); | |
// Otherwise, ask the codegen data what to do. | |
if (getTargetHooks().extendPointerWithSExt()) | |
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); | |
else | |
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); | |
} | |
case Builtin::BI__builtin_setjmp: { | |
// Buffer is a void**. | |
Address Buf = EmitPointerWithAlignment(E->getArg(0)); | |
// Store the frame pointer to the setjmp buffer. | |
Value *FrameAddr = Builder.CreateCall( | |
CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), | |
ConstantInt::get(Int32Ty, 0)); | |
Builder.CreateStore(FrameAddr, Buf); | |
// Store the stack pointer to the setjmp buffer. | |
Value *StackAddr = | |
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); | |
Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); | |
Builder.CreateStore(StackAddr, StackSaveSlot); | |
// Call LLVM's EH setjmp, which is lightweight. | |
Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); | |
Buf = Builder.CreateBitCast(Buf, Int8PtrTy); | |
return RValue::get(Builder.CreateCall(F, Buf.getPointer())); | |
} | |
case Builtin::BI__builtin_longjmp: { | |
Value *Buf = EmitScalarExpr(E->getArg(0)); | |
Buf = Builder.CreateBitCast(Buf, Int8PtrTy); | |
// Call LLVM's EH longjmp, which is lightweight. | |
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); | |
// longjmp doesn't return; mark this as unreachable. | |
Builder.CreateUnreachable(); | |
// We do need to preserve an insertion point. | |
EmitBlock(createBasicBlock("longjmp.cont")); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__builtin_launder: { | |
const Expr *Arg = E->getArg(0); | |
QualType ArgTy = Arg->getType()->getPointeeType(); | |
Value *Ptr = EmitScalarExpr(Arg); | |
if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) | |
Ptr = Builder.CreateLaunderInvariantGroup(Ptr); | |
return RValue::get(Ptr); | |
} | |
case Builtin::BI__sync_fetch_and_add: | |
case Builtin::BI__sync_fetch_and_sub: | |
case Builtin::BI__sync_fetch_and_or: | |
case Builtin::BI__sync_fetch_and_and: | |
case Builtin::BI__sync_fetch_and_xor: | |
case Builtin::BI__sync_fetch_and_nand: | |
case Builtin::BI__sync_add_and_fetch: | |
case Builtin::BI__sync_sub_and_fetch: | |
case Builtin::BI__sync_and_and_fetch: | |
case Builtin::BI__sync_or_and_fetch: | |
case Builtin::BI__sync_xor_and_fetch: | |
case Builtin::BI__sync_nand_and_fetch: | |
case Builtin::BI__sync_val_compare_and_swap: | |
case Builtin::BI__sync_bool_compare_and_swap: | |
case Builtin::BI__sync_lock_test_and_set: | |
case Builtin::BI__sync_lock_release: | |
case Builtin::BI__sync_swap: | |
llvm_unreachable("Shouldn't make it through sema"); | |
case Builtin::BI__sync_fetch_and_add_1: | |
case Builtin::BI__sync_fetch_and_add_2: | |
case Builtin::BI__sync_fetch_and_add_4: | |
case Builtin::BI__sync_fetch_and_add_8: | |
case Builtin::BI__sync_fetch_and_add_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); | |
case Builtin::BI__sync_fetch_and_sub_1: | |
case Builtin::BI__sync_fetch_and_sub_2: | |
case Builtin::BI__sync_fetch_and_sub_4: | |
case Builtin::BI__sync_fetch_and_sub_8: | |
case Builtin::BI__sync_fetch_and_sub_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); | |
case Builtin::BI__sync_fetch_and_or_1: | |
case Builtin::BI__sync_fetch_and_or_2: | |
case Builtin::BI__sync_fetch_and_or_4: | |
case Builtin::BI__sync_fetch_and_or_8: | |
case Builtin::BI__sync_fetch_and_or_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); | |
case Builtin::BI__sync_fetch_and_and_1: | |
case Builtin::BI__sync_fetch_and_and_2: | |
case Builtin::BI__sync_fetch_and_and_4: | |
case Builtin::BI__sync_fetch_and_and_8: | |
case Builtin::BI__sync_fetch_and_and_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); | |
case Builtin::BI__sync_fetch_and_xor_1: | |
case Builtin::BI__sync_fetch_and_xor_2: | |
case Builtin::BI__sync_fetch_and_xor_4: | |
case Builtin::BI__sync_fetch_and_xor_8: | |
case Builtin::BI__sync_fetch_and_xor_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); | |
case Builtin::BI__sync_fetch_and_nand_1: | |
case Builtin::BI__sync_fetch_and_nand_2: | |
case Builtin::BI__sync_fetch_and_nand_4: | |
case Builtin::BI__sync_fetch_and_nand_8: | |
case Builtin::BI__sync_fetch_and_nand_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); | |
// Clang extensions: not overloaded yet. | |
case Builtin::BI__sync_fetch_and_min: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); | |
case Builtin::BI__sync_fetch_and_max: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); | |
case Builtin::BI__sync_fetch_and_umin: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); | |
case Builtin::BI__sync_fetch_and_umax: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); | |
case Builtin::BI__sync_add_and_fetch_1: | |
case Builtin::BI__sync_add_and_fetch_2: | |
case Builtin::BI__sync_add_and_fetch_4: | |
case Builtin::BI__sync_add_and_fetch_8: | |
case Builtin::BI__sync_add_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, | |
llvm::Instruction::Add); | |
case Builtin::BI__sync_sub_and_fetch_1: | |
case Builtin::BI__sync_sub_and_fetch_2: | |
case Builtin::BI__sync_sub_and_fetch_4: | |
case Builtin::BI__sync_sub_and_fetch_8: | |
case Builtin::BI__sync_sub_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, | |
llvm::Instruction::Sub); | |
case Builtin::BI__sync_and_and_fetch_1: | |
case Builtin::BI__sync_and_and_fetch_2: | |
case Builtin::BI__sync_and_and_fetch_4: | |
case Builtin::BI__sync_and_and_fetch_8: | |
case Builtin::BI__sync_and_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, | |
llvm::Instruction::And); | |
case Builtin::BI__sync_or_and_fetch_1: | |
case Builtin::BI__sync_or_and_fetch_2: | |
case Builtin::BI__sync_or_and_fetch_4: | |
case Builtin::BI__sync_or_and_fetch_8: | |
case Builtin::BI__sync_or_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, | |
llvm::Instruction::Or); | |
case Builtin::BI__sync_xor_and_fetch_1: | |
case Builtin::BI__sync_xor_and_fetch_2: | |
case Builtin::BI__sync_xor_and_fetch_4: | |
case Builtin::BI__sync_xor_and_fetch_8: | |
case Builtin::BI__sync_xor_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, | |
llvm::Instruction::Xor); | |
case Builtin::BI__sync_nand_and_fetch_1: | |
case Builtin::BI__sync_nand_and_fetch_2: | |
case Builtin::BI__sync_nand_and_fetch_4: | |
case Builtin::BI__sync_nand_and_fetch_8: | |
case Builtin::BI__sync_nand_and_fetch_16: | |
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, | |
llvm::Instruction::And, true); | |
case Builtin::BI__sync_val_compare_and_swap_1: | |
case Builtin::BI__sync_val_compare_and_swap_2: | |
case Builtin::BI__sync_val_compare_and_swap_4: | |
case Builtin::BI__sync_val_compare_and_swap_8: | |
case Builtin::BI__sync_val_compare_and_swap_16: | |
return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); | |
case Builtin::BI__sync_bool_compare_and_swap_1: | |
case Builtin::BI__sync_bool_compare_and_swap_2: | |
case Builtin::BI__sync_bool_compare_and_swap_4: | |
case Builtin::BI__sync_bool_compare_and_swap_8: | |
case Builtin::BI__sync_bool_compare_and_swap_16: | |
return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); | |
case Builtin::BI__sync_swap_1: | |
case Builtin::BI__sync_swap_2: | |
case Builtin::BI__sync_swap_4: | |
case Builtin::BI__sync_swap_8: | |
case Builtin::BI__sync_swap_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); | |
case Builtin::BI__sync_lock_test_and_set_1: | |
case Builtin::BI__sync_lock_test_and_set_2: | |
case Builtin::BI__sync_lock_test_and_set_4: | |
case Builtin::BI__sync_lock_test_and_set_8: | |
case Builtin::BI__sync_lock_test_and_set_16: | |
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); | |
case Builtin::BI__sync_lock_release_1: | |
case Builtin::BI__sync_lock_release_2: | |
case Builtin::BI__sync_lock_release_4: | |
case Builtin::BI__sync_lock_release_8: | |
case Builtin::BI__sync_lock_release_16: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
QualType ElTy = E->getArg(0)->getType()->getPointeeType(); | |
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); | |
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), | |
StoreSize.getQuantity() * 8); | |
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); | |
llvm::StoreInst *Store = | |
Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, | |
StoreSize); | |
Store->setAtomic(llvm::AtomicOrdering::Release); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__sync_synchronize: { | |
// We assume this is supposed to correspond to a C++0x-style | |
// sequentially-consistent fence (i.e. this is only usable for | |
// synchronization, not device I/O or anything like that). This intrinsic | |
// is really badly designed in the sense that in theory, there isn't | |
// any way to safely use it... but in practice, it mostly works | |
// to use it with non-atomic loads and stores to get acquire/release | |
// semantics. | |
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__builtin_nontemporal_load: | |
return RValue::get(EmitNontemporalLoad(*this, E)); | |
case Builtin::BI__builtin_nontemporal_store: | |
return RValue::get(EmitNontemporalStore(*this, E)); | |
case Builtin::BI__c11_atomic_is_lock_free: | |
case Builtin::BI__atomic_is_lock_free: { | |
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the | |
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since | |
// _Atomic(T) is always properly-aligned. | |
const char *LibCallName = "__atomic_is_lock_free"; | |
CallArgList Args; | |
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), | |
getContext().getSizeType()); | |
if (BuiltinID == Builtin::BI__atomic_is_lock_free) | |
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), | |
getContext().VoidPtrTy); | |
else | |
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), | |
getContext().VoidPtrTy); | |
const CGFunctionInfo &FuncInfo = | |
CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); | |
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); | |
llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); | |
return EmitCall(FuncInfo, CGCallee::forDirect(Func), | |
ReturnValueSlot(), Args); | |
} | |
case Builtin::BI__atomic_test_and_set: { | |
// Look at the argument type to determine whether this is a volatile | |
// operation. The parameter type is always volatile. | |
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); | |
bool Volatile = | |
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); | |
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); | |
Value *NewVal = Builder.getInt8(1); | |
Value *Order = EmitScalarExpr(E->getArg(1)); | |
if (isa<llvm::ConstantInt>(Order)) { | |
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); | |
AtomicRMWInst *Result = nullptr; | |
switch (ord) { | |
case 0: // memory_order_relaxed | |
default: // invalid order | |
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, | |
llvm::AtomicOrdering::Monotonic); | |
break; | |
case 1: // memory_order_consume | |
case 2: // memory_order_acquire | |
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, | |
llvm::AtomicOrdering::Acquire); | |
break; | |
case 3: // memory_order_release | |
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, | |
llvm::AtomicOrdering::Release); | |
break; | |
case 4: // memory_order_acq_rel | |
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, | |
llvm::AtomicOrdering::AcquireRelease); | |
break; | |
case 5: // memory_order_seq_cst | |
Result = Builder.CreateAtomicRMW( | |
llvm::AtomicRMWInst::Xchg, Ptr, NewVal, | |
llvm::AtomicOrdering::SequentiallyConsistent); | |
break; | |
} | |
Result->setVolatile(Volatile); | |
return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); | |
} | |
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); | |
llvm::BasicBlock *BBs[5] = { | |
createBasicBlock("monotonic", CurFn), | |
createBasicBlock("acquire", CurFn), | |
createBasicBlock("release", CurFn), | |
createBasicBlock("acqrel", CurFn), | |
createBasicBlock("seqcst", CurFn) | |
}; | |
llvm::AtomicOrdering Orders[5] = { | |
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, | |
llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, | |
llvm::AtomicOrdering::SequentiallyConsistent}; | |
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); | |
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); | |
Builder.SetInsertPoint(ContBB); | |
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); | |
for (unsigned i = 0; i < 5; ++i) { | |
Builder.SetInsertPoint(BBs[i]); | |
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, | |
Ptr, NewVal, Orders[i]); | |
RMW->setVolatile(Volatile); | |
Result->addIncoming(RMW, BBs[i]); | |
Builder.CreateBr(ContBB); | |
} | |
SI->addCase(Builder.getInt32(0), BBs[0]); | |
SI->addCase(Builder.getInt32(1), BBs[1]); | |
SI->addCase(Builder.getInt32(2), BBs[1]); | |
SI->addCase(Builder.getInt32(3), BBs[2]); | |
SI->addCase(Builder.getInt32(4), BBs[3]); | |
SI->addCase(Builder.getInt32(5), BBs[4]); | |
Builder.SetInsertPoint(ContBB); | |
return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); | |
} | |
case Builtin::BI__atomic_clear: { | |
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); | |
bool Volatile = | |
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); | |
Address Ptr = EmitPointerWithAlignment(E->getArg(0)); | |
unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); | |
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); | |
Value *NewVal = Builder.getInt8(0); | |
Value *Order = EmitScalarExpr(E->getArg(1)); | |
if (isa<llvm::ConstantInt>(Order)) { | |
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); | |
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); | |
switch (ord) { | |
case 0: // memory_order_relaxed | |
default: // invalid order | |
Store->setOrdering(llvm::AtomicOrdering::Monotonic); | |
break; | |
case 3: // memory_order_release | |
Store->setOrdering(llvm::AtomicOrdering::Release); | |
break; | |
case 5: // memory_order_seq_cst | |
Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); | |
break; | |
} | |
return RValue::get(nullptr); | |
} | |
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); | |
llvm::BasicBlock *BBs[3] = { | |
createBasicBlock("monotonic", CurFn), | |
createBasicBlock("release", CurFn), | |
createBasicBlock("seqcst", CurFn) | |
}; | |
llvm::AtomicOrdering Orders[3] = { | |
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, | |
llvm::AtomicOrdering::SequentiallyConsistent}; | |
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); | |
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); | |
for (unsigned i = 0; i < 3; ++i) { | |
Builder.SetInsertPoint(BBs[i]); | |
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); | |
Store->setOrdering(Orders[i]); | |
Builder.CreateBr(ContBB); | |
} | |
SI->addCase(Builder.getInt32(0), BBs[0]); | |
SI->addCase(Builder.getInt32(3), BBs[1]); | |
SI->addCase(Builder.getInt32(5), BBs[2]); | |
Builder.SetInsertPoint(ContBB); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__atomic_thread_fence: | |
case Builtin::BI__atomic_signal_fence: | |
case Builtin::BI__c11_atomic_thread_fence: | |
case Builtin::BI__c11_atomic_signal_fence: { | |
llvm::SyncScope::ID SSID; | |
if (BuiltinID == Builtin::BI__atomic_signal_fence || | |
BuiltinID == Builtin::BI__c11_atomic_signal_fence) | |
SSID = llvm::SyncScope::SingleThread; | |
else | |
SSID = llvm::SyncScope::System; | |
Value *Order = EmitScalarExpr(E->getArg(0)); | |
if (isa<llvm::ConstantInt>(Order)) { | |
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); | |
switch (ord) { | |
case 0: // memory_order_relaxed | |
default: // invalid order | |
break; | |
case 1: // memory_order_consume | |
case 2: // memory_order_acquire | |
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); | |
break; | |
case 3: // memory_order_release | |
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); | |
break; | |
case 4: // memory_order_acq_rel | |
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); | |
break; | |
case 5: // memory_order_seq_cst | |
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); | |
break; | |
} | |
return RValue::get(nullptr); | |
} | |
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; | |
AcquireBB = createBasicBlock("acquire", CurFn); | |
ReleaseBB = createBasicBlock("release", CurFn); | |
AcqRelBB = createBasicBlock("acqrel", CurFn); | |
SeqCstBB = createBasicBlock("seqcst", CurFn); | |
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); | |
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); | |
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); | |
Builder.SetInsertPoint(AcquireBB); | |
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); | |
Builder.CreateBr(ContBB); | |
SI->addCase(Builder.getInt32(1), AcquireBB); | |
SI->addCase(Builder.getInt32(2), AcquireBB); | |
Builder.SetInsertPoint(ReleaseBB); | |
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); | |
Builder.CreateBr(ContBB); | |
SI->addCase(Builder.getInt32(3), ReleaseBB); | |
Builder.SetInsertPoint(AcqRelBB); | |
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); | |
Builder.CreateBr(ContBB); | |
SI->addCase(Builder.getInt32(4), AcqRelBB); | |
Builder.SetInsertPoint(SeqCstBB); | |
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); | |
Builder.CreateBr(ContBB); | |
SI->addCase(Builder.getInt32(5), SeqCstBB); | |
Builder.SetInsertPoint(ContBB); | |
return RValue::get(nullptr); | |
} | |
case Builtin::BI__builtin_signbit: | |
case Builtin::BI__builtin_signbitf: | |
case Builtin::BI__builtin_signbitl: { | |
return RValue::get( | |
Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), | |
ConvertType(E->getType()))); | |
} | |
case Builtin::BI__annotation: { | |
// Re-encode each wide string to UTF8 and make an MDString. | |
SmallVector<Metadata *, 1> Strings; | |
for (const Expr *Arg : E->arguments()) { | |
const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); | |
assert(Str->getCharByteWidth() == 2); | |
StringRef WideBytes = Str->getBytes(); | |
std::string StrUtf8; | |
if (!convertUTF16ToUTF8String( | |
makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { | |
CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); | |
continue; | |
} | |
Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); | |
} | |
// Build and MDTuple of MDStrings and emit the intrinsic call. | |
llvm::Function *F = | |
CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); | |
MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); | |
Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); | |
return RValue::getIgnored(); | |
} | |
case Builtin::BI__builtin_annotation: { | |
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); | |
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, | |
AnnVal->getType()); | |
// Get the annotation string, go through casts. Sema requires this to be a | |
// non-wide string literal, potentially casted, so the cast<> is safe. | |
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); | |
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); | |
return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); | |
} | |
case Builtin::BI__builtin_addcb: | |
case Builtin::BI__builtin_addcs: | |
case Builtin::BI__builtin_addc: | |
case Builtin::BI__builtin_addcl: | |
case Builtin::BI__builtin_addcll: | |
case Builtin::BI__builtin_subcb: | |
case Builtin::BI__builtin_subcs: | |
case Builtin::BI__builtin_subc: | |
case Builtin::BI__builtin_subcl: | |
case Builtin::BI__builtin_subcll: { | |
// We translate all of these builtins from expressions of the form: | |
// int x = ..., y = ..., carryin = ..., carryout, result; | |
// result = __builtin_addc(x, y, carryin, &carryout); | |
// | |
// to LLVM IR of the form: | |
// | |
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) | |
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 | |
// %carry1 = extractvalue {i32, i1} %tmp1, 1 | |
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, | |
// i32 %carryin) | |
// %result = extractvalue {i32, i1} %tmp2, 0 | |
// %carry2 = extractvalue {i32, i1} %tmp2, 1 | |
// %tmp3 = or i1 %carry1, %carry2 | |
// %tmp4 = zext i1 %tmp3 to i32 | |
// store i32 %tmp4, i32* %carryout | |
// Scalarize our inputs. | |
llvm::Value *X = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Y = EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); | |
Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); | |
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. | |
llvm::Intrinsic::ID IntrinsicId; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unknown multiprecision builtin id."); | |
case Builtin::BI__builtin_addcb: | |
case Builtin::BI__builtin_addcs: | |
case Builtin::BI__builtin_addc: | |
case Builtin::BI__builtin_addcl: | |
case Builtin::BI__builtin_addcll: | |
IntrinsicId = llvm::Intrinsic::uadd_with_overflow; | |
break; | |
case Builtin::BI__builtin_subcb: | |
case Builtin::BI__builtin_subcs: | |
case Builtin::BI__builtin_subc: | |
case Builtin::BI__builtin_subcl: | |
case Builtin::BI__builtin_subcll: | |
IntrinsicId = llvm::Intrinsic::usub_with_overflow; | |
break; | |
} | |
// Construct our resulting LLVM IR expression. | |
llvm::Value *Carry1; | |
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, | |
X, Y, Carry1); | |
llvm::Value *Carry2; | |
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, | |
Sum1, Carryin, Carry2); | |
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), | |
X->getType()); | |
Builder.CreateStore(CarryOut, CarryOutPtr); | |
return RValue::get(Sum2); | |
} | |
case Builtin::BI__builtin_add_overflow: | |
case Builtin::BI__builtin_sub_overflow: | |
case Builtin::BI__builtin_mul_overflow: { | |
const clang::Expr *LeftArg = E->getArg(0); | |
const clang::Expr *RightArg = E->getArg(1); | |
const clang::Expr *ResultArg = E->getArg(2); | |
clang::QualType ResultQTy = | |
ResultArg->getType()->castAs<PointerType>()->getPointeeType(); | |
WidthAndSignedness LeftInfo = | |
getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); | |
WidthAndSignedness RightInfo = | |
getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); | |
WidthAndSignedness ResultInfo = | |
getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); | |
// Handle mixed-sign multiplication as a special case, because adding | |
// runtime or backend support for our generic irgen would be too expensive. | |
if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) | |
return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, | |
RightInfo, ResultArg, ResultQTy, | |
ResultInfo); | |
WidthAndSignedness EncompassingInfo = | |
EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); | |
llvm::Type *EncompassingLLVMTy = | |
llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); | |
llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); | |
llvm::Intrinsic::ID IntrinsicId; | |
switch (BuiltinID) { | |
default: | |
llvm_unreachable("Unknown overflow builtin id."); | |
case Builtin::BI__builtin_add_overflow: | |
IntrinsicId = EncompassingInfo.Signed | |
? llvm::Intrinsic::sadd_with_overflow | |
: llvm::Intrinsic::uadd_with_overflow; | |
break; | |
case Builtin::BI__builtin_sub_overflow: | |
IntrinsicId = EncompassingInfo.Signed | |
? llvm::Intrinsic::ssub_with_overflow | |
: llvm::Intrinsic::usub_with_overflow; | |
break; | |
case Builtin::BI__builtin_mul_overflow: | |
IntrinsicId = EncompassingInfo.Signed | |
? llvm::Intrinsic::smul_with_overflow | |
: llvm::Intrinsic::umul_with_overflow; | |
break; | |
} | |
llvm::Value *Left = EmitScalarExpr(LeftArg); | |
llvm::Value *Right = EmitScalarExpr(RightArg); | |
Address ResultPtr = EmitPointerWithAlignment(ResultArg); | |
// Extend each operand to the encompassing type. | |
Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); | |
Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); | |
// Perform the operation on the extended values. | |
llvm::Value *Overflow, *Result; | |
Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); | |
if (EncompassingInfo.Width > ResultInfo.Width) { | |
// The encompassing type is wider than the result type, so we need to | |
// truncate it. | |
llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); | |
// To see if the truncation caused an overflow, we will extend | |
// the result and then compare it to the original result. | |
llvm::Value *ResultTruncExt = Builder.CreateIntCast( | |
ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); | |
llvm::Value *TruncationOverflow = | |
Builder.CreateICmpNE(Result, ResultTruncExt); | |
Overflow = Builder.CreateOr(Overflow, TruncationOverflow); | |
Result = ResultTrunc; | |
} | |
// Finally, store the result using the pointer. | |
bool isVolatile = | |
ResultArg->getType()->getPointeeType().isVolatileQualified(); | |
Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); | |
return RValue::get(Overflow); | |
} | |
case Builtin::BI__builtin_uadd_overflow: | |
case Builtin::BI__builtin_uaddl_overflow: | |
case Builtin::BI__builtin_uaddll_overflow: | |
case Builtin::BI__builtin_usub_overflow: | |
case Builtin::BI__builtin_usubl_overflow: | |
case Builtin::BI__builtin_usubll_overflow: | |
case Builtin::BI__builtin_umul_overflow: | |
case Builtin::BI__builtin_umull_overflow: | |
case Builtin::BI__builtin_umulll_overflow: | |
case Builtin::BI__builtin_sadd_overflow: | |
case Builtin::BI__builtin_saddl_overflow: | |
case Builtin::BI__builtin_saddll_overflow: | |
case Builtin::BI__builtin_ssub_overflow: | |
case Builtin::BI__builtin_ssubl_overflow: | |
case Builtin::BI__builtin_ssubll_overflow: | |
case Builtin::BI__builtin_smul_overflow: | |
case Builtin::BI__builtin_smull_overflow: | |
case Builtin::BI__builtin_smulll_overflow: { | |
// We translate all of these builtins directly to the relevant llvm IR node. | |
// Scalarize our inputs. | |
llvm::Value *X = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Y = EmitScalarExpr(E->getArg(1)); | |
Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); | |
// Decide which of the overflow intrinsics we are lowering to: | |
llvm::Intrinsic::ID IntrinsicId; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unknown overflow builtin id."); | |
case Builtin::BI__builtin_uadd_overflow: | |
case Builtin::BI__builtin_uaddl_overflow: | |
case Builtin::BI__builtin_uaddll_overflow: | |
IntrinsicId = llvm::Intrinsic::uadd_with_overflow; | |
break; | |
case Builtin::BI__builtin_usub_overflow: | |
case Builtin::BI__builtin_usubl_overflow: | |
case Builtin::BI__builtin_usubll_overflow: | |
IntrinsicId = llvm::Intrinsic::usub_with_overflow; | |
break; | |
case Builtin::BI__builtin_umul_overflow: | |
case Builtin::BI__builtin_umull_overflow: | |
case Builtin::BI__builtin_umulll_overflow: | |
IntrinsicId = llvm::Intrinsic::umul_with_overflow; | |
break; | |
case Builtin::BI__builtin_sadd_overflow: | |
case Builtin::BI__builtin_saddl_overflow: | |
case Builtin::BI__builtin_saddll_overflow: | |
IntrinsicId = llvm::Intrinsic::sadd_with_overflow; | |
break; | |
case Builtin::BI__builtin_ssub_overflow: | |
case Builtin::BI__builtin_ssubl_overflow: | |
case Builtin::BI__builtin_ssubll_overflow: | |
IntrinsicId = llvm::Intrinsic::ssub_with_overflow; | |
break; | |
case Builtin::BI__builtin_smul_overflow: | |
case Builtin::BI__builtin_smull_overflow: | |
case Builtin::BI__builtin_smulll_overflow: | |
IntrinsicId = llvm::Intrinsic::smul_with_overflow; | |
break; | |
} | |
llvm::Value *Carry; | |
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); | |
Builder.CreateStore(Sum, SumOutPtr); | |
return RValue::get(Carry); | |
} | |
case Builtin::BI__builtin_addressof: | |
return RValue::get(EmitLValue(E->getArg(0)).getPointer()); | |
case Builtin::BI__builtin_operator_new: | |
return EmitBuiltinNewDeleteCall( | |
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); | |
case Builtin::BI__builtin_operator_delete: | |
return EmitBuiltinNewDeleteCall( | |
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); | |
case Builtin::BI__noop: | |
// __noop always evaluates to an integer literal zero. | |
return RValue::get(ConstantInt::get(IntTy, 0)); | |
case Builtin::BI__builtin_call_with_static_chain: { | |
const CallExpr *Call = cast<CallExpr>(E->getArg(0)); | |
const Expr *Chain = E->getArg(1); | |
return EmitCall(Call->getCallee()->getType(), | |
EmitCallee(Call->getCallee()), Call, ReturnValue, | |
EmitScalarExpr(Chain)); | |
} | |
case Builtin::BI_InterlockedExchange8: | |
case Builtin::BI_InterlockedExchange16: | |
case Builtin::BI_InterlockedExchange: | |
case Builtin::BI_InterlockedExchangePointer: | |
return RValue::get( | |
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); | |
case Builtin::BI_InterlockedCompareExchangePointer: | |
case Builtin::BI_InterlockedCompareExchangePointer_nf: { | |
llvm::Type *RTy; | |
llvm::IntegerType *IntType = | |
IntegerType::get(getLLVMContext(), | |
getContext().getTypeSize(E->getType())); | |
llvm::Type *IntPtrType = IntType->getPointerTo(); | |
llvm::Value *Destination = | |
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); | |
llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); | |
RTy = Exchange->getType(); | |
Exchange = Builder.CreatePtrToInt(Exchange, IntType); | |
llvm::Value *Comparand = | |
Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); | |
auto Ordering = | |
BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? | |
AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; | |
auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, | |
Ordering, Ordering); | |
Result->setVolatile(true); | |
return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, | |
0), | |
RTy)); | |
} | |
case Builtin::BI_InterlockedCompareExchange8: | |
case Builtin::BI_InterlockedCompareExchange16: | |
case Builtin::BI_InterlockedCompareExchange: | |
case Builtin::BI_InterlockedCompareExchange64: | |
return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); | |
case Builtin::BI_InterlockedIncrement16: | |
case Builtin::BI_InterlockedIncrement: | |
return RValue::get( | |
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); | |
case Builtin::BI_InterlockedDecrement16: | |
case Builtin::BI_InterlockedDecrement: | |
return RValue::get( | |
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); | |
case Builtin::BI_InterlockedAnd8: | |
case Builtin::BI_InterlockedAnd16: | |
case Builtin::BI_InterlockedAnd: | |
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); | |
case Builtin::BI_InterlockedExchangeAdd8: | |
case Builtin::BI_InterlockedExchangeAdd16: | |
case Builtin::BI_InterlockedExchangeAdd: | |
return RValue::get( | |
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); | |
case Builtin::BI_InterlockedExchangeSub8: | |
case Builtin::BI_InterlockedExchangeSub16: | |
case Builtin::BI_InterlockedExchangeSub: | |
return RValue::get( | |
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); | |
case Builtin::BI_InterlockedOr8: | |
case Builtin::BI_InterlockedOr16: | |
case Builtin::BI_InterlockedOr: | |
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); | |
case Builtin::BI_InterlockedXor8: | |
case Builtin::BI_InterlockedXor16: | |
case Builtin::BI_InterlockedXor: | |
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); | |
case Builtin::BI_bittest64: | |
case Builtin::BI_bittest: | |
case Builtin::BI_bittestandcomplement64: | |
case Builtin::BI_bittestandcomplement: | |
case Builtin::BI_bittestandreset64: | |
case Builtin::BI_bittestandreset: | |
case Builtin::BI_bittestandset64: | |
case Builtin::BI_bittestandset: | |
case Builtin::BI_interlockedbittestandreset: | |
case Builtin::BI_interlockedbittestandreset64: | |
case Builtin::BI_interlockedbittestandset64: | |
case Builtin::BI_interlockedbittestandset: | |
case Builtin::BI_interlockedbittestandset_acq: | |
case Builtin::BI_interlockedbittestandset_rel: | |
case Builtin::BI_interlockedbittestandset_nf: | |
case Builtin::BI_interlockedbittestandreset_acq: | |
case Builtin::BI_interlockedbittestandreset_rel: | |
case Builtin::BI_interlockedbittestandreset_nf: | |
return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); | |
// These builtins exist to emit regular volatile loads and stores not | |
// affected by the -fms-volatile setting. | |
case Builtin::BI__iso_volatile_load8: | |
case Builtin::BI__iso_volatile_load16: | |
case Builtin::BI__iso_volatile_load32: | |
case Builtin::BI__iso_volatile_load64: | |
return RValue::get(EmitISOVolatileLoad(*this, E)); | |
case Builtin::BI__iso_volatile_store8: | |
case Builtin::BI__iso_volatile_store16: | |
case Builtin::BI__iso_volatile_store32: | |
case Builtin::BI__iso_volatile_store64: | |
return RValue::get(EmitISOVolatileStore(*this, E)); | |
case Builtin::BI__exception_code: | |
case Builtin::BI_exception_code: | |
return RValue::get(EmitSEHExceptionCode()); | |
case Builtin::BI__exception_info: | |
case Builtin::BI_exception_info: | |
return RValue::get(EmitSEHExceptionInfo()); | |
case Builtin::BI__abnormal_termination: | |
case Builtin::BI_abnormal_termination: | |
return RValue::get(EmitSEHAbnormalTermination()); | |
case Builtin::BI_setjmpex: | |
if (getTarget().getTriple().isOSMSVCRT()) | |
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); | |
break; | |
case Builtin::BI_setjmp: | |
if (getTarget().getTriple().isOSMSVCRT()) { | |
if (getTarget().getTriple().getArch() == llvm::Triple::x86) | |
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); | |
else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) | |
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); | |
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); | |
} | |
break; | |
case Builtin::BI__GetExceptionInfo: { | |
if (llvm::GlobalVariable *GV = | |
CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) | |
return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); | |
break; | |
} | |
case Builtin::BI__fastfail: | |
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); | |
case Builtin::BI__builtin_coro_size: { | |
auto & Context = getContext(); | |
auto SizeTy = Context.getSizeType(); | |
auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); | |
Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); | |
return RValue::get(Builder.CreateCall(F)); | |
} | |
case Builtin::BI__builtin_coro_id: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); | |
case Builtin::BI__builtin_coro_promise: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); | |
case Builtin::BI__builtin_coro_resume: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); | |
case Builtin::BI__builtin_coro_frame: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); | |
case Builtin::BI__builtin_coro_noop: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); | |
case Builtin::BI__builtin_coro_free: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); | |
case Builtin::BI__builtin_coro_destroy: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); | |
case Builtin::BI__builtin_coro_done: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); | |
case Builtin::BI__builtin_coro_alloc: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); | |
case Builtin::BI__builtin_coro_begin: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); | |
case Builtin::BI__builtin_coro_end: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); | |
case Builtin::BI__builtin_coro_suspend: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); | |
case Builtin::BI__builtin_coro_param: | |
return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); | |
// OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions | |
case Builtin::BIread_pipe: | |
case Builtin::BIwrite_pipe: { | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)), | |
*Arg1 = EmitScalarExpr(E->getArg(1)); | |
CGOpenCLRuntime OpenCLRT(CGM); | |
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); | |
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); | |
// Type of the generic packet parameter. | |
unsigned GenericAS = | |
getContext().getTargetAddressSpace(LangAS::opencl_generic); | |
llvm::Type *I8PTy = llvm::PointerType::get( | |
llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); | |
// Testing which overloaded version we should generate the call for. | |
if (2U == E->getNumArgs()) { | |
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" | |
: "__write_pipe_2"; | |
// Creating a generic function type to be able to call with any builtin or | |
// user defined type. | |
llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); | |
return RValue::get( | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
{Arg0, BCast, PacketSize, PacketAlign})); | |
} else { | |
assert(4 == E->getNumArgs() && | |
"Illegal number of parameters to pipe function"); | |
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" | |
: "__write_pipe_4"; | |
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, | |
Int32Ty, Int32Ty}; | |
Value *Arg2 = EmitScalarExpr(E->getArg(2)), | |
*Arg3 = EmitScalarExpr(E->getArg(3)); | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); | |
// We know the third argument is an integer type, but we may need to cast | |
// it to i32. | |
if (Arg2->getType() != Int32Ty) | |
Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); | |
return RValue::get(Builder.CreateCall( | |
CGM.CreateRuntimeFunction(FTy, Name), | |
{Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); | |
} | |
} | |
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write | |
// functions | |
case Builtin::BIreserve_read_pipe: | |
case Builtin::BIreserve_write_pipe: | |
case Builtin::BIwork_group_reserve_read_pipe: | |
case Builtin::BIwork_group_reserve_write_pipe: | |
case Builtin::BIsub_group_reserve_read_pipe: | |
case Builtin::BIsub_group_reserve_write_pipe: { | |
// Composing the mangled name for the function. | |
const char *Name; | |
if (BuiltinID == Builtin::BIreserve_read_pipe) | |
Name = "__reserve_read_pipe"; | |
else if (BuiltinID == Builtin::BIreserve_write_pipe) | |
Name = "__reserve_write_pipe"; | |
else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) | |
Name = "__work_group_reserve_read_pipe"; | |
else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) | |
Name = "__work_group_reserve_write_pipe"; | |
else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) | |
Name = "__sub_group_reserve_read_pipe"; | |
else | |
Name = "__sub_group_reserve_write_pipe"; | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)), | |
*Arg1 = EmitScalarExpr(E->getArg(1)); | |
llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); | |
CGOpenCLRuntime OpenCLRT(CGM); | |
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); | |
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); | |
// Building the generic function prototype. | |
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
// We know the second argument is an integer type, but we may need to cast | |
// it to i32. | |
if (Arg1->getType() != Int32Ty) | |
Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); | |
return RValue::get( | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
{Arg0, Arg1, PacketSize, PacketAlign})); | |
} | |
// OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write | |
// functions | |
case Builtin::BIcommit_read_pipe: | |
case Builtin::BIcommit_write_pipe: | |
case Builtin::BIwork_group_commit_read_pipe: | |
case Builtin::BIwork_group_commit_write_pipe: | |
case Builtin::BIsub_group_commit_read_pipe: | |
case Builtin::BIsub_group_commit_write_pipe: { | |
const char *Name; | |
if (BuiltinID == Builtin::BIcommit_read_pipe) | |
Name = "__commit_read_pipe"; | |
else if (BuiltinID == Builtin::BIcommit_write_pipe) | |
Name = "__commit_write_pipe"; | |
else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) | |
Name = "__work_group_commit_read_pipe"; | |
else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) | |
Name = "__work_group_commit_write_pipe"; | |
else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) | |
Name = "__sub_group_commit_read_pipe"; | |
else | |
Name = "__sub_group_commit_write_pipe"; | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)), | |
*Arg1 = EmitScalarExpr(E->getArg(1)); | |
CGOpenCLRuntime OpenCLRT(CGM); | |
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); | |
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); | |
// Building the generic function prototype. | |
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; | |
llvm::FunctionType *FTy = | |
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), | |
llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
return RValue::get( | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
{Arg0, Arg1, PacketSize, PacketAlign})); | |
} | |
// OpenCL v2.0 s6.13.16.4 Built-in pipe query functions | |
case Builtin::BIget_pipe_num_packets: | |
case Builtin::BIget_pipe_max_packets: { | |
const char *BaseName; | |
const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); | |
if (BuiltinID == Builtin::BIget_pipe_num_packets) | |
BaseName = "__get_pipe_num_packets"; | |
else | |
BaseName = "__get_pipe_max_packets"; | |
std::string Name = std::string(BaseName) + | |
std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); | |
// Building the generic function prototype. | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)); | |
CGOpenCLRuntime OpenCLRT(CGM); | |
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); | |
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); | |
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
{Arg0, PacketSize, PacketAlign})); | |
} | |
// OpenCL v2.0 s6.13.9 - Address space qualifier functions. | |
case Builtin::BIto_global: | |
case Builtin::BIto_local: | |
case Builtin::BIto_private: { | |
auto Arg0 = EmitScalarExpr(E->getArg(0)); | |
auto NewArgT = llvm::PointerType::get(Int8Ty, | |
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
auto NewRetT = llvm::PointerType::get(Int8Ty, | |
CGM.getContext().getTargetAddressSpace( | |
E->getType()->getPointeeType().getAddressSpace())); | |
auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); | |
llvm::Value *NewArg; | |
if (Arg0->getType()->getPointerAddressSpace() != | |
NewArgT->getPointerAddressSpace()) | |
NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); | |
else | |
NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); | |
auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); | |
auto NewCall = | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); | |
return RValue::get(Builder.CreateBitOrPointerCast(NewCall, | |
ConvertType(E->getType()))); | |
} | |
// OpenCL v2.0, s6.13.17 - Enqueue kernel function. | |
// It contains four different overload formats specified in Table 6.13.17.1. | |
case Builtin::BIenqueue_kernel: { | |
StringRef Name; // Generated function call name | |
unsigned NumArgs = E->getNumArgs(); | |
llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); | |
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( | |
getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); | |
LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); | |
llvm::Value *Range = NDRangeL.getAddress().getPointer(); | |
llvm::Type *RangeTy = NDRangeL.getAddress().getType(); | |
if (NumArgs == 4) { | |
// The most basic form of the call with parameters: | |
// queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) | |
Name = "__enqueue_kernel_basic"; | |
llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, | |
GenericVoidPtrTy}; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); | |
llvm::Value *Kernel = | |
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
llvm::Value *Block = | |
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
AttrBuilder B; | |
B.addByValAttr(NDRangeL.getAddress().getElementType()); | |
llvm::AttributeList ByValAttrSet = | |
llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); | |
auto RTCall = | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), | |
{Queue, Flags, Range, Kernel, Block}); | |
RTCall->setAttributes(ByValAttrSet); | |
return RValue::get(RTCall); | |
} | |
assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); | |
// Create a temporary array to hold the sizes of local pointer arguments | |
// for the block. \p First is the position of the first size argument. | |
auto CreateArrayForSizeVar = [=](unsigned First) | |
-> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { | |
llvm::APInt ArraySize(32, NumArgs - First); | |
QualType SizeArrayTy = getContext().getConstantArrayType( | |
getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, | |
/*IndexTypeQuals=*/0); | |
auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); | |
llvm::Value *TmpPtr = Tmp.getPointer(); | |
llvm::Value *TmpSize = EmitLifetimeStart( | |
CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); | |
llvm::Value *ElemPtr; | |
// Each of the following arguments specifies the size of the corresponding | |
// argument passed to the enqueued block. | |
auto *Zero = llvm::ConstantInt::get(IntTy, 0); | |
for (unsigned I = First; I < NumArgs; ++I) { | |
auto *Index = llvm::ConstantInt::get(IntTy, I - First); | |
auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index}); | |
if (I == First) | |
ElemPtr = GEP; | |
auto *V = | |
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); | |
Builder.CreateAlignedStore( | |
V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy)); | |
} | |
return std::tie(ElemPtr, TmpSize, TmpPtr); | |
}; | |
// Could have events and/or varargs. | |
if (E->getArg(3)->getType()->isBlockPointerType()) { | |
// No events passed, but has variadic arguments. | |
Name = "__enqueue_kernel_varargs"; | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); | |
llvm::Value *Kernel = | |
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
llvm::Value *ElemPtr, *TmpSize, *TmpPtr; | |
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); | |
// Create a vector of the arguments, as well as a constant value to | |
// express to the runtime the number of variadic arguments. | |
std::vector<llvm::Value *> Args = { | |
Queue, Flags, Range, | |
Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4), | |
ElemPtr}; | |
std::vector<llvm::Type *> ArgTys = { | |
QueueTy, IntTy, RangeTy, GenericVoidPtrTy, | |
GenericVoidPtrTy, IntTy, ElemPtr->getType()}; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
auto Call = | |
RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
llvm::ArrayRef<llvm::Value *>(Args))); | |
if (TmpSize) | |
EmitLifetimeEnd(TmpSize, TmpPtr); | |
return Call; | |
} | |
// Any calls now have event arguments passed. | |
if (NumArgs >= 7) { | |
llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); | |
llvm::PointerType *EventPtrTy = EventTy->getPointerTo( | |
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
llvm::Value *NumEvents = | |
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); | |
// Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments | |
// to be a null pointer constant (including `0` literal), we can take it | |
// into account and emit null pointer directly. | |
llvm::Value *EventWaitList = nullptr; | |
if (E->getArg(4)->isNullPointerConstant( | |
getContext(), Expr::NPC_ValueDependentIsNotNull)) { | |
EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); | |
} else { | |
EventWaitList = E->getArg(4)->getType()->isArrayType() | |
? EmitArrayToPointerDecay(E->getArg(4)).getPointer() | |
: EmitScalarExpr(E->getArg(4)); | |
// Convert to generic address space. | |
EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); | |
} | |
llvm::Value *EventRet = nullptr; | |
if (E->getArg(5)->isNullPointerConstant( | |
getContext(), Expr::NPC_ValueDependentIsNotNull)) { | |
EventRet = llvm::ConstantPointerNull::get(EventPtrTy); | |
} else { | |
EventRet = | |
Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); | |
} | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); | |
llvm::Value *Kernel = | |
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
llvm::Value *Block = | |
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
std::vector<llvm::Type *> ArgTys = { | |
QueueTy, Int32Ty, RangeTy, Int32Ty, | |
EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; | |
std::vector<llvm::Value *> Args = {Queue, Flags, Range, | |
NumEvents, EventWaitList, EventRet, | |
Kernel, Block}; | |
if (NumArgs == 7) { | |
// Has events but no variadics. | |
Name = "__enqueue_kernel_basic_events"; | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
return RValue::get( | |
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
llvm::ArrayRef<llvm::Value *>(Args))); | |
} | |
// Has event info and variadics | |
// Pass the number of variadics to the runtime function too. | |
Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); | |
ArgTys.push_back(Int32Ty); | |
Name = "__enqueue_kernel_events_varargs"; | |
llvm::Value *ElemPtr, *TmpSize, *TmpPtr; | |
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); | |
Args.push_back(ElemPtr); | |
ArgTys.push_back(ElemPtr->getType()); | |
llvm::FunctionType *FTy = llvm::FunctionType::get( | |
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); | |
auto Call = | |
RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), | |
llvm::ArrayRef<llvm::Value *>(Args))); | |
if (TmpSize) | |
EmitLifetimeEnd(TmpSize, TmpPtr); | |
return Call; | |
} | |
LLVM_FALLTHROUGH; | |
} | |
// OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block | |
// parameter. | |
case Builtin::BIget_kernel_work_group_size: { | |
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( | |
getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); | |
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
return RValue::get(Builder.CreateCall( | |
CGM.CreateRuntimeFunction( | |
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, | |
false), | |
"__get_kernel_work_group_size_impl"), | |
{Kernel, Arg})); | |
} | |
case Builtin::BIget_kernel_preferred_work_group_size_multiple: { | |
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( | |
getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); | |
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
return RValue::get(Builder.CreateCall( | |
CGM.CreateRuntimeFunction( | |
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, | |
false), | |
"__get_kernel_preferred_work_group_size_multiple_impl"), | |
{Kernel, Arg})); | |
} | |
case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: | |
case Builtin::BIget_kernel_sub_group_count_for_ndrange: { | |
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( | |
getContext().getTargetAddressSpace(LangAS::opencl_generic)); | |
LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); | |
llvm::Value *NDRange = NDRangeL.getAddress().getPointer(); | |
auto Info = | |
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); | |
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); | |
Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); | |
const char *Name = | |
BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange | |
? "__get_kernel_max_sub_group_size_for_ndrange_impl" | |
: "__get_kernel_sub_group_count_for_ndrange_impl"; | |
return RValue::get(Builder.CreateCall( | |
CGM.CreateRuntimeFunction( | |
llvm::FunctionType::get( | |
IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, | |
false), | |
Name), | |
{NDRange, Kernel, Block})); | |
} | |
case Builtin::BI__builtin_store_half: | |
case Builtin::BI__builtin_store_halff: { | |
Value *Val = EmitScalarExpr(E->getArg(0)); | |
Address Address = EmitPointerWithAlignment(E->getArg(1)); | |
Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); | |
return RValue::get(Builder.CreateStore(HalfVal, Address)); | |
} | |
case Builtin::BI__builtin_load_half: { | |
Address Address = EmitPointerWithAlignment(E->getArg(0)); | |
Value *HalfVal = Builder.CreateLoad(Address); | |
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); | |
} | |
case Builtin::BI__builtin_load_halff: { | |
Address Address = EmitPointerWithAlignment(E->getArg(0)); | |
Value *HalfVal = Builder.CreateLoad(Address); | |
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); | |
} | |
case Builtin::BIprintf: | |
if (getTarget().getTriple().isNVPTX()) | |
return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); | |
break; | |
case Builtin::BI__builtin_canonicalize: | |
case Builtin::BI__builtin_canonicalizef: | |
case Builtin::BI__builtin_canonicalizef16: | |
case Builtin::BI__builtin_canonicalizel: | |
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); | |
case Builtin::BI__builtin_thread_pointer: { | |
if (!getContext().getTargetInfo().isTLSSupported()) | |
CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); | |
// Fall through - it's already mapped to the intrinsic by GCCBuiltin. | |
break; | |
} | |
case Builtin::BI__builtin_os_log_format: | |
return emitBuiltinOSLogFormat(*E); | |
case Builtin::BI__xray_customevent: { | |
if (!ShouldXRayInstrumentFunction()) | |
return RValue::getIgnored(); | |
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( | |
XRayInstrKind::Custom)) | |
return RValue::getIgnored(); | |
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) | |
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) | |
return RValue::getIgnored(); | |
Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); | |
auto FTy = F->getFunctionType(); | |
auto Arg0 = E->getArg(0); | |
auto Arg0Val = EmitScalarExpr(Arg0); | |
auto Arg0Ty = Arg0->getType(); | |
auto PTy0 = FTy->getParamType(0); | |
if (PTy0 != Arg0Val->getType()) { | |
if (Arg0Ty->isArrayType()) | |
Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); | |
else | |
Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); | |
} | |
auto Arg1 = EmitScalarExpr(E->getArg(1)); | |
auto PTy1 = FTy->getParamType(1); | |
if (PTy1 != Arg1->getType()) | |
Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); | |
return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); | |
} | |
case Builtin::BI__xray_typedevent: { | |
// TODO: There should be a way to always emit events even if the current | |
// function is not instrumented. Losing events in a stream can cripple | |
// a trace. | |
if (!ShouldXRayInstrumentFunction()) | |
return RValue::getIgnored(); | |
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( | |
XRayInstrKind::Typed)) | |
return RValue::getIgnored(); | |
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) | |
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) | |
return RValue::getIgnored(); | |
Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); | |
auto FTy = F->getFunctionType(); | |
auto Arg0 = EmitScalarExpr(E->getArg(0)); | |
auto PTy0 = FTy->getParamType(0); | |
if (PTy0 != Arg0->getType()) | |
Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); | |
auto Arg1 = E->getArg(1); | |
auto Arg1Val = EmitScalarExpr(Arg1); | |
auto Arg1Ty = Arg1->getType(); | |
auto PTy1 = FTy->getParamType(1); | |
if (PTy1 != Arg1Val->getType()) { | |
if (Arg1Ty->isArrayType()) | |
Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); | |
else | |
Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); | |
} | |
auto Arg2 = EmitScalarExpr(E->getArg(2)); | |
auto PTy2 = FTy->getParamType(2); | |
if (PTy2 != Arg2->getType()) | |
Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); | |
return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); | |
} | |
case Builtin::BI__builtin_ms_va_start: | |
case Builtin::BI__builtin_ms_va_end: | |
return RValue::get( | |
EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), | |
BuiltinID == Builtin::BI__builtin_ms_va_start)); | |
case Builtin::BI__builtin_ms_va_copy: { | |
// Lower this manually. We can't reliably determine whether or not any | |
// given va_copy() is for a Win64 va_list from the calling convention | |
// alone, because it's legal to do this from a System V ABI function. | |
// With opaque pointer types, we won't have enough information in LLVM | |
// IR to determine this from the argument types, either. Best to do it | |
// now, while we have enough information. | |
Address DestAddr = EmitMSVAListRef(E->getArg(0)); | |
Address SrcAddr = EmitMSVAListRef(E->getArg(1)); | |
llvm::Type *BPP = Int8PtrPtrTy; | |
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), | |
DestAddr.getAlignment()); | |
SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), | |
SrcAddr.getAlignment()); | |
Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); | |
return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); | |
} | |
} | |
// If this is an alias for a lib function (e.g. __builtin_sin), emit | |
// the call using the normal call path, but using the unmangled | |
// version of the function name. | |
if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) | |
return emitLibraryCall(*this, FD, E, | |
CGM.getBuiltinLibFunction(FD, BuiltinID)); | |
// If this is a predefined lib function (e.g. malloc), emit the call | |
// using exactly the normal call path. | |
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | |
return emitLibraryCall(*this, FD, E, | |
cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); | |
// Check that a call to a target specific builtin has the correct target | |
// features. | |
// This is down here to avoid non-target specific builtins, however, if | |
// generic builtins start to require generic target features then we | |
// can move this up to the beginning of the function. | |
checkTargetFeatures(E, FD); | |
if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) | |
LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); | |
// See if we have a target specific intrinsic. | |
const char *Name = getContext().BuiltinInfo.getName(BuiltinID); | |
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; | |
StringRef Prefix = | |
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); | |
if (!Prefix.empty()) { | |
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); | |
// NOTE we don't need to perform a compatibility flag check here since the | |
// intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the | |
// MS builtins via ALL_MS_LANGUAGES and are filtered earlier. | |
if (IntrinsicID == Intrinsic::not_intrinsic) | |
IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); | |
} | |
if (IntrinsicID != Intrinsic::not_intrinsic) { | |
SmallVector<Value*, 16> Args; | |
// Find out if any arguments are required to be integer constant | |
// expressions. | |
unsigned ICEArguments = 0; | |
ASTContext::GetBuiltinTypeError Error; | |
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); | |
assert(Error == ASTContext::GE_None && "Should not codegen an error"); | |
Function *F = CGM.getIntrinsic(IntrinsicID); | |
llvm::FunctionType *FTy = F->getFunctionType(); | |
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { | |
Value *ArgValue; | |
// If this is a normal argument, just emit it as a scalar. | |
if ((ICEArguments & (1 << i)) == 0) { | |
ArgValue = EmitScalarExpr(E->getArg(i)); | |
} else { | |
// If this is required to be a constant, constant fold it so that we | |
// know that the generated intrinsic gets a ConstantInt. | |
llvm::APSInt Result; | |
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); | |
assert(IsConst && "Constant arg isn't actually constant?"); | |
(void)IsConst; | |
ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); | |
} | |
// If the intrinsic arg type is different from the builtin arg type | |
// we need to do a bit cast. | |
llvm::Type *PTy = FTy->getParamType(i); | |
if (PTy != ArgValue->getType()) { | |
// XXX - vector of pointers? | |
if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { | |
if (PtrTy->getAddressSpace() != | |
ArgValue->getType()->getPointerAddressSpace()) { | |
ArgValue = Builder.CreateAddrSpaceCast( | |
ArgValue, | |
ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); | |
} | |
} | |
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && | |
"Must be able to losslessly bit cast to param"); | |
ArgValue = Builder.CreateBitCast(ArgValue, PTy); | |
} | |
Args.push_back(ArgValue); | |
} | |
Value *V = Builder.CreateCall(F, Args); | |
QualType BuiltinRetType = E->getType(); | |
llvm::Type *RetTy = VoidTy; | |
if (!BuiltinRetType->isVoidType()) | |
RetTy = ConvertType(BuiltinRetType); | |
if (RetTy != V->getType()) { | |
// XXX - vector of pointers? | |
if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { | |
if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { | |
V = Builder.CreateAddrSpaceCast( | |
V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); | |
} | |
} | |
assert(V->getType()->canLosslesslyBitCastTo(RetTy) && | |
"Must be able to losslessly bit cast result type"); | |
V = Builder.CreateBitCast(V, RetTy); | |
} | |
return RValue::get(V); | |
} | |
// See if we have a target specific builtin that needs to be lowered. | |
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) | |
return RValue::get(V); | |
ErrorUnsupported(E, "builtin function"); | |
// Unknown builtin, for now just dump it out and return undef. | |
return GetUndefRValue(E->getType()); | |
} | |
static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, | |
unsigned BuiltinID, const CallExpr *E, | |
ReturnValueSlot ReturnValue, | |
llvm::Triple::ArchType Arch) { | |
switch (Arch) { | |
case llvm::Triple::arm: | |
case llvm::Triple::armeb: | |
case llvm::Triple::thumb: | |
case llvm::Triple::thumbeb: | |
return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); | |
case llvm::Triple::aarch64: | |
case llvm::Triple::aarch64_32: | |
case llvm::Triple::aarch64_be: | |
return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); | |
case llvm::Triple::bpfeb: | |
case llvm::Triple::bpfel: | |
return CGF->EmitBPFBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::x86: | |
case llvm::Triple::x86_64: | |
return CGF->EmitX86BuiltinExpr(BuiltinID, E); | |
case llvm::Triple::ppc: | |
case llvm::Triple::ppc64: | |
case llvm::Triple::ppc64le: | |
return CGF->EmitPPCBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::r600: | |
case llvm::Triple::amdgcn: | |
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::systemz: | |
return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::nvptx: | |
case llvm::Triple::nvptx64: | |
return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::wasm32: | |
case llvm::Triple::wasm64: | |
return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); | |
case llvm::Triple::hexagon: | |
return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); | |
default: | |
return nullptr; | |
} | |
} | |
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E, | |
ReturnValueSlot ReturnValue) { | |
if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { | |
assert(getContext().getAuxTargetInfo() && "Missing aux target info"); | |
return EmitTargetArchBuiltinExpr( | |
this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, | |
ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); | |
} | |
return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, | |
getTarget().getTriple().getArch()); | |
} | |
static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, | |
NeonTypeFlags TypeFlags, | |
bool HasLegalHalfType=true, | |
bool V1Ty=false) { | |
int IsQuad = TypeFlags.isQuad(); | |
switch (TypeFlags.getEltType()) { | |
case NeonTypeFlags::Int8: | |
case NeonTypeFlags::Poly8: | |
return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); | |
case NeonTypeFlags::Int16: | |
case NeonTypeFlags::Poly16: | |
return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); | |
case NeonTypeFlags::Float16: | |
if (HasLegalHalfType) | |
return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); | |
else | |
return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); | |
case NeonTypeFlags::Int32: | |
return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); | |
case NeonTypeFlags::Int64: | |
case NeonTypeFlags::Poly64: | |
return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); | |
case NeonTypeFlags::Poly128: | |
// FIXME: i128 and f128 doesn't get fully support in Clang and llvm. | |
// There is a lot of i128 and f128 API missing. | |
// so we use v16i8 to represent poly128 and get pattern matched. | |
return llvm::VectorType::get(CGF->Int8Ty, 16); | |
case NeonTypeFlags::Float32: | |
return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); | |
case NeonTypeFlags::Float64: | |
return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); | |
} | |
llvm_unreachable("Unknown vector element type!"); | |
} | |
static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, | |
NeonTypeFlags IntTypeFlags) { | |
int IsQuad = IntTypeFlags.isQuad(); | |
switch (IntTypeFlags.getEltType()) { | |
case NeonTypeFlags::Int16: | |
return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad)); | |
case NeonTypeFlags::Int32: | |
return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad)); | |
case NeonTypeFlags::Int64: | |
return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad)); | |
default: | |
llvm_unreachable("Type can't be converted to floating-point!"); | |
} | |
} | |
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { | |
unsigned nElts = V->getType()->getVectorNumElements(); | |
Value* SV = llvm::ConstantVector::getSplat(nElts, C); | |
return Builder.CreateShuffleVector(V, V, SV, "lane"); | |
} | |
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, | |
const char *name, | |
unsigned shift, bool rightshift) { | |
unsigned j = 0; | |
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); | |
ai != ae; ++ai, ++j) | |
if (shift > 0 && shift == j) | |
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); | |
else | |
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); | |
return Builder.CreateCall(F, Ops, name); | |
} | |
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, | |
bool neg) { | |
int SV = cast<ConstantInt>(V)->getSExtValue(); | |
return ConstantInt::get(Ty, neg ? -SV : SV); | |
} | |
// Right-shift a vector by a constant. | |
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, | |
llvm::Type *Ty, bool usgn, | |
const char *name) { | |
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); | |
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); | |
int EltSize = VTy->getScalarSizeInBits(); | |
Vec = Builder.CreateBitCast(Vec, Ty); | |
// lshr/ashr are undefined when the shift amount is equal to the vector | |
// element size. | |
if (ShiftAmt == EltSize) { | |
if (usgn) { | |
// Right-shifting an unsigned value by its size yields 0. | |
return llvm::ConstantAggregateZero::get(VTy); | |
} else { | |
// Right-shifting a signed value by its size is equivalent | |
// to a shift of size-1. | |
--ShiftAmt; | |
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); | |
} | |
} | |
Shift = EmitNeonShiftVector(Shift, Ty, false); | |
if (usgn) | |
return Builder.CreateLShr(Vec, Shift, name); | |
else | |
return Builder.CreateAShr(Vec, Shift, name); | |
} | |
enum { | |
AddRetType = (1 << 0), | |
Add1ArgType = (1 << 1), | |
Add2ArgTypes = (1 << 2), | |
VectorizeRetType = (1 << 3), | |
VectorizeArgTypes = (1 << 4), | |
InventFloatType = (1 << 5), | |
UnsignedAlts = (1 << 6), | |
Use64BitVectors = (1 << 7), | |
Use128BitVectors = (1 << 8), | |
Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, | |
VectorRet = AddRetType | VectorizeRetType, | |
VectorRetGetArgs01 = | |
AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, | |
FpCmpzModifiers = | |
AddRetType | VectorizeRetType | Add1ArgType | InventFloatType | |
}; | |
namespace { | |
struct NeonIntrinsicInfo { | |
const char *NameHint; | |
unsigned BuiltinID; | |
unsigned LLVMIntrinsic; | |
unsigned AltLLVMIntrinsic; | |
unsigned TypeModifier; | |
bool operator<(unsigned RHSBuiltinID) const { | |
return BuiltinID < RHSBuiltinID; | |
} | |
bool operator<(const NeonIntrinsicInfo &TE) const { | |
return BuiltinID < TE.BuiltinID; | |
} | |
}; | |
} // end anonymous namespace | |
#define NEONMAP0(NameBase) \ | |
{ #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } | |
#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ | |
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ | |
Intrinsic::LLVMIntrinsic, 0, TypeModifier } | |
#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ | |
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ | |
Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ | |
TypeModifier } | |
static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { | |
NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vabs_v, arm_neon_vabs, 0), | |
NEONMAP1(vabsq_v, arm_neon_vabs, 0), | |
NEONMAP0(vaddhn_v), | |
NEONMAP1(vaesdq_v, arm_neon_aesd, 0), | |
NEONMAP1(vaeseq_v, arm_neon_aese, 0), | |
NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), | |
NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), | |
NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), | |
NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), | |
NEONMAP1(vcage_v, arm_neon_vacge, 0), | |
NEONMAP1(vcageq_v, arm_neon_vacge, 0), | |
NEONMAP1(vcagt_v, arm_neon_vacgt, 0), | |
NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), | |
NEONMAP1(vcale_v, arm_neon_vacge, 0), | |
NEONMAP1(vcaleq_v, arm_neon_vacge, 0), | |
NEONMAP1(vcalt_v, arm_neon_vacgt, 0), | |
NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), | |
NEONMAP0(vceqz_v), | |
NEONMAP0(vceqzq_v), | |
NEONMAP0(vcgez_v), | |
NEONMAP0(vcgezq_v), | |
NEONMAP0(vcgtz_v), | |
NEONMAP0(vcgtzq_v), | |
NEONMAP0(vclez_v), | |
NEONMAP0(vclezq_v), | |
NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), | |
NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), | |
NEONMAP0(vcltz_v), | |
NEONMAP0(vcltzq_v), | |
NEONMAP1(vclz_v, ctlz, Add1ArgType), | |
NEONMAP1(vclzq_v, ctlz, Add1ArgType), | |
NEONMAP1(vcnt_v, ctpop, Add1ArgType), | |
NEONMAP1(vcntq_v, ctpop, Add1ArgType), | |
NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), | |
NEONMAP0(vcvt_f16_v), | |
NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), | |
NEONMAP0(vcvt_f32_v), | |
NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), | |
NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP0(vcvt_s16_v), | |
NEONMAP0(vcvt_s32_v), | |
NEONMAP0(vcvt_s64_v), | |
NEONMAP0(vcvt_u16_v), | |
NEONMAP0(vcvt_u32_v), | |
NEONMAP0(vcvt_u64_v), | |
NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), | |
NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), | |
NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), | |
NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), | |
NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), | |
NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), | |
NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), | |
NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), | |
NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), | |
NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), | |
NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), | |
NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), | |
NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), | |
NEONMAP0(vcvtq_f16_v), | |
NEONMAP0(vcvtq_f32_v), | |
NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), | |
NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), | |
NEONMAP0(vcvtq_s16_v), | |
NEONMAP0(vcvtq_s32_v), | |
NEONMAP0(vcvtq_s64_v), | |
NEONMAP0(vcvtq_u16_v), | |
NEONMAP0(vcvtq_u32_v), | |
NEONMAP0(vcvtq_u64_v), | |
NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), | |
NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), | |
NEONMAP0(vext_v), | |
NEONMAP0(vextq_v), | |
NEONMAP0(vfma_v), | |
NEONMAP0(vfmaq_v), | |
NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vld1_dup_v), | |
NEONMAP1(vld1_v, arm_neon_vld1, 0), | |
NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), | |
NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), | |
NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), | |
NEONMAP0(vld1q_dup_v), | |
NEONMAP1(vld1q_v, arm_neon_vld1, 0), | |
NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), | |
NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), | |
NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), | |
NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), | |
NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), | |
NEONMAP1(vld2_v, arm_neon_vld2, 0), | |
NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), | |
NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), | |
NEONMAP1(vld2q_v, arm_neon_vld2, 0), | |
NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), | |
NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), | |
NEONMAP1(vld3_v, arm_neon_vld3, 0), | |
NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), | |
NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), | |
NEONMAP1(vld3q_v, arm_neon_vld3, 0), | |
NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), | |
NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), | |
NEONMAP1(vld4_v, arm_neon_vld4, 0), | |
NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), | |
NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), | |
NEONMAP1(vld4q_v, arm_neon_vld4, 0), | |
NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), | |
NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), | |
NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), | |
NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), | |
NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vmovl_v), | |
NEONMAP0(vmovn_v), | |
NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), | |
NEONMAP0(vmull_v), | |
NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), | |
NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), | |
NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), | |
NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), | |
NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), | |
NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), | |
NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), | |
NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), | |
NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), | |
NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0), | |
NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0), | |
NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), | |
NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), | |
NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), | |
NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), | |
NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), | |
NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), | |
NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), | |
NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), | |
NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), | |
NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), | |
NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), | |
NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), | |
NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), | |
NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), | |
NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), | |
NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), | |
NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), | |
NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), | |
NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), | |
NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), | |
NEONMAP0(vrndi_v), | |
NEONMAP0(vrndiq_v), | |
NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), | |
NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), | |
NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), | |
NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), | |
NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), | |
NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), | |
NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), | |
NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), | |
NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), | |
NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), | |
NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), | |
NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), | |
NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), | |
NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), | |
NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), | |
NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), | |
NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), | |
NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), | |
NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), | |
NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), | |
NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), | |
NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), | |
NEONMAP0(vshl_n_v), | |
NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vshll_n_v), | |
NEONMAP0(vshlq_n_v), | |
NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vshr_n_v), | |
NEONMAP0(vshrn_n_v), | |
NEONMAP0(vshrq_n_v), | |
NEONMAP1(vst1_v, arm_neon_vst1, 0), | |
NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), | |
NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), | |
NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), | |
NEONMAP1(vst1q_v, arm_neon_vst1, 0), | |
NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), | |
NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), | |
NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), | |
NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), | |
NEONMAP1(vst2_v, arm_neon_vst2, 0), | |
NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), | |
NEONMAP1(vst2q_v, arm_neon_vst2, 0), | |
NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), | |
NEONMAP1(vst3_v, arm_neon_vst3, 0), | |
NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), | |
NEONMAP1(vst3q_v, arm_neon_vst3, 0), | |
NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), | |
NEONMAP1(vst4_v, arm_neon_vst4, 0), | |
NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), | |
NEONMAP1(vst4q_v, arm_neon_vst4, 0), | |
NEONMAP0(vsubhn_v), | |
NEONMAP0(vtrn_v), | |
NEONMAP0(vtrnq_v), | |
NEONMAP0(vtst_v), | |
NEONMAP0(vtstq_v), | |
NEONMAP0(vuzp_v), | |
NEONMAP0(vuzpq_v), | |
NEONMAP0(vzip_v), | |
NEONMAP0(vzipq_v) | |
}; | |
static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = { | |
NEONMAP1(vabs_v, aarch64_neon_abs, 0), | |
NEONMAP1(vabsq_v, aarch64_neon_abs, 0), | |
NEONMAP0(vaddhn_v), | |
NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), | |
NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), | |
NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), | |
NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), | |
NEONMAP1(vcage_v, aarch64_neon_facge, 0), | |
NEONMAP1(vcageq_v, aarch64_neon_facge, 0), | |
NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), | |
NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), | |
NEONMAP1(vcale_v, aarch64_neon_facge, 0), | |
NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), | |
NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), | |
NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), | |
NEONMAP0(vceqz_v), | |
NEONMAP0(vceqzq_v), | |
NEONMAP0(vcgez_v), | |
NEONMAP0(vcgezq_v), | |
NEONMAP0(vcgtz_v), | |
NEONMAP0(vcgtzq_v), | |
NEONMAP0(vclez_v), | |
NEONMAP0(vclezq_v), | |
NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), | |
NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), | |
NEONMAP0(vcltz_v), | |
NEONMAP0(vcltzq_v), | |
NEONMAP1(vclz_v, ctlz, Add1ArgType), | |
NEONMAP1(vclzq_v, ctlz, Add1ArgType), | |
NEONMAP1(vcnt_v, ctpop, Add1ArgType), | |
NEONMAP1(vcntq_v, ctpop, Add1ArgType), | |
NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), | |
NEONMAP0(vcvt_f16_v), | |
NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), | |
NEONMAP0(vcvt_f32_v), | |
NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP0(vcvtq_f16_v), | |
NEONMAP0(vcvtq_f32_v), | |
NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), | |
NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), | |
NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), | |
NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), | |
NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), | |
NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), | |
NEONMAP0(vext_v), | |
NEONMAP0(vextq_v), | |
NEONMAP0(vfma_v), | |
NEONMAP0(vfmaq_v), | |
NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), | |
NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), | |
NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), | |
NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), | |
NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), | |
NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), | |
NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), | |
NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), | |
NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), | |
NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), | |
NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), | |
NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), | |
NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), | |
NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), | |
NEONMAP0(vmovl_v), | |
NEONMAP0(vmovn_v), | |
NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), | |
NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), | |
NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), | |
NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), | |
NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), | |
NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), | |
NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), | |
NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), | |
NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), | |
NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), | |
NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), | |
NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), | |
NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), | |
NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), | |
NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), | |
NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), | |
NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), | |
NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), | |
NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), | |
NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), | |
NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), | |
NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), | |
NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), | |
NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), | |
NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), | |
NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), | |
NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), | |
NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), | |
NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vrndi_v), | |
NEONMAP0(vrndiq_v), | |
NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), | |
NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), | |
NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), | |
NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), | |
NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), | |
NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), | |
NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), | |
NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), | |
NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), | |
NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), | |
NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), | |
NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), | |
NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), | |
NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), | |
NEONMAP0(vshl_n_v), | |
NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vshll_n_v), | |
NEONMAP0(vshlq_n_v), | |
NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), | |
NEONMAP0(vshr_n_v), | |
NEONMAP0(vshrn_n_v), | |
NEONMAP0(vshrq_n_v), | |
NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), | |
NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), | |
NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), | |
NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), | |
NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), | |
NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), | |
NEONMAP0(vsubhn_v), | |
NEONMAP0(vtst_v), | |
NEONMAP0(vtstq_v), | |
}; | |
static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = { | |
NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), | |
NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), | |
NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), | |
NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), | |
NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), | |
NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), | |
NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), | |
NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), | |
NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), | |
NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), | |
NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), | |
NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), | |
NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), | |
NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), | |
NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), | |
NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), | |
NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), | |
NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), | |
NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), | |
NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), | |
NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), | |
NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), | |
NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), | |
NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), | |
NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), | |
NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), | |
NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), | |
NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), | |
NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), | |
NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), | |
NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), | |
NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), | |
NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), | |
NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), | |
NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), | |
NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), | |
NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), | |
NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), | |
NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), | |
NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), | |
NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), | |
NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), | |
NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), | |
NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), | |
NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), | |
NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), | |
NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), | |
NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), | |
NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), | |
NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), | |
NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), | |
NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), | |
NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), | |
NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), | |
NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), | |
NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), | |
NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), | |
NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), | |
NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), | |
NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), | |
NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), | |
NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), | |
NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), | |
NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), | |
NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), | |
NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), | |
NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), | |
NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), | |
NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), | |
NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), | |
NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), | |
NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), | |
NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), | |
NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), | |
NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), | |
NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), | |
NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), | |
NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), | |
NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), | |
NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), | |
NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), | |
NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), | |
NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), | |
NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), | |
NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), | |
NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), | |
NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), | |
// FP16 scalar intrinisics go here. | |
NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), | |
NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), | |
NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), | |
NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), | |
NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), | |
NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), | |
NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), | |
NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), | |
}; | |
#undef NEONMAP0 | |
#undef NEONMAP1 | |
#undef NEONMAP2 | |
static bool NEONSIMDIntrinsicsProvenSorted = false; | |
static bool AArch64SIMDIntrinsicsProvenSorted = false; | |
static bool AArch64SISDIntrinsicsProvenSorted = false; | |
static const NeonIntrinsicInfo * | |
findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap, | |
unsigned BuiltinID, bool &MapProvenSorted) { | |
#ifndef NDEBUG | |
if (!MapProvenSorted) { | |
assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))); | |
MapProvenSorted = true; | |
} | |
#endif | |
const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID); | |
if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) | |
return Builtin; | |
return nullptr; | |
} | |
Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, | |
unsigned Modifier, | |
llvm::Type *ArgType, | |
const CallExpr *E) { | |
int VectorSize = 0; | |
if (Modifier & Use64BitVectors) | |
VectorSize = 64; | |
else if (Modifier & Use128BitVectors) | |
VectorSize = 128; | |
// Return type. | |
SmallVector<llvm::Type *, 3> Tys; | |
if (Modifier & AddRetType) { | |
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); | |
if (Modifier & VectorizeRetType) | |
Ty = llvm::VectorType::get( | |
Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); | |
Tys.push_back(Ty); | |
} | |
// Arguments. | |
if (Modifier & VectorizeArgTypes) { | |
int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; | |
ArgType = llvm::VectorType::get(ArgType, Elts); | |
} | |
if (Modifier & (Add1ArgType | Add2ArgTypes)) | |
Tys.push_back(ArgType); | |
if (Modifier & Add2ArgTypes) | |
Tys.push_back(ArgType); | |
if (Modifier & InventFloatType) | |
Tys.push_back(FloatTy); | |
return CGM.getIntrinsic(IntrinsicID, Tys); | |
} | |
static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF, | |
const NeonIntrinsicInfo &SISDInfo, | |
SmallVectorImpl<Value *> &Ops, | |
const CallExpr *E) { | |
unsigned BuiltinID = SISDInfo.BuiltinID; | |
unsigned int Int = SISDInfo.LLVMIntrinsic; | |
unsigned Modifier = SISDInfo.TypeModifier; | |
const char *s = SISDInfo.NameHint; | |
switch (BuiltinID) { | |
case NEON::BI__builtin_neon_vcled_s64: | |
case NEON::BI__builtin_neon_vcled_u64: | |
case NEON::BI__builtin_neon_vcles_f32: | |
case NEON::BI__builtin_neon_vcled_f64: | |
case NEON::BI__builtin_neon_vcltd_s64: | |
case NEON::BI__builtin_neon_vcltd_u64: | |
case NEON::BI__builtin_neon_vclts_f32: | |
case NEON::BI__builtin_neon_vcltd_f64: | |
case NEON::BI__builtin_neon_vcales_f32: | |
case NEON::BI__builtin_neon_vcaled_f64: | |
case NEON::BI__builtin_neon_vcalts_f32: | |
case NEON::BI__builtin_neon_vcaltd_f64: | |
// Only one direction of comparisons actually exist, cmle is actually a cmge | |
// with swapped operands. The table gives us the right intrinsic but we | |
// still need to do the swap. | |
std::swap(Ops[0], Ops[1]); | |
break; | |
} | |
assert(Int && "Generic code assumes a valid intrinsic"); | |
// Determine the type(s) of this overloaded AArch64 intrinsic. | |
const Expr *Arg = E->getArg(0); | |
llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); | |
Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); | |
int j = 0; | |
ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); | |
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); | |
ai != ae; ++ai, ++j) { | |
llvm::Type *ArgTy = ai->getType(); | |
if (Ops[j]->getType()->getPrimitiveSizeInBits() == | |
ArgTy->getPrimitiveSizeInBits()) | |
continue; | |
assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); | |
// The constant argument to an _n_ intrinsic always has Int32Ty, so truncate | |
// it before inserting. | |
Ops[j] = | |
CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType()); | |
Ops[j] = | |
CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); | |
} | |
Value *Result = CGF.EmitNeonCall(F, Ops, s); | |
llvm::Type *ResultType = CGF.ConvertType(E->getType()); | |
if (ResultType->getPrimitiveSizeInBits() < | |
Result->getType()->getPrimitiveSizeInBits()) | |
return CGF.Builder.CreateExtractElement(Result, C0); | |
return CGF.Builder.CreateBitCast(Result, ResultType, s); | |
} | |
Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( | |
unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, | |
const char *NameHint, unsigned Modifier, const CallExpr *E, | |
SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, | |
llvm::Triple::ArchType Arch) { | |
// Get the last argument, which specifies the vector type. | |
llvm::APSInt NeonTypeConst; | |
const Expr *Arg = E->getArg(E->getNumArgs() - 1); | |
if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) | |
return nullptr; | |
// Determine the type of this overloaded NEON intrinsic. | |
NeonTypeFlags Type(NeonTypeConst.getZExtValue()); | |
bool Usgn = Type.isUnsigned(); | |
bool Quad = Type.isQuad(); | |
const bool HasLegalHalfType = getTarget().hasLegalHalfType(); | |
llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType); | |
llvm::Type *Ty = VTy; | |
if (!Ty) | |
return nullptr; | |
auto getAlignmentValue32 = [&](Address addr) -> Value* { | |
return Builder.getInt32(addr.getAlignment().getQuantity()); | |
}; | |
unsigned Int = LLVMIntrinsic; | |
if ((Modifier & UnsignedAlts) && !Usgn) | |
Int = AltLLVMIntrinsic; | |
switch (BuiltinID) { | |
default: break; | |
case NEON::BI__builtin_neon_vpadd_v: | |
case NEON::BI__builtin_neon_vpaddq_v: | |
// We don't allow fp/int overloading of intrinsics. | |
if (VTy->getElementType()->isFloatingPointTy() && | |
Int == Intrinsic::aarch64_neon_addp) | |
Int = Intrinsic::aarch64_neon_faddp; | |
break; | |
case NEON::BI__builtin_neon_vabs_v: | |
case NEON::BI__builtin_neon_vabsq_v: | |
if (VTy->getElementType()->isFloatingPointTy()) | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); | |
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); | |
case NEON::BI__builtin_neon_vaddhn_v: { | |
llvm::VectorType *SrcTy = | |
llvm::VectorType::getExtendedElementVectorType(VTy); | |
// %sum = add <4 x i32> %lhs, %rhs | |
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); | |
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); | |
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> | |
Constant *ShiftAmt = | |
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); | |
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); | |
// %res = trunc <4 x i32> %high to <4 x i16> | |
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); | |
} | |
case NEON::BI__builtin_neon_vcale_v: | |
case NEON::BI__builtin_neon_vcaleq_v: | |
case NEON::BI__builtin_neon_vcalt_v: | |
case NEON::BI__builtin_neon_vcaltq_v: | |
std::swap(Ops[0], Ops[1]); | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcage_v: | |
case NEON::BI__builtin_neon_vcageq_v: | |
case NEON::BI__builtin_neon_vcagt_v: | |
case NEON::BI__builtin_neon_vcagtq_v: { | |
llvm::Type *Ty; | |
switch (VTy->getScalarSizeInBits()) { | |
default: llvm_unreachable("unexpected type"); | |
case 32: | |
Ty = FloatTy; | |
break; | |
case 64: | |
Ty = DoubleTy; | |
break; | |
case 16: | |
Ty = HalfTy; | |
break; | |
} | |
llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements()); | |
llvm::Type *Tys[] = { VTy, VecFlt }; | |
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); | |
return EmitNeonCall(F, Ops, NameHint); | |
} | |
case NEON::BI__builtin_neon_vceqz_v: | |
case NEON::BI__builtin_neon_vceqzq_v: | |
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, | |
ICmpInst::ICMP_EQ, "vceqz"); | |
case NEON::BI__builtin_neon_vcgez_v: | |
case NEON::BI__builtin_neon_vcgezq_v: | |
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, | |
ICmpInst::ICMP_SGE, "vcgez"); | |
case NEON::BI__builtin_neon_vclez_v: | |
case NEON::BI__builtin_neon_vclezq_v: | |
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, | |
ICmpInst::ICMP_SLE, "vclez"); | |
case NEON::BI__builtin_neon_vcgtz_v: | |
case NEON::BI__builtin_neon_vcgtzq_v: | |
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, | |
ICmpInst::ICMP_SGT, "vcgtz"); | |
case NEON::BI__builtin_neon_vcltz_v: | |
case NEON::BI__builtin_neon_vcltzq_v: | |
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, | |
ICmpInst::ICMP_SLT, "vcltz"); | |
case NEON::BI__builtin_neon_vclz_v: | |
case NEON::BI__builtin_neon_vclzq_v: | |
// We generate target-independent intrinsic, which needs a second argument | |
// for whether or not clz of zero is undefined; on ARM it isn't. | |
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); | |
break; | |
case NEON::BI__builtin_neon_vcvt_f32_v: | |
case NEON::BI__builtin_neon_vcvtq_f32_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), | |
HasLegalHalfType); | |
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") | |
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); | |
case NEON::BI__builtin_neon_vcvt_f16_v: | |
case NEON::BI__builtin_neon_vcvtq_f16_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), | |
HasLegalHalfType); | |
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") | |
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); | |
case NEON::BI__builtin_neon_vcvt_n_f16_v: | |
case NEON::BI__builtin_neon_vcvt_n_f32_v: | |
case NEON::BI__builtin_neon_vcvt_n_f64_v: | |
case NEON::BI__builtin_neon_vcvtq_n_f16_v: | |
case NEON::BI__builtin_neon_vcvtq_n_f32_v: | |
case NEON::BI__builtin_neon_vcvtq_n_f64_v: { | |
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; | |
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; | |
Function *F = CGM.getIntrinsic(Int, Tys); | |
return EmitNeonCall(F, Ops, "vcvt_n"); | |
} | |
case NEON::BI__builtin_neon_vcvt_n_s16_v: | |
case NEON::BI__builtin_neon_vcvt_n_s32_v: | |
case NEON::BI__builtin_neon_vcvt_n_u16_v: | |
case NEON::BI__builtin_neon_vcvt_n_u32_v: | |
case NEON::BI__builtin_neon_vcvt_n_s64_v: | |
case NEON::BI__builtin_neon_vcvt_n_u64_v: | |
case NEON::BI__builtin_neon_vcvtq_n_s16_v: | |
case NEON::BI__builtin_neon_vcvtq_n_s32_v: | |
case NEON::BI__builtin_neon_vcvtq_n_u16_v: | |
case NEON::BI__builtin_neon_vcvtq_n_u32_v: | |
case NEON::BI__builtin_neon_vcvtq_n_s64_v: | |
case NEON::BI__builtin_neon_vcvtq_n_u64_v: { | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); | |
return EmitNeonCall(F, Ops, "vcvt_n"); | |
} | |
case NEON::BI__builtin_neon_vcvt_s32_v: | |
case NEON::BI__builtin_neon_vcvt_u32_v: | |
case NEON::BI__builtin_neon_vcvt_s64_v: | |
case NEON::BI__builtin_neon_vcvt_u64_v: | |
case NEON::BI__builtin_neon_vcvt_s16_v: | |
case NEON::BI__builtin_neon_vcvt_u16_v: | |
case NEON::BI__builtin_neon_vcvtq_s32_v: | |
case NEON::BI__builtin_neon_vcvtq_u32_v: | |
case NEON::BI__builtin_neon_vcvtq_s64_v: | |
case NEON::BI__builtin_neon_vcvtq_u64_v: | |
case NEON::BI__builtin_neon_vcvtq_s16_v: | |
case NEON::BI__builtin_neon_vcvtq_u16_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); | |
return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") | |
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); | |
} | |
case NEON::BI__builtin_neon_vcvta_s16_v: | |
case NEON::BI__builtin_neon_vcvta_s32_v: | |
case NEON::BI__builtin_neon_vcvta_s64_v: | |
case NEON::BI__builtin_neon_vcvta_u16_v: | |
case NEON::BI__builtin_neon_vcvta_u32_v: | |
case NEON::BI__builtin_neon_vcvta_u64_v: | |
case NEON::BI__builtin_neon_vcvtaq_s16_v: | |
case NEON::BI__builtin_neon_vcvtaq_s32_v: | |
case NEON::BI__builtin_neon_vcvtaq_s64_v: | |
case NEON::BI__builtin_neon_vcvtaq_u16_v: | |
case NEON::BI__builtin_neon_vcvtaq_u32_v: | |
case NEON::BI__builtin_neon_vcvtaq_u64_v: | |
case NEON::BI__builtin_neon_vcvtn_s16_v: | |
case NEON::BI__builtin_neon_vcvtn_s32_v: | |
case NEON::BI__builtin_neon_vcvtn_s64_v: | |
case NEON::BI__builtin_neon_vcvtn_u16_v: | |
case NEON::BI__builtin_neon_vcvtn_u32_v: | |
case NEON::BI__builtin_neon_vcvtn_u64_v: | |
case NEON::BI__builtin_neon_vcvtnq_s16_v: | |
case NEON::BI__builtin_neon_vcvtnq_s32_v: | |
case NEON::BI__builtin_neon_vcvtnq_s64_v: | |
case NEON::BI__builtin_neon_vcvtnq_u16_v: | |
case NEON::BI__builtin_neon_vcvtnq_u32_v: | |
case NEON::BI__builtin_neon_vcvtnq_u64_v: | |
case NEON::BI__builtin_neon_vcvtp_s16_v: | |
case NEON::BI__builtin_neon_vcvtp_s32_v: | |
case NEON::BI__builtin_neon_vcvtp_s64_v: | |
case NEON::BI__builtin_neon_vcvtp_u16_v: | |
case NEON::BI__builtin_neon_vcvtp_u32_v: | |
case NEON::BI__builtin_neon_vcvtp_u64_v: | |
case NEON::BI__builtin_neon_vcvtpq_s16_v: | |
case NEON::BI__builtin_neon_vcvtpq_s32_v: | |
case NEON::BI__builtin_neon_vcvtpq_s64_v: | |
case NEON::BI__builtin_neon_vcvtpq_u16_v: | |
case NEON::BI__builtin_neon_vcvtpq_u32_v: | |
case NEON::BI__builtin_neon_vcvtpq_u64_v: | |
case NEON::BI__builtin_neon_vcvtm_s16_v: | |
case NEON::BI__builtin_neon_vcvtm_s32_v: | |
case NEON::BI__builtin_neon_vcvtm_s64_v: | |
case NEON::BI__builtin_neon_vcvtm_u16_v: | |
case NEON::BI__builtin_neon_vcvtm_u32_v: | |
case NEON::BI__builtin_neon_vcvtm_u64_v: | |
case NEON::BI__builtin_neon_vcvtmq_s16_v: | |
case NEON::BI__builtin_neon_vcvtmq_s32_v: | |
case NEON::BI__builtin_neon_vcvtmq_s64_v: | |
case NEON::BI__builtin_neon_vcvtmq_u16_v: | |
case NEON::BI__builtin_neon_vcvtmq_u32_v: | |
case NEON::BI__builtin_neon_vcvtmq_u64_v: { | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); | |
} | |
case NEON::BI__builtin_neon_vext_v: | |
case NEON::BI__builtin_neon_vextq_v: { | |
int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) | |
Indices.push_back(i+CV); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); | |
} | |
case NEON::BI__builtin_neon_vfma_v: | |
case NEON::BI__builtin_neon_vfmaq_v: { | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
// NEON intrinsic puts accumulator first, unlike the LLVM fma. | |
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vld1_v: | |
case NEON::BI__builtin_neon_vld1q_v: { | |
llvm::Type *Tys[] = {Ty, Int8PtrTy}; | |
Ops.push_back(getAlignmentValue32(PtrOp0)); | |
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); | |
} | |
case NEON::BI__builtin_neon_vld1_x2_v: | |
case NEON::BI__builtin_neon_vld1q_x2_v: | |
case NEON::BI__builtin_neon_vld1_x3_v: | |
case NEON::BI__builtin_neon_vld1q_x3_v: | |
case NEON::BI__builtin_neon_vld1_x4_v: | |
case NEON::BI__builtin_neon_vld1q_x4_v: { | |
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld2_v: | |
case NEON::BI__builtin_neon_vld2q_v: | |
case NEON::BI__builtin_neon_vld3_v: | |
case NEON::BI__builtin_neon_vld3q_v: | |
case NEON::BI__builtin_neon_vld4_v: | |
case NEON::BI__builtin_neon_vld4q_v: | |
case NEON::BI__builtin_neon_vld2_dup_v: | |
case NEON::BI__builtin_neon_vld2q_dup_v: | |
case NEON::BI__builtin_neon_vld3_dup_v: | |
case NEON::BI__builtin_neon_vld3q_dup_v: | |
case NEON::BI__builtin_neon_vld4_dup_v: | |
case NEON::BI__builtin_neon_vld4q_dup_v: { | |
llvm::Type *Tys[] = {Ty, Int8PtrTy}; | |
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); | |
Value *Align = getAlignmentValue32(PtrOp1); | |
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld1_dup_v: | |
case NEON::BI__builtin_neon_vld1q_dup_v: { | |
Value *V = UndefValue::get(Ty); | |
Ty = llvm::PointerType::getUnqual(VTy->getElementType()); | |
PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); | |
LoadInst *Ld = Builder.CreateLoad(PtrOp0); | |
llvm::Constant *CI = ConstantInt::get(SizeTy, 0); | |
Ops[0] = Builder.CreateInsertElement(V, Ld, CI); | |
return EmitNeonSplat(Ops[0], CI); | |
} | |
case NEON::BI__builtin_neon_vld2_lane_v: | |
case NEON::BI__builtin_neon_vld2q_lane_v: | |
case NEON::BI__builtin_neon_vld3_lane_v: | |
case NEON::BI__builtin_neon_vld3q_lane_v: | |
case NEON::BI__builtin_neon_vld4_lane_v: | |
case NEON::BI__builtin_neon_vld4q_lane_v: { | |
llvm::Type *Tys[] = {Ty, Int8PtrTy}; | |
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); | |
for (unsigned I = 2; I < Ops.size() - 1; ++I) | |
Ops[I] = Builder.CreateBitCast(Ops[I], Ty); | |
Ops.push_back(getAlignmentValue32(PtrOp1)); | |
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vmovl_v: { | |
llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); | |
Ops[0] = Builder.CreateBitCast(Ops[0], DTy); | |
if (Usgn) | |
return Builder.CreateZExt(Ops[0], Ty, "vmovl"); | |
return Builder.CreateSExt(Ops[0], Ty, "vmovl"); | |
} | |
case NEON::BI__builtin_neon_vmovn_v: { | |
llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); | |
Ops[0] = Builder.CreateBitCast(Ops[0], QTy); | |
return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); | |
} | |
case NEON::BI__builtin_neon_vmull_v: | |
// FIXME: the integer vmull operations could be emitted in terms of pure | |
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of | |
// hoisting the exts outside loops. Until global ISel comes along that can | |
// see through such movement this leads to bad CodeGen. So we need an | |
// intrinsic for now. | |
Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; | |
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); | |
case NEON::BI__builtin_neon_vpadal_v: | |
case NEON::BI__builtin_neon_vpadalq_v: { | |
// The source operand type has twice as many elements of half the size. | |
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); | |
llvm::Type *EltTy = | |
llvm::IntegerType::get(getLLVMContext(), EltBits / 2); | |
llvm::Type *NarrowTy = | |
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); | |
llvm::Type *Tys[2] = { Ty, NarrowTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); | |
} | |
case NEON::BI__builtin_neon_vpaddl_v: | |
case NEON::BI__builtin_neon_vpaddlq_v: { | |
// The source operand type has twice as many elements of half the size. | |
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); | |
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); | |
llvm::Type *NarrowTy = | |
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); | |
llvm::Type *Tys[2] = { Ty, NarrowTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); | |
} | |
case NEON::BI__builtin_neon_vqdmlal_v: | |
case NEON::BI__builtin_neon_vqdmlsl_v: { | |
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); | |
Ops[1] = | |
EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); | |
Ops.resize(2); | |
return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); | |
} | |
case NEON::BI__builtin_neon_vqshl_n_v: | |
case NEON::BI__builtin_neon_vqshlq_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", | |
1, false); | |
case NEON::BI__builtin_neon_vqshlu_n_v: | |
case NEON::BI__builtin_neon_vqshluq_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", | |
1, false); | |
case NEON::BI__builtin_neon_vrecpe_v: | |
case NEON::BI__builtin_neon_vrecpeq_v: | |
case NEON::BI__builtin_neon_vrsqrte_v: | |
case NEON::BI__builtin_neon_vrsqrteq_v: | |
Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); | |
case NEON::BI__builtin_neon_vrndi_v: | |
case NEON::BI__builtin_neon_vrndiq_v: | |
Int = Intrinsic::nearbyint; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); | |
case NEON::BI__builtin_neon_vrshr_n_v: | |
case NEON::BI__builtin_neon_vrshrq_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", | |
1, true); | |
case NEON::BI__builtin_neon_vshl_n_v: | |
case NEON::BI__builtin_neon_vshlq_n_v: | |
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); | |
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], | |
"vshl_n"); | |
case NEON::BI__builtin_neon_vshll_n_v: { | |
llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); | |
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); | |
if (Usgn) | |
Ops[0] = Builder.CreateZExt(Ops[0], VTy); | |
else | |
Ops[0] = Builder.CreateSExt(Ops[0], VTy); | |
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); | |
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); | |
} | |
case NEON::BI__builtin_neon_vshrn_n_v: { | |
llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); | |
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); | |
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); | |
if (Usgn) | |
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); | |
else | |
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); | |
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); | |
} | |
case NEON::BI__builtin_neon_vshr_n_v: | |
case NEON::BI__builtin_neon_vshrq_n_v: | |
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); | |
case NEON::BI__builtin_neon_vst1_v: | |
case NEON::BI__builtin_neon_vst1q_v: | |
case NEON::BI__builtin_neon_vst2_v: | |
case NEON::BI__builtin_neon_vst2q_v: | |
case NEON::BI__builtin_neon_vst3_v: | |
case NEON::BI__builtin_neon_vst3q_v: | |
case NEON::BI__builtin_neon_vst4_v: | |
case NEON::BI__builtin_neon_vst4q_v: | |
case NEON::BI__builtin_neon_vst2_lane_v: | |
case NEON::BI__builtin_neon_vst2q_lane_v: | |
case NEON::BI__builtin_neon_vst3_lane_v: | |
case NEON::BI__builtin_neon_vst3q_lane_v: | |
case NEON::BI__builtin_neon_vst4_lane_v: | |
case NEON::BI__builtin_neon_vst4q_lane_v: { | |
llvm::Type *Tys[] = {Int8PtrTy, Ty}; | |
Ops.push_back(getAlignmentValue32(PtrOp0)); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst1_x2_v: | |
case NEON::BI__builtin_neon_vst1q_x2_v: | |
case NEON::BI__builtin_neon_vst1_x3_v: | |
case NEON::BI__builtin_neon_vst1q_x3_v: | |
case NEON::BI__builtin_neon_vst1_x4_v: | |
case NEON::BI__builtin_neon_vst1q_x4_v: { | |
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); | |
// TODO: Currently in AArch32 mode the pointer operand comes first, whereas | |
// in AArch64 it comes last. We may want to stick to one or another. | |
if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || | |
Arch == llvm::Triple::aarch64_32) { | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); | |
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); | |
} | |
llvm::Type *Tys[2] = { PTy, VTy }; | |
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vsubhn_v: { | |
llvm::VectorType *SrcTy = | |
llvm::VectorType::getExtendedElementVectorType(VTy); | |
// %sum = add <4 x i32> %lhs, %rhs | |
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); | |
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); | |
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> | |
Constant *ShiftAmt = | |
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); | |
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); | |
// %res = trunc <4 x i32> %high to <4 x i16> | |
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); | |
} | |
case NEON::BI__builtin_neon_vtrn_v: | |
case NEON::BI__builtin_neon_vtrnq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { | |
Indices.push_back(i+vi); | |
Indices.push_back(i+e+vi); | |
} | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vtst_v: | |
case NEON::BI__builtin_neon_vtstq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); | |
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], | |
ConstantAggregateZero::get(Ty)); | |
return Builder.CreateSExt(Ops[0], Ty, "vtst"); | |
} | |
case NEON::BI__builtin_neon_vuzp_v: | |
case NEON::BI__builtin_neon_vuzpq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) | |
Indices.push_back(2*i+vi); | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vzip_v: | |
case NEON::BI__builtin_neon_vzipq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { | |
Indices.push_back((i + vi*e) >> 1); | |
Indices.push_back(((i + vi*e) >> 1)+e); | |
} | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vdot_v: | |
case NEON::BI__builtin_neon_vdotq_v: { | |
llvm::Type *InputTy = | |
llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); | |
llvm::Type *Tys[2] = { Ty, InputTy }; | |
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); | |
} | |
case NEON::BI__builtin_neon_vfmlal_low_v: | |
case NEON::BI__builtin_neon_vfmlalq_low_v: { | |
llvm::Type *InputTy = | |
llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); | |
llvm::Type *Tys[2] = { Ty, InputTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); | |
} | |
case NEON::BI__builtin_neon_vfmlsl_low_v: | |
case NEON::BI__builtin_neon_vfmlslq_low_v: { | |
llvm::Type *InputTy = | |
llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); | |
llvm::Type *Tys[2] = { Ty, InputTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); | |
} | |
case NEON::BI__builtin_neon_vfmlal_high_v: | |
case NEON::BI__builtin_neon_vfmlalq_high_v: { | |
llvm::Type *InputTy = | |
llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); | |
llvm::Type *Tys[2] = { Ty, InputTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); | |
} | |
case NEON::BI__builtin_neon_vfmlsl_high_v: | |
case NEON::BI__builtin_neon_vfmlslq_high_v: { | |
llvm::Type *InputTy = | |
llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); | |
llvm::Type *Tys[2] = { Ty, InputTy }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); | |
} | |
} | |
assert(Int && "Expected valid intrinsic number"); | |
// Determine the type(s) of this overloaded AArch64 intrinsic. | |
Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); | |
Value *Result = EmitNeonCall(F, Ops, NameHint); | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
// AArch64 intrinsic one-element vector type cast to | |
// scalar type expected by the builtin | |
return Builder.CreateBitCast(Result, ResultType, NameHint); | |
} | |
Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( | |
Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, | |
const CmpInst::Predicate Ip, const Twine &Name) { | |
llvm::Type *OTy = Op->getType(); | |
// FIXME: this is utterly horrific. We should not be looking at previous | |
// codegen context to find out what needs doing. Unfortunately TableGen | |
// currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 | |
// (etc). | |
if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) | |
OTy = BI->getOperand(0)->getType(); | |
Op = Builder.CreateBitCast(Op, OTy); | |
if (OTy->getScalarType()->isFloatingPointTy()) { | |
Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); | |
} else { | |
Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); | |
} | |
return Builder.CreateSExt(Op, Ty, Name); | |
} | |
static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, | |
Value *ExtOp, Value *IndexOp, | |
llvm::Type *ResTy, unsigned IntID, | |
const char *Name) { | |
SmallVector<Value *, 2> TblOps; | |
if (ExtOp) | |
TblOps.push_back(ExtOp); | |
// Build a vector containing sequential number like (0, 1, 2, ..., 15) | |
SmallVector<uint32_t, 16> Indices; | |
llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType()); | |
for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { | |
Indices.push_back(2*i); | |
Indices.push_back(2*i+1); | |
} | |
int PairPos = 0, End = Ops.size() - 1; | |
while (PairPos < End) { | |
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], | |
Ops[PairPos+1], Indices, | |
Name)); | |
PairPos += 2; | |
} | |
// If there's an odd number of 64-bit lookup table, fill the high 64-bit | |
// of the 128-bit lookup table with zero. | |
if (PairPos == End) { | |
Value *ZeroTbl = ConstantAggregateZero::get(TblTy); | |
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], | |
ZeroTbl, Indices, Name)); | |
} | |
Function *TblF; | |
TblOps.push_back(IndexOp); | |
TblF = CGF.CGM.getIntrinsic(IntID, ResTy); | |
return CGF.EmitNeonCall(TblF, TblOps, Name); | |
} | |
Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { | |
unsigned Value; | |
switch (BuiltinID) { | |
default: | |
return nullptr; | |
case ARM::BI__builtin_arm_nop: | |
Value = 0; | |
break; | |
case ARM::BI__builtin_arm_yield: | |
case ARM::BI__yield: | |
Value = 1; | |
break; | |
case ARM::BI__builtin_arm_wfe: | |
case ARM::BI__wfe: | |
Value = 2; | |
break; | |
case ARM::BI__builtin_arm_wfi: | |
case ARM::BI__wfi: | |
Value = 3; | |
break; | |
case ARM::BI__builtin_arm_sev: | |
case ARM::BI__sev: | |
Value = 4; | |
break; | |
case ARM::BI__builtin_arm_sevl: | |
case ARM::BI__sevl: | |
Value = 5; | |
break; | |
} | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), | |
llvm::ConstantInt::get(Int32Ty, Value)); | |
} | |
// Generates the IR for the read/write special register builtin, | |
// ValueType is the type of the value that is to be written or read, | |
// RegisterType is the type of the register being written to or read from. | |
static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, | |
const CallExpr *E, | |
llvm::Type *RegisterType, | |
llvm::Type *ValueType, | |
bool IsRead, | |
StringRef SysReg = "") { | |
// write and register intrinsics only support 32 and 64 bit operations. | |
assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) | |
&& "Unsupported size for register."); | |
CodeGen::CGBuilderTy &Builder = CGF.Builder; | |
CodeGen::CodeGenModule &CGM = CGF.CGM; | |
LLVMContext &Context = CGM.getLLVMContext(); | |
if (SysReg.empty()) { | |
const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); | |
SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); | |
} | |
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; | |
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); | |
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); | |
llvm::Type *Types[] = { RegisterType }; | |
bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); | |
assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) | |
&& "Can't fit 64-bit value in 32-bit register"); | |
if (IsRead) { | |
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); | |
llvm::Value *Call = Builder.CreateCall(F, Metadata); | |
if (MixedTypes) | |
// Read into 64 bit register and then truncate result to 32 bit. | |
return Builder.CreateTrunc(Call, ValueType); | |
if (ValueType->isPointerTy()) | |
// Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). | |
return Builder.CreateIntToPtr(Call, ValueType); | |
return Call; | |
} | |
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); | |
llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); | |
if (MixedTypes) { | |
// Extend 32 bit write value to 64 bit to pass to write. | |
ArgValue = Builder.CreateZExt(ArgValue, RegisterType); | |
return Builder.CreateCall(F, { Metadata, ArgValue }); | |
} | |
if (ValueType->isPointerTy()) { | |
// Have VoidPtrTy ArgValue but want to return an i32/i64. | |
ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); | |
return Builder.CreateCall(F, { Metadata, ArgValue }); | |
} | |
return Builder.CreateCall(F, { Metadata, ArgValue }); | |
} | |
/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra | |
/// argument that specifies the vector type. | |
static bool HasExtraNeonArgument(unsigned BuiltinID) { | |
switch (BuiltinID) { | |
default: break; | |
case NEON::BI__builtin_neon_vget_lane_i8: | |
case NEON::BI__builtin_neon_vget_lane_i16: | |
case NEON::BI__builtin_neon_vget_lane_i32: | |
case NEON::BI__builtin_neon_vget_lane_i64: | |
case NEON::BI__builtin_neon_vget_lane_f32: | |
case NEON::BI__builtin_neon_vgetq_lane_i8: | |
case NEON::BI__builtin_neon_vgetq_lane_i16: | |
case NEON::BI__builtin_neon_vgetq_lane_i32: | |
case NEON::BI__builtin_neon_vgetq_lane_i64: | |
case NEON::BI__builtin_neon_vgetq_lane_f32: | |
case NEON::BI__builtin_neon_vset_lane_i8: | |
case NEON::BI__builtin_neon_vset_lane_i16: | |
case NEON::BI__builtin_neon_vset_lane_i32: | |
case NEON::BI__builtin_neon_vset_lane_i64: | |
case NEON::BI__builtin_neon_vset_lane_f32: | |
case NEON::BI__builtin_neon_vsetq_lane_i8: | |
case NEON::BI__builtin_neon_vsetq_lane_i16: | |
case NEON::BI__builtin_neon_vsetq_lane_i32: | |
case NEON::BI__builtin_neon_vsetq_lane_i64: | |
case NEON::BI__builtin_neon_vsetq_lane_f32: | |
case NEON::BI__builtin_neon_vsha1h_u32: | |
case NEON::BI__builtin_neon_vsha1cq_u32: | |
case NEON::BI__builtin_neon_vsha1pq_u32: | |
case NEON::BI__builtin_neon_vsha1mq_u32: | |
case clang::ARM::BI_MoveToCoprocessor: | |
case clang::ARM::BI_MoveToCoprocessor2: | |
return false; | |
} | |
return true; | |
} | |
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E, | |
ReturnValueSlot ReturnValue, | |
llvm::Triple::ArchType Arch) { | |
if (auto Hint = GetValueForARMHint(BuiltinID)) | |
return Hint; | |
if (BuiltinID == ARM::BI__emit) { | |
bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; | |
llvm::FunctionType *FTy = | |
llvm::FunctionType::get(VoidTy, /*Variadic=*/false); | |
Expr::EvalResult Result; | |
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) | |
llvm_unreachable("Sema will ensure that the parameter is constant"); | |
llvm::APSInt Value = Result.Val.getInt(); | |
uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); | |
llvm::InlineAsm *Emit = | |
IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", | |
/*hasSideEffects=*/true) | |
: InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", | |
/*hasSideEffects=*/true); | |
return Builder.CreateCall(Emit); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_dbg) { | |
Value *Option = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_prefetch) { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
Value *RW = EmitScalarExpr(E->getArg(1)); | |
Value *IsData = EmitScalarExpr(E->getArg(2)); | |
// Locality is not supported on ARM target | |
Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); | |
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); | |
return Builder.CreateCall(F, {Address, RW, Locality, IsData}); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_rbit) { | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_cls) { | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_cls64) { | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, | |
"cls"); | |
} | |
if (BuiltinID == ARM::BI__clear_cache) { | |
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); | |
const FunctionDecl *FD = E->getDirectCallee(); | |
Value *Ops[2]; | |
for (unsigned i = 0; i < 2; i++) | |
Ops[i] = EmitScalarExpr(E->getArg(i)); | |
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); | |
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); | |
StringRef Name = FD->getName(); | |
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_mcrr || | |
BuiltinID == ARM::BI__builtin_arm_mcrr2) { | |
Function *F; | |
switch (BuiltinID) { | |
default: llvm_unreachable("unexpected builtin"); | |
case ARM::BI__builtin_arm_mcrr: | |
F = CGM.getIntrinsic(Intrinsic::arm_mcrr); | |
break; | |
case ARM::BI__builtin_arm_mcrr2: | |
F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); | |
break; | |
} | |
// MCRR{2} instruction has 5 operands but | |
// the intrinsic has 4 because Rt and Rt2 | |
// are represented as a single unsigned 64 | |
// bit integer in the intrinsic definition | |
// but internally it's represented as 2 32 | |
// bit integers. | |
Value *Coproc = EmitScalarExpr(E->getArg(0)); | |
Value *Opc1 = EmitScalarExpr(E->getArg(1)); | |
Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); | |
Value *CRm = EmitScalarExpr(E->getArg(3)); | |
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); | |
Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); | |
Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); | |
Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); | |
return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_mrrc || | |
BuiltinID == ARM::BI__builtin_arm_mrrc2) { | |
Function *F; | |
switch (BuiltinID) { | |
default: llvm_unreachable("unexpected builtin"); | |
case ARM::BI__builtin_arm_mrrc: | |
F = CGM.getIntrinsic(Intrinsic::arm_mrrc); | |
break; | |
case ARM::BI__builtin_arm_mrrc2: | |
F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); | |
break; | |
} | |
Value *Coproc = EmitScalarExpr(E->getArg(0)); | |
Value *Opc1 = EmitScalarExpr(E->getArg(1)); | |
Value *CRm = EmitScalarExpr(E->getArg(2)); | |
Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); | |
// Returns an unsigned 64 bit integer, represented | |
// as two 32 bit integers. | |
Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); | |
Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); | |
Rt = Builder.CreateZExt(Rt, Int64Ty); | |
Rt1 = Builder.CreateZExt(Rt1, Int64Ty); | |
Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); | |
RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); | |
RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); | |
return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_ldrexd || | |
((BuiltinID == ARM::BI__builtin_arm_ldrex || | |
BuiltinID == ARM::BI__builtin_arm_ldaex) && | |
getContext().getTypeSize(E->getType()) == 64) || | |
BuiltinID == ARM::BI__ldrexd) { | |
Function *F; | |
switch (BuiltinID) { | |
default: llvm_unreachable("unexpected builtin"); | |
case ARM::BI__builtin_arm_ldaex: | |
F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); | |
break; | |
case ARM::BI__builtin_arm_ldrexd: | |
case ARM::BI__builtin_arm_ldrex: | |
case ARM::BI__ldrexd: | |
F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); | |
break; | |
} | |
Value *LdPtr = EmitScalarExpr(E->getArg(0)); | |
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), | |
"ldrexd"); | |
Value *Val0 = Builder.CreateExtractValue(Val, 1); | |
Value *Val1 = Builder.CreateExtractValue(Val, 0); | |
Val0 = Builder.CreateZExt(Val0, Int64Ty); | |
Val1 = Builder.CreateZExt(Val1, Int64Ty); | |
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); | |
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); | |
Val = Builder.CreateOr(Val, Val1); | |
return Builder.CreateBitCast(Val, ConvertType(E->getType())); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_ldrex || | |
BuiltinID == ARM::BI__builtin_arm_ldaex) { | |
Value *LoadAddr = EmitScalarExpr(E->getArg(0)); | |
QualType Ty = E->getType(); | |
llvm::Type *RealResTy = ConvertType(Ty); | |
llvm::Type *PtrTy = llvm::IntegerType::get( | |
getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); | |
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); | |
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex | |
? Intrinsic::arm_ldaex | |
: Intrinsic::arm_ldrex, | |
PtrTy); | |
Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); | |
if (RealResTy->isPointerTy()) | |
return Builder.CreateIntToPtr(Val, RealResTy); | |
else { | |
llvm::Type *IntResTy = llvm::IntegerType::get( | |
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); | |
Val = Builder.CreateTruncOrBitCast(Val, IntResTy); | |
return Builder.CreateBitCast(Val, RealResTy); | |
} | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_strexd || | |
((BuiltinID == ARM::BI__builtin_arm_stlex || | |
BuiltinID == ARM::BI__builtin_arm_strex) && | |
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { | |
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex | |
? Intrinsic::arm_stlexd | |
: Intrinsic::arm_strexd); | |
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); | |
Address Tmp = CreateMemTemp(E->getArg(0)->getType()); | |
Value *Val = EmitScalarExpr(E->getArg(0)); | |
Builder.CreateStore(Val, Tmp); | |
Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); | |
Val = Builder.CreateLoad(LdPtr); | |
Value *Arg0 = Builder.CreateExtractValue(Val, 0); | |
Value *Arg1 = Builder.CreateExtractValue(Val, 1); | |
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); | |
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_strex || | |
BuiltinID == ARM::BI__builtin_arm_stlex) { | |
Value *StoreVal = EmitScalarExpr(E->getArg(0)); | |
Value *StoreAddr = EmitScalarExpr(E->getArg(1)); | |
QualType Ty = E->getArg(0)->getType(); | |
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), | |
getContext().getTypeSize(Ty)); | |
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); | |
if (StoreVal->getType()->isPointerTy()) | |
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); | |
else { | |
llvm::Type *IntTy = llvm::IntegerType::get( | |
getLLVMContext(), | |
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); | |
StoreVal = Builder.CreateBitCast(StoreVal, IntTy); | |
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); | |
} | |
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex | |
? Intrinsic::arm_stlex | |
: Intrinsic::arm_strex, | |
StoreAddr->getType()); | |
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_clrex) { | |
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); | |
return Builder.CreateCall(F); | |
} | |
// CRC32 | |
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; | |
switch (BuiltinID) { | |
case ARM::BI__builtin_arm_crc32b: | |
CRCIntrinsicID = Intrinsic::arm_crc32b; break; | |
case ARM::BI__builtin_arm_crc32cb: | |
CRCIntrinsicID = Intrinsic::arm_crc32cb; break; | |
case ARM::BI__builtin_arm_crc32h: | |
CRCIntrinsicID = Intrinsic::arm_crc32h; break; | |
case ARM::BI__builtin_arm_crc32ch: | |
CRCIntrinsicID = Intrinsic::arm_crc32ch; break; | |
case ARM::BI__builtin_arm_crc32w: | |
case ARM::BI__builtin_arm_crc32d: | |
CRCIntrinsicID = Intrinsic::arm_crc32w; break; | |
case ARM::BI__builtin_arm_crc32cw: | |
case ARM::BI__builtin_arm_crc32cd: | |
CRCIntrinsicID = Intrinsic::arm_crc32cw; break; | |
} | |
if (CRCIntrinsicID != Intrinsic::not_intrinsic) { | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)); | |
Value *Arg1 = EmitScalarExpr(E->getArg(1)); | |
// crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w | |
// intrinsics, hence we need different codegen for these cases. | |
if (BuiltinID == ARM::BI__builtin_arm_crc32d || | |
BuiltinID == ARM::BI__builtin_arm_crc32cd) { | |
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); | |
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); | |
Value *Arg1b = Builder.CreateLShr(Arg1, C1); | |
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); | |
Function *F = CGM.getIntrinsic(CRCIntrinsicID); | |
Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); | |
return Builder.CreateCall(F, {Res, Arg1b}); | |
} else { | |
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); | |
Function *F = CGM.getIntrinsic(CRCIntrinsicID); | |
return Builder.CreateCall(F, {Arg0, Arg1}); | |
} | |
} | |
if (BuiltinID == ARM::BI__builtin_arm_rsr || | |
BuiltinID == ARM::BI__builtin_arm_rsr64 || | |
BuiltinID == ARM::BI__builtin_arm_rsrp || | |
BuiltinID == ARM::BI__builtin_arm_wsr || | |
BuiltinID == ARM::BI__builtin_arm_wsr64 || | |
BuiltinID == ARM::BI__builtin_arm_wsrp) { | |
bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr || | |
BuiltinID == ARM::BI__builtin_arm_rsr64 || | |
BuiltinID == ARM::BI__builtin_arm_rsrp; | |
bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || | |
BuiltinID == ARM::BI__builtin_arm_wsrp; | |
bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || | |
BuiltinID == ARM::BI__builtin_arm_wsr64; | |
llvm::Type *ValueType; | |
llvm::Type *RegisterType; | |
if (IsPointerBuiltin) { | |
ValueType = VoidPtrTy; | |
RegisterType = Int32Ty; | |
} else if (Is64Bit) { | |
ValueType = RegisterType = Int64Ty; | |
} else { | |
ValueType = RegisterType = Int32Ty; | |
} | |
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); | |
} | |
// Deal with MVE builtins | |
if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) | |
return Result; | |
// Find out if any arguments are required to be integer constant | |
// expressions. | |
unsigned ICEArguments = 0; | |
ASTContext::GetBuiltinTypeError Error; | |
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); | |
assert(Error == ASTContext::GE_None && "Should not codegen an error"); | |
auto getAlignmentValue32 = [&](Address addr) -> Value* { | |
return Builder.getInt32(addr.getAlignment().getQuantity()); | |
}; | |
Address PtrOp0 = Address::invalid(); | |
Address PtrOp1 = Address::invalid(); | |
SmallVector<Value*, 4> Ops; | |
bool HasExtraArg = HasExtraNeonArgument(BuiltinID); | |
unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); | |
for (unsigned i = 0, e = NumArgs; i != e; i++) { | |
if (i == 0) { | |
switch (BuiltinID) { | |
case NEON::BI__builtin_neon_vld1_v: | |
case NEON::BI__builtin_neon_vld1q_v: | |
case NEON::BI__builtin_neon_vld1q_lane_v: | |
case NEON::BI__builtin_neon_vld1_lane_v: | |
case NEON::BI__builtin_neon_vld1_dup_v: | |
case NEON::BI__builtin_neon_vld1q_dup_v: | |
case NEON::BI__builtin_neon_vst1_v: | |
case NEON::BI__builtin_neon_vst1q_v: | |
case NEON::BI__builtin_neon_vst1q_lane_v: | |
case NEON::BI__builtin_neon_vst1_lane_v: | |
case NEON::BI__builtin_neon_vst2_v: | |
case NEON::BI__builtin_neon_vst2q_v: | |
case NEON::BI__builtin_neon_vst2_lane_v: | |
case NEON::BI__builtin_neon_vst2q_lane_v: | |
case NEON::BI__builtin_neon_vst3_v: | |
case NEON::BI__builtin_neon_vst3q_v: | |
case NEON::BI__builtin_neon_vst3_lane_v: | |
case NEON::BI__builtin_neon_vst3q_lane_v: | |
case NEON::BI__builtin_neon_vst4_v: | |
case NEON::BI__builtin_neon_vst4q_v: | |
case NEON::BI__builtin_neon_vst4_lane_v: | |
case NEON::BI__builtin_neon_vst4q_lane_v: | |
// Get the alignment for the argument in addition to the value; | |
// we'll use it later. | |
PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); | |
Ops.push_back(PtrOp0.getPointer()); | |
continue; | |
} | |
} | |
if (i == 1) { | |
switch (BuiltinID) { | |
case NEON::BI__builtin_neon_vld2_v: | |
case NEON::BI__builtin_neon_vld2q_v: | |
case NEON::BI__builtin_neon_vld3_v: | |
case NEON::BI__builtin_neon_vld3q_v: | |
case NEON::BI__builtin_neon_vld4_v: | |
case NEON::BI__builtin_neon_vld4q_v: | |
case NEON::BI__builtin_neon_vld2_lane_v: | |
case NEON::BI__builtin_neon_vld2q_lane_v: | |
case NEON::BI__builtin_neon_vld3_lane_v: | |
case NEON::BI__builtin_neon_vld3q_lane_v: | |
case NEON::BI__builtin_neon_vld4_lane_v: | |
case NEON::BI__builtin_neon_vld4q_lane_v: | |
case NEON::BI__builtin_neon_vld2_dup_v: | |
case NEON::BI__builtin_neon_vld2q_dup_v: | |
case NEON::BI__builtin_neon_vld3_dup_v: | |
case NEON::BI__builtin_neon_vld3q_dup_v: | |
case NEON::BI__builtin_neon_vld4_dup_v: | |
case NEON::BI__builtin_neon_vld4q_dup_v: | |
// Get the alignment for the argument in addition to the value; | |
// we'll use it later. | |
PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); | |
Ops.push_back(PtrOp1.getPointer()); | |
continue; | |
} | |
} | |
if ((ICEArguments & (1 << i)) == 0) { | |
Ops.push_back(EmitScalarExpr(E->getArg(i))); | |
} else { | |
// If this is required to be a constant, constant fold it so that we know | |
// that the generated intrinsic gets a ConstantInt. | |
llvm::APSInt Result; | |
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); | |
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; | |
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); | |
} | |
} | |
switch (BuiltinID) { | |
default: break; | |
case NEON::BI__builtin_neon_vget_lane_i8: | |
case NEON::BI__builtin_neon_vget_lane_i16: | |
case NEON::BI__builtin_neon_vget_lane_i32: | |
case NEON::BI__builtin_neon_vget_lane_i64: | |
case NEON::BI__builtin_neon_vget_lane_f32: | |
case NEON::BI__builtin_neon_vgetq_lane_i8: | |
case NEON::BI__builtin_neon_vgetq_lane_i16: | |
case NEON::BI__builtin_neon_vgetq_lane_i32: | |
case NEON::BI__builtin_neon_vgetq_lane_i64: | |
case NEON::BI__builtin_neon_vgetq_lane_f32: | |
return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); | |
case NEON::BI__builtin_neon_vrndns_f32: { | |
Value *Arg = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *Tys[] = {Arg->getType()}; | |
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); | |
return Builder.CreateCall(F, {Arg}, "vrndn"); } | |
case NEON::BI__builtin_neon_vset_lane_i8: | |
case NEON::BI__builtin_neon_vset_lane_i16: | |
case NEON::BI__builtin_neon_vset_lane_i32: | |
case NEON::BI__builtin_neon_vset_lane_i64: | |
case NEON::BI__builtin_neon_vset_lane_f32: | |
case NEON::BI__builtin_neon_vsetq_lane_i8: | |
case NEON::BI__builtin_neon_vsetq_lane_i16: | |
case NEON::BI__builtin_neon_vsetq_lane_i32: | |
case NEON::BI__builtin_neon_vsetq_lane_i64: | |
case NEON::BI__builtin_neon_vsetq_lane_f32: | |
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); | |
case NEON::BI__builtin_neon_vsha1h_u32: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, | |
"vsha1h"); | |
case NEON::BI__builtin_neon_vsha1cq_u32: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, | |
"vsha1h"); | |
case NEON::BI__builtin_neon_vsha1pq_u32: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, | |
"vsha1h"); | |
case NEON::BI__builtin_neon_vsha1mq_u32: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, | |
"vsha1h"); | |
// The ARM _MoveToCoprocessor builtins put the input register value as | |
// the first argument, but the LLVM intrinsic expects it as the third one. | |
case ARM::BI_MoveToCoprocessor: | |
case ARM::BI_MoveToCoprocessor2: { | |
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? | |
Intrinsic::arm_mcr : Intrinsic::arm_mcr2); | |
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], | |
Ops[3], Ops[4], Ops[5]}); | |
} | |
case ARM::BI_BitScanForward: | |
case ARM::BI_BitScanForward64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); | |
case ARM::BI_BitScanReverse: | |
case ARM::BI_BitScanReverse64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); | |
case ARM::BI_InterlockedAnd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); | |
case ARM::BI_InterlockedExchange64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); | |
case ARM::BI_InterlockedExchangeAdd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); | |
case ARM::BI_InterlockedExchangeSub64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); | |
case ARM::BI_InterlockedOr64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); | |
case ARM::BI_InterlockedXor64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); | |
case ARM::BI_InterlockedDecrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); | |
case ARM::BI_InterlockedIncrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); | |
case ARM::BI_InterlockedExchangeAdd8_acq: | |
case ARM::BI_InterlockedExchangeAdd16_acq: | |
case ARM::BI_InterlockedExchangeAdd_acq: | |
case ARM::BI_InterlockedExchangeAdd64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); | |
case ARM::BI_InterlockedExchangeAdd8_rel: | |
case ARM::BI_InterlockedExchangeAdd16_rel: | |
case ARM::BI_InterlockedExchangeAdd_rel: | |
case ARM::BI_InterlockedExchangeAdd64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); | |
case ARM::BI_InterlockedExchangeAdd8_nf: | |
case ARM::BI_InterlockedExchangeAdd16_nf: | |
case ARM::BI_InterlockedExchangeAdd_nf: | |
case ARM::BI_InterlockedExchangeAdd64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); | |
case ARM::BI_InterlockedExchange8_acq: | |
case ARM::BI_InterlockedExchange16_acq: | |
case ARM::BI_InterlockedExchange_acq: | |
case ARM::BI_InterlockedExchange64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); | |
case ARM::BI_InterlockedExchange8_rel: | |
case ARM::BI_InterlockedExchange16_rel: | |
case ARM::BI_InterlockedExchange_rel: | |
case ARM::BI_InterlockedExchange64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); | |
case ARM::BI_InterlockedExchange8_nf: | |
case ARM::BI_InterlockedExchange16_nf: | |
case ARM::BI_InterlockedExchange_nf: | |
case ARM::BI_InterlockedExchange64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); | |
case ARM::BI_InterlockedCompareExchange8_acq: | |
case ARM::BI_InterlockedCompareExchange16_acq: | |
case ARM::BI_InterlockedCompareExchange_acq: | |
case ARM::BI_InterlockedCompareExchange64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); | |
case ARM::BI_InterlockedCompareExchange8_rel: | |
case ARM::BI_InterlockedCompareExchange16_rel: | |
case ARM::BI_InterlockedCompareExchange_rel: | |
case ARM::BI_InterlockedCompareExchange64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); | |
case ARM::BI_InterlockedCompareExchange8_nf: | |
case ARM::BI_InterlockedCompareExchange16_nf: | |
case ARM::BI_InterlockedCompareExchange_nf: | |
case ARM::BI_InterlockedCompareExchange64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); | |
case ARM::BI_InterlockedOr8_acq: | |
case ARM::BI_InterlockedOr16_acq: | |
case ARM::BI_InterlockedOr_acq: | |
case ARM::BI_InterlockedOr64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); | |
case ARM::BI_InterlockedOr8_rel: | |
case ARM::BI_InterlockedOr16_rel: | |
case ARM::BI_InterlockedOr_rel: | |
case ARM::BI_InterlockedOr64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); | |
case ARM::BI_InterlockedOr8_nf: | |
case ARM::BI_InterlockedOr16_nf: | |
case ARM::BI_InterlockedOr_nf: | |
case ARM::BI_InterlockedOr64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); | |
case ARM::BI_InterlockedXor8_acq: | |
case ARM::BI_InterlockedXor16_acq: | |
case ARM::BI_InterlockedXor_acq: | |
case ARM::BI_InterlockedXor64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); | |
case ARM::BI_InterlockedXor8_rel: | |
case ARM::BI_InterlockedXor16_rel: | |
case ARM::BI_InterlockedXor_rel: | |
case ARM::BI_InterlockedXor64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); | |
case ARM::BI_InterlockedXor8_nf: | |
case ARM::BI_InterlockedXor16_nf: | |
case ARM::BI_InterlockedXor_nf: | |
case ARM::BI_InterlockedXor64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); | |
case ARM::BI_InterlockedAnd8_acq: | |
case ARM::BI_InterlockedAnd16_acq: | |
case ARM::BI_InterlockedAnd_acq: | |
case ARM::BI_InterlockedAnd64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); | |
case ARM::BI_InterlockedAnd8_rel: | |
case ARM::BI_InterlockedAnd16_rel: | |
case ARM::BI_InterlockedAnd_rel: | |
case ARM::BI_InterlockedAnd64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); | |
case ARM::BI_InterlockedAnd8_nf: | |
case ARM::BI_InterlockedAnd16_nf: | |
case ARM::BI_InterlockedAnd_nf: | |
case ARM::BI_InterlockedAnd64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); | |
case ARM::BI_InterlockedIncrement16_acq: | |
case ARM::BI_InterlockedIncrement_acq: | |
case ARM::BI_InterlockedIncrement64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); | |
case ARM::BI_InterlockedIncrement16_rel: | |
case ARM::BI_InterlockedIncrement_rel: | |
case ARM::BI_InterlockedIncrement64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); | |
case ARM::BI_InterlockedIncrement16_nf: | |
case ARM::BI_InterlockedIncrement_nf: | |
case ARM::BI_InterlockedIncrement64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); | |
case ARM::BI_InterlockedDecrement16_acq: | |
case ARM::BI_InterlockedDecrement_acq: | |
case ARM::BI_InterlockedDecrement64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); | |
case ARM::BI_InterlockedDecrement16_rel: | |
case ARM::BI_InterlockedDecrement_rel: | |
case ARM::BI_InterlockedDecrement64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); | |
case ARM::BI_InterlockedDecrement16_nf: | |
case ARM::BI_InterlockedDecrement_nf: | |
case ARM::BI_InterlockedDecrement64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); | |
} | |
// Get the last argument, which specifies the vector type. | |
assert(HasExtraArg); | |
llvm::APSInt Result; | |
const Expr *Arg = E->getArg(E->getNumArgs()-1); | |
if (!Arg->isIntegerConstantExpr(Result, getContext())) | |
return nullptr; | |
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || | |
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { | |
// Determine the overloaded type of this builtin. | |
llvm::Type *Ty; | |
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) | |
Ty = FloatTy; | |
else | |
Ty = DoubleTy; | |
// Determine whether this is an unsigned conversion or not. | |
bool usgn = Result.getZExtValue() == 1; | |
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; | |
// Call the appropriate intrinsic. | |
Function *F = CGM.getIntrinsic(Int, Ty); | |
return Builder.CreateCall(F, Ops, "vcvtr"); | |
} | |
// Determine the type of this overloaded NEON intrinsic. | |
NeonTypeFlags Type(Result.getZExtValue()); | |
bool usgn = Type.isUnsigned(); | |
bool rightShift = false; | |
llvm::VectorType *VTy = GetNeonType(this, Type, | |
getTarget().hasLegalHalfType()); | |
llvm::Type *Ty = VTy; | |
if (!Ty) | |
return nullptr; | |
// Many NEON builtins have identical semantics and uses in ARM and | |
// AArch64. Emit these in a single function. | |
auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); | |
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( | |
IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); | |
if (Builtin) | |
return EmitCommonNeonBuiltinExpr( | |
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, | |
Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); | |
unsigned Int; | |
switch (BuiltinID) { | |
default: return nullptr; | |
case NEON::BI__builtin_neon_vld1q_lane_v: | |
// Handle 64-bit integer elements as a special case. Use shuffles of | |
// one-element vectors to avoid poor code for i64 in the backend. | |
if (VTy->getElementType()->isIntegerTy(64)) { | |
// Extract the other lane. | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); | |
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); | |
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); | |
// Load the value as a one-element vector. | |
Ty = llvm::VectorType::get(VTy->getElementType(), 1); | |
llvm::Type *Tys[] = {Ty, Int8PtrTy}; | |
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); | |
Value *Align = getAlignmentValue32(PtrOp0); | |
Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); | |
// Combine them. | |
uint32_t Indices[] = {1 - Lane, Lane}; | |
SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices); | |
return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); | |
} | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vld1_lane_v: { | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); | |
Value *Ld = Builder.CreateLoad(PtrOp0); | |
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); | |
} | |
case NEON::BI__builtin_neon_vqrshrn_n_v: | |
Int = | |
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", | |
1, true); | |
case NEON::BI__builtin_neon_vqrshrun_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), | |
Ops, "vqrshrun_n", 1, true); | |
case NEON::BI__builtin_neon_vqshrn_n_v: | |
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", | |
1, true); | |
case NEON::BI__builtin_neon_vqshrun_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), | |
Ops, "vqshrun_n", 1, true); | |
case NEON::BI__builtin_neon_vrecpe_v: | |
case NEON::BI__builtin_neon_vrecpeq_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), | |
Ops, "vrecpe"); | |
case NEON::BI__builtin_neon_vrshrn_n_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), | |
Ops, "vrshrn_n", 1, true); | |
case NEON::BI__builtin_neon_vrsra_n_v: | |
case NEON::BI__builtin_neon_vrsraq_n_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); | |
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; | |
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); | |
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); | |
case NEON::BI__builtin_neon_vsri_n_v: | |
case NEON::BI__builtin_neon_vsriq_n_v: | |
rightShift = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vsli_n_v: | |
case NEON::BI__builtin_neon_vsliq_n_v: | |
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), | |
Ops, "vsli_n"); | |
case NEON::BI__builtin_neon_vsra_n_v: | |
case NEON::BI__builtin_neon_vsraq_n_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); | |
return Builder.CreateAdd(Ops[0], Ops[1]); | |
case NEON::BI__builtin_neon_vst1q_lane_v: | |
// Handle 64-bit integer elements as a special case. Use a shuffle to get | |
// a one-element vector and avoid poor code for i64 in the backend. | |
if (VTy->getElementType()->isIntegerTy(64)) { | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); | |
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); | |
Ops[2] = getAlignmentValue32(PtrOp0); | |
llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, | |
Tys), Ops); | |
} | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vst1_lane_v: { | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); | |
return St; | |
} | |
case NEON::BI__builtin_neon_vtbl1_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), | |
Ops, "vtbl1"); | |
case NEON::BI__builtin_neon_vtbl2_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), | |
Ops, "vtbl2"); | |
case NEON::BI__builtin_neon_vtbl3_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), | |
Ops, "vtbl3"); | |
case NEON::BI__builtin_neon_vtbl4_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), | |
Ops, "vtbl4"); | |
case NEON::BI__builtin_neon_vtbx1_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), | |
Ops, "vtbx1"); | |
case NEON::BI__builtin_neon_vtbx2_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), | |
Ops, "vtbx2"); | |
case NEON::BI__builtin_neon_vtbx3_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), | |
Ops, "vtbx3"); | |
case NEON::BI__builtin_neon_vtbx4_v: | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), | |
Ops, "vtbx4"); | |
} | |
} | |
static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, | |
llvm::Type *T, bool Unsigned) { | |
// Helper function called by Tablegen-constructed ARM MVE builtin codegen, | |
// which finds it convenient to specify signed/unsigned as a boolean flag. | |
return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); | |
} | |
static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { | |
// MVE-specific helper function for a vector splat, which infers the element | |
// count of the output vector by knowing that MVE vectors are all 128 bits | |
// wide. | |
unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); | |
return Builder.CreateVectorSplat(Elements, V); | |
} | |
Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E, | |
ReturnValueSlot ReturnValue, | |
llvm::Triple::ArchType Arch) { | |
enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; | |
Intrinsic::ID IRIntr; | |
unsigned NumVectors; | |
// Code autogenerated by Tablegen will handle all the simple builtins. | |
switch (BuiltinID) { | |
#include "clang/Basic/arm_mve_builtin_cg.inc" | |
// If we didn't match an MVE builtin id at all, go back to the | |
// main EmitARMBuiltinExpr. | |
default: | |
return nullptr; | |
} | |
// Anything that breaks from that switch is an MVE builtin that | |
// needs handwritten code to generate. | |
switch (CustomCodeGenType) { | |
case CustomCodeGen::VLD24: { | |
llvm::SmallVector<Value *, 4> Ops; | |
llvm::SmallVector<llvm::Type *, 4> Tys; | |
auto MvecCType = E->getType(); | |
auto MvecLType = ConvertType(MvecCType); | |
assert(MvecLType->isStructTy() && | |
"Return type for vld[24]q should be a struct"); | |
assert(MvecLType->getStructNumElements() == 1 && | |
"Return-type struct for vld[24]q should have one element"); | |
auto MvecLTypeInner = MvecLType->getStructElementType(0); | |
assert(MvecLTypeInner->isArrayTy() && | |
"Return-type struct for vld[24]q should contain an array"); | |
assert(MvecLTypeInner->getArrayNumElements() == NumVectors && | |
"Array member of return-type struct vld[24]q has wrong length"); | |
auto VecLType = MvecLTypeInner->getArrayElementType(); | |
Tys.push_back(VecLType); | |
auto Addr = E->getArg(0); | |
Ops.push_back(EmitScalarExpr(Addr)); | |
Tys.push_back(ConvertType(Addr->getType())); | |
Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); | |
Value *LoadResult = Builder.CreateCall(F, Ops); | |
Value *MvecOut = UndefValue::get(MvecLType); | |
for (unsigned i = 0; i < NumVectors; ++i) { | |
Value *Vec = Builder.CreateExtractValue(LoadResult, i); | |
MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); | |
} | |
if (ReturnValue.isNull()) | |
return MvecOut; | |
else | |
return Builder.CreateStore(MvecOut, ReturnValue.getValue()); | |
} | |
case CustomCodeGen::VST24: { | |
llvm::SmallVector<Value *, 4> Ops; | |
llvm::SmallVector<llvm::Type *, 4> Tys; | |
auto Addr = E->getArg(0); | |
Ops.push_back(EmitScalarExpr(Addr)); | |
Tys.push_back(ConvertType(Addr->getType())); | |
auto MvecCType = E->getArg(1)->getType(); | |
auto MvecLType = ConvertType(MvecCType); | |
assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); | |
assert(MvecLType->getStructNumElements() == 1 && | |
"Data-type struct for vst2q should have one element"); | |
auto MvecLTypeInner = MvecLType->getStructElementType(0); | |
assert(MvecLTypeInner->isArrayTy() && | |
"Data-type struct for vst2q should contain an array"); | |
assert(MvecLTypeInner->getArrayNumElements() == NumVectors && | |
"Array member of return-type struct vld[24]q has wrong length"); | |
auto VecLType = MvecLTypeInner->getArrayElementType(); | |
Tys.push_back(VecLType); | |
AggValueSlot MvecSlot = CreateAggTemp(MvecCType); | |
EmitAggExpr(E->getArg(1), MvecSlot); | |
auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); | |
for (unsigned i = 0; i < NumVectors; i++) | |
Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); | |
Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); | |
Value *ToReturn = nullptr; | |
for (unsigned i = 0; i < NumVectors; i++) { | |
Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); | |
ToReturn = Builder.CreateCall(F, Ops); | |
Ops.pop_back(); | |
} | |
return ToReturn; | |
} | |
} | |
llvm_unreachable("unknown custom codegen type."); | |
} | |
static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, | |
const CallExpr *E, | |
SmallVectorImpl<Value *> &Ops, | |
llvm::Triple::ArchType Arch) { | |
unsigned int Int = 0; | |
const char *s = nullptr; | |
switch (BuiltinID) { | |
default: | |
return nullptr; | |
case NEON::BI__builtin_neon_vtbl1_v: | |
case NEON::BI__builtin_neon_vqtbl1_v: | |
case NEON::BI__builtin_neon_vqtbl1q_v: | |
case NEON::BI__builtin_neon_vtbl2_v: | |
case NEON::BI__builtin_neon_vqtbl2_v: | |
case NEON::BI__builtin_neon_vqtbl2q_v: | |
case NEON::BI__builtin_neon_vtbl3_v: | |
case NEON::BI__builtin_neon_vqtbl3_v: | |
case NEON::BI__builtin_neon_vqtbl3q_v: | |
case NEON::BI__builtin_neon_vtbl4_v: | |
case NEON::BI__builtin_neon_vqtbl4_v: | |
case NEON::BI__builtin_neon_vqtbl4q_v: | |
break; | |
case NEON::BI__builtin_neon_vtbx1_v: | |
case NEON::BI__builtin_neon_vqtbx1_v: | |
case NEON::BI__builtin_neon_vqtbx1q_v: | |
case NEON::BI__builtin_neon_vtbx2_v: | |
case NEON::BI__builtin_neon_vqtbx2_v: | |
case NEON::BI__builtin_neon_vqtbx2q_v: | |
case NEON::BI__builtin_neon_vtbx3_v: | |
case NEON::BI__builtin_neon_vqtbx3_v: | |
case NEON::BI__builtin_neon_vqtbx3q_v: | |
case NEON::BI__builtin_neon_vtbx4_v: | |
case NEON::BI__builtin_neon_vqtbx4_v: | |
case NEON::BI__builtin_neon_vqtbx4q_v: | |
break; | |
} | |
assert(E->getNumArgs() >= 3); | |
// Get the last argument, which specifies the vector type. | |
llvm::APSInt Result; | |
const Expr *Arg = E->getArg(E->getNumArgs() - 1); | |
if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) | |
return nullptr; | |
// Determine the type of this overloaded NEON intrinsic. | |
NeonTypeFlags Type(Result.getZExtValue()); | |
llvm::VectorType *Ty = GetNeonType(&CGF, Type); | |
if (!Ty) | |
return nullptr; | |
CodeGen::CGBuilderTy &Builder = CGF.Builder; | |
// AArch64 scalar builtins are not overloaded, they do not have an extra | |
// argument that specifies the vector type, need to handle each case. | |
switch (BuiltinID) { | |
case NEON::BI__builtin_neon_vtbl1_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, | |
Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, | |
"vtbl1"); | |
} | |
case NEON::BI__builtin_neon_vtbl2_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, | |
Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, | |
"vtbl1"); | |
} | |
case NEON::BI__builtin_neon_vtbl3_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, | |
Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, | |
"vtbl2"); | |
} | |
case NEON::BI__builtin_neon_vtbl4_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, | |
Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, | |
"vtbl2"); | |
} | |
case NEON::BI__builtin_neon_vtbx1_v: { | |
Value *TblRes = | |
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], | |
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); | |
llvm::Constant *EightV = ConstantInt::get(Ty, 8); | |
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); | |
CmpRes = Builder.CreateSExt(CmpRes, Ty); | |
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); | |
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); | |
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); | |
} | |
case NEON::BI__builtin_neon_vtbx2_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], | |
Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, | |
"vtbx1"); | |
} | |
case NEON::BI__builtin_neon_vtbx3_v: { | |
Value *TblRes = | |
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], | |
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); | |
llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); | |
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], | |
TwentyFourV); | |
CmpRes = Builder.CreateSExt(CmpRes, Ty); | |
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); | |
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); | |
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); | |
} | |
case NEON::BI__builtin_neon_vtbx4_v: { | |
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], | |
Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, | |
"vtbx2"); | |
} | |
case NEON::BI__builtin_neon_vqtbl1_v: | |
case NEON::BI__builtin_neon_vqtbl1q_v: | |
Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; | |
case NEON::BI__builtin_neon_vqtbl2_v: | |
case NEON::BI__builtin_neon_vqtbl2q_v: { | |
Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; | |
case NEON::BI__builtin_neon_vqtbl3_v: | |
case NEON::BI__builtin_neon_vqtbl3q_v: | |
Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; | |
case NEON::BI__builtin_neon_vqtbl4_v: | |
case NEON::BI__builtin_neon_vqtbl4q_v: | |
Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; | |
case NEON::BI__builtin_neon_vqtbx1_v: | |
case NEON::BI__builtin_neon_vqtbx1q_v: | |
Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; | |
case NEON::BI__builtin_neon_vqtbx2_v: | |
case NEON::BI__builtin_neon_vqtbx2q_v: | |
Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; | |
case NEON::BI__builtin_neon_vqtbx3_v: | |
case NEON::BI__builtin_neon_vqtbx3q_v: | |
Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; | |
case NEON::BI__builtin_neon_vqtbx4_v: | |
case NEON::BI__builtin_neon_vqtbx4q_v: | |
Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; | |
} | |
} | |
if (!Int) | |
return nullptr; | |
Function *F = CGF.CGM.getIntrinsic(Int, Ty); | |
return CGF.EmitNeonCall(F, Ops, s); | |
} | |
Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { | |
llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); | |
Op = Builder.CreateBitCast(Op, Int16Ty); | |
Value *V = UndefValue::get(VTy); | |
llvm::Constant *CI = ConstantInt::get(SizeTy, 0); | |
Op = Builder.CreateInsertElement(V, Op, CI); | |
return Op; | |
} | |
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E, | |
llvm::Triple::ArchType Arch) { | |
unsigned HintID = static_cast<unsigned>(-1); | |
switch (BuiltinID) { | |
default: break; | |
case AArch64::BI__builtin_arm_nop: | |
HintID = 0; | |
break; | |
case AArch64::BI__builtin_arm_yield: | |
case AArch64::BI__yield: | |
HintID = 1; | |
break; | |
case AArch64::BI__builtin_arm_wfe: | |
case AArch64::BI__wfe: | |
HintID = 2; | |
break; | |
case AArch64::BI__builtin_arm_wfi: | |
case AArch64::BI__wfi: | |
HintID = 3; | |
break; | |
case AArch64::BI__builtin_arm_sev: | |
case AArch64::BI__sev: | |
HintID = 4; | |
break; | |
case AArch64::BI__builtin_arm_sevl: | |
case AArch64::BI__sevl: | |
HintID = 5; | |
break; | |
} | |
if (HintID != static_cast<unsigned>(-1)) { | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); | |
return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
Value *RW = EmitScalarExpr(E->getArg(1)); | |
Value *CacheLevel = EmitScalarExpr(E->getArg(2)); | |
Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); | |
Value *IsData = EmitScalarExpr(E->getArg(4)); | |
Value *Locality = nullptr; | |
if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { | |
// Temporal fetch, needs to convert cache level to locality. | |
Locality = llvm::ConstantInt::get(Int32Ty, | |
-cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); | |
} else { | |
// Streaming fetch. | |
Locality = llvm::ConstantInt::get(Int32Ty, 0); | |
} | |
// FIXME: We need AArch64 specific LLVM intrinsic if we want to specify | |
// PLDL3STRM or PLDL2STRM. | |
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); | |
return Builder.CreateCall(F, {Address, RW, Locality, IsData}); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_rbit) { | |
assert((getContext().getTypeSize(E->getType()) == 32) && | |
"rbit of unusual size!"); | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { | |
assert((getContext().getTypeSize(E->getType()) == 64) && | |
"rbit of unusual size!"); | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_cls) { | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, | |
"cls"); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_cls64) { | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, | |
"cls"); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { | |
assert((getContext().getTypeSize(E->getType()) == 32) && | |
"__jcvt of unusual size!"); | |
llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); | |
} | |
if (BuiltinID == AArch64::BI__clear_cache) { | |
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); | |
const FunctionDecl *FD = E->getDirectCallee(); | |
Value *Ops[2]; | |
for (unsigned i = 0; i < 2; i++) | |
Ops[i] = EmitScalarExpr(E->getArg(i)); | |
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); | |
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); | |
StringRef Name = FD->getName(); | |
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); | |
} | |
if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || | |
BuiltinID == AArch64::BI__builtin_arm_ldaex) && | |
getContext().getTypeSize(E->getType()) == 128) { | |
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex | |
? Intrinsic::aarch64_ldaxp | |
: Intrinsic::aarch64_ldxp); | |
Value *LdPtr = EmitScalarExpr(E->getArg(0)); | |
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), | |
"ldxp"); | |
Value *Val0 = Builder.CreateExtractValue(Val, 1); | |
Value *Val1 = Builder.CreateExtractValue(Val, 0); | |
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); | |
Val0 = Builder.CreateZExt(Val0, Int128Ty); | |
Val1 = Builder.CreateZExt(Val1, Int128Ty); | |
Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); | |
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); | |
Val = Builder.CreateOr(Val, Val1); | |
return Builder.CreateBitCast(Val, ConvertType(E->getType())); | |
} else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || | |
BuiltinID == AArch64::BI__builtin_arm_ldaex) { | |
Value *LoadAddr = EmitScalarExpr(E->getArg(0)); | |
QualType Ty = E->getType(); | |
llvm::Type *RealResTy = ConvertType(Ty); | |
llvm::Type *PtrTy = llvm::IntegerType::get( | |
getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); | |
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); | |
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex | |
? Intrinsic::aarch64_ldaxr | |
: Intrinsic::aarch64_ldxr, | |
PtrTy); | |
Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); | |
if (RealResTy->isPointerTy()) | |
return Builder.CreateIntToPtr(Val, RealResTy); | |
llvm::Type *IntResTy = llvm::IntegerType::get( | |
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); | |
Val = Builder.CreateTruncOrBitCast(Val, IntResTy); | |
return Builder.CreateBitCast(Val, RealResTy); | |
} | |
if ((BuiltinID == AArch64::BI__builtin_arm_strex || | |
BuiltinID == AArch64::BI__builtin_arm_stlex) && | |
getContext().getTypeSize(E->getArg(0)->getType()) == 128) { | |
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex | |
? Intrinsic::aarch64_stlxp | |
: Intrinsic::aarch64_stxp); | |
llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); | |
Address Tmp = CreateMemTemp(E->getArg(0)->getType()); | |
EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); | |
Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); | |
llvm::Value *Val = Builder.CreateLoad(Tmp); | |
Value *Arg0 = Builder.CreateExtractValue(Val, 0); | |
Value *Arg1 = Builder.CreateExtractValue(Val, 1); | |
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), | |
Int8PtrTy); | |
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_strex || | |
BuiltinID == AArch64::BI__builtin_arm_stlex) { | |
Value *StoreVal = EmitScalarExpr(E->getArg(0)); | |
Value *StoreAddr = EmitScalarExpr(E->getArg(1)); | |
QualType Ty = E->getArg(0)->getType(); | |
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), | |
getContext().getTypeSize(Ty)); | |
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); | |
if (StoreVal->getType()->isPointerTy()) | |
StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); | |
else { | |
llvm::Type *IntTy = llvm::IntegerType::get( | |
getLLVMContext(), | |
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); | |
StoreVal = Builder.CreateBitCast(StoreVal, IntTy); | |
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); | |
} | |
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex | |
? Intrinsic::aarch64_stlxr | |
: Intrinsic::aarch64_stxr, | |
StoreAddr->getType()); | |
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); | |
} | |
if (BuiltinID == AArch64::BI__getReg) { | |
Expr::EvalResult Result; | |
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) | |
llvm_unreachable("Sema will ensure that the parameter is constant"); | |
llvm::APSInt Value = Result.Val.getInt(); | |
LLVMContext &Context = CGM.getLLVMContext(); | |
std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10); | |
llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; | |
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); | |
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); | |
llvm::Function *F = | |
CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); | |
return Builder.CreateCall(F, Metadata); | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_clrex) { | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); | |
return Builder.CreateCall(F); | |
} | |
if (BuiltinID == AArch64::BI_ReadWriteBarrier) | |
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, | |
llvm::SyncScope::SingleThread); | |
// CRC32 | |
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; | |
switch (BuiltinID) { | |
case AArch64::BI__builtin_arm_crc32b: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; | |
case AArch64::BI__builtin_arm_crc32cb: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; | |
case AArch64::BI__builtin_arm_crc32h: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; | |
case AArch64::BI__builtin_arm_crc32ch: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; | |
case AArch64::BI__builtin_arm_crc32w: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; | |
case AArch64::BI__builtin_arm_crc32cw: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; | |
case AArch64::BI__builtin_arm_crc32d: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; | |
case AArch64::BI__builtin_arm_crc32cd: | |
CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; | |
} | |
if (CRCIntrinsicID != Intrinsic::not_intrinsic) { | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)); | |
Value *Arg1 = EmitScalarExpr(E->getArg(1)); | |
Function *F = CGM.getIntrinsic(CRCIntrinsicID); | |
llvm::Type *DataTy = F->getFunctionType()->getParamType(1); | |
Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); | |
return Builder.CreateCall(F, {Arg0, Arg1}); | |
} | |
// Memory Tagging Extensions (MTE) Intrinsics | |
Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; | |
switch (BuiltinID) { | |
case AArch64::BI__builtin_arm_irg: | |
MTEIntrinsicID = Intrinsic::aarch64_irg; break; | |
case AArch64::BI__builtin_arm_addg: | |
MTEIntrinsicID = Intrinsic::aarch64_addg; break; | |
case AArch64::BI__builtin_arm_gmi: | |
MTEIntrinsicID = Intrinsic::aarch64_gmi; break; | |
case AArch64::BI__builtin_arm_ldg: | |
MTEIntrinsicID = Intrinsic::aarch64_ldg; break; | |
case AArch64::BI__builtin_arm_stg: | |
MTEIntrinsicID = Intrinsic::aarch64_stg; break; | |
case AArch64::BI__builtin_arm_subp: | |
MTEIntrinsicID = Intrinsic::aarch64_subp; break; | |
} | |
if (MTEIntrinsicID != Intrinsic::not_intrinsic) { | |
llvm::Type *T = ConvertType(E->getType()); | |
if (MTEIntrinsicID == Intrinsic::aarch64_irg) { | |
Value *Pointer = EmitScalarExpr(E->getArg(0)); | |
Value *Mask = EmitScalarExpr(E->getArg(1)); | |
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); | |
Mask = Builder.CreateZExt(Mask, Int64Ty); | |
Value *RV = Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); | |
return Builder.CreatePointerCast(RV, T); | |
} | |
if (MTEIntrinsicID == Intrinsic::aarch64_addg) { | |
Value *Pointer = EmitScalarExpr(E->getArg(0)); | |
Value *TagOffset = EmitScalarExpr(E->getArg(1)); | |
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); | |
TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); | |
Value *RV = Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); | |
return Builder.CreatePointerCast(RV, T); | |
} | |
if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { | |
Value *Pointer = EmitScalarExpr(E->getArg(0)); | |
Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); | |
ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); | |
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); | |
} | |
// Although it is possible to supply a different return | |
// address (first arg) to this intrinsic, for now we set | |
// return address same as input address. | |
if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { | |
Value *TagAddress = EmitScalarExpr(E->getArg(0)); | |
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); | |
Value *RV = Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); | |
return Builder.CreatePointerCast(RV, T); | |
} | |
// Although it is possible to supply a different tag (to set) | |
// to this intrinsic (as first arg), for now we supply | |
// the tag that is in input address arg (common use case). | |
if (MTEIntrinsicID == Intrinsic::aarch64_stg) { | |
Value *TagAddress = EmitScalarExpr(E->getArg(0)); | |
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); | |
} | |
if (MTEIntrinsicID == Intrinsic::aarch64_subp) { | |
Value *PointerA = EmitScalarExpr(E->getArg(0)); | |
Value *PointerB = EmitScalarExpr(E->getArg(1)); | |
PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); | |
PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); | |
} | |
} | |
if (BuiltinID == AArch64::BI__builtin_arm_rsr || | |
BuiltinID == AArch64::BI__builtin_arm_rsr64 || | |
BuiltinID == AArch64::BI__builtin_arm_rsrp || | |
BuiltinID == AArch64::BI__builtin_arm_wsr || | |
BuiltinID == AArch64::BI__builtin_arm_wsr64 || | |
BuiltinID == AArch64::BI__builtin_arm_wsrp) { | |
bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr || | |
BuiltinID == AArch64::BI__builtin_arm_rsr64 || | |
BuiltinID == AArch64::BI__builtin_arm_rsrp; | |
bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || | |
BuiltinID == AArch64::BI__builtin_arm_wsrp; | |
bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && | |
BuiltinID != AArch64::BI__builtin_arm_wsr; | |
llvm::Type *ValueType; | |
llvm::Type *RegisterType = Int64Ty; | |
if (IsPointerBuiltin) { | |
ValueType = VoidPtrTy; | |
} else if (Is64Bit) { | |
ValueType = Int64Ty; | |
} else { | |
ValueType = Int32Ty; | |
} | |
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); | |
} | |
if (BuiltinID == AArch64::BI_ReadStatusReg || | |
BuiltinID == AArch64::BI_WriteStatusReg) { | |
LLVMContext &Context = CGM.getLLVMContext(); | |
unsigned SysReg = | |
E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); | |
std::string SysRegStr; | |
llvm::raw_string_ostream(SysRegStr) << | |
((1 << 1) | ((SysReg >> 14) & 1)) << ":" << | |
((SysReg >> 11) & 7) << ":" << | |
((SysReg >> 7) & 15) << ":" << | |
((SysReg >> 3) & 15) << ":" << | |
( SysReg & 7); | |
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; | |
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); | |
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); | |
llvm::Type *RegisterType = Int64Ty; | |
llvm::Type *Types[] = { RegisterType }; | |
if (BuiltinID == AArch64::BI_ReadStatusReg) { | |
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); | |
return Builder.CreateCall(F, Metadata); | |
} | |
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); | |
llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); | |
return Builder.CreateCall(F, { Metadata, ArgValue }); | |
} | |
if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { | |
llvm::Function *F = | |
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); | |
return Builder.CreateCall(F); | |
} | |
if (BuiltinID == AArch64::BI__builtin_sponentry) { | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); | |
return Builder.CreateCall(F); | |
} | |
// Find out if any arguments are required to be integer constant | |
// expressions. | |
unsigned ICEArguments = 0; | |
ASTContext::GetBuiltinTypeError Error; | |
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); | |
assert(Error == ASTContext::GE_None && "Should not codegen an error"); | |
llvm::SmallVector<Value*, 4> Ops; | |
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { | |
if ((ICEArguments & (1 << i)) == 0) { | |
Ops.push_back(EmitScalarExpr(E->getArg(i))); | |
} else { | |
// If this is required to be a constant, constant fold it so that we know | |
// that the generated intrinsic gets a ConstantInt. | |
llvm::APSInt Result; | |
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); | |
assert(IsConst && "Constant arg isn't actually constant?"); | |
(void)IsConst; | |
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); | |
} | |
} | |
auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); | |
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( | |
SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); | |
if (Builtin) { | |
Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); | |
Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); | |
assert(Result && "SISD intrinsic should have been handled"); | |
return Result; | |
} | |
llvm::APSInt Result; | |
const Expr *Arg = E->getArg(E->getNumArgs()-1); | |
NeonTypeFlags Type(0); | |
if (Arg->isIntegerConstantExpr(Result, getContext())) | |
// Determine the type of this overloaded NEON intrinsic. | |
Type = NeonTypeFlags(Result.getZExtValue()); | |
bool usgn = Type.isUnsigned(); | |
bool quad = Type.isQuad(); | |
// Handle non-overloaded intrinsics first. | |
switch (BuiltinID) { | |
default: break; | |
case NEON::BI__builtin_neon_vabsh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); | |
case NEON::BI__builtin_neon_vldrq_p128: { | |
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); | |
llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); | |
Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); | |
return Builder.CreateAlignedLoad(Int128Ty, Ptr, | |
CharUnits::fromQuantity(16)); | |
} | |
case NEON::BI__builtin_neon_vstrq_p128: { | |
llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); | |
Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); | |
return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); | |
} | |
case NEON::BI__builtin_neon_vcvts_u32_f32: | |
case NEON::BI__builtin_neon_vcvtd_u64_f64: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvts_s32_f32: | |
case NEON::BI__builtin_neon_vcvtd_s64_f64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; | |
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; | |
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; | |
Ops[0] = Builder.CreateBitCast(Ops[0], FTy); | |
if (usgn) | |
return Builder.CreateFPToUI(Ops[0], InTy); | |
return Builder.CreateFPToSI(Ops[0], InTy); | |
} | |
case NEON::BI__builtin_neon_vcvts_f32_u32: | |
case NEON::BI__builtin_neon_vcvtd_f64_u64: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvts_f32_s32: | |
case NEON::BI__builtin_neon_vcvtd_f64_s64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; | |
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; | |
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; | |
Ops[0] = Builder.CreateBitCast(Ops[0], InTy); | |
if (usgn) | |
return Builder.CreateUIToFP(Ops[0], FTy); | |
return Builder.CreateSIToFP(Ops[0], FTy); | |
} | |
case NEON::BI__builtin_neon_vcvth_f16_u16: | |
case NEON::BI__builtin_neon_vcvth_f16_u32: | |
case NEON::BI__builtin_neon_vcvth_f16_u64: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvth_f16_s16: | |
case NEON::BI__builtin_neon_vcvth_f16_s32: | |
case NEON::BI__builtin_neon_vcvth_f16_s64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
llvm::Type *FTy = HalfTy; | |
llvm::Type *InTy; | |
if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) | |
InTy = Int64Ty; | |
else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) | |
InTy = Int32Ty; | |
else | |
InTy = Int16Ty; | |
Ops[0] = Builder.CreateBitCast(Ops[0], InTy); | |
if (usgn) | |
return Builder.CreateUIToFP(Ops[0], FTy); | |
return Builder.CreateSIToFP(Ops[0], FTy); | |
} | |
case NEON::BI__builtin_neon_vcvth_u16_f16: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvth_s16_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); | |
if (usgn) | |
return Builder.CreateFPToUI(Ops[0], Int16Ty); | |
return Builder.CreateFPToSI(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vcvth_u32_f16: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvth_s32_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); | |
if (usgn) | |
return Builder.CreateFPToUI(Ops[0], Int32Ty); | |
return Builder.CreateFPToSI(Ops[0], Int32Ty); | |
} | |
case NEON::BI__builtin_neon_vcvth_u64_f16: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vcvth_s64_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); | |
if (usgn) | |
return Builder.CreateFPToUI(Ops[0], Int64Ty); | |
return Builder.CreateFPToSI(Ops[0], Int64Ty); | |
} | |
case NEON::BI__builtin_neon_vcvtah_u16_f16: | |
case NEON::BI__builtin_neon_vcvtmh_u16_f16: | |
case NEON::BI__builtin_neon_vcvtnh_u16_f16: | |
case NEON::BI__builtin_neon_vcvtph_u16_f16: | |
case NEON::BI__builtin_neon_vcvtah_s16_f16: | |
case NEON::BI__builtin_neon_vcvtmh_s16_f16: | |
case NEON::BI__builtin_neon_vcvtnh_s16_f16: | |
case NEON::BI__builtin_neon_vcvtph_s16_f16: { | |
unsigned Int; | |
llvm::Type* InTy = Int32Ty; | |
llvm::Type* FTy = HalfTy; | |
llvm::Type *Tys[2] = {InTy, FTy}; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vcvtah_u16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtau; break; | |
case NEON::BI__builtin_neon_vcvtmh_u16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtmu; break; | |
case NEON::BI__builtin_neon_vcvtnh_u16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtnu; break; | |
case NEON::BI__builtin_neon_vcvtph_u16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtpu; break; | |
case NEON::BI__builtin_neon_vcvtah_s16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtas; break; | |
case NEON::BI__builtin_neon_vcvtmh_s16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtms; break; | |
case NEON::BI__builtin_neon_vcvtnh_s16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtns; break; | |
case NEON::BI__builtin_neon_vcvtph_s16_f16: | |
Int = Intrinsic::aarch64_neon_fcvtps; break; | |
} | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vcaleh_f16: | |
case NEON::BI__builtin_neon_vcalth_f16: | |
case NEON::BI__builtin_neon_vcageh_f16: | |
case NEON::BI__builtin_neon_vcagth_f16: { | |
unsigned Int; | |
llvm::Type* InTy = Int32Ty; | |
llvm::Type* FTy = HalfTy; | |
llvm::Type *Tys[2] = {InTy, FTy}; | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vcageh_f16: | |
Int = Intrinsic::aarch64_neon_facge; break; | |
case NEON::BI__builtin_neon_vcagth_f16: | |
Int = Intrinsic::aarch64_neon_facgt; break; | |
case NEON::BI__builtin_neon_vcaleh_f16: | |
Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; | |
case NEON::BI__builtin_neon_vcalth_f16: | |
Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; | |
} | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vcvth_n_s16_f16: | |
case NEON::BI__builtin_neon_vcvth_n_u16_f16: { | |
unsigned Int; | |
llvm::Type* InTy = Int32Ty; | |
llvm::Type* FTy = HalfTy; | |
llvm::Type *Tys[2] = {InTy, FTy}; | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vcvth_n_s16_f16: | |
Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; | |
case NEON::BI__builtin_neon_vcvth_n_u16_f16: | |
Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; | |
} | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vcvth_n_f16_s16: | |
case NEON::BI__builtin_neon_vcvth_n_f16_u16: { | |
unsigned Int; | |
llvm::Type* FTy = HalfTy; | |
llvm::Type* InTy = Int32Ty; | |
llvm::Type *Tys[2] = {FTy, InTy}; | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vcvth_n_f16_s16: | |
Int = Intrinsic::aarch64_neon_vcvtfxs2fp; | |
Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); | |
break; | |
case NEON::BI__builtin_neon_vcvth_n_f16_u16: | |
Int = Intrinsic::aarch64_neon_vcvtfxu2fp; | |
Ops[0] = Builder.CreateZExt(Ops[0], InTy); | |
break; | |
} | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); | |
} | |
case NEON::BI__builtin_neon_vpaddd_s64: { | |
llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2); | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
// The vector is v2f64, so make sure it's bitcast to that. | |
Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); | |
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); | |
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); | |
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); | |
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); | |
// Pairwise addition of a v2f64 into a scalar f64. | |
return Builder.CreateAdd(Op0, Op1, "vpaddd"); | |
} | |
case NEON::BI__builtin_neon_vpaddd_f64: { | |
llvm::Type *Ty = | |
llvm::VectorType::get(DoubleTy, 2); | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
// The vector is v2f64, so make sure it's bitcast to that. | |
Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); | |
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); | |
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); | |
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); | |
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); | |
// Pairwise addition of a v2f64 into a scalar f64. | |
return Builder.CreateFAdd(Op0, Op1, "vpaddd"); | |
} | |
case NEON::BI__builtin_neon_vpadds_f32: { | |
llvm::Type *Ty = | |
llvm::VectorType::get(FloatTy, 2); | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
// The vector is v2f32, so make sure it's bitcast to that. | |
Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); | |
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); | |
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); | |
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); | |
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); | |
// Pairwise addition of a v2f32 into a scalar f32. | |
return Builder.CreateFAdd(Op0, Op1, "vpaddd"); | |
} | |
case NEON::BI__builtin_neon_vceqzd_s64: | |
case NEON::BI__builtin_neon_vceqzd_f64: | |
case NEON::BI__builtin_neon_vceqzs_f32: | |
case NEON::BI__builtin_neon_vceqzh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitAArch64CompareBuiltinExpr( | |
Ops[0], ConvertType(E->getCallReturnType(getContext())), | |
ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); | |
case NEON::BI__builtin_neon_vcgezd_s64: | |
case NEON::BI__builtin_neon_vcgezd_f64: | |
case NEON::BI__builtin_neon_vcgezs_f32: | |
case NEON::BI__builtin_neon_vcgezh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitAArch64CompareBuiltinExpr( | |
Ops[0], ConvertType(E->getCallReturnType(getContext())), | |
ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); | |
case NEON::BI__builtin_neon_vclezd_s64: | |
case NEON::BI__builtin_neon_vclezd_f64: | |
case NEON::BI__builtin_neon_vclezs_f32: | |
case NEON::BI__builtin_neon_vclezh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitAArch64CompareBuiltinExpr( | |
Ops[0], ConvertType(E->getCallReturnType(getContext())), | |
ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); | |
case NEON::BI__builtin_neon_vcgtzd_s64: | |
case NEON::BI__builtin_neon_vcgtzd_f64: | |
case NEON::BI__builtin_neon_vcgtzs_f32: | |
case NEON::BI__builtin_neon_vcgtzh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitAArch64CompareBuiltinExpr( | |
Ops[0], ConvertType(E->getCallReturnType(getContext())), | |
ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); | |
case NEON::BI__builtin_neon_vcltzd_s64: | |
case NEON::BI__builtin_neon_vcltzd_f64: | |
case NEON::BI__builtin_neon_vcltzs_f32: | |
case NEON::BI__builtin_neon_vcltzh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitAArch64CompareBuiltinExpr( | |
Ops[0], ConvertType(E->getCallReturnType(getContext())), | |
ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); | |
case NEON::BI__builtin_neon_vceqzd_u64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); | |
Ops[0] = | |
Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); | |
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); | |
} | |
case NEON::BI__builtin_neon_vceqd_f64: | |
case NEON::BI__builtin_neon_vcled_f64: | |
case NEON::BI__builtin_neon_vcltd_f64: | |
case NEON::BI__builtin_neon_vcged_f64: | |
case NEON::BI__builtin_neon_vcgtd_f64: { | |
llvm::CmpInst::Predicate P; | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; | |
case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; | |
case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; | |
case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; | |
case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; | |
} | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); | |
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); | |
return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); | |
} | |
case NEON::BI__builtin_neon_vceqs_f32: | |
case NEON::BI__builtin_neon_vcles_f32: | |
case NEON::BI__builtin_neon_vclts_f32: | |
case NEON::BI__builtin_neon_vcges_f32: | |
case NEON::BI__builtin_neon_vcgts_f32: { | |
llvm::CmpInst::Predicate P; | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; | |
case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; | |
case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; | |
case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; | |
case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; | |
} | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); | |
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); | |
return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); | |
} | |
case NEON::BI__builtin_neon_vceqh_f16: | |
case NEON::BI__builtin_neon_vcleh_f16: | |
case NEON::BI__builtin_neon_vclth_f16: | |
case NEON::BI__builtin_neon_vcgeh_f16: | |
case NEON::BI__builtin_neon_vcgth_f16: { | |
llvm::CmpInst::Predicate P; | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; | |
case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; | |
case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; | |
case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; | |
case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; | |
} | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); | |
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); | |
return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); | |
} | |
case NEON::BI__builtin_neon_vceqd_s64: | |
case NEON::BI__builtin_neon_vceqd_u64: | |
case NEON::BI__builtin_neon_vcgtd_s64: | |
case NEON::BI__builtin_neon_vcgtd_u64: | |
case NEON::BI__builtin_neon_vcltd_s64: | |
case NEON::BI__builtin_neon_vcltd_u64: | |
case NEON::BI__builtin_neon_vcged_u64: | |
case NEON::BI__builtin_neon_vcged_s64: | |
case NEON::BI__builtin_neon_vcled_u64: | |
case NEON::BI__builtin_neon_vcled_s64: { | |
llvm::CmpInst::Predicate P; | |
switch (BuiltinID) { | |
default: llvm_unreachable("missing builtin ID in switch!"); | |
case NEON::BI__builtin_neon_vceqd_s64: | |
case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; | |
case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; | |
case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; | |
case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; | |
case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; | |
case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; | |
case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; | |
case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; | |
case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; | |
} | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); | |
Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); | |
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); | |
} | |
case NEON::BI__builtin_neon_vtstd_s64: | |
case NEON::BI__builtin_neon_vtstd_u64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); | |
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); | |
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], | |
llvm::Constant::getNullValue(Int64Ty)); | |
return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); | |
} | |
case NEON::BI__builtin_neon_vset_lane_i8: | |
case NEON::BI__builtin_neon_vset_lane_i16: | |
case NEON::BI__builtin_neon_vset_lane_i32: | |
case NEON::BI__builtin_neon_vset_lane_i64: | |
case NEON::BI__builtin_neon_vset_lane_f32: | |
case NEON::BI__builtin_neon_vsetq_lane_i8: | |
case NEON::BI__builtin_neon_vsetq_lane_i16: | |
case NEON::BI__builtin_neon_vsetq_lane_i32: | |
case NEON::BI__builtin_neon_vsetq_lane_i64: | |
case NEON::BI__builtin_neon_vsetq_lane_f32: | |
Ops.push_back(EmitScalarExpr(E->getArg(2))); | |
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); | |
case NEON::BI__builtin_neon_vset_lane_f64: | |
// The vector type needs a cast for the v1f64 variant. | |
Ops[1] = Builder.CreateBitCast(Ops[1], | |
llvm::VectorType::get(DoubleTy, 1)); | |
Ops.push_back(EmitScalarExpr(E->getArg(2))); | |
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); | |
case NEON::BI__builtin_neon_vsetq_lane_f64: | |
// The vector type needs a cast for the v2f64 variant. | |
Ops[1] = Builder.CreateBitCast(Ops[1], | |
llvm::VectorType::get(DoubleTy, 2)); | |
Ops.push_back(EmitScalarExpr(E->getArg(2))); | |
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); | |
case NEON::BI__builtin_neon_vget_lane_i8: | |
case NEON::BI__builtin_neon_vdupb_lane_i8: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_i8: | |
case NEON::BI__builtin_neon_vdupb_laneq_i8: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vget_lane_i16: | |
case NEON::BI__builtin_neon_vduph_lane_i16: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_i16: | |
case NEON::BI__builtin_neon_vduph_laneq_i16: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vget_lane_i32: | |
case NEON::BI__builtin_neon_vdups_lane_i32: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vdups_lane_f32: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(FloatTy, 2)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vdups_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_i32: | |
case NEON::BI__builtin_neon_vdups_laneq_i32: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vget_lane_i64: | |
case NEON::BI__builtin_neon_vdupd_lane_i64: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vdupd_lane_f64: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(DoubleTy, 1)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vdupd_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_i64: | |
case NEON::BI__builtin_neon_vdupd_laneq_i64: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vget_lane_f32: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(FloatTy, 2)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vget_lane_f64: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(DoubleTy, 1)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_f32: | |
case NEON::BI__builtin_neon_vdups_laneq_f32: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(FloatTy, 4)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vgetq_lane_f64: | |
case NEON::BI__builtin_neon_vdupd_laneq_f64: | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::VectorType::get(DoubleTy, 2)); | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
case NEON::BI__builtin_neon_vaddh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); | |
case NEON::BI__builtin_neon_vsubh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); | |
case NEON::BI__builtin_neon_vmulh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); | |
case NEON::BI__builtin_neon_vdivh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); | |
case NEON::BI__builtin_neon_vfmah_f16: { | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); | |
// NEON intrinsic puts accumulator first, unlike the LLVM fma. | |
return Builder.CreateCall(F, | |
{EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vfmsh_f16: { | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); | |
Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); | |
// NEON intrinsic puts accumulator first, unlike the LLVM fma. | |
return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vaddd_s64: | |
case NEON::BI__builtin_neon_vaddd_u64: | |
return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); | |
case NEON::BI__builtin_neon_vsubd_s64: | |
case NEON::BI__builtin_neon_vsubd_u64: | |
return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); | |
case NEON::BI__builtin_neon_vqdmlalh_s16: | |
case NEON::BI__builtin_neon_vqdmlslh_s16: { | |
SmallVector<Value *, 2> ProductOps; | |
ProductOps.push_back(vectorWrapScalar16(Ops[1])); | |
ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); | |
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); | |
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), | |
ProductOps, "vqdmlXl"); | |
Constant *CI = ConstantInt::get(SizeTy, 0); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); | |
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 | |
? Intrinsic::aarch64_neon_sqadd | |
: Intrinsic::aarch64_neon_sqsub; | |
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); | |
} | |
case NEON::BI__builtin_neon_vqshlud_n_s64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), | |
Ops, "vqshlu_n"); | |
} | |
case NEON::BI__builtin_neon_vqshld_n_u64: | |
case NEON::BI__builtin_neon_vqshld_n_s64: { | |
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 | |
? Intrinsic::aarch64_neon_uqshl | |
: Intrinsic::aarch64_neon_sqshl; | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); | |
} | |
case NEON::BI__builtin_neon_vrshrd_n_u64: | |
case NEON::BI__builtin_neon_vrshrd_n_s64: { | |
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 | |
? Intrinsic::aarch64_neon_urshl | |
: Intrinsic::aarch64_neon_srshl; | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); | |
Ops[1] = ConstantInt::get(Int64Ty, -SV); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); | |
} | |
case NEON::BI__builtin_neon_vrsrad_n_u64: | |
case NEON::BI__builtin_neon_vrsrad_n_s64: { | |
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 | |
? Intrinsic::aarch64_neon_urshl | |
: Intrinsic::aarch64_neon_srshl; | |
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); | |
Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); | |
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), | |
{Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); | |
return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); | |
} | |
case NEON::BI__builtin_neon_vshld_n_s64: | |
case NEON::BI__builtin_neon_vshld_n_u64: { | |
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateShl( | |
Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); | |
} | |
case NEON::BI__builtin_neon_vshrd_n_s64: { | |
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); | |
return Builder.CreateAShr( | |
Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), | |
Amt->getZExtValue())), | |
"shrd_n"); | |
} | |
case NEON::BI__builtin_neon_vshrd_n_u64: { | |
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); | |
uint64_t ShiftAmt = Amt->getZExtValue(); | |
// Right-shifting an unsigned value by its size yields 0. | |
if (ShiftAmt == 64) | |
return ConstantInt::get(Int64Ty, 0); | |
return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), | |
"shrd_n"); | |
} | |
case NEON::BI__builtin_neon_vsrad_n_s64: { | |
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); | |
Ops[1] = Builder.CreateAShr( | |
Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), | |
Amt->getZExtValue())), | |
"shrd_n"); | |
return Builder.CreateAdd(Ops[0], Ops[1]); | |
} | |
case NEON::BI__builtin_neon_vsrad_n_u64: { | |
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); | |
uint64_t ShiftAmt = Amt->getZExtValue(); | |
// Right-shifting an unsigned value by its size yields 0. | |
// As Op + 0 = Op, return Ops[0] directly. | |
if (ShiftAmt == 64) | |
return Ops[0]; | |
Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), | |
"shrd_n"); | |
return Builder.CreateAdd(Ops[0], Ops[1]); | |
} | |
case NEON::BI__builtin_neon_vqdmlalh_lane_s16: | |
case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: | |
case NEON::BI__builtin_neon_vqdmlslh_lane_s16: | |
case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { | |
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), | |
"lane"); | |
SmallVector<Value *, 2> ProductOps; | |
ProductOps.push_back(vectorWrapScalar16(Ops[1])); | |
ProductOps.push_back(vectorWrapScalar16(Ops[2])); | |
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); | |
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), | |
ProductOps, "vqdmlXl"); | |
Constant *CI = ConstantInt::get(SizeTy, 0); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); | |
Ops.pop_back(); | |
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || | |
BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) | |
? Intrinsic::aarch64_neon_sqadd | |
: Intrinsic::aarch64_neon_sqsub; | |
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); | |
} | |
case NEON::BI__builtin_neon_vqdmlals_s32: | |
case NEON::BI__builtin_neon_vqdmlsls_s32: { | |
SmallVector<Value *, 2> ProductOps; | |
ProductOps.push_back(Ops[1]); | |
ProductOps.push_back(EmitScalarExpr(E->getArg(2))); | |
Ops[1] = | |
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), | |
ProductOps, "vqdmlXl"); | |
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 | |
? Intrinsic::aarch64_neon_sqadd | |
: Intrinsic::aarch64_neon_sqsub; | |
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); | |
} | |
case NEON::BI__builtin_neon_vqdmlals_lane_s32: | |
case NEON::BI__builtin_neon_vqdmlals_laneq_s32: | |
case NEON::BI__builtin_neon_vqdmlsls_lane_s32: | |
case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { | |
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), | |
"lane"); | |
SmallVector<Value *, 2> ProductOps; | |
ProductOps.push_back(Ops[1]); | |
ProductOps.push_back(Ops[2]); | |
Ops[1] = | |
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), | |
ProductOps, "vqdmlXl"); | |
Ops.pop_back(); | |
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || | |
BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) | |
? Intrinsic::aarch64_neon_sqadd | |
: Intrinsic::aarch64_neon_sqsub; | |
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); | |
} | |
case NEON::BI__builtin_neon_vduph_lane_f16: { | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vget_lane"); | |
} | |
case NEON::BI__builtin_neon_vduph_laneq_f16: { | |
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), | |
"vgetq_lane"); | |
} | |
case AArch64::BI_BitScanForward: | |
case AArch64::BI_BitScanForward64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); | |
case AArch64::BI_BitScanReverse: | |
case AArch64::BI_BitScanReverse64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); | |
case AArch64::BI_InterlockedAnd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); | |
case AArch64::BI_InterlockedExchange64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); | |
case AArch64::BI_InterlockedExchangeAdd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); | |
case AArch64::BI_InterlockedExchangeSub64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); | |
case AArch64::BI_InterlockedOr64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); | |
case AArch64::BI_InterlockedXor64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); | |
case AArch64::BI_InterlockedDecrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); | |
case AArch64::BI_InterlockedIncrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); | |
case AArch64::BI_InterlockedExchangeAdd8_acq: | |
case AArch64::BI_InterlockedExchangeAdd16_acq: | |
case AArch64::BI_InterlockedExchangeAdd_acq: | |
case AArch64::BI_InterlockedExchangeAdd64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); | |
case AArch64::BI_InterlockedExchangeAdd8_rel: | |
case AArch64::BI_InterlockedExchangeAdd16_rel: | |
case AArch64::BI_InterlockedExchangeAdd_rel: | |
case AArch64::BI_InterlockedExchangeAdd64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); | |
case AArch64::BI_InterlockedExchangeAdd8_nf: | |
case AArch64::BI_InterlockedExchangeAdd16_nf: | |
case AArch64::BI_InterlockedExchangeAdd_nf: | |
case AArch64::BI_InterlockedExchangeAdd64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); | |
case AArch64::BI_InterlockedExchange8_acq: | |
case AArch64::BI_InterlockedExchange16_acq: | |
case AArch64::BI_InterlockedExchange_acq: | |
case AArch64::BI_InterlockedExchange64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); | |
case AArch64::BI_InterlockedExchange8_rel: | |
case AArch64::BI_InterlockedExchange16_rel: | |
case AArch64::BI_InterlockedExchange_rel: | |
case AArch64::BI_InterlockedExchange64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); | |
case AArch64::BI_InterlockedExchange8_nf: | |
case AArch64::BI_InterlockedExchange16_nf: | |
case AArch64::BI_InterlockedExchange_nf: | |
case AArch64::BI_InterlockedExchange64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); | |
case AArch64::BI_InterlockedCompareExchange8_acq: | |
case AArch64::BI_InterlockedCompareExchange16_acq: | |
case AArch64::BI_InterlockedCompareExchange_acq: | |
case AArch64::BI_InterlockedCompareExchange64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); | |
case AArch64::BI_InterlockedCompareExchange8_rel: | |
case AArch64::BI_InterlockedCompareExchange16_rel: | |
case AArch64::BI_InterlockedCompareExchange_rel: | |
case AArch64::BI_InterlockedCompareExchange64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); | |
case AArch64::BI_InterlockedCompareExchange8_nf: | |
case AArch64::BI_InterlockedCompareExchange16_nf: | |
case AArch64::BI_InterlockedCompareExchange_nf: | |
case AArch64::BI_InterlockedCompareExchange64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); | |
case AArch64::BI_InterlockedOr8_acq: | |
case AArch64::BI_InterlockedOr16_acq: | |
case AArch64::BI_InterlockedOr_acq: | |
case AArch64::BI_InterlockedOr64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); | |
case AArch64::BI_InterlockedOr8_rel: | |
case AArch64::BI_InterlockedOr16_rel: | |
case AArch64::BI_InterlockedOr_rel: | |
case AArch64::BI_InterlockedOr64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); | |
case AArch64::BI_InterlockedOr8_nf: | |
case AArch64::BI_InterlockedOr16_nf: | |
case AArch64::BI_InterlockedOr_nf: | |
case AArch64::BI_InterlockedOr64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); | |
case AArch64::BI_InterlockedXor8_acq: | |
case AArch64::BI_InterlockedXor16_acq: | |
case AArch64::BI_InterlockedXor_acq: | |
case AArch64::BI_InterlockedXor64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); | |
case AArch64::BI_InterlockedXor8_rel: | |
case AArch64::BI_InterlockedXor16_rel: | |
case AArch64::BI_InterlockedXor_rel: | |
case AArch64::BI_InterlockedXor64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); | |
case AArch64::BI_InterlockedXor8_nf: | |
case AArch64::BI_InterlockedXor16_nf: | |
case AArch64::BI_InterlockedXor_nf: | |
case AArch64::BI_InterlockedXor64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); | |
case AArch64::BI_InterlockedAnd8_acq: | |
case AArch64::BI_InterlockedAnd16_acq: | |
case AArch64::BI_InterlockedAnd_acq: | |
case AArch64::BI_InterlockedAnd64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); | |
case AArch64::BI_InterlockedAnd8_rel: | |
case AArch64::BI_InterlockedAnd16_rel: | |
case AArch64::BI_InterlockedAnd_rel: | |
case AArch64::BI_InterlockedAnd64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); | |
case AArch64::BI_InterlockedAnd8_nf: | |
case AArch64::BI_InterlockedAnd16_nf: | |
case AArch64::BI_InterlockedAnd_nf: | |
case AArch64::BI_InterlockedAnd64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); | |
case AArch64::BI_InterlockedIncrement16_acq: | |
case AArch64::BI_InterlockedIncrement_acq: | |
case AArch64::BI_InterlockedIncrement64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); | |
case AArch64::BI_InterlockedIncrement16_rel: | |
case AArch64::BI_InterlockedIncrement_rel: | |
case AArch64::BI_InterlockedIncrement64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); | |
case AArch64::BI_InterlockedIncrement16_nf: | |
case AArch64::BI_InterlockedIncrement_nf: | |
case AArch64::BI_InterlockedIncrement64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); | |
case AArch64::BI_InterlockedDecrement16_acq: | |
case AArch64::BI_InterlockedDecrement_acq: | |
case AArch64::BI_InterlockedDecrement64_acq: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); | |
case AArch64::BI_InterlockedDecrement16_rel: | |
case AArch64::BI_InterlockedDecrement_rel: | |
case AArch64::BI_InterlockedDecrement64_rel: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); | |
case AArch64::BI_InterlockedDecrement16_nf: | |
case AArch64::BI_InterlockedDecrement_nf: | |
case AArch64::BI_InterlockedDecrement64_nf: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); | |
case AArch64::BI_InterlockedAdd: { | |
Value *Arg0 = EmitScalarExpr(E->getArg(0)); | |
Value *Arg1 = EmitScalarExpr(E->getArg(1)); | |
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( | |
AtomicRMWInst::Add, Arg0, Arg1, | |
llvm::AtomicOrdering::SequentiallyConsistent); | |
return Builder.CreateAdd(RMWI, Arg1); | |
} | |
} | |
llvm::VectorType *VTy = GetNeonType(this, Type); | |
llvm::Type *Ty = VTy; | |
if (!Ty) | |
return nullptr; | |
// Not all intrinsics handled by the common case work for AArch64 yet, so only | |
// defer to common code if it's been added to our special map. | |
Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, | |
AArch64SIMDIntrinsicsProvenSorted); | |
if (Builtin) | |
return EmitCommonNeonBuiltinExpr( | |
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, | |
Builtin->NameHint, Builtin->TypeModifier, E, Ops, | |
/*never use addresses*/ Address::invalid(), Address::invalid(), Arch); | |
if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) | |
return V; | |
unsigned Int; | |
switch (BuiltinID) { | |
default: return nullptr; | |
case NEON::BI__builtin_neon_vbsl_v: | |
case NEON::BI__builtin_neon_vbslq_v: { | |
llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); | |
Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); | |
Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); | |
Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); | |
Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); | |
Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); | |
Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); | |
return Builder.CreateBitCast(Ops[0], Ty); | |
} | |
case NEON::BI__builtin_neon_vfma_lane_v: | |
case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types | |
// The ARM builtins (and instructions) have the addend as the first | |
// operand, but the 'fma' intrinsics have it last. Swap it around here. | |
Value *Addend = Ops[0]; | |
Value *Multiplicand = Ops[1]; | |
Value *LaneSource = Ops[2]; | |
Ops[0] = Multiplicand; | |
Ops[1] = LaneSource; | |
Ops[2] = Addend; | |
// Now adjust things to handle the lane access. | |
llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? | |
llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : | |
VTy; | |
llvm::Constant *cst = cast<Constant>(Ops[3]); | |
Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst); | |
Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); | |
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); | |
Ops.pop_back(); | |
Int = Intrinsic::fma; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); | |
} | |
case NEON::BI__builtin_neon_vfma_laneq_v: { | |
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); | |
// v1f64 fma should be mapped to Neon scalar f64 fma | |
if (VTy && VTy->getElementType() == DoubleTy) { | |
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); | |
llvm::Type *VTy = GetNeonType(this, | |
NeonTypeFlags(NeonTypeFlags::Float64, false, true)); | |
Ops[2] = Builder.CreateBitCast(Ops[2], VTy); | |
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy); | |
Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); | |
return Builder.CreateBitCast(Result, Ty); | |
} | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(), | |
VTy->getNumElements() * 2); | |
Ops[2] = Builder.CreateBitCast(Ops[2], STy); | |
Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), | |
cast<ConstantInt>(Ops[3])); | |
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); | |
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vfmaq_laneq_v: { | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); | |
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vfmah_lane_f16: | |
case NEON::BI__builtin_neon_vfmas_lane_f32: | |
case NEON::BI__builtin_neon_vfmah_laneq_f16: | |
case NEON::BI__builtin_neon_vfmas_laneq_f32: | |
case NEON::BI__builtin_neon_vfmad_lane_f64: | |
case NEON::BI__builtin_neon_vfmad_laneq_f64: { | |
Ops.push_back(EmitScalarExpr(E->getArg(3))); | |
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); | |
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); | |
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); | |
} | |
case NEON::BI__builtin_neon_vmull_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; | |
if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); | |
case NEON::BI__builtin_neon_vmax_v: | |
case NEON::BI__builtin_neon_vmaxq_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; | |
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); | |
case NEON::BI__builtin_neon_vmaxh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Int = Intrinsic::aarch64_neon_fmax; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); | |
} | |
case NEON::BI__builtin_neon_vmin_v: | |
case NEON::BI__builtin_neon_vminq_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; | |
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); | |
case NEON::BI__builtin_neon_vminh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Int = Intrinsic::aarch64_neon_fmin; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); | |
} | |
case NEON::BI__builtin_neon_vabd_v: | |
case NEON::BI__builtin_neon_vabdq_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; | |
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); | |
case NEON::BI__builtin_neon_vpadal_v: | |
case NEON::BI__builtin_neon_vpadalq_v: { | |
unsigned ArgElts = VTy->getNumElements(); | |
llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); | |
unsigned BitWidth = EltTy->getBitWidth(); | |
llvm::Type *ArgTy = llvm::VectorType::get( | |
llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts); | |
llvm::Type* Tys[2] = { VTy, ArgTy }; | |
Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; | |
SmallVector<llvm::Value*, 1> TmpOps; | |
TmpOps.push_back(Ops[1]); | |
Function *F = CGM.getIntrinsic(Int, Tys); | |
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); | |
llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); | |
return Builder.CreateAdd(tmp, addend); | |
} | |
case NEON::BI__builtin_neon_vpmin_v: | |
case NEON::BI__builtin_neon_vpminq_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; | |
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); | |
case NEON::BI__builtin_neon_vpmax_v: | |
case NEON::BI__builtin_neon_vpmaxq_v: | |
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. | |
Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; | |
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); | |
case NEON::BI__builtin_neon_vminnm_v: | |
case NEON::BI__builtin_neon_vminnmq_v: | |
Int = Intrinsic::aarch64_neon_fminnm; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); | |
case NEON::BI__builtin_neon_vminnmh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Int = Intrinsic::aarch64_neon_fminnm; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); | |
case NEON::BI__builtin_neon_vmaxnm_v: | |
case NEON::BI__builtin_neon_vmaxnmq_v: | |
Int = Intrinsic::aarch64_neon_fmaxnm; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); | |
case NEON::BI__builtin_neon_vmaxnmh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
Int = Intrinsic::aarch64_neon_fmaxnm; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); | |
case NEON::BI__builtin_neon_vrecpss_f32: { | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), | |
Ops, "vrecps"); | |
} | |
case NEON::BI__builtin_neon_vrecpsd_f64: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), | |
Ops, "vrecps"); | |
case NEON::BI__builtin_neon_vrecpsh_f16: | |
Ops.push_back(EmitScalarExpr(E->getArg(1))); | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), | |
Ops, "vrecps"); | |
case NEON::BI__builtin_neon_vqshrun_n_v: | |
Int = Intrinsic::aarch64_neon_sqshrun; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); | |
case NEON::BI__builtin_neon_vqrshrun_n_v: | |
Int = Intrinsic::aarch64_neon_sqrshrun; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); | |
case NEON::BI__builtin_neon_vqshrn_n_v: | |
Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); | |
case NEON::BI__builtin_neon_vrshrn_n_v: | |
Int = Intrinsic::aarch64_neon_rshrn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); | |
case NEON::BI__builtin_neon_vqrshrn_n_v: | |
Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); | |
case NEON::BI__builtin_neon_vrndah_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::round; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); | |
} | |
case NEON::BI__builtin_neon_vrnda_v: | |
case NEON::BI__builtin_neon_vrndaq_v: { | |
Int = Intrinsic::round; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); | |
} | |
case NEON::BI__builtin_neon_vrndih_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::nearbyint; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); | |
} | |
case NEON::BI__builtin_neon_vrndmh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::floor; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); | |
} | |
case NEON::BI__builtin_neon_vrndm_v: | |
case NEON::BI__builtin_neon_vrndmq_v: { | |
Int = Intrinsic::floor; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); | |
} | |
case NEON::BI__builtin_neon_vrndnh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::aarch64_neon_frintn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); | |
} | |
case NEON::BI__builtin_neon_vrndn_v: | |
case NEON::BI__builtin_neon_vrndnq_v: { | |
Int = Intrinsic::aarch64_neon_frintn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); | |
} | |
case NEON::BI__builtin_neon_vrndns_f32: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::aarch64_neon_frintn; | |
return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); | |
} | |
case NEON::BI__builtin_neon_vrndph_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::ceil; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); | |
} | |
case NEON::BI__builtin_neon_vrndp_v: | |
case NEON::BI__builtin_neon_vrndpq_v: { | |
Int = Intrinsic::ceil; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); | |
} | |
case NEON::BI__builtin_neon_vrndxh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::rint; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); | |
} | |
case NEON::BI__builtin_neon_vrndx_v: | |
case NEON::BI__builtin_neon_vrndxq_v: { | |
Int = Intrinsic::rint; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); | |
} | |
case NEON::BI__builtin_neon_vrndh_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::trunc; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); | |
} | |
case NEON::BI__builtin_neon_vrnd_v: | |
case NEON::BI__builtin_neon_vrndq_v: { | |
Int = Intrinsic::trunc; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); | |
} | |
case NEON::BI__builtin_neon_vcvt_f64_v: | |
case NEON::BI__builtin_neon_vcvtq_f64_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); | |
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") | |
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); | |
case NEON::BI__builtin_neon_vcvt_f64_f32: { | |
assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && | |
"unexpected vcvt_f64_f32 builtin"); | |
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); | |
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); | |
return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); | |
} | |
case NEON::BI__builtin_neon_vcvt_f32_f64: { | |
assert(Type.getEltType() == NeonTypeFlags::Float32 && | |
"unexpected vcvt_f32_f64 builtin"); | |
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); | |
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); | |
return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); | |
} | |
case NEON::BI__builtin_neon_vcvt_s32_v: | |
case NEON::BI__builtin_neon_vcvt_u32_v: | |
case NEON::BI__builtin_neon_vcvt_s64_v: | |
case NEON::BI__builtin_neon_vcvt_u64_v: | |
case NEON::BI__builtin_neon_vcvt_s16_v: | |
case NEON::BI__builtin_neon_vcvt_u16_v: | |
case NEON::BI__builtin_neon_vcvtq_s32_v: | |
case NEON::BI__builtin_neon_vcvtq_u32_v: | |
case NEON::BI__builtin_neon_vcvtq_s64_v: | |
case NEON::BI__builtin_neon_vcvtq_u64_v: | |
case NEON::BI__builtin_neon_vcvtq_s16_v: | |
case NEON::BI__builtin_neon_vcvtq_u16_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); | |
if (usgn) | |
return Builder.CreateFPToUI(Ops[0], Ty); | |
return Builder.CreateFPToSI(Ops[0], Ty); | |
} | |
case NEON::BI__builtin_neon_vcvta_s16_v: | |
case NEON::BI__builtin_neon_vcvta_u16_v: | |
case NEON::BI__builtin_neon_vcvta_s32_v: | |
case NEON::BI__builtin_neon_vcvtaq_s16_v: | |
case NEON::BI__builtin_neon_vcvtaq_s32_v: | |
case NEON::BI__builtin_neon_vcvta_u32_v: | |
case NEON::BI__builtin_neon_vcvtaq_u16_v: | |
case NEON::BI__builtin_neon_vcvtaq_u32_v: | |
case NEON::BI__builtin_neon_vcvta_s64_v: | |
case NEON::BI__builtin_neon_vcvtaq_s64_v: | |
case NEON::BI__builtin_neon_vcvta_u64_v: | |
case NEON::BI__builtin_neon_vcvtaq_u64_v: { | |
Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); | |
} | |
case NEON::BI__builtin_neon_vcvtm_s16_v: | |
case NEON::BI__builtin_neon_vcvtm_s32_v: | |
case NEON::BI__builtin_neon_vcvtmq_s16_v: | |
case NEON::BI__builtin_neon_vcvtmq_s32_v: | |
case NEON::BI__builtin_neon_vcvtm_u16_v: | |
case NEON::BI__builtin_neon_vcvtm_u32_v: | |
case NEON::BI__builtin_neon_vcvtmq_u16_v: | |
case NEON::BI__builtin_neon_vcvtmq_u32_v: | |
case NEON::BI__builtin_neon_vcvtm_s64_v: | |
case NEON::BI__builtin_neon_vcvtmq_s64_v: | |
case NEON::BI__builtin_neon_vcvtm_u64_v: | |
case NEON::BI__builtin_neon_vcvtmq_u64_v: { | |
Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); | |
} | |
case NEON::BI__builtin_neon_vcvtn_s16_v: | |
case NEON::BI__builtin_neon_vcvtn_s32_v: | |
case NEON::BI__builtin_neon_vcvtnq_s16_v: | |
case NEON::BI__builtin_neon_vcvtnq_s32_v: | |
case NEON::BI__builtin_neon_vcvtn_u16_v: | |
case NEON::BI__builtin_neon_vcvtn_u32_v: | |
case NEON::BI__builtin_neon_vcvtnq_u16_v: | |
case NEON::BI__builtin_neon_vcvtnq_u32_v: | |
case NEON::BI__builtin_neon_vcvtn_s64_v: | |
case NEON::BI__builtin_neon_vcvtnq_s64_v: | |
case NEON::BI__builtin_neon_vcvtn_u64_v: | |
case NEON::BI__builtin_neon_vcvtnq_u64_v: { | |
Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); | |
} | |
case NEON::BI__builtin_neon_vcvtp_s16_v: | |
case NEON::BI__builtin_neon_vcvtp_s32_v: | |
case NEON::BI__builtin_neon_vcvtpq_s16_v: | |
case NEON::BI__builtin_neon_vcvtpq_s32_v: | |
case NEON::BI__builtin_neon_vcvtp_u16_v: | |
case NEON::BI__builtin_neon_vcvtp_u32_v: | |
case NEON::BI__builtin_neon_vcvtpq_u16_v: | |
case NEON::BI__builtin_neon_vcvtpq_u32_v: | |
case NEON::BI__builtin_neon_vcvtp_s64_v: | |
case NEON::BI__builtin_neon_vcvtpq_s64_v: | |
case NEON::BI__builtin_neon_vcvtp_u64_v: | |
case NEON::BI__builtin_neon_vcvtpq_u64_v: { | |
Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; | |
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); | |
} | |
case NEON::BI__builtin_neon_vmulx_v: | |
case NEON::BI__builtin_neon_vmulxq_v: { | |
Int = Intrinsic::aarch64_neon_fmulx; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); | |
} | |
case NEON::BI__builtin_neon_vmulxh_lane_f16: | |
case NEON::BI__builtin_neon_vmulxh_laneq_f16: { | |
// vmulx_lane should be mapped to Neon scalar mulx after | |
// extracting the scalar element | |
Ops.push_back(EmitScalarExpr(E->getArg(2))); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); | |
Ops.pop_back(); | |
Int = Intrinsic::aarch64_neon_fmulx; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); | |
} | |
case NEON::BI__builtin_neon_vmul_lane_v: | |
case NEON::BI__builtin_neon_vmul_laneq_v: { | |
// v1f64 vmul_lane should be mapped to Neon scalar mul lane | |
bool Quad = false; | |
if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) | |
Quad = true; | |
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); | |
llvm::Type *VTy = GetNeonType(this, | |
NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], VTy); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); | |
Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); | |
return Builder.CreateBitCast(Result, Ty); | |
} | |
case NEON::BI__builtin_neon_vnegd_s64: | |
return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); | |
case NEON::BI__builtin_neon_vnegh_f16: | |
return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); | |
case NEON::BI__builtin_neon_vpmaxnm_v: | |
case NEON::BI__builtin_neon_vpmaxnmq_v: { | |
Int = Intrinsic::aarch64_neon_fmaxnmp; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); | |
} | |
case NEON::BI__builtin_neon_vpminnm_v: | |
case NEON::BI__builtin_neon_vpminnmq_v: { | |
Int = Intrinsic::aarch64_neon_fminnmp; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); | |
} | |
case NEON::BI__builtin_neon_vsqrth_f16: { | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Int = Intrinsic::sqrt; | |
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); | |
} | |
case NEON::BI__builtin_neon_vsqrt_v: | |
case NEON::BI__builtin_neon_vsqrtq_v: { | |
Int = Intrinsic::sqrt; | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); | |
} | |
case NEON::BI__builtin_neon_vrbit_v: | |
case NEON::BI__builtin_neon_vrbitq_v: { | |
Int = Intrinsic::aarch64_neon_rbit; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); | |
} | |
case NEON::BI__builtin_neon_vaddv_u8: | |
// FIXME: These are handled by the AArch64 scalar code. | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vaddv_s8: { | |
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vaddv_u16: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vaddv_s16: { | |
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vaddvq_u8: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vaddvq_s8: { | |
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vaddvq_u16: | |
usgn = true; | |
LLVM_FALLTHROUGH; | |
case NEON::BI__builtin_neon_vaddvq_s16: { | |
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxv_u8: { | |
Int = Intrinsic::aarch64_neon_umaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxv_u16: { | |
Int = Intrinsic::aarch64_neon_umaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxvq_u8: { | |
Int = Intrinsic::aarch64_neon_umaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxvq_u16: { | |
Int = Intrinsic::aarch64_neon_umaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxv_s8: { | |
Int = Intrinsic::aarch64_neon_smaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxv_s16: { | |
Int = Intrinsic::aarch64_neon_smaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxvq_s8: { | |
Int = Intrinsic::aarch64_neon_smaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxvq_s16: { | |
Int = Intrinsic::aarch64_neon_smaxv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vmaxv_f16: { | |
Int = Intrinsic::aarch64_neon_fmaxv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vmaxvq_f16: { | |
Int = Intrinsic::aarch64_neon_fmaxv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vminv_u8: { | |
Int = Intrinsic::aarch64_neon_uminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vminv_u16: { | |
Int = Intrinsic::aarch64_neon_uminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vminvq_u8: { | |
Int = Intrinsic::aarch64_neon_uminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vminvq_u16: { | |
Int = Intrinsic::aarch64_neon_uminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vminv_s8: { | |
Int = Intrinsic::aarch64_neon_sminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vminv_s16: { | |
Int = Intrinsic::aarch64_neon_sminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vminvq_s8: { | |
Int = Intrinsic::aarch64_neon_sminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int8Ty); | |
} | |
case NEON::BI__builtin_neon_vminvq_s16: { | |
Int = Intrinsic::aarch64_neon_sminv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vminv_f16: { | |
Int = Intrinsic::aarch64_neon_fminv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vminvq_f16: { | |
Int = Intrinsic::aarch64_neon_fminv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vmaxnmv_f16: { | |
Int = Intrinsic::aarch64_neon_fmaxnmv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vmaxnmvq_f16: { | |
Int = Intrinsic::aarch64_neon_fmaxnmv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vminnmv_f16: { | |
Int = Intrinsic::aarch64_neon_fminnmv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vminnmvq_f16: { | |
Int = Intrinsic::aarch64_neon_fminnmv; | |
Ty = HalfTy; | |
VTy = llvm::VectorType::get(HalfTy, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); | |
return Builder.CreateTrunc(Ops[0], HalfTy); | |
} | |
case NEON::BI__builtin_neon_vmul_n_f64: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); | |
Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); | |
return Builder.CreateFMul(Ops[0], RHS); | |
} | |
case NEON::BI__builtin_neon_vaddlv_u8: { | |
Int = Intrinsic::aarch64_neon_uaddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vaddlv_u16: { | |
Int = Intrinsic::aarch64_neon_uaddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
} | |
case NEON::BI__builtin_neon_vaddlvq_u8: { | |
Int = Intrinsic::aarch64_neon_uaddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vaddlvq_u16: { | |
Int = Intrinsic::aarch64_neon_uaddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
} | |
case NEON::BI__builtin_neon_vaddlv_s8: { | |
Int = Intrinsic::aarch64_neon_saddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vaddlv_s16: { | |
Int = Intrinsic::aarch64_neon_saddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 4); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
} | |
case NEON::BI__builtin_neon_vaddlvq_s8: { | |
Int = Intrinsic::aarch64_neon_saddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int8Ty, 16); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
return Builder.CreateTrunc(Ops[0], Int16Ty); | |
} | |
case NEON::BI__builtin_neon_vaddlvq_s16: { | |
Int = Intrinsic::aarch64_neon_saddlv; | |
Ty = Int32Ty; | |
VTy = llvm::VectorType::get(Int16Ty, 8); | |
llvm::Type *Tys[2] = { Ty, VTy }; | |
Ops.push_back(EmitScalarExpr(E->getArg(0))); | |
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); | |
} | |
case NEON::BI__builtin_neon_vsri_n_v: | |
case NEON::BI__builtin_neon_vsriq_n_v: { | |
Int = Intrinsic::aarch64_neon_vsri; | |
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); | |
return EmitNeonCall(Intrin, Ops, "vsri_n"); | |
} | |
case NEON::BI__builtin_neon_vsli_n_v: | |
case NEON::BI__builtin_neon_vsliq_n_v: { | |
Int = Intrinsic::aarch64_neon_vsli; | |
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); | |
return EmitNeonCall(Intrin, Ops, "vsli_n"); | |
} | |
case NEON::BI__builtin_neon_vsra_n_v: | |
case NEON::BI__builtin_neon_vsraq_n_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); | |
return Builder.CreateAdd(Ops[0], Ops[1]); | |
case NEON::BI__builtin_neon_vrsra_n_v: | |
case NEON::BI__builtin_neon_vrsraq_n_v: { | |
Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; | |
SmallVector<llvm::Value*,2> TmpOps; | |
TmpOps.push_back(Ops[1]); | |
TmpOps.push_back(Ops[2]); | |
Function* F = CGM.getIntrinsic(Int, Ty); | |
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); | |
Ops[0] = Builder.CreateBitCast(Ops[0], VTy); | |
return Builder.CreateAdd(Ops[0], tmp); | |
} | |
case NEON::BI__builtin_neon_vld1_v: | |
case NEON::BI__builtin_neon_vld1q_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); | |
auto Alignment = CharUnits::fromQuantity( | |
BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16); | |
return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment); | |
} | |
case NEON::BI__builtin_neon_vst1_v: | |
case NEON::BI__builtin_neon_vst1q_v: | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], VTy); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
case NEON::BI__builtin_neon_vld1_lane_v: | |
case NEON::BI__builtin_neon_vld1q_lane_v: { | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ty = llvm::PointerType::getUnqual(VTy->getElementType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
auto Alignment = CharUnits::fromQuantity( | |
BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16); | |
Ops[0] = | |
Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); | |
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); | |
} | |
case NEON::BI__builtin_neon_vld1_dup_v: | |
case NEON::BI__builtin_neon_vld1q_dup_v: { | |
Value *V = UndefValue::get(Ty); | |
Ty = llvm::PointerType::getUnqual(VTy->getElementType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
auto Alignment = CharUnits::fromQuantity( | |
BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16); | |
Ops[0] = | |
Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); | |
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); | |
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); | |
return EmitNeonSplat(Ops[0], CI); | |
} | |
case NEON::BI__builtin_neon_vst1_lane_v: | |
case NEON::BI__builtin_neon_vst1q_lane_v: | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
return Builder.CreateDefaultAlignedStore(Ops[1], | |
Builder.CreateBitCast(Ops[0], Ty)); | |
case NEON::BI__builtin_neon_vld2_v: | |
case NEON::BI__builtin_neon_vld2q_v: { | |
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld3_v: | |
case NEON::BI__builtin_neon_vld3q_v: { | |
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld4_v: | |
case NEON::BI__builtin_neon_vld4q_v: { | |
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld2_dup_v: | |
case NEON::BI__builtin_neon_vld2q_dup_v: { | |
llvm::Type *PTy = | |
llvm::PointerType::getUnqual(VTy->getElementType()); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld3_dup_v: | |
case NEON::BI__builtin_neon_vld3q_dup_v: { | |
llvm::Type *PTy = | |
llvm::PointerType::getUnqual(VTy->getElementType()); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld4_dup_v: | |
case NEON::BI__builtin_neon_vld4q_dup_v: { | |
llvm::Type *PTy = | |
llvm::PointerType::getUnqual(VTy->getElementType()); | |
Ops[1] = Builder.CreateBitCast(Ops[1], PTy); | |
llvm::Type *Tys[2] = { VTy, PTy }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); | |
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); | |
Ops[0] = Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld2_lane_v: | |
case NEON::BI__builtin_neon_vld2q_lane_v: { | |
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); | |
Ops.push_back(Ops[1]); | |
Ops.erase(Ops.begin()+1); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); | |
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld3_lane_v: | |
case NEON::BI__builtin_neon_vld3q_lane_v: { | |
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); | |
Ops.push_back(Ops[1]); | |
Ops.erase(Ops.begin()+1); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Ops[3] = Builder.CreateBitCast(Ops[3], Ty); | |
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); | |
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vld4_lane_v: | |
case NEON::BI__builtin_neon_vld4q_lane_v: { | |
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; | |
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); | |
Ops.push_back(Ops[1]); | |
Ops.erase(Ops.begin()+1); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Ops[3] = Builder.CreateBitCast(Ops[3], Ty); | |
Ops[4] = Builder.CreateBitCast(Ops[4], Ty); | |
Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); | |
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); | |
Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], Ty); | |
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); | |
} | |
case NEON::BI__builtin_neon_vst2_v: | |
case NEON::BI__builtin_neon_vst2q_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst2_lane_v: | |
case NEON::BI__builtin_neon_vst2q_lane_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); | |
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst3_v: | |
case NEON::BI__builtin_neon_vst3q_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst3_lane_v: | |
case NEON::BI__builtin_neon_vst3q_lane_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); | |
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst4_v: | |
case NEON::BI__builtin_neon_vst4q_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vst4_lane_v: | |
case NEON::BI__builtin_neon_vst4q_lane_v: { | |
Ops.push_back(Ops[0]); | |
Ops.erase(Ops.begin()); | |
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); | |
llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), | |
Ops, ""); | |
} | |
case NEON::BI__builtin_neon_vtrn_v: | |
case NEON::BI__builtin_neon_vtrnq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { | |
Indices.push_back(i+vi); | |
Indices.push_back(i+e+vi); | |
} | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vuzp_v: | |
case NEON::BI__builtin_neon_vuzpq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) | |
Indices.push_back(2*i+vi); | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vzip_v: | |
case NEON::BI__builtin_neon_vzipq_v: { | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], Ty); | |
Ops[2] = Builder.CreateBitCast(Ops[2], Ty); | |
Value *SV = nullptr; | |
for (unsigned vi = 0; vi != 2; ++vi) { | |
SmallVector<uint32_t, 16> Indices; | |
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { | |
Indices.push_back((i + vi*e) >> 1); | |
Indices.push_back(((i + vi*e) >> 1)+e); | |
} | |
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); | |
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); | |
SV = Builder.CreateDefaultAlignedStore(SV, Addr); | |
} | |
return SV; | |
} | |
case NEON::BI__builtin_neon_vqtbl1q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), | |
Ops, "vtbl1"); | |
} | |
case NEON::BI__builtin_neon_vqtbl2q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), | |
Ops, "vtbl2"); | |
} | |
case NEON::BI__builtin_neon_vqtbl3q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), | |
Ops, "vtbl3"); | |
} | |
case NEON::BI__builtin_neon_vqtbl4q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), | |
Ops, "vtbl4"); | |
} | |
case NEON::BI__builtin_neon_vqtbx1q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), | |
Ops, "vtbx1"); | |
} | |
case NEON::BI__builtin_neon_vqtbx2q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), | |
Ops, "vtbx2"); | |
} | |
case NEON::BI__builtin_neon_vqtbx3q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), | |
Ops, "vtbx3"); | |
} | |
case NEON::BI__builtin_neon_vqtbx4q_v: { | |
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), | |
Ops, "vtbx4"); | |
} | |
case NEON::BI__builtin_neon_vsqadd_v: | |
case NEON::BI__builtin_neon_vsqaddq_v: { | |
Int = Intrinsic::aarch64_neon_usqadd; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); | |
} | |
case NEON::BI__builtin_neon_vuqadd_v: | |
case NEON::BI__builtin_neon_vuqaddq_v: { | |
Int = Intrinsic::aarch64_neon_suqadd; | |
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); | |
} | |
} | |
} | |
Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
assert(BuiltinID == BPF::BI__builtin_preserve_field_info && | |
"unexpected ARM builtin"); | |
const Expr *Arg = E->getArg(0); | |
bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; | |
if (!getDebugInfo()) { | |
CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g"); | |
return IsBitField ? EmitLValue(Arg).getBitFieldPointer() | |
: EmitLValue(Arg).getPointer(); | |
} | |
// Enable underlying preserve_*_access_index() generation. | |
bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; | |
IsInPreservedAIRegion = true; | |
Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() | |
: EmitLValue(Arg).getPointer(); | |
IsInPreservedAIRegion = OldIsInPreservedAIRegion; | |
ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); | |
Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); | |
// Built the IR for the preserve_field_info intrinsic. | |
llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( | |
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, | |
{FieldAddr->getType()}); | |
return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); | |
} | |
llvm::Value *CodeGenFunction:: | |
BuildVector(ArrayRef<llvm::Value*> Ops) { | |
assert((Ops.size() & (Ops.size() - 1)) == 0 && | |
"Not a power-of-two sized vector!"); | |
bool AllConstants = true; | |
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) | |
AllConstants &= isa<Constant>(Ops[i]); | |
// If this is a constant vector, create a ConstantVector. | |
if (AllConstants) { | |
SmallVector<llvm::Constant*, 16> CstOps; | |
for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |
CstOps.push_back(cast<Constant>(Ops[i])); | |
return llvm::ConstantVector::get(CstOps); | |
} | |
// Otherwise, insertelement the values to build the vector. | |
Value *Result = | |
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); | |
for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); | |
return Result; | |
} | |
// Convert the mask from an integer type to a vector of i1. | |
static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, | |
unsigned NumElts) { | |
llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(), | |
cast<IntegerType>(Mask->getType())->getBitWidth()); | |
Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); | |
// If we have less than 8 elements, then the starting mask was an i8 and | |
// we need to extract down to the right number of elements. | |
if (NumElts < 8) { | |
uint32_t Indices[4]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i; | |
MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, | |
makeArrayRef(Indices, NumElts), | |
"extract"); | |
} | |
return MaskVec; | |
} | |
static Value *EmitX86MaskedStore(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops, | |
unsigned Align) { | |
// Cast the pointer to right type. | |
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
Value *MaskVec = getMaskVecValue(CGF, Ops[2], | |
Ops[1]->getType()->getVectorNumElements()); | |
return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec); | |
} | |
static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops, unsigned Align) { | |
// Cast the pointer to right type. | |
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(Ops[1]->getType())); | |
Value *MaskVec = getMaskVecValue(CGF, Ops[2], | |
Ops[1]->getType()->getVectorNumElements()); | |
return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]); | |
} | |
static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops) { | |
llvm::Type *ResultTy = Ops[1]->getType(); | |
llvm::Type *PtrTy = ResultTy->getVectorElementType(); | |
// Cast the pointer to element type. | |
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(PtrTy)); | |
Value *MaskVec = getMaskVecValue(CGF, Ops[2], | |
ResultTy->getVectorNumElements()); | |
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, | |
ResultTy); | |
return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); | |
} | |
static Value *EmitX86CompressExpand(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops, | |
bool IsCompress) { | |
llvm::Type *ResultTy = Ops[1]->getType(); | |
Value *MaskVec = getMaskVecValue(CGF, Ops[2], | |
ResultTy->getVectorNumElements()); | |
Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress | |
: Intrinsic::x86_avx512_mask_expand; | |
llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); | |
return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); | |
} | |
static Value *EmitX86CompressStore(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops) { | |
llvm::Type *ResultTy = Ops[1]->getType(); | |
llvm::Type *PtrTy = ResultTy->getVectorElementType(); | |
// Cast the pointer to element type. | |
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], | |
llvm::PointerType::getUnqual(PtrTy)); | |
Value *MaskVec = getMaskVecValue(CGF, Ops[2], | |
ResultTy->getVectorNumElements()); | |
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, | |
ResultTy); | |
return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); | |
} | |
static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, | |
ArrayRef<Value *> Ops, | |
bool InvertLHS = false) { | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); | |
Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); | |
if (InvertLHS) | |
LHS = CGF.Builder.CreateNot(LHS); | |
return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), | |
Ops[0]->getType()); | |
} | |
static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, | |
Value *Amt, bool IsRight) { | |
llvm::Type *Ty = Op0->getType(); | |
// Amount may be scalar immediate, in which case create a splat vector. | |
// Funnel shifts amounts are treated as modulo and types are all power-of-2 so | |
// we only care about the lowest log2 bits anyway. | |
if (Amt->getType() != Ty) { | |
unsigned NumElts = Ty->getVectorNumElements(); | |
Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); | |
Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); | |
} | |
unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; | |
Function *F = CGF.CGM.getIntrinsic(IID, Ty); | |
return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); | |
} | |
static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, | |
bool IsSigned) { | |
Value *Op0 = Ops[0]; | |
Value *Op1 = Ops[1]; | |
llvm::Type *Ty = Op0->getType(); | |
uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; | |
CmpInst::Predicate Pred; | |
switch (Imm) { | |
case 0x0: | |
Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | |
break; | |
case 0x1: | |
Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | |
break; | |
case 0x2: | |
Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | |
break; | |
case 0x3: | |
Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | |
break; | |
case 0x4: | |
Pred = ICmpInst::ICMP_EQ; | |
break; | |
case 0x5: | |
Pred = ICmpInst::ICMP_NE; | |
break; | |
case 0x6: | |
return llvm::Constant::getNullValue(Ty); // FALSE | |
case 0x7: | |
return llvm::Constant::getAllOnesValue(Ty); // TRUE | |
default: | |
llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); | |
} | |
Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); | |
Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); | |
return Res; | |
} | |
static Value *EmitX86Select(CodeGenFunction &CGF, | |
Value *Mask, Value *Op0, Value *Op1) { | |
// If the mask is all ones just return first argument. | |
if (const auto *C = dyn_cast<Constant>(Mask)) | |
if (C->isAllOnesValue()) | |
return Op0; | |
Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements()); | |
return CGF.Builder.CreateSelect(Mask, Op0, Op1); | |
} | |
static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, | |
Value *Mask, Value *Op0, Value *Op1) { | |
// If the mask is all ones just return first argument. | |
if (const auto *C = dyn_cast<Constant>(Mask)) | |
if (C->isAllOnesValue()) | |
return Op0; | |
llvm::VectorType *MaskTy = | |
llvm::VectorType::get(CGF.Builder.getInt1Ty(), | |
Mask->getType()->getIntegerBitWidth()); | |
Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); | |
Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); | |
return CGF.Builder.CreateSelect(Mask, Op0, Op1); | |
} | |
static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, | |
unsigned NumElts, Value *MaskIn) { | |
if (MaskIn) { | |
const auto *C = dyn_cast<Constant>(MaskIn); | |
if (!C || !C->isAllOnesValue()) | |
Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); | |
} | |
if (NumElts < 8) { | |
uint32_t Indices[8]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i; | |
for (unsigned i = NumElts; i != 8; ++i) | |
Indices[i] = i % NumElts + NumElts; | |
Cmp = CGF.Builder.CreateShuffleVector( | |
Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); | |
} | |
return CGF.Builder.CreateBitCast(Cmp, | |
IntegerType::get(CGF.getLLVMContext(), | |
std::max(NumElts, 8U))); | |
} | |
static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, | |
bool Signed, ArrayRef<Value *> Ops) { | |
assert((Ops.size() == 2 || Ops.size() == 4) && | |
"Unexpected number of arguments"); | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
Value *Cmp; | |
if (CC == 3) { | |
Cmp = Constant::getNullValue( | |
llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); | |
} else if (CC == 7) { | |
Cmp = Constant::getAllOnesValue( | |
llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); | |
} else { | |
ICmpInst::Predicate Pred; | |
switch (CC) { | |
default: llvm_unreachable("Unknown condition code"); | |
case 0: Pred = ICmpInst::ICMP_EQ; break; | |
case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; | |
case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; | |
case 4: Pred = ICmpInst::ICMP_NE; break; | |
case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; | |
case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; | |
} | |
Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); | |
} | |
Value *MaskIn = nullptr; | |
if (Ops.size() == 4) | |
MaskIn = Ops[3]; | |
return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); | |
} | |
static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { | |
Value *Zero = Constant::getNullValue(In->getType()); | |
return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); | |
} | |
static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops, bool IsSigned) { | |
unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); | |
llvm::Type *Ty = Ops[1]->getType(); | |
Value *Res; | |
if (Rnd != 4) { | |
Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round | |
: Intrinsic::x86_avx512_uitofp_round; | |
Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); | |
Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); | |
} else { | |
Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) | |
: CGF.Builder.CreateUIToFP(Ops[0], Ty); | |
} | |
return EmitX86Select(CGF, Ops[2], Res, Ops[1]); | |
} | |
static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) { | |
llvm::Type *Ty = Ops[0]->getType(); | |
Value *Zero = llvm::Constant::getNullValue(Ty); | |
Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]); | |
Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero); | |
Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub); | |
return Res; | |
} | |
static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred, | |
ArrayRef<Value *> Ops) { | |
Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); | |
Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]); | |
assert(Ops.size() == 2); | |
return Res; | |
} | |
// Lowers X86 FMA intrinsics to IR. | |
static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops, | |
unsigned BuiltinID, bool IsAddSub) { | |
bool Subtract = false; | |
Intrinsic::ID IID = Intrinsic::not_intrinsic; | |
switch (BuiltinID) { | |
default: break; | |
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: | |
Subtract = true; | |
LLVM_FALLTHROUGH; | |
case clang::X86::BI__builtin_ia32_vfmaddps512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: | |
IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; | |
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: | |
Subtract = true; | |
LLVM_FALLTHROUGH; | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: | |
IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; | |
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: | |
Subtract = true; | |
LLVM_FALLTHROUGH; | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: | |
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; | |
break; | |
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: | |
Subtract = true; | |
LLVM_FALLTHROUGH; | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: | |
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; | |
break; | |
} | |
Value *A = Ops[0]; | |
Value *B = Ops[1]; | |
Value *C = Ops[2]; | |
if (Subtract) | |
C = CGF.Builder.CreateFNeg(C); | |
Value *Res; | |
// Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). | |
if (IID != Intrinsic::not_intrinsic && | |
cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) { | |
Function *Intr = CGF.CGM.getIntrinsic(IID); | |
Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); | |
} else { | |
llvm::Type *Ty = A->getType(); | |
Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); | |
Res = CGF.Builder.CreateCall(FMA, {A, B, C} ); | |
if (IsAddSub) { | |
// Negate even elts in C using a mask. | |
unsigned NumElts = Ty->getVectorNumElements(); | |
SmallVector<uint32_t, 16> Indices(NumElts); | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i + (i % 2) * NumElts; | |
Value *NegC = CGF.Builder.CreateFNeg(C); | |
Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} ); | |
Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices); | |
} | |
} | |
// Handle any required masking. | |
Value *MaskFalseVal = nullptr; | |
switch (BuiltinID) { | |
case clang::X86::BI__builtin_ia32_vfmaddps512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: | |
MaskFalseVal = Ops[0]; | |
break; | |
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: | |
MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); | |
break; | |
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: | |
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: | |
MaskFalseVal = Ops[2]; | |
break; | |
} | |
if (MaskFalseVal) | |
return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); | |
return Res; | |
} | |
static Value * | |
EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops, | |
Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0, | |
bool NegAcc = false) { | |
unsigned Rnd = 4; | |
if (Ops.size() > 4) | |
Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); | |
if (NegAcc) | |
Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); | |
Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); | |
Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); | |
Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); | |
Value *Res; | |
if (Rnd != 4) { | |
Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? | |
Intrinsic::x86_avx512_vfmadd_f32 : | |
Intrinsic::x86_avx512_vfmadd_f64; | |
Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), | |
{Ops[0], Ops[1], Ops[2], Ops[4]}); | |
} else { | |
Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); | |
Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); | |
} | |
// If we have more than 3 arguments, we need to do masking. | |
if (Ops.size() > 3) { | |
Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) | |
: Ops[PTIdx]; | |
// If we negated the accumulator and the its the PassThru value we need to | |
// bypass the negate. Conveniently Upper should be the same thing in this | |
// case. | |
if (NegAcc && PTIdx == 2) | |
PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); | |
Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); | |
} | |
return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); | |
} | |
static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, | |
ArrayRef<Value *> Ops) { | |
llvm::Type *Ty = Ops[0]->getType(); | |
// Arguments have a vXi32 type so cast to vXi64. | |
Ty = llvm::VectorType::get(CGF.Int64Ty, | |
Ty->getPrimitiveSizeInBits() / 64); | |
Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); | |
Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); | |
if (IsSigned) { | |
// Shift left then arithmetic shift right. | |
Constant *ShiftAmt = ConstantInt::get(Ty, 32); | |
LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); | |
LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); | |
RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); | |
RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); | |
} else { | |
// Clear the upper bits. | |
Constant *Mask = ConstantInt::get(Ty, 0xffffffff); | |
LHS = CGF.Builder.CreateAnd(LHS, Mask); | |
RHS = CGF.Builder.CreateAnd(RHS, Mask); | |
} | |
return CGF.Builder.CreateMul(LHS, RHS); | |
} | |
// Emit a masked pternlog intrinsic. This only exists because the header has to | |
// use a macro and we aren't able to pass the input argument to a pternlog | |
// builtin and a select builtin without evaluating it twice. | |
static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, | |
ArrayRef<Value *> Ops) { | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned VecWidth = Ty->getPrimitiveSizeInBits(); | |
unsigned EltWidth = Ty->getScalarSizeInBits(); | |
Intrinsic::ID IID; | |
if (VecWidth == 128 && EltWidth == 32) | |
IID = Intrinsic::x86_avx512_pternlog_d_128; | |
else if (VecWidth == 256 && EltWidth == 32) | |
IID = Intrinsic::x86_avx512_pternlog_d_256; | |
else if (VecWidth == 512 && EltWidth == 32) | |
IID = Intrinsic::x86_avx512_pternlog_d_512; | |
else if (VecWidth == 128 && EltWidth == 64) | |
IID = Intrinsic::x86_avx512_pternlog_q_128; | |
else if (VecWidth == 256 && EltWidth == 64) | |
IID = Intrinsic::x86_avx512_pternlog_q_256; | |
else if (VecWidth == 512 && EltWidth == 64) | |
IID = Intrinsic::x86_avx512_pternlog_q_512; | |
else | |
llvm_unreachable("Unexpected intrinsic"); | |
Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), | |
Ops.drop_back()); | |
Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; | |
return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); | |
} | |
static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, | |
llvm::Type *DstTy) { | |
unsigned NumberOfElements = DstTy->getVectorNumElements(); | |
Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); | |
return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); | |
} | |
// Emit addition or subtraction with signed/unsigned saturation. | |
static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF, | |
ArrayRef<Value *> Ops, bool IsSigned, | |
bool IsAddition) { | |
Intrinsic::ID IID = | |
IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat) | |
: (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat); | |
llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); | |
return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); | |
} | |
Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { | |
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); | |
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); | |
return EmitX86CpuIs(CPUStr); | |
} | |
// Convert a BF16 to a float. | |
static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, | |
const CallExpr *E, | |
ArrayRef<Value *> Ops) { | |
llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); | |
Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); | |
Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); | |
llvm::Type *ResultType = CGF.ConvertType(E->getType()); | |
Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); | |
return BitCast; | |
} | |
Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { | |
llvm::Type *Int32Ty = Builder.getInt32Ty(); | |
// Matching the struct layout from the compiler-rt/libgcc structure that is | |
// filled in: | |
// unsigned int __cpu_vendor; | |
// unsigned int __cpu_type; | |
// unsigned int __cpu_subtype; | |
// unsigned int __cpu_features[1]; | |
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, | |
llvm::ArrayType::get(Int32Ty, 1)); | |
// Grab the global __cpu_model. | |
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); | |
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); | |
// Calculate the index needed to access the correct field based on the | |
// range. Also adjust the expected value. | |
unsigned Index; | |
unsigned Value; | |
std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) | |
#define X86_VENDOR(ENUM, STRING) \ | |
.Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) | |
#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \ | |
.Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) | |
#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \ | |
.Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) | |
#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \ | |
.Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) | |
#include "llvm/Support/X86TargetParser.def" | |
.Default({0, 0}); | |
assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); | |
// Grab the appropriate field from __cpu_model. | |
llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), | |
ConstantInt::get(Int32Ty, Index)}; | |
llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); | |
CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); | |
// Check the value of the field against the requested value. | |
return Builder.CreateICmpEQ(CpuValue, | |
llvm::ConstantInt::get(Int32Ty, Value)); | |
} | |
Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { | |
const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); | |
StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); | |
return EmitX86CpuSupports(FeatureStr); | |
} | |
uint64_t | |
CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) { | |
// Processor features and mapping to processor feature value. | |
uint64_t FeaturesMask = 0; | |
for (const StringRef &FeatureStr : FeatureStrs) { | |
unsigned Feature = | |
StringSwitch<unsigned>(FeatureStr) | |
#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL) | |
#include "llvm/Support/X86TargetParser.def" | |
; | |
FeaturesMask |= (1ULL << Feature); | |
} | |
return FeaturesMask; | |
} | |
Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { | |
return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); | |
} | |
llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { | |
uint32_t Features1 = Lo_32(FeaturesMask); | |
uint32_t Features2 = Hi_32(FeaturesMask); | |
Value *Result = Builder.getTrue(); | |
if (Features1 != 0) { | |
// Matching the struct layout from the compiler-rt/libgcc structure that is | |
// filled in: | |
// unsigned int __cpu_vendor; | |
// unsigned int __cpu_type; | |
// unsigned int __cpu_subtype; | |
// unsigned int __cpu_features[1]; | |
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, | |
llvm::ArrayType::get(Int32Ty, 1)); | |
// Grab the global __cpu_model. | |
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); | |
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); | |
// Grab the first (0th) element from the field __cpu_features off of the | |
// global in the struct STy. | |
Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), | |
Builder.getInt32(0)}; | |
Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); | |
Value *Features = | |
Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); | |
// Check the value of the bit corresponding to the feature requested. | |
Value *Mask = Builder.getInt32(Features1); | |
Value *Bitset = Builder.CreateAnd(Features, Mask); | |
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); | |
Result = Builder.CreateAnd(Result, Cmp); | |
} | |
if (Features2 != 0) { | |
llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, | |
"__cpu_features2"); | |
cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); | |
Value *Features = | |
Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4)); | |
// Check the value of the bit corresponding to the feature requested. | |
Value *Mask = Builder.getInt32(Features2); | |
Value *Bitset = Builder.CreateAnd(Features, Mask); | |
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); | |
Result = Builder.CreateAnd(Result, Cmp); | |
} | |
return Result; | |
} | |
Value *CodeGenFunction::EmitX86CpuInit() { | |
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, | |
/*Variadic*/ false); | |
llvm::FunctionCallee Func = | |
CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); | |
cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); | |
cast<llvm::GlobalValue>(Func.getCallee()) | |
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); | |
return Builder.CreateCall(Func); | |
} | |
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
if (BuiltinID == X86::BI__builtin_cpu_is) | |
return EmitX86CpuIs(E); | |
if (BuiltinID == X86::BI__builtin_cpu_supports) | |
return EmitX86CpuSupports(E); | |
if (BuiltinID == X86::BI__builtin_cpu_init) | |
return EmitX86CpuInit(); | |
SmallVector<Value*, 4> Ops; | |
// Find out if any arguments are required to be integer constant expressions. | |
unsigned ICEArguments = 0; | |
ASTContext::GetBuiltinTypeError Error; | |
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); | |
assert(Error == ASTContext::GE_None && "Should not codegen an error"); | |
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { | |
// If this is a normal argument, just emit it as a scalar. | |
if ((ICEArguments & (1 << i)) == 0) { | |
Ops.push_back(EmitScalarExpr(E->getArg(i))); | |
continue; | |
} | |
// If this is required to be a constant, constant fold it so that we know | |
// that the generated intrinsic gets a ConstantInt. | |
llvm::APSInt Result; | |
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); | |
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; | |
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); | |
} | |
// These exist so that the builtin that takes an immediate can be bounds | |
// checked by clang to avoid passing bad immediates to the backend. Since | |
// AVX has a larger immediate than SSE we would need separate builtins to | |
// do the different bounds checking. Rather than create a clang specific | |
// SSE only builtin, this implements eight separate builtins to match gcc | |
// implementation. | |
auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { | |
Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); | |
llvm::Function *F = CGM.getIntrinsic(ID); | |
return Builder.CreateCall(F, Ops); | |
}; | |
// For the vector forms of FP comparisons, translate the builtins directly to | |
// IR. | |
// TODO: The builtins could be removed if the SSE header files used vector | |
// extension comparisons directly (vector ordered/unordered may need | |
// additional support via __builtin_isnan()). | |
auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) { | |
Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); | |
llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); | |
llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); | |
Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); | |
return Builder.CreateBitCast(Sext, FPVecTy); | |
}; | |
switch (BuiltinID) { | |
default: return nullptr; | |
case X86::BI_mm_prefetch: { | |
Value *Address = Ops[0]; | |
ConstantInt *C = cast<ConstantInt>(Ops[1]); | |
Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); | |
Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); | |
Value *Data = ConstantInt::get(Int32Ty, 1); | |
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); | |
return Builder.CreateCall(F, {Address, RW, Locality, Data}); | |
} | |
case X86::BI_mm_clflush: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), | |
Ops[0]); | |
} | |
case X86::BI_mm_lfence: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); | |
} | |
case X86::BI_mm_mfence: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); | |
} | |
case X86::BI_mm_sfence: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); | |
} | |
case X86::BI_mm_pause: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); | |
} | |
case X86::BI__rdtsc: { | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); | |
} | |
case X86::BI__builtin_ia32_rdtscp: { | |
Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); | |
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), | |
Ops[0]); | |
return Builder.CreateExtractValue(Call, 0); | |
} | |
case X86::BI__builtin_ia32_lzcnt_u16: | |
case X86::BI__builtin_ia32_lzcnt_u32: | |
case X86::BI__builtin_ia32_lzcnt_u64: { | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); | |
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); | |
} | |
case X86::BI__builtin_ia32_tzcnt_u16: | |
case X86::BI__builtin_ia32_tzcnt_u32: | |
case X86::BI__builtin_ia32_tzcnt_u64: { | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); | |
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); | |
} | |
case X86::BI__builtin_ia32_undef128: | |
case X86::BI__builtin_ia32_undef256: | |
case X86::BI__builtin_ia32_undef512: | |
// The x86 definition of "undef" is not the same as the LLVM definition | |
// (PR32176). We leave optimizing away an unnecessary zero constant to the | |
// IR optimizer and backend. | |
// TODO: If we had a "freeze" IR instruction to generate a fixed undef | |
// value, we should use that here instead of a zero. | |
return llvm::Constant::getNullValue(ConvertType(E->getType())); | |
case X86::BI__builtin_ia32_vec_init_v8qi: | |
case X86::BI__builtin_ia32_vec_init_v4hi: | |
case X86::BI__builtin_ia32_vec_init_v2si: | |
return Builder.CreateBitCast(BuildVector(Ops), | |
llvm::Type::getX86_MMXTy(getLLVMContext())); | |
case X86::BI__builtin_ia32_vec_ext_v2si: | |
case X86::BI__builtin_ia32_vec_ext_v16qi: | |
case X86::BI__builtin_ia32_vec_ext_v8hi: | |
case X86::BI__builtin_ia32_vec_ext_v4si: | |
case X86::BI__builtin_ia32_vec_ext_v4sf: | |
case X86::BI__builtin_ia32_vec_ext_v2di: | |
case X86::BI__builtin_ia32_vec_ext_v32qi: | |
case X86::BI__builtin_ia32_vec_ext_v16hi: | |
case X86::BI__builtin_ia32_vec_ext_v8si: | |
case X86::BI__builtin_ia32_vec_ext_v4di: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); | |
Index &= NumElts - 1; | |
// These builtins exist so we can ensure the index is an ICE and in range. | |
// Otherwise we could just do this in the header file. | |
return Builder.CreateExtractElement(Ops[0], Index); | |
} | |
case X86::BI__builtin_ia32_vec_set_v16qi: | |
case X86::BI__builtin_ia32_vec_set_v8hi: | |
case X86::BI__builtin_ia32_vec_set_v4si: | |
case X86::BI__builtin_ia32_vec_set_v2di: | |
case X86::BI__builtin_ia32_vec_set_v32qi: | |
case X86::BI__builtin_ia32_vec_set_v16hi: | |
case X86::BI__builtin_ia32_vec_set_v8si: | |
case X86::BI__builtin_ia32_vec_set_v4di: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); | |
Index &= NumElts - 1; | |
// These builtins exist so we can ensure the index is an ICE and in range. | |
// Otherwise we could just do this in the header file. | |
return Builder.CreateInsertElement(Ops[0], Ops[1], Index); | |
} | |
case X86::BI_mm_setcsr: | |
case X86::BI__builtin_ia32_ldmxcsr: { | |
Address Tmp = CreateMemTemp(E->getArg(0)->getType()); | |
Builder.CreateStore(Ops[0], Tmp); | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), | |
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); | |
} | |
case X86::BI_mm_getcsr: | |
case X86::BI__builtin_ia32_stmxcsr: { | |
Address Tmp = CreateMemTemp(E->getType()); | |
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), | |
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); | |
return Builder.CreateLoad(Tmp, "stmxcsr"); | |
} | |
case X86::BI__builtin_ia32_xsave: | |
case X86::BI__builtin_ia32_xsave64: | |
case X86::BI__builtin_ia32_xrstor: | |
case X86::BI__builtin_ia32_xrstor64: | |
case X86::BI__builtin_ia32_xsaveopt: | |
case X86::BI__builtin_ia32_xsaveopt64: | |
case X86::BI__builtin_ia32_xrstors: | |
case X86::BI__builtin_ia32_xrstors64: | |
case X86::BI__builtin_ia32_xsavec: | |
case X86::BI__builtin_ia32_xsavec64: | |
case X86::BI__builtin_ia32_xsaves: | |
case X86::BI__builtin_ia32_xsaves64: | |
case X86::BI__builtin_ia32_xsetbv: | |
case X86::BI_xsetbv: { | |
Intrinsic::ID ID; | |
#define INTRINSIC_X86_XSAVE_ID(NAME) \ | |
case X86::BI__builtin_ia32_##NAME: \ | |
ID = Intrinsic::x86_##NAME; \ | |
break | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
INTRINSIC_X86_XSAVE_ID(xsave); | |
INTRINSIC_X86_XSAVE_ID(xsave64); | |
INTRINSIC_X86_XSAVE_ID(xrstor); | |
INTRINSIC_X86_XSAVE_ID(xrstor64); | |
INTRINSIC_X86_XSAVE_ID(xsaveopt); | |
INTRINSIC_X86_XSAVE_ID(xsaveopt64); | |
INTRINSIC_X86_XSAVE_ID(xrstors); | |
INTRINSIC_X86_XSAVE_ID(xrstors64); | |
INTRINSIC_X86_XSAVE_ID(xsavec); | |
INTRINSIC_X86_XSAVE_ID(xsavec64); | |
INTRINSIC_X86_XSAVE_ID(xsaves); | |
INTRINSIC_X86_XSAVE_ID(xsaves64); | |
INTRINSIC_X86_XSAVE_ID(xsetbv); | |
case X86::BI_xsetbv: | |
ID = Intrinsic::x86_xsetbv; | |
break; | |
} | |
#undef INTRINSIC_X86_XSAVE_ID | |
Value *Mhi = Builder.CreateTrunc( | |
Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); | |
Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); | |
Ops[1] = Mhi; | |
Ops.push_back(Mlo); | |
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
} | |
case X86::BI__builtin_ia32_xgetbv: | |
case X86::BI_xgetbv: | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); | |
case X86::BI__builtin_ia32_storedqudi128_mask: | |
case X86::BI__builtin_ia32_storedqusi128_mask: | |
case X86::BI__builtin_ia32_storedquhi128_mask: | |
case X86::BI__builtin_ia32_storedquqi128_mask: | |
case X86::BI__builtin_ia32_storeupd128_mask: | |
case X86::BI__builtin_ia32_storeups128_mask: | |
case X86::BI__builtin_ia32_storedqudi256_mask: | |
case X86::BI__builtin_ia32_storedqusi256_mask: | |
case X86::BI__builtin_ia32_storedquhi256_mask: | |
case X86::BI__builtin_ia32_storedquqi256_mask: | |
case X86::BI__builtin_ia32_storeupd256_mask: | |
case X86::BI__builtin_ia32_storeups256_mask: | |
case X86::BI__builtin_ia32_storedqudi512_mask: | |
case X86::BI__builtin_ia32_storedqusi512_mask: | |
case X86::BI__builtin_ia32_storedquhi512_mask: | |
case X86::BI__builtin_ia32_storedquqi512_mask: | |
case X86::BI__builtin_ia32_storeupd512_mask: | |
case X86::BI__builtin_ia32_storeups512_mask: | |
return EmitX86MaskedStore(*this, Ops, 1); | |
case X86::BI__builtin_ia32_storess128_mask: | |
case X86::BI__builtin_ia32_storesd128_mask: { | |
return EmitX86MaskedStore(*this, Ops, 1); | |
} | |
case X86::BI__builtin_ia32_vpopcntb_128: | |
case X86::BI__builtin_ia32_vpopcntd_128: | |
case X86::BI__builtin_ia32_vpopcntq_128: | |
case X86::BI__builtin_ia32_vpopcntw_128: | |
case X86::BI__builtin_ia32_vpopcntb_256: | |
case X86::BI__builtin_ia32_vpopcntd_256: | |
case X86::BI__builtin_ia32_vpopcntq_256: | |
case X86::BI__builtin_ia32_vpopcntw_256: | |
case X86::BI__builtin_ia32_vpopcntb_512: | |
case X86::BI__builtin_ia32_vpopcntd_512: | |
case X86::BI__builtin_ia32_vpopcntq_512: | |
case X86::BI__builtin_ia32_vpopcntw_512: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); | |
return Builder.CreateCall(F, Ops); | |
} | |
case X86::BI__builtin_ia32_cvtmask2b128: | |
case X86::BI__builtin_ia32_cvtmask2b256: | |
case X86::BI__builtin_ia32_cvtmask2b512: | |
case X86::BI__builtin_ia32_cvtmask2w128: | |
case X86::BI__builtin_ia32_cvtmask2w256: | |
case X86::BI__builtin_ia32_cvtmask2w512: | |
case X86::BI__builtin_ia32_cvtmask2d128: | |
case X86::BI__builtin_ia32_cvtmask2d256: | |
case X86::BI__builtin_ia32_cvtmask2d512: | |
case X86::BI__builtin_ia32_cvtmask2q128: | |
case X86::BI__builtin_ia32_cvtmask2q256: | |
case X86::BI__builtin_ia32_cvtmask2q512: | |
return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); | |
case X86::BI__builtin_ia32_cvtb2mask128: | |
case X86::BI__builtin_ia32_cvtb2mask256: | |
case X86::BI__builtin_ia32_cvtb2mask512: | |
case X86::BI__builtin_ia32_cvtw2mask128: | |
case X86::BI__builtin_ia32_cvtw2mask256: | |
case X86::BI__builtin_ia32_cvtw2mask512: | |
case X86::BI__builtin_ia32_cvtd2mask128: | |
case X86::BI__builtin_ia32_cvtd2mask256: | |
case X86::BI__builtin_ia32_cvtd2mask512: | |
case X86::BI__builtin_ia32_cvtq2mask128: | |
case X86::BI__builtin_ia32_cvtq2mask256: | |
case X86::BI__builtin_ia32_cvtq2mask512: | |
return EmitX86ConvertToMask(*this, Ops[0]); | |
case X86::BI__builtin_ia32_cvtdq2ps512_mask: | |
case X86::BI__builtin_ia32_cvtqq2ps512_mask: | |
case X86::BI__builtin_ia32_cvtqq2pd512_mask: | |
return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true); | |
case X86::BI__builtin_ia32_cvtudq2ps512_mask: | |
case X86::BI__builtin_ia32_cvtuqq2ps512_mask: | |
case X86::BI__builtin_ia32_cvtuqq2pd512_mask: | |
return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false); | |
case X86::BI__builtin_ia32_vfmaddss3: | |
case X86::BI__builtin_ia32_vfmaddsd3: | |
case X86::BI__builtin_ia32_vfmaddss3_mask: | |
case X86::BI__builtin_ia32_vfmaddsd3_mask: | |
return EmitScalarFMAExpr(*this, Ops, Ops[0]); | |
case X86::BI__builtin_ia32_vfmaddss: | |
case X86::BI__builtin_ia32_vfmaddsd: | |
return EmitScalarFMAExpr(*this, Ops, | |
Constant::getNullValue(Ops[0]->getType())); | |
case X86::BI__builtin_ia32_vfmaddss3_maskz: | |
case X86::BI__builtin_ia32_vfmaddsd3_maskz: | |
return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true); | |
case X86::BI__builtin_ia32_vfmaddss3_mask3: | |
case X86::BI__builtin_ia32_vfmaddsd3_mask3: | |
return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2); | |
case X86::BI__builtin_ia32_vfmsubss3_mask3: | |
case X86::BI__builtin_ia32_vfmsubsd3_mask3: | |
return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2, | |
/*NegAcc*/true); | |
case X86::BI__builtin_ia32_vfmaddps: | |
case X86::BI__builtin_ia32_vfmaddpd: | |
case X86::BI__builtin_ia32_vfmaddps256: | |
case X86::BI__builtin_ia32_vfmaddpd256: | |
case X86::BI__builtin_ia32_vfmaddps512_mask: | |
case X86::BI__builtin_ia32_vfmaddps512_maskz: | |
case X86::BI__builtin_ia32_vfmaddps512_mask3: | |
case X86::BI__builtin_ia32_vfmsubps512_mask3: | |
case X86::BI__builtin_ia32_vfmaddpd512_mask: | |
case X86::BI__builtin_ia32_vfmaddpd512_maskz: | |
case X86::BI__builtin_ia32_vfmaddpd512_mask3: | |
case X86::BI__builtin_ia32_vfmsubpd512_mask3: | |
return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false); | |
case X86::BI__builtin_ia32_vfmaddsubps: | |
case X86::BI__builtin_ia32_vfmaddsubpd: | |
case X86::BI__builtin_ia32_vfmaddsubps256: | |
case X86::BI__builtin_ia32_vfmaddsubpd256: | |
case X86::BI__builtin_ia32_vfmaddsubps512_mask: | |
case X86::BI__builtin_ia32_vfmaddsubps512_maskz: | |
case X86::BI__builtin_ia32_vfmaddsubps512_mask3: | |
case X86::BI__builtin_ia32_vfmsubaddps512_mask3: | |
case X86::BI__builtin_ia32_vfmaddsubpd512_mask: | |
case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: | |
case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: | |
case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: | |
return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true); | |
case X86::BI__builtin_ia32_movdqa32store128_mask: | |
case X86::BI__builtin_ia32_movdqa64store128_mask: | |
case X86::BI__builtin_ia32_storeaps128_mask: | |
case X86::BI__builtin_ia32_storeapd128_mask: | |
case X86::BI__builtin_ia32_movdqa32store256_mask: | |
case X86::BI__builtin_ia32_movdqa64store256_mask: | |
case X86::BI__builtin_ia32_storeaps256_mask: | |
case X86::BI__builtin_ia32_storeapd256_mask: | |
case X86::BI__builtin_ia32_movdqa32store512_mask: | |
case X86::BI__builtin_ia32_movdqa64store512_mask: | |
case X86::BI__builtin_ia32_storeaps512_mask: | |
case X86::BI__builtin_ia32_storeapd512_mask: { | |
unsigned Align = | |
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); | |
return EmitX86MaskedStore(*this, Ops, Align); | |
} | |
case X86::BI__builtin_ia32_loadups128_mask: | |
case X86::BI__builtin_ia32_loadups256_mask: | |
case X86::BI__builtin_ia32_loadups512_mask: | |
case X86::BI__builtin_ia32_loadupd128_mask: | |
case X86::BI__builtin_ia32_loadupd256_mask: | |
case X86::BI__builtin_ia32_loadupd512_mask: | |
case X86::BI__builtin_ia32_loaddquqi128_mask: | |
case X86::BI__builtin_ia32_loaddquqi256_mask: | |
case X86::BI__builtin_ia32_loaddquqi512_mask: | |
case X86::BI__builtin_ia32_loaddquhi128_mask: | |
case X86::BI__builtin_ia32_loaddquhi256_mask: | |
case X86::BI__builtin_ia32_loaddquhi512_mask: | |
case X86::BI__builtin_ia32_loaddqusi128_mask: | |
case X86::BI__builtin_ia32_loaddqusi256_mask: | |
case X86::BI__builtin_ia32_loaddqusi512_mask: | |
case X86::BI__builtin_ia32_loaddqudi128_mask: | |
case X86::BI__builtin_ia32_loaddqudi256_mask: | |
case X86::BI__builtin_ia32_loaddqudi512_mask: | |
return EmitX86MaskedLoad(*this, Ops, 1); | |
case X86::BI__builtin_ia32_loadss128_mask: | |
case X86::BI__builtin_ia32_loadsd128_mask: | |
return EmitX86MaskedLoad(*this, Ops, 1); | |
case X86::BI__builtin_ia32_loadaps128_mask: | |
case X86::BI__builtin_ia32_loadaps256_mask: | |
case X86::BI__builtin_ia32_loadaps512_mask: | |
case X86::BI__builtin_ia32_loadapd128_mask: | |
case X86::BI__builtin_ia32_loadapd256_mask: | |
case X86::BI__builtin_ia32_loadapd512_mask: | |
case X86::BI__builtin_ia32_movdqa32load128_mask: | |
case X86::BI__builtin_ia32_movdqa32load256_mask: | |
case X86::BI__builtin_ia32_movdqa32load512_mask: | |
case X86::BI__builtin_ia32_movdqa64load128_mask: | |
case X86::BI__builtin_ia32_movdqa64load256_mask: | |
case X86::BI__builtin_ia32_movdqa64load512_mask: { | |
unsigned Align = | |
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); | |
return EmitX86MaskedLoad(*this, Ops, Align); | |
} | |
case X86::BI__builtin_ia32_expandloaddf128_mask: | |
case X86::BI__builtin_ia32_expandloaddf256_mask: | |
case X86::BI__builtin_ia32_expandloaddf512_mask: | |
case X86::BI__builtin_ia32_expandloadsf128_mask: | |
case X86::BI__builtin_ia32_expandloadsf256_mask: | |
case X86::BI__builtin_ia32_expandloadsf512_mask: | |
case X86::BI__builtin_ia32_expandloaddi128_mask: | |
case X86::BI__builtin_ia32_expandloaddi256_mask: | |
case X86::BI__builtin_ia32_expandloaddi512_mask: | |
case X86::BI__builtin_ia32_expandloadsi128_mask: | |
case X86::BI__builtin_ia32_expandloadsi256_mask: | |
case X86::BI__builtin_ia32_expandloadsi512_mask: | |
case X86::BI__builtin_ia32_expandloadhi128_mask: | |
case X86::BI__builtin_ia32_expandloadhi256_mask: | |
case X86::BI__builtin_ia32_expandloadhi512_mask: | |
case X86::BI__builtin_ia32_expandloadqi128_mask: | |
case X86::BI__builtin_ia32_expandloadqi256_mask: | |
case X86::BI__builtin_ia32_expandloadqi512_mask: | |
return EmitX86ExpandLoad(*this, Ops); | |
case X86::BI__builtin_ia32_compressstoredf128_mask: | |
case X86::BI__builtin_ia32_compressstoredf256_mask: | |
case X86::BI__builtin_ia32_compressstoredf512_mask: | |
case X86::BI__builtin_ia32_compressstoresf128_mask: | |
case X86::BI__builtin_ia32_compressstoresf256_mask: | |
case X86::BI__builtin_ia32_compressstoresf512_mask: | |
case X86::BI__builtin_ia32_compressstoredi128_mask: | |
case X86::BI__builtin_ia32_compressstoredi256_mask: | |
case X86::BI__builtin_ia32_compressstoredi512_mask: | |
case X86::BI__builtin_ia32_compressstoresi128_mask: | |
case X86::BI__builtin_ia32_compressstoresi256_mask: | |
case X86::BI__builtin_ia32_compressstoresi512_mask: | |
case X86::BI__builtin_ia32_compressstorehi128_mask: | |
case X86::BI__builtin_ia32_compressstorehi256_mask: | |
case X86::BI__builtin_ia32_compressstorehi512_mask: | |
case X86::BI__builtin_ia32_compressstoreqi128_mask: | |
case X86::BI__builtin_ia32_compressstoreqi256_mask: | |
case X86::BI__builtin_ia32_compressstoreqi512_mask: | |
return EmitX86CompressStore(*this, Ops); | |
case X86::BI__builtin_ia32_expanddf128_mask: | |
case X86::BI__builtin_ia32_expanddf256_mask: | |
case X86::BI__builtin_ia32_expanddf512_mask: | |
case X86::BI__builtin_ia32_expandsf128_mask: | |
case X86::BI__builtin_ia32_expandsf256_mask: | |
case X86::BI__builtin_ia32_expandsf512_mask: | |
case X86::BI__builtin_ia32_expanddi128_mask: | |
case X86::BI__builtin_ia32_expanddi256_mask: | |
case X86::BI__builtin_ia32_expanddi512_mask: | |
case X86::BI__builtin_ia32_expandsi128_mask: | |
case X86::BI__builtin_ia32_expandsi256_mask: | |
case X86::BI__builtin_ia32_expandsi512_mask: | |
case X86::BI__builtin_ia32_expandhi128_mask: | |
case X86::BI__builtin_ia32_expandhi256_mask: | |
case X86::BI__builtin_ia32_expandhi512_mask: | |
case X86::BI__builtin_ia32_expandqi128_mask: | |
case X86::BI__builtin_ia32_expandqi256_mask: | |
case X86::BI__builtin_ia32_expandqi512_mask: | |
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); | |
case X86::BI__builtin_ia32_compressdf128_mask: | |
case X86::BI__builtin_ia32_compressdf256_mask: | |
case X86::BI__builtin_ia32_compressdf512_mask: | |
case X86::BI__builtin_ia32_compresssf128_mask: | |
case X86::BI__builtin_ia32_compresssf256_mask: | |
case X86::BI__builtin_ia32_compresssf512_mask: | |
case X86::BI__builtin_ia32_compressdi128_mask: | |
case X86::BI__builtin_ia32_compressdi256_mask: | |
case X86::BI__builtin_ia32_compressdi512_mask: | |
case X86::BI__builtin_ia32_compresssi128_mask: | |
case X86::BI__builtin_ia32_compresssi256_mask: | |
case X86::BI__builtin_ia32_compresssi512_mask: | |
case X86::BI__builtin_ia32_compresshi128_mask: | |
case X86::BI__builtin_ia32_compresshi256_mask: | |
case X86::BI__builtin_ia32_compresshi512_mask: | |
case X86::BI__builtin_ia32_compressqi128_mask: | |
case X86::BI__builtin_ia32_compressqi256_mask: | |
case X86::BI__builtin_ia32_compressqi512_mask: | |
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); | |
case X86::BI__builtin_ia32_gather3div2df: | |
case X86::BI__builtin_ia32_gather3div2di: | |
case X86::BI__builtin_ia32_gather3div4df: | |
case X86::BI__builtin_ia32_gather3div4di: | |
case X86::BI__builtin_ia32_gather3div4sf: | |
case X86::BI__builtin_ia32_gather3div4si: | |
case X86::BI__builtin_ia32_gather3div8sf: | |
case X86::BI__builtin_ia32_gather3div8si: | |
case X86::BI__builtin_ia32_gather3siv2df: | |
case X86::BI__builtin_ia32_gather3siv2di: | |
case X86::BI__builtin_ia32_gather3siv4df: | |
case X86::BI__builtin_ia32_gather3siv4di: | |
case X86::BI__builtin_ia32_gather3siv4sf: | |
case X86::BI__builtin_ia32_gather3siv4si: | |
case X86::BI__builtin_ia32_gather3siv8sf: | |
case X86::BI__builtin_ia32_gather3siv8si: | |
case X86::BI__builtin_ia32_gathersiv8df: | |
case X86::BI__builtin_ia32_gathersiv16sf: | |
case X86::BI__builtin_ia32_gatherdiv8df: | |
case X86::BI__builtin_ia32_gatherdiv16sf: | |
case X86::BI__builtin_ia32_gathersiv8di: | |
case X86::BI__builtin_ia32_gathersiv16si: | |
case X86::BI__builtin_ia32_gatherdiv8di: | |
case X86::BI__builtin_ia32_gatherdiv16si: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unexpected builtin"); | |
case X86::BI__builtin_ia32_gather3div2df: | |
IID = Intrinsic::x86_avx512_mask_gather3div2_df; | |
break; | |
case X86::BI__builtin_ia32_gather3div2di: | |
IID = Intrinsic::x86_avx512_mask_gather3div2_di; | |
break; | |
case X86::BI__builtin_ia32_gather3div4df: | |
IID = Intrinsic::x86_avx512_mask_gather3div4_df; | |
break; | |
case X86::BI__builtin_ia32_gather3div4di: | |
IID = Intrinsic::x86_avx512_mask_gather3div4_di; | |
break; | |
case X86::BI__builtin_ia32_gather3div4sf: | |
IID = Intrinsic::x86_avx512_mask_gather3div4_sf; | |
break; | |
case X86::BI__builtin_ia32_gather3div4si: | |
IID = Intrinsic::x86_avx512_mask_gather3div4_si; | |
break; | |
case X86::BI__builtin_ia32_gather3div8sf: | |
IID = Intrinsic::x86_avx512_mask_gather3div8_sf; | |
break; | |
case X86::BI__builtin_ia32_gather3div8si: | |
IID = Intrinsic::x86_avx512_mask_gather3div8_si; | |
break; | |
case X86::BI__builtin_ia32_gather3siv2df: | |
IID = Intrinsic::x86_avx512_mask_gather3siv2_df; | |
break; | |
case X86::BI__builtin_ia32_gather3siv2di: | |
IID = Intrinsic::x86_avx512_mask_gather3siv2_di; | |
break; | |
case X86::BI__builtin_ia32_gather3siv4df: | |
IID = Intrinsic::x86_avx512_mask_gather3siv4_df; | |
break; | |
case X86::BI__builtin_ia32_gather3siv4di: | |
IID = Intrinsic::x86_avx512_mask_gather3siv4_di; | |
break; | |
case X86::BI__builtin_ia32_gather3siv4sf: | |
IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; | |
break; | |
case X86::BI__builtin_ia32_gather3siv4si: | |
IID = Intrinsic::x86_avx512_mask_gather3siv4_si; | |
break; | |
case X86::BI__builtin_ia32_gather3siv8sf: | |
IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; | |
break; | |
case X86::BI__builtin_ia32_gather3siv8si: | |
IID = Intrinsic::x86_avx512_mask_gather3siv8_si; | |
break; | |
case X86::BI__builtin_ia32_gathersiv8df: | |
IID = Intrinsic::x86_avx512_mask_gather_dpd_512; | |
break; | |
case X86::BI__builtin_ia32_gathersiv16sf: | |
IID = Intrinsic::x86_avx512_mask_gather_dps_512; | |
break; | |
case X86::BI__builtin_ia32_gatherdiv8df: | |
IID = Intrinsic::x86_avx512_mask_gather_qpd_512; | |
break; | |
case X86::BI__builtin_ia32_gatherdiv16sf: | |
IID = Intrinsic::x86_avx512_mask_gather_qps_512; | |
break; | |
case X86::BI__builtin_ia32_gathersiv8di: | |
IID = Intrinsic::x86_avx512_mask_gather_dpq_512; | |
break; | |
case X86::BI__builtin_ia32_gathersiv16si: | |
IID = Intrinsic::x86_avx512_mask_gather_dpi_512; | |
break; | |
case X86::BI__builtin_ia32_gatherdiv8di: | |
IID = Intrinsic::x86_avx512_mask_gather_qpq_512; | |
break; | |
case X86::BI__builtin_ia32_gatherdiv16si: | |
IID = Intrinsic::x86_avx512_mask_gather_qpi_512; | |
break; | |
} | |
unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(), | |
Ops[2]->getType()->getVectorNumElements()); | |
Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); | |
Function *Intr = CGM.getIntrinsic(IID); | |
return Builder.CreateCall(Intr, Ops); | |
} | |
case X86::BI__builtin_ia32_scattersiv8df: | |
case X86::BI__builtin_ia32_scattersiv16sf: | |
case X86::BI__builtin_ia32_scatterdiv8df: | |
case X86::BI__builtin_ia32_scatterdiv16sf: | |
case X86::BI__builtin_ia32_scattersiv8di: | |
case X86::BI__builtin_ia32_scattersiv16si: | |
case X86::BI__builtin_ia32_scatterdiv8di: | |
case X86::BI__builtin_ia32_scatterdiv16si: | |
case X86::BI__builtin_ia32_scatterdiv2df: | |
case X86::BI__builtin_ia32_scatterdiv2di: | |
case X86::BI__builtin_ia32_scatterdiv4df: | |
case X86::BI__builtin_ia32_scatterdiv4di: | |
case X86::BI__builtin_ia32_scatterdiv4sf: | |
case X86::BI__builtin_ia32_scatterdiv4si: | |
case X86::BI__builtin_ia32_scatterdiv8sf: | |
case X86::BI__builtin_ia32_scatterdiv8si: | |
case X86::BI__builtin_ia32_scattersiv2df: | |
case X86::BI__builtin_ia32_scattersiv2di: | |
case X86::BI__builtin_ia32_scattersiv4df: | |
case X86::BI__builtin_ia32_scattersiv4di: | |
case X86::BI__builtin_ia32_scattersiv4sf: | |
case X86::BI__builtin_ia32_scattersiv4si: | |
case X86::BI__builtin_ia32_scattersiv8sf: | |
case X86::BI__builtin_ia32_scattersiv8si: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unexpected builtin"); | |
case X86::BI__builtin_ia32_scattersiv8df: | |
IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; | |
break; | |
case X86::BI__builtin_ia32_scattersiv16sf: | |
IID = Intrinsic::x86_avx512_mask_scatter_dps_512; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv8df: | |
IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv16sf: | |
IID = Intrinsic::x86_avx512_mask_scatter_qps_512; | |
break; | |
case X86::BI__builtin_ia32_scattersiv8di: | |
IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; | |
break; | |
case X86::BI__builtin_ia32_scattersiv16si: | |
IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv8di: | |
IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv16si: | |
IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv2df: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv2di: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv4df: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv4di: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv4sf: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv4si: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv8sf: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; | |
break; | |
case X86::BI__builtin_ia32_scatterdiv8si: | |
IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; | |
break; | |
case X86::BI__builtin_ia32_scattersiv2df: | |
IID = Intrinsic::x86_avx512_mask_scattersiv2_df; | |
break; | |
case X86::BI__builtin_ia32_scattersiv2di: | |
IID = Intrinsic::x86_avx512_mask_scattersiv2_di; | |
break; | |
case X86::BI__builtin_ia32_scattersiv4df: | |
IID = Intrinsic::x86_avx512_mask_scattersiv4_df; | |
break; | |
case X86::BI__builtin_ia32_scattersiv4di: | |
IID = Intrinsic::x86_avx512_mask_scattersiv4_di; | |
break; | |
case X86::BI__builtin_ia32_scattersiv4sf: | |
IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; | |
break; | |
case X86::BI__builtin_ia32_scattersiv4si: | |
IID = Intrinsic::x86_avx512_mask_scattersiv4_si; | |
break; | |
case X86::BI__builtin_ia32_scattersiv8sf: | |
IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; | |
break; | |
case X86::BI__builtin_ia32_scattersiv8si: | |
IID = Intrinsic::x86_avx512_mask_scattersiv8_si; | |
break; | |
} | |
unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(), | |
Ops[3]->getType()->getVectorNumElements()); | |
Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); | |
Function *Intr = CGM.getIntrinsic(IID); | |
return Builder.CreateCall(Intr, Ops); | |
} | |
case X86::BI__builtin_ia32_vextractf128_pd256: | |
case X86::BI__builtin_ia32_vextractf128_ps256: | |
case X86::BI__builtin_ia32_vextractf128_si256: | |
case X86::BI__builtin_ia32_extract128i256: | |
case X86::BI__builtin_ia32_extractf64x4_mask: | |
case X86::BI__builtin_ia32_extractf32x4_mask: | |
case X86::BI__builtin_ia32_extracti64x4_mask: | |
case X86::BI__builtin_ia32_extracti32x4_mask: | |
case X86::BI__builtin_ia32_extractf32x8_mask: | |
case X86::BI__builtin_ia32_extracti32x8_mask: | |
case X86::BI__builtin_ia32_extractf32x4_256_mask: | |
case X86::BI__builtin_ia32_extracti32x4_256_mask: | |
case X86::BI__builtin_ia32_extractf64x2_256_mask: | |
case X86::BI__builtin_ia32_extracti64x2_256_mask: | |
case X86::BI__builtin_ia32_extractf64x2_512_mask: | |
case X86::BI__builtin_ia32_extracti64x2_512_mask: { | |
llvm::Type *DstTy = ConvertType(E->getType()); | |
unsigned NumElts = DstTy->getVectorNumElements(); | |
unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements(); | |
unsigned SubVectors = SrcNumElts / NumElts; | |
unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); | |
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); | |
Index &= SubVectors - 1; // Remove any extra bits. | |
Index *= NumElts; | |
uint32_t Indices[16]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i + Index; | |
Value *Res = Builder.CreateShuffleVector(Ops[0], | |
UndefValue::get(Ops[0]->getType()), | |
makeArrayRef(Indices, NumElts), | |
"extract"); | |
if (Ops.size() == 4) | |
Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); | |
return Res; | |
} | |
case X86::BI__builtin_ia32_vinsertf128_pd256: | |
case X86::BI__builtin_ia32_vinsertf128_ps256: | |
case X86::BI__builtin_ia32_vinsertf128_si256: | |
case X86::BI__builtin_ia32_insert128i256: | |
case X86::BI__builtin_ia32_insertf64x4: | |
case X86::BI__builtin_ia32_insertf32x4: | |
case X86::BI__builtin_ia32_inserti64x4: | |
case X86::BI__builtin_ia32_inserti32x4: | |
case X86::BI__builtin_ia32_insertf32x8: | |
case X86::BI__builtin_ia32_inserti32x8: | |
case X86::BI__builtin_ia32_insertf32x4_256: | |
case X86::BI__builtin_ia32_inserti32x4_256: | |
case X86::BI__builtin_ia32_insertf64x2_256: | |
case X86::BI__builtin_ia32_inserti64x2_256: | |
case X86::BI__builtin_ia32_insertf64x2_512: | |
case X86::BI__builtin_ia32_inserti64x2_512: { | |
unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements(); | |
unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements(); | |
unsigned SubVectors = DstNumElts / SrcNumElts; | |
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); | |
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); | |
Index &= SubVectors - 1; // Remove any extra bits. | |
Index *= SrcNumElts; | |
uint32_t Indices[16]; | |
for (unsigned i = 0; i != DstNumElts; ++i) | |
Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; | |
Value *Op1 = Builder.CreateShuffleVector(Ops[1], | |
UndefValue::get(Ops[1]->getType()), | |
makeArrayRef(Indices, DstNumElts), | |
"widen"); | |
for (unsigned i = 0; i != DstNumElts; ++i) { | |
if (i >= Index && i < (Index + SrcNumElts)) | |
Indices[i] = (i - Index) + DstNumElts; | |
else | |
Indices[i] = i; | |
} | |
return Builder.CreateShuffleVector(Ops[0], Op1, | |
makeArrayRef(Indices, DstNumElts), | |
"insert"); | |
} | |
case X86::BI__builtin_ia32_pmovqd512_mask: | |
case X86::BI__builtin_ia32_pmovwb512_mask: { | |
Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); | |
return EmitX86Select(*this, Ops[2], Res, Ops[1]); | |
} | |
case X86::BI__builtin_ia32_pmovdb512_mask: | |
case X86::BI__builtin_ia32_pmovdw512_mask: | |
case X86::BI__builtin_ia32_pmovqw512_mask: { | |
if (const auto *C = dyn_cast<Constant>(Ops[2])) | |
if (C->isAllOnesValue()) | |
return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_pmovdb512_mask: | |
IID = Intrinsic::x86_avx512_mask_pmov_db_512; | |
break; | |
case X86::BI__builtin_ia32_pmovdw512_mask: | |
IID = Intrinsic::x86_avx512_mask_pmov_dw_512; | |
break; | |
case X86::BI__builtin_ia32_pmovqw512_mask: | |
IID = Intrinsic::x86_avx512_mask_pmov_qw_512; | |
break; | |
} | |
Function *Intr = CGM.getIntrinsic(IID); | |
return Builder.CreateCall(Intr, Ops); | |
} | |
case X86::BI__builtin_ia32_pblendw128: | |
case X86::BI__builtin_ia32_blendpd: | |
case X86::BI__builtin_ia32_blendps: | |
case X86::BI__builtin_ia32_blendpd256: | |
case X86::BI__builtin_ia32_blendps256: | |
case X86::BI__builtin_ia32_pblendw256: | |
case X86::BI__builtin_ia32_pblendd128: | |
case X86::BI__builtin_ia32_pblendd256: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); | |
uint32_t Indices[16]; | |
// If there are more than 8 elements, the immediate is used twice so make | |
// sure we handle that. | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; | |
return Builder.CreateShuffleVector(Ops[0], Ops[1], | |
makeArrayRef(Indices, NumElts), | |
"blend"); | |
} | |
case X86::BI__builtin_ia32_pshuflw: | |
case X86::BI__builtin_ia32_pshuflw256: | |
case X86::BI__builtin_ia32_pshuflw512: { | |
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
// Splat the 8-bits of immediate 4 times to help the loop wrap around. | |
Imm = (Imm & 0xff) * 0x01010101; | |
uint32_t Indices[32]; | |
for (unsigned l = 0; l != NumElts; l += 8) { | |
for (unsigned i = 0; i != 4; ++i) { | |
Indices[l + i] = l + (Imm & 3); | |
Imm >>= 2; | |
} | |
for (unsigned i = 4; i != 8; ++i) | |
Indices[l + i] = l + i; | |
} | |
return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), | |
makeArrayRef(Indices, NumElts), | |
"pshuflw"); | |
} | |
case X86::BI__builtin_ia32_pshufhw: | |
case X86::BI__builtin_ia32_pshufhw256: | |
case X86::BI__builtin_ia32_pshufhw512: { | |
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
// Splat the 8-bits of immediate 4 times to help the loop wrap around. | |
Imm = (Imm & 0xff) * 0x01010101; | |
uint32_t Indices[32]; | |
for (unsigned l = 0; l != NumElts; l += 8) { | |
for (unsigned i = 0; i != 4; ++i) | |
Indices[l + i] = l + i; | |
for (unsigned i = 4; i != 8; ++i) { | |
Indices[l + i] = l + 4 + (Imm & 3); | |
Imm >>= 2; | |
} | |
} | |
return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), | |
makeArrayRef(Indices, NumElts), | |
"pshufhw"); | |
} | |
case X86::BI__builtin_ia32_pshufd: | |
case X86::BI__builtin_ia32_pshufd256: | |
case X86::BI__builtin_ia32_pshufd512: | |
case X86::BI__builtin_ia32_vpermilpd: | |
case X86::BI__builtin_ia32_vpermilps: | |
case X86::BI__builtin_ia32_vpermilpd256: | |
case X86::BI__builtin_ia32_vpermilps256: | |
case X86::BI__builtin_ia32_vpermilpd512: | |
case X86::BI__builtin_ia32_vpermilps512: { | |
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; | |
unsigned NumLaneElts = NumElts / NumLanes; | |
// Splat the 8-bits of immediate 4 times to help the loop wrap around. | |
Imm = (Imm & 0xff) * 0x01010101; | |
uint32_t Indices[16]; | |
for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | |
for (unsigned i = 0; i != NumLaneElts; ++i) { | |
Indices[i + l] = (Imm % NumLaneElts) + l; | |
Imm /= NumLaneElts; | |
} | |
} | |
return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), | |
makeArrayRef(Indices, NumElts), | |
"permil"); | |
} | |
case X86::BI__builtin_ia32_shufpd: | |
case X86::BI__builtin_ia32_shufpd256: | |
case X86::BI__builtin_ia32_shufpd512: | |
case X86::BI__builtin_ia32_shufps: | |
case X86::BI__builtin_ia32_shufps256: | |
case X86::BI__builtin_ia32_shufps512: { | |
uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; | |
unsigned NumLaneElts = NumElts / NumLanes; | |
// Splat the 8-bits of immediate 4 times to help the loop wrap around. | |
Imm = (Imm & 0xff) * 0x01010101; | |
uint32_t Indices[16]; | |
for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | |
for (unsigned i = 0; i != NumLaneElts; ++i) { | |
unsigned Index = Imm % NumLaneElts; | |
Imm /= NumLaneElts; | |
if (i >= (NumLaneElts / 2)) | |
Index += NumElts; | |
Indices[l + i] = l + Index; | |
} | |
} | |
return Builder.CreateShuffleVector(Ops[0], Ops[1], | |
makeArrayRef(Indices, NumElts), | |
"shufp"); | |
} | |
case X86::BI__builtin_ia32_permdi256: | |
case X86::BI__builtin_ia32_permdf256: | |
case X86::BI__builtin_ia32_permdi512: | |
case X86::BI__builtin_ia32_permdf512: { | |
unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
// These intrinsics operate on 256-bit lanes of four 64-bit elements. | |
uint32_t Indices[8]; | |
for (unsigned l = 0; l != NumElts; l += 4) | |
for (unsigned i = 0; i != 4; ++i) | |
Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); | |
return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), | |
makeArrayRef(Indices, NumElts), | |
"perm"); | |
} | |
case X86::BI__builtin_ia32_palignr128: | |
case X86::BI__builtin_ia32_palignr256: | |
case X86::BI__builtin_ia32_palignr512: { | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
assert(NumElts % 16 == 0); | |
// If palignr is shifting the pair of vectors more than the size of two | |
// lanes, emit zero. | |
if (ShiftVal >= 32) | |
return llvm::Constant::getNullValue(ConvertType(E->getType())); | |
// If palignr is shifting the pair of input vectors more than one lane, | |
// but less than two lanes, convert to shifting in zeroes. | |
if (ShiftVal > 16) { | |
ShiftVal -= 16; | |
Ops[1] = Ops[0]; | |
Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); | |
} | |
uint32_t Indices[64]; | |
// 256-bit palignr operates on 128-bit lanes so we need to handle that | |
for (unsigned l = 0; l != NumElts; l += 16) { | |
for (unsigned i = 0; i != 16; ++i) { | |
unsigned Idx = ShiftVal + i; | |
if (Idx >= 16) | |
Idx += NumElts - 16; // End of lane, switch operand. | |
Indices[l + i] = Idx + l; | |
} | |
} | |
return Builder.CreateShuffleVector(Ops[1], Ops[0], | |
makeArrayRef(Indices, NumElts), | |
"palignr"); | |
} | |
case X86::BI__builtin_ia32_alignd128: | |
case X86::BI__builtin_ia32_alignd256: | |
case X86::BI__builtin_ia32_alignd512: | |
case X86::BI__builtin_ia32_alignq128: | |
case X86::BI__builtin_ia32_alignq256: | |
case X86::BI__builtin_ia32_alignq512: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; | |
// Mask the shift amount to width of two vectors. | |
ShiftVal &= (2 * NumElts) - 1; | |
uint32_t Indices[16]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i + ShiftVal; | |
return Builder.CreateShuffleVector(Ops[1], Ops[0], | |
makeArrayRef(Indices, NumElts), | |
"valign"); | |
} | |
case X86::BI__builtin_ia32_shuf_f32x4_256: | |
case X86::BI__builtin_ia32_shuf_f64x2_256: | |
case X86::BI__builtin_ia32_shuf_i32x4_256: | |
case X86::BI__builtin_ia32_shuf_i64x2_256: | |
case X86::BI__builtin_ia32_shuf_f32x4: | |
case X86::BI__builtin_ia32_shuf_f64x2: | |
case X86::BI__builtin_ia32_shuf_i32x4: | |
case X86::BI__builtin_ia32_shuf_i64x2: { | |
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); | |
llvm::Type *Ty = Ops[0]->getType(); | |
unsigned NumElts = Ty->getVectorNumElements(); | |
unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; | |
unsigned NumLaneElts = NumElts / NumLanes; | |
uint32_t Indices[16]; | |
for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | |
unsigned Index = (Imm % NumLanes) * NumLaneElts; | |
Imm /= NumLanes; // Discard the bits we just used. | |
if (l >= (NumElts / 2)) | |
Index += NumElts; // Switch to other source. | |
for (unsigned i = 0; i != NumLaneElts; ++i) { | |
Indices[l + i] = Index + i; | |
} | |
} | |
return Builder.CreateShuffleVector(Ops[0], Ops[1], | |
makeArrayRef(Indices, NumElts), | |
"shuf"); | |
} | |
case X86::BI__builtin_ia32_vperm2f128_pd256: | |
case X86::BI__builtin_ia32_vperm2f128_ps256: | |
case X86::BI__builtin_ia32_vperm2f128_si256: | |
case X86::BI__builtin_ia32_permti256: { | |
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
// This takes a very simple approach since there are two lanes and a | |
// shuffle can have 2 inputs. So we reserve the first input for the first | |
// lane and the second input for the second lane. This may result in | |
// duplicate sources, but this can be dealt with in the backend. | |
Value *OutOps[2]; | |
uint32_t Indices[8]; | |
for (unsigned l = 0; l != 2; ++l) { | |
// Determine the source for this lane. | |
if (Imm & (1 << ((l * 4) + 3))) | |
OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); | |
else if (Imm & (1 << ((l * 4) + 1))) | |
OutOps[l] = Ops[1]; | |
else | |
OutOps[l] = Ops[0]; | |
for (unsigned i = 0; i != NumElts/2; ++i) { | |
// Start with ith element of the source for this lane. | |
unsigned Idx = (l * NumElts) + i; | |
// If bit 0 of the immediate half is set, switch to the high half of | |
// the source. | |
if (Imm & (1 << (l * 4))) | |
Idx += NumElts/2; | |
Indices[(l * (NumElts/2)) + i] = Idx; | |
} | |
} | |
return Builder.CreateShuffleVector(OutOps[0], OutOps[1], | |
makeArrayRef(Indices, NumElts), | |
"vperm"); | |
} | |
case X86::BI__builtin_ia32_pslldqi128_byteshift: | |
case X86::BI__builtin_ia32_pslldqi256_byteshift: | |
case X86::BI__builtin_ia32_pslldqi512_byteshift: { | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; | |
llvm::Type *ResultType = Ops[0]->getType(); | |
// Builtin type is vXi64 so multiply by 8 to get bytes. | |
unsigned NumElts = ResultType->getVectorNumElements() * 8; | |
// If pslldq is shifting the vector more than 15 bytes, emit zero. | |
if (ShiftVal >= 16) | |
return llvm::Constant::getNullValue(ResultType); | |
uint32_t Indices[64]; | |
// 256/512-bit pslldq operates on 128-bit lanes so we need to handle that | |
for (unsigned l = 0; l != NumElts; l += 16) { | |
for (unsigned i = 0; i != 16; ++i) { | |
unsigned Idx = NumElts + i - ShiftVal; | |
if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. | |
Indices[l + i] = Idx + l; | |
} | |
} | |
llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); | |
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); | |
Value *Zero = llvm::Constant::getNullValue(VecTy); | |
Value *SV = Builder.CreateShuffleVector(Zero, Cast, | |
makeArrayRef(Indices, NumElts), | |
"pslldq"); | |
return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); | |
} | |
case X86::BI__builtin_ia32_psrldqi128_byteshift: | |
case X86::BI__builtin_ia32_psrldqi256_byteshift: | |
case X86::BI__builtin_ia32_psrldqi512_byteshift: { | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; | |
llvm::Type *ResultType = Ops[0]->getType(); | |
// Builtin type is vXi64 so multiply by 8 to get bytes. | |
unsigned NumElts = ResultType->getVectorNumElements() * 8; | |
// If psrldq is shifting the vector more than 15 bytes, emit zero. | |
if (ShiftVal >= 16) | |
return llvm::Constant::getNullValue(ResultType); | |
uint32_t Indices[64]; | |
// 256/512-bit psrldq operates on 128-bit lanes so we need to handle that | |
for (unsigned l = 0; l != NumElts; l += 16) { | |
for (unsigned i = 0; i != 16; ++i) { | |
unsigned Idx = i + ShiftVal; | |
if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. | |
Indices[l + i] = Idx + l; | |
} | |
} | |
llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); | |
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); | |
Value *Zero = llvm::Constant::getNullValue(VecTy); | |
Value *SV = Builder.CreateShuffleVector(Cast, Zero, | |
makeArrayRef(Indices, NumElts), | |
"psrldq"); | |
return Builder.CreateBitCast(SV, ResultType, "cast"); | |
} | |
case X86::BI__builtin_ia32_kshiftliqi: | |
case X86::BI__builtin_ia32_kshiftlihi: | |
case X86::BI__builtin_ia32_kshiftlisi: | |
case X86::BI__builtin_ia32_kshiftlidi: { | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
if (ShiftVal >= NumElts) | |
return llvm::Constant::getNullValue(Ops[0]->getType()); | |
Value *In = getMaskVecValue(*this, Ops[0], NumElts); | |
uint32_t Indices[64]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = NumElts + i - ShiftVal; | |
Value *Zero = llvm::Constant::getNullValue(In->getType()); | |
Value *SV = Builder.CreateShuffleVector(Zero, In, | |
makeArrayRef(Indices, NumElts), | |
"kshiftl"); | |
return Builder.CreateBitCast(SV, Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_kshiftriqi: | |
case X86::BI__builtin_ia32_kshiftrihi: | |
case X86::BI__builtin_ia32_kshiftrisi: | |
case X86::BI__builtin_ia32_kshiftridi: { | |
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
if (ShiftVal >= NumElts) | |
return llvm::Constant::getNullValue(Ops[0]->getType()); | |
Value *In = getMaskVecValue(*this, Ops[0], NumElts); | |
uint32_t Indices[64]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i + ShiftVal; | |
Value *Zero = llvm::Constant::getNullValue(In->getType()); | |
Value *SV = Builder.CreateShuffleVector(In, Zero, | |
makeArrayRef(Indices, NumElts), | |
"kshiftr"); | |
return Builder.CreateBitCast(SV, Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_movnti: | |
case X86::BI__builtin_ia32_movnti64: | |
case X86::BI__builtin_ia32_movntsd: | |
case X86::BI__builtin_ia32_movntss: { | |
llvm::MDNode *Node = llvm::MDNode::get( | |
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); | |
Value *Ptr = Ops[0]; | |
Value *Src = Ops[1]; | |
// Extract the 0'th element of the source vector. | |
if (BuiltinID == X86::BI__builtin_ia32_movntsd || | |
BuiltinID == X86::BI__builtin_ia32_movntss) | |
Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); | |
// Convert the type of the pointer to a pointer to the stored type. | |
Value *BC = Builder.CreateBitCast( | |
Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); | |
// Unaligned nontemporal store of the scalar value. | |
StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); | |
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); | |
SI->setAlignment(llvm::Align::None()); | |
return SI; | |
} | |
// Rotate is a special case of funnel shift - 1st 2 args are the same. | |
case X86::BI__builtin_ia32_vprotb: | |
case X86::BI__builtin_ia32_vprotw: | |
case X86::BI__builtin_ia32_vprotd: | |
case X86::BI__builtin_ia32_vprotq: | |
case X86::BI__builtin_ia32_vprotbi: | |
case X86::BI__builtin_ia32_vprotwi: | |
case X86::BI__builtin_ia32_vprotdi: | |
case X86::BI__builtin_ia32_vprotqi: | |
case X86::BI__builtin_ia32_prold128: | |
case X86::BI__builtin_ia32_prold256: | |
case X86::BI__builtin_ia32_prold512: | |
case X86::BI__builtin_ia32_prolq128: | |
case X86::BI__builtin_ia32_prolq256: | |
case X86::BI__builtin_ia32_prolq512: | |
case X86::BI__builtin_ia32_prolvd128: | |
case X86::BI__builtin_ia32_prolvd256: | |
case X86::BI__builtin_ia32_prolvd512: | |
case X86::BI__builtin_ia32_prolvq128: | |
case X86::BI__builtin_ia32_prolvq256: | |
case X86::BI__builtin_ia32_prolvq512: | |
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); | |
case X86::BI__builtin_ia32_prord128: | |
case X86::BI__builtin_ia32_prord256: | |
case X86::BI__builtin_ia32_prord512: | |
case X86::BI__builtin_ia32_prorq128: | |
case X86::BI__builtin_ia32_prorq256: | |
case X86::BI__builtin_ia32_prorq512: | |
case X86::BI__builtin_ia32_prorvd128: | |
case X86::BI__builtin_ia32_prorvd256: | |
case X86::BI__builtin_ia32_prorvd512: | |
case X86::BI__builtin_ia32_prorvq128: | |
case X86::BI__builtin_ia32_prorvq256: | |
case X86::BI__builtin_ia32_prorvq512: | |
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); | |
case X86::BI__builtin_ia32_selectb_128: | |
case X86::BI__builtin_ia32_selectb_256: | |
case X86::BI__builtin_ia32_selectb_512: | |
case X86::BI__builtin_ia32_selectw_128: | |
case X86::BI__builtin_ia32_selectw_256: | |
case X86::BI__builtin_ia32_selectw_512: | |
case X86::BI__builtin_ia32_selectd_128: | |
case X86::BI__builtin_ia32_selectd_256: | |
case X86::BI__builtin_ia32_selectd_512: | |
case X86::BI__builtin_ia32_selectq_128: | |
case X86::BI__builtin_ia32_selectq_256: | |
case X86::BI__builtin_ia32_selectq_512: | |
case X86::BI__builtin_ia32_selectps_128: | |
case X86::BI__builtin_ia32_selectps_256: | |
case X86::BI__builtin_ia32_selectps_512: | |
case X86::BI__builtin_ia32_selectpd_128: | |
case X86::BI__builtin_ia32_selectpd_256: | |
case X86::BI__builtin_ia32_selectpd_512: | |
return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); | |
case X86::BI__builtin_ia32_selectss_128: | |
case X86::BI__builtin_ia32_selectsd_128: { | |
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); | |
Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); | |
A = EmitX86ScalarSelect(*this, Ops[0], A, B); | |
return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); | |
} | |
case X86::BI__builtin_ia32_cmpb128_mask: | |
case X86::BI__builtin_ia32_cmpb256_mask: | |
case X86::BI__builtin_ia32_cmpb512_mask: | |
case X86::BI__builtin_ia32_cmpw128_mask: | |
case X86::BI__builtin_ia32_cmpw256_mask: | |
case X86::BI__builtin_ia32_cmpw512_mask: | |
case X86::BI__builtin_ia32_cmpd128_mask: | |
case X86::BI__builtin_ia32_cmpd256_mask: | |
case X86::BI__builtin_ia32_cmpd512_mask: | |
case X86::BI__builtin_ia32_cmpq128_mask: | |
case X86::BI__builtin_ia32_cmpq256_mask: | |
case X86::BI__builtin_ia32_cmpq512_mask: { | |
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; | |
return EmitX86MaskedCompare(*this, CC, true, Ops); | |
} | |
case X86::BI__builtin_ia32_ucmpb128_mask: | |
case X86::BI__builtin_ia32_ucmpb256_mask: | |
case X86::BI__builtin_ia32_ucmpb512_mask: | |
case X86::BI__builtin_ia32_ucmpw128_mask: | |
case X86::BI__builtin_ia32_ucmpw256_mask: | |
case X86::BI__builtin_ia32_ucmpw512_mask: | |
case X86::BI__builtin_ia32_ucmpd128_mask: | |
case X86::BI__builtin_ia32_ucmpd256_mask: | |
case X86::BI__builtin_ia32_ucmpd512_mask: | |
case X86::BI__builtin_ia32_ucmpq128_mask: | |
case X86::BI__builtin_ia32_ucmpq256_mask: | |
case X86::BI__builtin_ia32_ucmpq512_mask: { | |
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; | |
return EmitX86MaskedCompare(*this, CC, false, Ops); | |
} | |
case X86::BI__builtin_ia32_vpcomb: | |
case X86::BI__builtin_ia32_vpcomw: | |
case X86::BI__builtin_ia32_vpcomd: | |
case X86::BI__builtin_ia32_vpcomq: | |
return EmitX86vpcom(*this, Ops, true); | |
case X86::BI__builtin_ia32_vpcomub: | |
case X86::BI__builtin_ia32_vpcomuw: | |
case X86::BI__builtin_ia32_vpcomud: | |
case X86::BI__builtin_ia32_vpcomuq: | |
return EmitX86vpcom(*this, Ops, false); | |
case X86::BI__builtin_ia32_kortestcqi: | |
case X86::BI__builtin_ia32_kortestchi: | |
case X86::BI__builtin_ia32_kortestcsi: | |
case X86::BI__builtin_ia32_kortestcdi: { | |
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); | |
Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); | |
Value *Cmp = Builder.CreateICmpEQ(Or, C); | |
return Builder.CreateZExt(Cmp, ConvertType(E->getType())); | |
} | |
case X86::BI__builtin_ia32_kortestzqi: | |
case X86::BI__builtin_ia32_kortestzhi: | |
case X86::BI__builtin_ia32_kortestzsi: | |
case X86::BI__builtin_ia32_kortestzdi: { | |
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); | |
Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); | |
Value *Cmp = Builder.CreateICmpEQ(Or, C); | |
return Builder.CreateZExt(Cmp, ConvertType(E->getType())); | |
} | |
case X86::BI__builtin_ia32_ktestcqi: | |
case X86::BI__builtin_ia32_ktestzqi: | |
case X86::BI__builtin_ia32_ktestchi: | |
case X86::BI__builtin_ia32_ktestzhi: | |
case X86::BI__builtin_ia32_ktestcsi: | |
case X86::BI__builtin_ia32_ktestzsi: | |
case X86::BI__builtin_ia32_ktestcdi: | |
case X86::BI__builtin_ia32_ktestzdi: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_ktestcqi: | |
IID = Intrinsic::x86_avx512_ktestc_b; | |
break; | |
case X86::BI__builtin_ia32_ktestzqi: | |
IID = Intrinsic::x86_avx512_ktestz_b; | |
break; | |
case X86::BI__builtin_ia32_ktestchi: | |
IID = Intrinsic::x86_avx512_ktestc_w; | |
break; | |
case X86::BI__builtin_ia32_ktestzhi: | |
IID = Intrinsic::x86_avx512_ktestz_w; | |
break; | |
case X86::BI__builtin_ia32_ktestcsi: | |
IID = Intrinsic::x86_avx512_ktestc_d; | |
break; | |
case X86::BI__builtin_ia32_ktestzsi: | |
IID = Intrinsic::x86_avx512_ktestz_d; | |
break; | |
case X86::BI__builtin_ia32_ktestcdi: | |
IID = Intrinsic::x86_avx512_ktestc_q; | |
break; | |
case X86::BI__builtin_ia32_ktestzdi: | |
IID = Intrinsic::x86_avx512_ktestz_q; | |
break; | |
} | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); | |
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); | |
Function *Intr = CGM.getIntrinsic(IID); | |
return Builder.CreateCall(Intr, {LHS, RHS}); | |
} | |
case X86::BI__builtin_ia32_kaddqi: | |
case X86::BI__builtin_ia32_kaddhi: | |
case X86::BI__builtin_ia32_kaddsi: | |
case X86::BI__builtin_ia32_kadddi: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_kaddqi: | |
IID = Intrinsic::x86_avx512_kadd_b; | |
break; | |
case X86::BI__builtin_ia32_kaddhi: | |
IID = Intrinsic::x86_avx512_kadd_w; | |
break; | |
case X86::BI__builtin_ia32_kaddsi: | |
IID = Intrinsic::x86_avx512_kadd_d; | |
break; | |
case X86::BI__builtin_ia32_kadddi: | |
IID = Intrinsic::x86_avx512_kadd_q; | |
break; | |
} | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); | |
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); | |
Function *Intr = CGM.getIntrinsic(IID); | |
Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); | |
return Builder.CreateBitCast(Res, Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_kandqi: | |
case X86::BI__builtin_ia32_kandhi: | |
case X86::BI__builtin_ia32_kandsi: | |
case X86::BI__builtin_ia32_kanddi: | |
return EmitX86MaskLogic(*this, Instruction::And, Ops); | |
case X86::BI__builtin_ia32_kandnqi: | |
case X86::BI__builtin_ia32_kandnhi: | |
case X86::BI__builtin_ia32_kandnsi: | |
case X86::BI__builtin_ia32_kandndi: | |
return EmitX86MaskLogic(*this, Instruction::And, Ops, true); | |
case X86::BI__builtin_ia32_korqi: | |
case X86::BI__builtin_ia32_korhi: | |
case X86::BI__builtin_ia32_korsi: | |
case X86::BI__builtin_ia32_kordi: | |
return EmitX86MaskLogic(*this, Instruction::Or, Ops); | |
case X86::BI__builtin_ia32_kxnorqi: | |
case X86::BI__builtin_ia32_kxnorhi: | |
case X86::BI__builtin_ia32_kxnorsi: | |
case X86::BI__builtin_ia32_kxnordi: | |
return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); | |
case X86::BI__builtin_ia32_kxorqi: | |
case X86::BI__builtin_ia32_kxorhi: | |
case X86::BI__builtin_ia32_kxorsi: | |
case X86::BI__builtin_ia32_kxordi: | |
return EmitX86MaskLogic(*this, Instruction::Xor, Ops); | |
case X86::BI__builtin_ia32_knotqi: | |
case X86::BI__builtin_ia32_knothi: | |
case X86::BI__builtin_ia32_knotsi: | |
case X86::BI__builtin_ia32_knotdi: { | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *Res = getMaskVecValue(*this, Ops[0], NumElts); | |
return Builder.CreateBitCast(Builder.CreateNot(Res), | |
Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_kmovb: | |
case X86::BI__builtin_ia32_kmovw: | |
case X86::BI__builtin_ia32_kmovd: | |
case X86::BI__builtin_ia32_kmovq: { | |
// Bitcast to vXi1 type and then back to integer. This gets the mask | |
// register type into the IR, but might be optimized out depending on | |
// what's around it. | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *Res = getMaskVecValue(*this, Ops[0], NumElts); | |
return Builder.CreateBitCast(Res, Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_kunpckdi: | |
case X86::BI__builtin_ia32_kunpcksi: | |
case X86::BI__builtin_ia32_kunpckhi: { | |
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); | |
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); | |
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); | |
uint32_t Indices[64]; | |
for (unsigned i = 0; i != NumElts; ++i) | |
Indices[i] = i; | |
// First extract half of each vector. This gives better codegen than | |
// doing it in a single shuffle. | |
LHS = Builder.CreateShuffleVector(LHS, LHS, | |
makeArrayRef(Indices, NumElts / 2)); | |
RHS = Builder.CreateShuffleVector(RHS, RHS, | |
makeArrayRef(Indices, NumElts / 2)); | |
// Concat the vectors. | |
// NOTE: Operands are swapped to match the intrinsic definition. | |
Value *Res = Builder.CreateShuffleVector(RHS, LHS, | |
makeArrayRef(Indices, NumElts)); | |
return Builder.CreateBitCast(Res, Ops[0]->getType()); | |
} | |
case X86::BI__builtin_ia32_vplzcntd_128: | |
case X86::BI__builtin_ia32_vplzcntd_256: | |
case X86::BI__builtin_ia32_vplzcntd_512: | |
case X86::BI__builtin_ia32_vplzcntq_128: | |
case X86::BI__builtin_ia32_vplzcntq_256: | |
case X86::BI__builtin_ia32_vplzcntq_512: { | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); | |
return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); | |
} | |
case X86::BI__builtin_ia32_sqrtss: | |
case X86::BI__builtin_ia32_sqrtsd: { | |
Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); | |
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); | |
A = Builder.CreateCall(F, {A}); | |
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); | |
} | |
case X86::BI__builtin_ia32_sqrtsd_round_mask: | |
case X86::BI__builtin_ia32_sqrtss_round_mask: { | |
unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); | |
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION), | |
// otherwise keep the intrinsic. | |
if (CC != 4) { | |
Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? | |
Intrinsic::x86_avx512_mask_sqrt_sd : | |
Intrinsic::x86_avx512_mask_sqrt_ss; | |
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); | |
} | |
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); | |
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); | |
A = Builder.CreateCall(F, A); | |
Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); | |
A = EmitX86ScalarSelect(*this, Ops[3], A, Src); | |
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); | |
} | |
case X86::BI__builtin_ia32_sqrtpd256: | |
case X86::BI__builtin_ia32_sqrtpd: | |
case X86::BI__builtin_ia32_sqrtps256: | |
case X86::BI__builtin_ia32_sqrtps: | |
case X86::BI__builtin_ia32_sqrtps512: | |
case X86::BI__builtin_ia32_sqrtpd512: { | |
if (Ops.size() == 2) { | |
unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); | |
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION), | |
// otherwise keep the intrinsic. | |
if (CC != 4) { | |
Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? | |
Intrinsic::x86_avx512_sqrt_ps_512 : | |
Intrinsic::x86_avx512_sqrt_pd_512; | |
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); | |
} | |
} | |
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); | |
return Builder.CreateCall(F, Ops[0]); | |
} | |
case X86::BI__builtin_ia32_pabsb128: | |
case X86::BI__builtin_ia32_pabsw128: | |
case X86::BI__builtin_ia32_pabsd128: | |
case X86::BI__builtin_ia32_pabsb256: | |
case X86::BI__builtin_ia32_pabsw256: | |
case X86::BI__builtin_ia32_pabsd256: | |
case X86::BI__builtin_ia32_pabsq128: | |
case X86::BI__builtin_ia32_pabsq256: | |
case X86::BI__builtin_ia32_pabsb512: | |
case X86::BI__builtin_ia32_pabsw512: | |
case X86::BI__builtin_ia32_pabsd512: | |
case X86::BI__builtin_ia32_pabsq512: | |
return EmitX86Abs(*this, Ops); | |
case X86::BI__builtin_ia32_pmaxsb128: | |
case X86::BI__builtin_ia32_pmaxsw128: | |
case X86::BI__builtin_ia32_pmaxsd128: | |
case X86::BI__builtin_ia32_pmaxsq128: | |
case X86::BI__builtin_ia32_pmaxsb256: | |
case X86::BI__builtin_ia32_pmaxsw256: | |
case X86::BI__builtin_ia32_pmaxsd256: | |
case X86::BI__builtin_ia32_pmaxsq256: | |
case X86::BI__builtin_ia32_pmaxsb512: | |
case X86::BI__builtin_ia32_pmaxsw512: | |
case X86::BI__builtin_ia32_pmaxsd512: | |
case X86::BI__builtin_ia32_pmaxsq512: | |
return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops); | |
case X86::BI__builtin_ia32_pmaxub128: | |
case X86::BI__builtin_ia32_pmaxuw128: | |
case X86::BI__builtin_ia32_pmaxud128: | |
case X86::BI__builtin_ia32_pmaxuq128: | |
case X86::BI__builtin_ia32_pmaxub256: | |
case X86::BI__builtin_ia32_pmaxuw256: | |
case X86::BI__builtin_ia32_pmaxud256: | |
case X86::BI__builtin_ia32_pmaxuq256: | |
case X86::BI__builtin_ia32_pmaxub512: | |
case X86::BI__builtin_ia32_pmaxuw512: | |
case X86::BI__builtin_ia32_pmaxud512: | |
case X86::BI__builtin_ia32_pmaxuq512: | |
return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops); | |
case X86::BI__builtin_ia32_pminsb128: | |
case X86::BI__builtin_ia32_pminsw128: | |
case X86::BI__builtin_ia32_pminsd128: | |
case X86::BI__builtin_ia32_pminsq128: | |
case X86::BI__builtin_ia32_pminsb256: | |
case X86::BI__builtin_ia32_pminsw256: | |
case X86::BI__builtin_ia32_pminsd256: | |
case X86::BI__builtin_ia32_pminsq256: | |
case X86::BI__builtin_ia32_pminsb512: | |
case X86::BI__builtin_ia32_pminsw512: | |
case X86::BI__builtin_ia32_pminsd512: | |
case X86::BI__builtin_ia32_pminsq512: | |
return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops); | |
case X86::BI__builtin_ia32_pminub128: | |
case X86::BI__builtin_ia32_pminuw128: | |
case X86::BI__builtin_ia32_pminud128: | |
case X86::BI__builtin_ia32_pminuq128: | |
case X86::BI__builtin_ia32_pminub256: | |
case X86::BI__builtin_ia32_pminuw256: | |
case X86::BI__builtin_ia32_pminud256: | |
case X86::BI__builtin_ia32_pminuq256: | |
case X86::BI__builtin_ia32_pminub512: | |
case X86::BI__builtin_ia32_pminuw512: | |
case X86::BI__builtin_ia32_pminud512: | |
case X86::BI__builtin_ia32_pminuq512: | |
return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops); | |
case X86::BI__builtin_ia32_pmuludq128: | |
case X86::BI__builtin_ia32_pmuludq256: | |
case X86::BI__builtin_ia32_pmuludq512: | |
return EmitX86Muldq(*this, /*IsSigned*/false, Ops); | |
case X86::BI__builtin_ia32_pmuldq128: | |
case X86::BI__builtin_ia32_pmuldq256: | |
case X86::BI__builtin_ia32_pmuldq512: | |
return EmitX86Muldq(*this, /*IsSigned*/true, Ops); | |
case X86::BI__builtin_ia32_pternlogd512_mask: | |
case X86::BI__builtin_ia32_pternlogq512_mask: | |
case X86::BI__builtin_ia32_pternlogd128_mask: | |
case X86::BI__builtin_ia32_pternlogd256_mask: | |
case X86::BI__builtin_ia32_pternlogq128_mask: | |
case X86::BI__builtin_ia32_pternlogq256_mask: | |
return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); | |
case X86::BI__builtin_ia32_pternlogd512_maskz: | |
case X86::BI__builtin_ia32_pternlogq512_maskz: | |
case X86::BI__builtin_ia32_pternlogd128_maskz: | |
case X86::BI__builtin_ia32_pternlogd256_maskz: | |
case X86::BI__builtin_ia32_pternlogq128_maskz: | |
case X86::BI__builtin_ia32_pternlogq256_maskz: | |
return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); | |
case X86::BI__builtin_ia32_vpshldd128: | |
case X86::BI__builtin_ia32_vpshldd256: | |
case X86::BI__builtin_ia32_vpshldd512: | |
case X86::BI__builtin_ia32_vpshldq128: | |
case X86::BI__builtin_ia32_vpshldq256: | |
case X86::BI__builtin_ia32_vpshldq512: | |
case X86::BI__builtin_ia32_vpshldw128: | |
case X86::BI__builtin_ia32_vpshldw256: | |
case X86::BI__builtin_ia32_vpshldw512: | |
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); | |
case X86::BI__builtin_ia32_vpshrdd128: | |
case X86::BI__builtin_ia32_vpshrdd256: | |
case X86::BI__builtin_ia32_vpshrdd512: | |
case X86::BI__builtin_ia32_vpshrdq128: | |
case X86::BI__builtin_ia32_vpshrdq256: | |
case X86::BI__builtin_ia32_vpshrdq512: | |
case X86::BI__builtin_ia32_vpshrdw128: | |
case X86::BI__builtin_ia32_vpshrdw256: | |
case X86::BI__builtin_ia32_vpshrdw512: | |
// Ops 0 and 1 are swapped. | |
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); | |
case X86::BI__builtin_ia32_vpshldvd128: | |
case X86::BI__builtin_ia32_vpshldvd256: | |
case X86::BI__builtin_ia32_vpshldvd512: | |
case X86::BI__builtin_ia32_vpshldvq128: | |
case X86::BI__builtin_ia32_vpshldvq256: | |
case X86::BI__builtin_ia32_vpshldvq512: | |
case X86::BI__builtin_ia32_vpshldvw128: | |
case X86::BI__builtin_ia32_vpshldvw256: | |
case X86::BI__builtin_ia32_vpshldvw512: | |
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); | |
case X86::BI__builtin_ia32_vpshrdvd128: | |
case X86::BI__builtin_ia32_vpshrdvd256: | |
case X86::BI__builtin_ia32_vpshrdvd512: | |
case X86::BI__builtin_ia32_vpshrdvq128: | |
case X86::BI__builtin_ia32_vpshrdvq256: | |
case X86::BI__builtin_ia32_vpshrdvq512: | |
case X86::BI__builtin_ia32_vpshrdvw128: | |
case X86::BI__builtin_ia32_vpshrdvw256: | |
case X86::BI__builtin_ia32_vpshrdvw512: | |
// Ops 0 and 1 are swapped. | |
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); | |
// 3DNow! | |
case X86::BI__builtin_ia32_pswapdsf: | |
case X86::BI__builtin_ia32_pswapdsi: { | |
llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); | |
Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); | |
return Builder.CreateCall(F, Ops, "pswapd"); | |
} | |
case X86::BI__builtin_ia32_rdrand16_step: | |
case X86::BI__builtin_ia32_rdrand32_step: | |
case X86::BI__builtin_ia32_rdrand64_step: | |
case X86::BI__builtin_ia32_rdseed16_step: | |
case X86::BI__builtin_ia32_rdseed32_step: | |
case X86::BI__builtin_ia32_rdseed64_step: { | |
Intrinsic::ID ID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_rdrand16_step: | |
ID = Intrinsic::x86_rdrand_16; | |
break; | |
case X86::BI__builtin_ia32_rdrand32_step: | |
ID = Intrinsic::x86_rdrand_32; | |
break; | |
case X86::BI__builtin_ia32_rdrand64_step: | |
ID = Intrinsic::x86_rdrand_64; | |
break; | |
case X86::BI__builtin_ia32_rdseed16_step: | |
ID = Intrinsic::x86_rdseed_16; | |
break; | |
case X86::BI__builtin_ia32_rdseed32_step: | |
ID = Intrinsic::x86_rdseed_32; | |
break; | |
case X86::BI__builtin_ia32_rdseed64_step: | |
ID = Intrinsic::x86_rdseed_64; | |
break; | |
} | |
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); | |
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), | |
Ops[0]); | |
return Builder.CreateExtractValue(Call, 1); | |
} | |
case X86::BI__builtin_ia32_addcarryx_u32: | |
case X86::BI__builtin_ia32_addcarryx_u64: | |
case X86::BI__builtin_ia32_subborrow_u32: | |
case X86::BI__builtin_ia32_subborrow_u64: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_addcarryx_u32: | |
IID = Intrinsic::x86_addcarry_32; | |
break; | |
case X86::BI__builtin_ia32_addcarryx_u64: | |
IID = Intrinsic::x86_addcarry_64; | |
break; | |
case X86::BI__builtin_ia32_subborrow_u32: | |
IID = Intrinsic::x86_subborrow_32; | |
break; | |
case X86::BI__builtin_ia32_subborrow_u64: | |
IID = Intrinsic::x86_subborrow_64; | |
break; | |
} | |
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), | |
{ Ops[0], Ops[1], Ops[2] }); | |
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), | |
Ops[3]); | |
return Builder.CreateExtractValue(Call, 0); | |
} | |
case X86::BI__builtin_ia32_fpclassps128_mask: | |
case X86::BI__builtin_ia32_fpclassps256_mask: | |
case X86::BI__builtin_ia32_fpclassps512_mask: | |
case X86::BI__builtin_ia32_fpclasspd128_mask: | |
case X86::BI__builtin_ia32_fpclasspd256_mask: | |
case X86::BI__builtin_ia32_fpclasspd512_mask: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
Value *MaskIn = Ops[2]; | |
Ops.erase(&Ops[2]); | |
Intrinsic::ID ID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_fpclassps128_mask: | |
ID = Intrinsic::x86_avx512_fpclass_ps_128; | |
break; | |
case X86::BI__builtin_ia32_fpclassps256_mask: | |
ID = Intrinsic::x86_avx512_fpclass_ps_256; | |
break; | |
case X86::BI__builtin_ia32_fpclassps512_mask: | |
ID = Intrinsic::x86_avx512_fpclass_ps_512; | |
break; | |
case X86::BI__builtin_ia32_fpclasspd128_mask: | |
ID = Intrinsic::x86_avx512_fpclass_pd_128; | |
break; | |
case X86::BI__builtin_ia32_fpclasspd256_mask: | |
ID = Intrinsic::x86_avx512_fpclass_pd_256; | |
break; | |
case X86::BI__builtin_ia32_fpclasspd512_mask: | |
ID = Intrinsic::x86_avx512_fpclass_pd_512; | |
break; | |
} | |
Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); | |
} | |
case X86::BI__builtin_ia32_vp2intersect_q_512: | |
case X86::BI__builtin_ia32_vp2intersect_q_256: | |
case X86::BI__builtin_ia32_vp2intersect_q_128: | |
case X86::BI__builtin_ia32_vp2intersect_d_512: | |
case X86::BI__builtin_ia32_vp2intersect_d_256: | |
case X86::BI__builtin_ia32_vp2intersect_d_128: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
Intrinsic::ID ID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_vp2intersect_q_512: | |
ID = Intrinsic::x86_avx512_vp2intersect_q_512; | |
break; | |
case X86::BI__builtin_ia32_vp2intersect_q_256: | |
ID = Intrinsic::x86_avx512_vp2intersect_q_256; | |
break; | |
case X86::BI__builtin_ia32_vp2intersect_q_128: | |
ID = Intrinsic::x86_avx512_vp2intersect_q_128; | |
break; | |
case X86::BI__builtin_ia32_vp2intersect_d_512: | |
ID = Intrinsic::x86_avx512_vp2intersect_d_512; | |
break; | |
case X86::BI__builtin_ia32_vp2intersect_d_256: | |
ID = Intrinsic::x86_avx512_vp2intersect_d_256; | |
break; | |
case X86::BI__builtin_ia32_vp2intersect_d_128: | |
ID = Intrinsic::x86_avx512_vp2intersect_d_128; | |
break; | |
} | |
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); | |
Value *Result = Builder.CreateExtractValue(Call, 0); | |
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); | |
Builder.CreateDefaultAlignedStore(Result, Ops[2]); | |
Result = Builder.CreateExtractValue(Call, 1); | |
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); | |
return Builder.CreateDefaultAlignedStore(Result, Ops[3]); | |
} | |
case X86::BI__builtin_ia32_vpmultishiftqb128: | |
case X86::BI__builtin_ia32_vpmultishiftqb256: | |
case X86::BI__builtin_ia32_vpmultishiftqb512: { | |
Intrinsic::ID ID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_vpmultishiftqb128: | |
ID = Intrinsic::x86_avx512_pmultishift_qb_128; | |
break; | |
case X86::BI__builtin_ia32_vpmultishiftqb256: | |
ID = Intrinsic::x86_avx512_pmultishift_qb_256; | |
break; | |
case X86::BI__builtin_ia32_vpmultishiftqb512: | |
ID = Intrinsic::x86_avx512_pmultishift_qb_512; | |
break; | |
} | |
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
} | |
case X86::BI__builtin_ia32_vpshufbitqmb128_mask: | |
case X86::BI__builtin_ia32_vpshufbitqmb256_mask: | |
case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
Value *MaskIn = Ops[2]; | |
Ops.erase(&Ops[2]); | |
Intrinsic::ID ID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_vpshufbitqmb128_mask: | |
ID = Intrinsic::x86_avx512_vpshufbitqmb_128; | |
break; | |
case X86::BI__builtin_ia32_vpshufbitqmb256_mask: | |
ID = Intrinsic::x86_avx512_vpshufbitqmb_256; | |
break; | |
case X86::BI__builtin_ia32_vpshufbitqmb512_mask: | |
ID = Intrinsic::x86_avx512_vpshufbitqmb_512; | |
break; | |
} | |
Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); | |
} | |
// packed comparison intrinsics | |
case X86::BI__builtin_ia32_cmpeqps: | |
case X86::BI__builtin_ia32_cmpeqpd: | |
return getVectorFCmpIR(CmpInst::FCMP_OEQ); | |
case X86::BI__builtin_ia32_cmpltps: | |
case X86::BI__builtin_ia32_cmpltpd: | |
return getVectorFCmpIR(CmpInst::FCMP_OLT); | |
case X86::BI__builtin_ia32_cmpleps: | |
case X86::BI__builtin_ia32_cmplepd: | |
return getVectorFCmpIR(CmpInst::FCMP_OLE); | |
case X86::BI__builtin_ia32_cmpunordps: | |
case X86::BI__builtin_ia32_cmpunordpd: | |
return getVectorFCmpIR(CmpInst::FCMP_UNO); | |
case X86::BI__builtin_ia32_cmpneqps: | |
case X86::BI__builtin_ia32_cmpneqpd: | |
return getVectorFCmpIR(CmpInst::FCMP_UNE); | |
case X86::BI__builtin_ia32_cmpnltps: | |
case X86::BI__builtin_ia32_cmpnltpd: | |
return getVectorFCmpIR(CmpInst::FCMP_UGE); | |
case X86::BI__builtin_ia32_cmpnleps: | |
case X86::BI__builtin_ia32_cmpnlepd: | |
return getVectorFCmpIR(CmpInst::FCMP_UGT); | |
case X86::BI__builtin_ia32_cmpordps: | |
case X86::BI__builtin_ia32_cmpordpd: | |
return getVectorFCmpIR(CmpInst::FCMP_ORD); | |
case X86::BI__builtin_ia32_cmpps: | |
case X86::BI__builtin_ia32_cmpps256: | |
case X86::BI__builtin_ia32_cmppd: | |
case X86::BI__builtin_ia32_cmppd256: | |
case X86::BI__builtin_ia32_cmpps128_mask: | |
case X86::BI__builtin_ia32_cmpps256_mask: | |
case X86::BI__builtin_ia32_cmpps512_mask: | |
case X86::BI__builtin_ia32_cmppd128_mask: | |
case X86::BI__builtin_ia32_cmppd256_mask: | |
case X86::BI__builtin_ia32_cmppd512_mask: { | |
// Lowering vector comparisons to fcmp instructions, while | |
// ignoring signalling behaviour requested | |
// ignoring rounding mode requested | |
// This is is only possible as long as FENV_ACCESS is not implemented. | |
// See also: https://reviews.llvm.org/D45616 | |
// The third argument is the comparison condition, and integer in the | |
// range [0, 31] | |
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; | |
// Lowering to IR fcmp instruction. | |
// Ignoring requested signaling behaviour, | |
// e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. | |
FCmpInst::Predicate Pred; | |
switch (CC) { | |
case 0x00: Pred = FCmpInst::FCMP_OEQ; break; | |
case 0x01: Pred = FCmpInst::FCMP_OLT; break; | |
case 0x02: Pred = FCmpInst::FCMP_OLE; break; | |
case 0x03: Pred = FCmpInst::FCMP_UNO; break; | |
case 0x04: Pred = FCmpInst::FCMP_UNE; break; | |
case 0x05: Pred = FCmpInst::FCMP_UGE; break; | |
case 0x06: Pred = FCmpInst::FCMP_UGT; break; | |
case 0x07: Pred = FCmpInst::FCMP_ORD; break; | |
case 0x08: Pred = FCmpInst::FCMP_UEQ; break; | |
case 0x09: Pred = FCmpInst::FCMP_ULT; break; | |
case 0x0a: Pred = FCmpInst::FCMP_ULE; break; | |
case 0x0b: Pred = FCmpInst::FCMP_FALSE; break; | |
case 0x0c: Pred = FCmpInst::FCMP_ONE; break; | |
case 0x0d: Pred = FCmpInst::FCMP_OGE; break; | |
case 0x0e: Pred = FCmpInst::FCMP_OGT; break; | |
case 0x0f: Pred = FCmpInst::FCMP_TRUE; break; | |
case 0x10: Pred = FCmpInst::FCMP_OEQ; break; | |
case 0x11: Pred = FCmpInst::FCMP_OLT; break; | |
case 0x12: Pred = FCmpInst::FCMP_OLE; break; | |
case 0x13: Pred = FCmpInst::FCMP_UNO; break; | |
case 0x14: Pred = FCmpInst::FCMP_UNE; break; | |
case 0x15: Pred = FCmpInst::FCMP_UGE; break; | |
case 0x16: Pred = FCmpInst::FCMP_UGT; break; | |
case 0x17: Pred = FCmpInst::FCMP_ORD; break; | |
case 0x18: Pred = FCmpInst::FCMP_UEQ; break; | |
case 0x19: Pred = FCmpInst::FCMP_ULT; break; | |
case 0x1a: Pred = FCmpInst::FCMP_ULE; break; | |
case 0x1b: Pred = FCmpInst::FCMP_FALSE; break; | |
case 0x1c: Pred = FCmpInst::FCMP_ONE; break; | |
case 0x1d: Pred = FCmpInst::FCMP_OGE; break; | |
case 0x1e: Pred = FCmpInst::FCMP_OGT; break; | |
case 0x1f: Pred = FCmpInst::FCMP_TRUE; break; | |
default: llvm_unreachable("Unhandled CC"); | |
} | |
// Builtins without the _mask suffix return a vector of integers | |
// of the same width as the input vectors | |
switch (BuiltinID) { | |
case X86::BI__builtin_ia32_cmpps512_mask: | |
case X86::BI__builtin_ia32_cmppd512_mask: | |
case X86::BI__builtin_ia32_cmpps128_mask: | |
case X86::BI__builtin_ia32_cmpps256_mask: | |
case X86::BI__builtin_ia32_cmppd128_mask: | |
case X86::BI__builtin_ia32_cmppd256_mask: { | |
unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); | |
Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); | |
return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); | |
} | |
default: | |
return getVectorFCmpIR(Pred); | |
} | |
} | |
// SSE scalar comparison intrinsics | |
case X86::BI__builtin_ia32_cmpeqss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); | |
case X86::BI__builtin_ia32_cmpltss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); | |
case X86::BI__builtin_ia32_cmpless: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); | |
case X86::BI__builtin_ia32_cmpunordss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); | |
case X86::BI__builtin_ia32_cmpneqss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); | |
case X86::BI__builtin_ia32_cmpnltss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); | |
case X86::BI__builtin_ia32_cmpnless: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); | |
case X86::BI__builtin_ia32_cmpordss: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); | |
case X86::BI__builtin_ia32_cmpeqsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); | |
case X86::BI__builtin_ia32_cmpltsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); | |
case X86::BI__builtin_ia32_cmplesd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); | |
case X86::BI__builtin_ia32_cmpunordsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); | |
case X86::BI__builtin_ia32_cmpneqsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); | |
case X86::BI__builtin_ia32_cmpnltsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); | |
case X86::BI__builtin_ia32_cmpnlesd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); | |
case X86::BI__builtin_ia32_cmpordsd: | |
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); | |
// AVX512 bf16 intrinsics | |
case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { | |
Ops[2] = getMaskVecValue(*this, Ops[2], | |
Ops[0]->getType()->getVectorNumElements()); | |
Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; | |
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); | |
} | |
case X86::BI__builtin_ia32_cvtsbf162ss_32: | |
return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); | |
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: | |
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { | |
Intrinsic::ID IID; | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported intrinsic!"); | |
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: | |
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; | |
break; | |
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: | |
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; | |
break; | |
} | |
Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); | |
return EmitX86Select(*this, Ops[2], Res, Ops[1]); | |
} | |
case X86::BI__emul: | |
case X86::BI__emulu: { | |
llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); | |
bool isSigned = (BuiltinID == X86::BI__emul); | |
Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); | |
Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); | |
return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); | |
} | |
case X86::BI__mulh: | |
case X86::BI__umulh: | |
case X86::BI_mul128: | |
case X86::BI_umul128: { | |
llvm::Type *ResType = ConvertType(E->getType()); | |
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); | |
bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); | |
Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); | |
Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); | |
Value *MulResult, *HigherBits; | |
if (IsSigned) { | |
MulResult = Builder.CreateNSWMul(LHS, RHS); | |
HigherBits = Builder.CreateAShr(MulResult, 64); | |
} else { | |
MulResult = Builder.CreateNUWMul(LHS, RHS); | |
HigherBits = Builder.CreateLShr(MulResult, 64); | |
} | |
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); | |
if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) | |
return HigherBits; | |
Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); | |
Builder.CreateStore(HigherBits, HighBitsAddress); | |
return Builder.CreateIntCast(MulResult, ResType, IsSigned); | |
} | |
case X86::BI__faststorefence: { | |
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, | |
llvm::SyncScope::System); | |
} | |
case X86::BI__shiftleft128: | |
case X86::BI__shiftright128: { | |
// FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this: | |
// llvm::Function *F = CGM.getIntrinsic( | |
// BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, | |
// Int64Ty); | |
// Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); | |
// return Builder.CreateCall(F, Ops); | |
llvm::Type *Int128Ty = Builder.getInt128Ty(); | |
Value *HighPart128 = | |
Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64); | |
Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty); | |
Value *Val = Builder.CreateOr(HighPart128, LowPart128); | |
Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty), | |
llvm::ConstantInt::get(Int128Ty, 0x3f)); | |
Value *Res; | |
if (BuiltinID == X86::BI__shiftleft128) | |
Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64); | |
else | |
Res = Builder.CreateLShr(Val, Amt); | |
return Builder.CreateTrunc(Res, Int64Ty); | |
} | |
case X86::BI_ReadWriteBarrier: | |
case X86::BI_ReadBarrier: | |
case X86::BI_WriteBarrier: { | |
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, | |
llvm::SyncScope::SingleThread); | |
} | |
case X86::BI_BitScanForward: | |
case X86::BI_BitScanForward64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); | |
case X86::BI_BitScanReverse: | |
case X86::BI_BitScanReverse64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); | |
case X86::BI_InterlockedAnd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); | |
case X86::BI_InterlockedExchange64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); | |
case X86::BI_InterlockedExchangeAdd64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); | |
case X86::BI_InterlockedExchangeSub64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); | |
case X86::BI_InterlockedOr64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); | |
case X86::BI_InterlockedXor64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); | |
case X86::BI_InterlockedDecrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); | |
case X86::BI_InterlockedIncrement64: | |
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); | |
case X86::BI_InterlockedCompareExchange128: { | |
// InterlockedCompareExchange128 doesn't directly refer to 128bit ints, | |
// instead it takes pointers to 64bit ints for Destination and | |
// ComparandResult, and exchange is taken as two 64bit ints (high & low). | |
// The previous value is written to ComparandResult, and success is | |
// returned. | |
llvm::Type *Int128Ty = Builder.getInt128Ty(); | |
llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); | |
Value *Destination = | |
Builder.CreateBitCast(Ops[0], Int128PtrTy); | |
Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty); | |
Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty); | |
Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy), | |
getContext().toCharUnitsFromBits(128)); | |
Value *Exchange = Builder.CreateOr( | |
Builder.CreateShl(ExchangeHigh128, 64, "", false, false), | |
ExchangeLow128); | |
Value *Comparand = Builder.CreateLoad(ComparandResult); | |
AtomicCmpXchgInst *CXI = | |
Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, | |
AtomicOrdering::SequentiallyConsistent, | |
AtomicOrdering::SequentiallyConsistent); | |
CXI->setVolatile(true); | |
// Write the result back to the inout pointer. | |
Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult); | |
// Get the success boolean and zero extend it to i8. | |
Value *Success = Builder.CreateExtractValue(CXI, 1); | |
return Builder.CreateZExt(Success, ConvertType(E->getType())); | |
} | |
case X86::BI_AddressOfReturnAddress: { | |
Function *F = | |
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); | |
return Builder.CreateCall(F); | |
} | |
case X86::BI__stosb: { | |
// We treat __stosb as a volatile memset - it may not generate "rep stosb" | |
// instruction, but it will create a memset that won't be optimized away. | |
return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true); | |
} | |
case X86::BI__ud2: | |
// llvm.trap makes a ud2a instruction on x86. | |
return EmitTrapCall(Intrinsic::trap); | |
case X86::BI__int2c: { | |
// This syscall signals a driver assertion failure in x86 NT kernels. | |
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); | |
llvm::InlineAsm *IA = | |
llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); | |
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( | |
getLLVMContext(), llvm::AttributeList::FunctionIndex, | |
llvm::Attribute::NoReturn); | |
llvm::CallInst *CI = Builder.CreateCall(IA); | |
CI->setAttributes(NoReturnAttr); | |
return CI; | |
} | |
case X86::BI__readfsbyte: | |
case X86::BI__readfsword: | |
case X86::BI__readfsdword: | |
case X86::BI__readfsqword: { | |
llvm::Type *IntTy = ConvertType(E->getType()); | |
Value *Ptr = | |
Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); | |
LoadInst *Load = Builder.CreateAlignedLoad( | |
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); | |
Load->setVolatile(true); | |
return Load; | |
} | |
case X86::BI__readgsbyte: | |
case X86::BI__readgsword: | |
case X86::BI__readgsdword: | |
case X86::BI__readgsqword: { | |
llvm::Type *IntTy = ConvertType(E->getType()); | |
Value *Ptr = | |
Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); | |
LoadInst *Load = Builder.CreateAlignedLoad( | |
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); | |
Load->setVolatile(true); | |
return Load; | |
} | |
case X86::BI__builtin_ia32_paddsb512: | |
case X86::BI__builtin_ia32_paddsw512: | |
case X86::BI__builtin_ia32_paddsb256: | |
case X86::BI__builtin_ia32_paddsw256: | |
case X86::BI__builtin_ia32_paddsb128: | |
case X86::BI__builtin_ia32_paddsw128: | |
return EmitX86AddSubSatExpr(*this, Ops, true, true); | |
case X86::BI__builtin_ia32_paddusb512: | |
case X86::BI__builtin_ia32_paddusw512: | |
case X86::BI__builtin_ia32_paddusb256: | |
case X86::BI__builtin_ia32_paddusw256: | |
case X86::BI__builtin_ia32_paddusb128: | |
case X86::BI__builtin_ia32_paddusw128: | |
return EmitX86AddSubSatExpr(*this, Ops, false, true); | |
case X86::BI__builtin_ia32_psubsb512: | |
case X86::BI__builtin_ia32_psubsw512: | |
case X86::BI__builtin_ia32_psubsb256: | |
case X86::BI__builtin_ia32_psubsw256: | |
case X86::BI__builtin_ia32_psubsb128: | |
case X86::BI__builtin_ia32_psubsw128: | |
return EmitX86AddSubSatExpr(*this, Ops, true, false); | |
case X86::BI__builtin_ia32_psubusb512: | |
case X86::BI__builtin_ia32_psubusw512: | |
case X86::BI__builtin_ia32_psubusb256: | |
case X86::BI__builtin_ia32_psubusw256: | |
case X86::BI__builtin_ia32_psubusb128: | |
case X86::BI__builtin_ia32_psubusw128: | |
return EmitX86AddSubSatExpr(*this, Ops, false, false); | |
} | |
} | |
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
SmallVector<Value*, 4> Ops; | |
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) | |
Ops.push_back(EmitScalarExpr(E->getArg(i))); | |
Intrinsic::ID ID = Intrinsic::not_intrinsic; | |
switch (BuiltinID) { | |
default: return nullptr; | |
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we | |
// call __builtin_readcyclecounter. | |
case PPC::BI__builtin_ppc_get_timebase: | |
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); | |
// vec_ld, vec_xl_be, vec_lvsl, vec_lvsr | |
case PPC::BI__builtin_altivec_lvx: | |
case PPC::BI__builtin_altivec_lvxl: | |
case PPC::BI__builtin_altivec_lvebx: | |
case PPC::BI__builtin_altivec_lvehx: | |
case PPC::BI__builtin_altivec_lvewx: | |
case PPC::BI__builtin_altivec_lvsl: | |
case PPC::BI__builtin_altivec_lvsr: | |
case PPC::BI__builtin_vsx_lxvd2x: | |
case PPC::BI__builtin_vsx_lxvw4x: | |
case PPC::BI__builtin_vsx_lxvd2x_be: | |
case PPC::BI__builtin_vsx_lxvw4x_be: | |
case PPC::BI__builtin_vsx_lxvl: | |
case PPC::BI__builtin_vsx_lxvll: | |
{ | |
if(BuiltinID == PPC::BI__builtin_vsx_lxvl || | |
BuiltinID == PPC::BI__builtin_vsx_lxvll){ | |
Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); | |
}else { | |
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); | |
Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); | |
Ops.pop_back(); | |
} | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); | |
case PPC::BI__builtin_altivec_lvx: | |
ID = Intrinsic::ppc_altivec_lvx; | |
break; | |
case PPC::BI__builtin_altivec_lvxl: | |
ID = Intrinsic::ppc_altivec_lvxl; | |
break; | |
case PPC::BI__builtin_altivec_lvebx: | |
ID = Intrinsic::ppc_altivec_lvebx; | |
break; | |
case PPC::BI__builtin_altivec_lvehx: | |
ID = Intrinsic::ppc_altivec_lvehx; | |
break; | |
case PPC::BI__builtin_altivec_lvewx: | |
ID = Intrinsic::ppc_altivec_lvewx; | |
break; | |
case PPC::BI__builtin_altivec_lvsl: | |
ID = Intrinsic::ppc_altivec_lvsl; | |
break; | |
case PPC::BI__builtin_altivec_lvsr: | |
ID = Intrinsic::ppc_altivec_lvsr; | |
break; | |
case PPC::BI__builtin_vsx_lxvd2x: | |
ID = Intrinsic::ppc_vsx_lxvd2x; | |
break; | |
case PPC::BI__builtin_vsx_lxvw4x: | |
ID = Intrinsic::ppc_vsx_lxvw4x; | |
break; | |
case PPC::BI__builtin_vsx_lxvd2x_be: | |
ID = Intrinsic::ppc_vsx_lxvd2x_be; | |
break; | |
case PPC::BI__builtin_vsx_lxvw4x_be: | |
ID = Intrinsic::ppc_vsx_lxvw4x_be; | |
break; | |
case PPC::BI__builtin_vsx_lxvl: | |
ID = Intrinsic::ppc_vsx_lxvl; | |
break; | |
case PPC::BI__builtin_vsx_lxvll: | |
ID = Intrinsic::ppc_vsx_lxvll; | |
break; | |
} | |
llvm::Function *F = CGM.getIntrinsic(ID); | |
return Builder.CreateCall(F, Ops, ""); | |
} | |
// vec_st, vec_xst_be | |
case PPC::BI__builtin_altivec_stvx: | |
case PPC::BI__builtin_altivec_stvxl: | |
case PPC::BI__builtin_altivec_stvebx: | |
case PPC::BI__builtin_altivec_stvehx: | |
case PPC::BI__builtin_altivec_stvewx: | |
case PPC::BI__builtin_vsx_stxvd2x: | |
case PPC::BI__builtin_vsx_stxvw4x: | |
case PPC::BI__builtin_vsx_stxvd2x_be: | |
case PPC::BI__builtin_vsx_stxvw4x_be: | |
case PPC::BI__builtin_vsx_stxvl: | |
case PPC::BI__builtin_vsx_stxvll: | |
{ | |
if(BuiltinID == PPC::BI__builtin_vsx_stxvl || | |
BuiltinID == PPC::BI__builtin_vsx_stxvll ){ | |
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); | |
}else { | |
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); | |
Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); | |
Ops.pop_back(); | |
} | |
switch (BuiltinID) { | |
default: llvm_unreachable("Unsupported st intrinsic!"); | |
case PPC::BI__builtin_altivec_stvx: | |
ID = Intrinsic::ppc_altivec_stvx; | |
break; | |
case PPC::BI__builtin_altivec_stvxl: | |
ID = Intrinsic::ppc_altivec_stvxl; | |
break; | |
case PPC::BI__builtin_altivec_stvebx: | |
ID = Intrinsic::ppc_altivec_stvebx; | |
break; | |
case PPC::BI__builtin_altivec_stvehx: | |
ID = Intrinsic::ppc_altivec_stvehx; | |
break; | |
case PPC::BI__builtin_altivec_stvewx: | |
ID = Intrinsic::ppc_altivec_stvewx; | |
break; | |
case PPC::BI__builtin_vsx_stxvd2x: | |
ID = Intrinsic::ppc_vsx_stxvd2x; | |
break; | |
case PPC::BI__builtin_vsx_stxvw4x: | |
ID = Intrinsic::ppc_vsx_stxvw4x; | |
break; | |
case PPC::BI__builtin_vsx_stxvd2x_be: | |
ID = Intrinsic::ppc_vsx_stxvd2x_be; | |
break; | |
case PPC::BI__builtin_vsx_stxvw4x_be: | |
ID = Intrinsic::ppc_vsx_stxvw4x_be; | |
break; | |
case PPC::BI__builtin_vsx_stxvl: | |
ID = Intrinsic::ppc_vsx_stxvl; | |
break; | |
case PPC::BI__builtin_vsx_stxvll: | |
ID = Intrinsic::ppc_vsx_stxvll; | |
break; | |
} | |
llvm::Function *F = CGM.getIntrinsic(ID); | |
return Builder.CreateCall(F, Ops, ""); | |
} | |
// Square root | |
case PPC::BI__builtin_vsx_xvsqrtsp: | |
case PPC::BI__builtin_vsx_xvsqrtdp: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
ID = Intrinsic::sqrt; | |
llvm::Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
// Count leading zeros | |
case PPC::BI__builtin_altivec_vclzb: | |
case PPC::BI__builtin_altivec_vclzh: | |
case PPC::BI__builtin_altivec_vclzw: | |
case PPC::BI__builtin_altivec_vclzd: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); | |
return Builder.CreateCall(F, {X, Undef}); | |
} | |
case PPC::BI__builtin_altivec_vctzb: | |
case PPC::BI__builtin_altivec_vctzh: | |
case PPC::BI__builtin_altivec_vctzw: | |
case PPC::BI__builtin_altivec_vctzd: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); | |
return Builder.CreateCall(F, {X, Undef}); | |
} | |
case PPC::BI__builtin_altivec_vpopcntb: | |
case PPC::BI__builtin_altivec_vpopcnth: | |
case PPC::BI__builtin_altivec_vpopcntw: | |
case PPC::BI__builtin_altivec_vpopcntd: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
// Copy sign | |
case PPC::BI__builtin_vsx_xvcpsgnsp: | |
case PPC::BI__builtin_vsx_xvcpsgndp: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
ID = Intrinsic::copysign; | |
llvm::Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, {X, Y}); | |
} | |
// Rounding/truncation | |
case PPC::BI__builtin_vsx_xvrspip: | |
case PPC::BI__builtin_vsx_xvrdpip: | |
case PPC::BI__builtin_vsx_xvrdpim: | |
case PPC::BI__builtin_vsx_xvrspim: | |
case PPC::BI__builtin_vsx_xvrdpi: | |
case PPC::BI__builtin_vsx_xvrspi: | |
case PPC::BI__builtin_vsx_xvrdpic: | |
case PPC::BI__builtin_vsx_xvrspic: | |
case PPC::BI__builtin_vsx_xvrdpiz: | |
case PPC::BI__builtin_vsx_xvrspiz: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || | |
BuiltinID == PPC::BI__builtin_vsx_xvrspim) | |
ID = Intrinsic::floor; | |
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || | |
BuiltinID == PPC::BI__builtin_vsx_xvrspi) | |
ID = Intrinsic::round; | |
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || | |
BuiltinID == PPC::BI__builtin_vsx_xvrspic) | |
ID = Intrinsic::nearbyint; | |
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || | |
BuiltinID == PPC::BI__builtin_vsx_xvrspip) | |
ID = Intrinsic::ceil; | |
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || | |
BuiltinID == PPC::BI__builtin_vsx_xvrspiz) | |
ID = Intrinsic::trunc; | |
llvm::Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
// Absolute value | |
case PPC::BI__builtin_vsx_xvabsdp: | |
case PPC::BI__builtin_vsx_xvabssp: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
// FMA variations | |
case PPC::BI__builtin_vsx_xvmaddadp: | |
case PPC::BI__builtin_vsx_xvmaddasp: | |
case PPC::BI__builtin_vsx_xvnmaddadp: | |
case PPC::BI__builtin_vsx_xvnmaddasp: | |
case PPC::BI__builtin_vsx_xvmsubadp: | |
case PPC::BI__builtin_vsx_xvmsubasp: | |
case PPC::BI__builtin_vsx_xvnmsubadp: | |
case PPC::BI__builtin_vsx_xvnmsubasp: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
Value *Z = EmitScalarExpr(E->getArg(2)); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); | |
switch (BuiltinID) { | |
case PPC::BI__builtin_vsx_xvmaddadp: | |
case PPC::BI__builtin_vsx_xvmaddasp: | |
return Builder.CreateCall(F, {X, Y, Z}); | |
case PPC::BI__builtin_vsx_xvnmaddadp: | |
case PPC::BI__builtin_vsx_xvnmaddasp: | |
return Builder.CreateFSub(Zero, | |
Builder.CreateCall(F, {X, Y, Z}), "sub"); | |
case PPC::BI__builtin_vsx_xvmsubadp: | |
case PPC::BI__builtin_vsx_xvmsubasp: | |
return Builder.CreateCall(F, | |
{X, Y, Builder.CreateFSub(Zero, Z, "sub")}); | |
case PPC::BI__builtin_vsx_xvnmsubadp: | |
case PPC::BI__builtin_vsx_xvnmsubasp: | |
Value *FsubRes = | |
Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); | |
return Builder.CreateFSub(Zero, FsubRes, "sub"); | |
} | |
llvm_unreachable("Unknown FMA operation"); | |
return nullptr; // Suppress no-return warning | |
} | |
case PPC::BI__builtin_vsx_insertword: { | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); | |
// Third argument is a compile time constant int. It must be clamped to | |
// to the range [0, 12]. | |
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); | |
assert(ArgCI && | |
"Third arg to xxinsertw intrinsic must be constant integer"); | |
const int64_t MaxIndex = 12; | |
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); | |
// The builtin semantics don't exactly match the xxinsertw instructions | |
// semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the | |
// word from the first argument, and inserts it in the second argument. The | |
// instruction extracts the word from its second input register and inserts | |
// it into its first input register, so swap the first and second arguments. | |
std::swap(Ops[0], Ops[1]); | |
// Need to cast the second argument from a vector of unsigned int to a | |
// vector of long long. | |
Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); | |
if (getTarget().isLittleEndian()) { | |
// Create a shuffle mask of (1, 0) | |
Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), | |
ConstantInt::get(Int32Ty, 0) | |
}; | |
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); | |
// Reverse the double words in the vector we will extract from. | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); | |
Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask); | |
// Reverse the index. | |
Index = MaxIndex - Index; | |
} | |
// Intrinsic expects the first arg to be a vector of int. | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); | |
Ops[2] = ConstantInt::getSigned(Int32Ty, Index); | |
return Builder.CreateCall(F, Ops); | |
} | |
case PPC::BI__builtin_vsx_extractuword: { | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); | |
// Intrinsic expects the first argument to be a vector of doublewords. | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); | |
// The second argument is a compile time constant int that needs to | |
// be clamped to the range [0, 12]. | |
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); | |
assert(ArgCI && | |
"Second Arg to xxextractuw intrinsic must be a constant integer!"); | |
const int64_t MaxIndex = 12; | |
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); | |
if (getTarget().isLittleEndian()) { | |
// Reverse the index. | |
Index = MaxIndex - Index; | |
Ops[1] = ConstantInt::getSigned(Int32Ty, Index); | |
// Emit the call, then reverse the double words of the results vector. | |
Value *Call = Builder.CreateCall(F, Ops); | |
// Create a shuffle mask of (1, 0) | |
Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), | |
ConstantInt::get(Int32Ty, 0) | |
}; | |
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); | |
Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask); | |
return ShuffleCall; | |
} else { | |
Ops[1] = ConstantInt::getSigned(Int32Ty, Index); | |
return Builder.CreateCall(F, Ops); | |
} | |
} | |
case PPC::BI__builtin_vsx_xxpermdi: { | |
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); | |
assert(ArgCI && "Third arg must be constant integer!"); | |
unsigned Index = ArgCI->getZExtValue(); | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); | |
// Account for endianness by treating this as just a shuffle. So we use the | |
// same indices for both LE and BE in order to produce expected results in | |
// both cases. | |
unsigned ElemIdx0 = (Index & 2) >> 1; | |
unsigned ElemIdx1 = 2 + (Index & 1); | |
Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0), | |
ConstantInt::get(Int32Ty, ElemIdx1)}; | |
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); | |
Value *ShuffleCall = | |
Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); | |
QualType BIRetType = E->getType(); | |
auto RetTy = ConvertType(BIRetType); | |
return Builder.CreateBitCast(ShuffleCall, RetTy); | |
} | |
case PPC::BI__builtin_vsx_xxsldwi: { | |
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); | |
assert(ArgCI && "Third argument must be a compile time constant"); | |
unsigned Index = ArgCI->getZExtValue() & 0x3; | |
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); | |
Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4)); | |
// Create a shuffle mask | |
unsigned ElemIdx0; | |
unsigned ElemIdx1; | |
unsigned ElemIdx2; | |
unsigned ElemIdx3; | |
if (getTarget().isLittleEndian()) { | |
// Little endian element N comes from element 8+N-Index of the | |
// concatenated wide vector (of course, using modulo arithmetic on | |
// the total number of elements). | |
ElemIdx0 = (8 - Index) % 8; | |
ElemIdx1 = (9 - Index) % 8; | |
ElemIdx2 = (10 - Index) % 8; | |
ElemIdx3 = (11 - Index) % 8; | |
} else { | |
// Big endian ElemIdx<N> = Index + N | |
ElemIdx0 = Index; | |
ElemIdx1 = Index + 1; | |
ElemIdx2 = Index + 2; | |
ElemIdx3 = Index + 3; | |
} | |
Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0), | |
ConstantInt::get(Int32Ty, ElemIdx1), | |
ConstantInt::get(Int32Ty, ElemIdx2), | |
ConstantInt::get(Int32Ty, ElemIdx3)}; | |
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); | |
Value *ShuffleCall = | |
Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); | |
QualType BIRetType = E->getType(); | |
auto RetTy = ConvertType(BIRetType); | |
return Builder.CreateBitCast(ShuffleCall, RetTy); | |
} | |
case PPC::BI__builtin_pack_vector_int128: { | |
bool isLittleEndian = getTarget().isLittleEndian(); | |
Value *UndefValue = | |
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2)); | |
Value *Res = Builder.CreateInsertElement( | |
UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); | |
Res = Builder.CreateInsertElement(Res, Ops[1], | |
(uint64_t)(isLittleEndian ? 0 : 1)); | |
return Builder.CreateBitCast(Res, ConvertType(E->getType())); | |
} | |
case PPC::BI__builtin_unpack_vector_int128: { | |
ConstantInt *Index = cast<ConstantInt>(Ops[1]); | |
Value *Unpacked = Builder.CreateBitCast( | |
Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2)); | |
if (getTarget().isLittleEndian()) | |
Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); | |
return Builder.CreateExtractElement(Unpacked, Index); | |
} | |
} | |
} | |
Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
switch (BuiltinID) { | |
case AMDGPU::BI__builtin_amdgcn_div_scale: | |
case AMDGPU::BI__builtin_amdgcn_div_scalef: { | |
// Translate from the intrinsics's struct return to the builtin's out | |
// argument. | |
Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); | |
llvm::Value *X = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Y = EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Z = EmitScalarExpr(E->getArg(2)); | |
llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, | |
X->getType()); | |
llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); | |
llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); | |
llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); | |
llvm::Type *RealFlagType | |
= FlagOutPtr.getPointer()->getType()->getPointerElementType(); | |
llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); | |
Builder.CreateStore(FlagExt, FlagOutPtr); | |
return Result; | |
} | |
case AMDGPU::BI__builtin_amdgcn_div_fmas: | |
case AMDGPU::BI__builtin_amdgcn_div_fmasf: { | |
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); | |
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); | |
llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, | |
Src0->getType()); | |
llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); | |
return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); | |
} | |
case AMDGPU::BI__builtin_amdgcn_ds_swizzle: | |
return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); | |
case AMDGPU::BI__builtin_amdgcn_mov_dpp8: | |
return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); | |
case AMDGPU::BI__builtin_amdgcn_mov_dpp: | |
case AMDGPU::BI__builtin_amdgcn_update_dpp: { | |
llvm::SmallVector<llvm::Value *, 6> Args; | |
for (unsigned I = 0; I != E->getNumArgs(); ++I) | |
Args.push_back(EmitScalarExpr(E->getArg(I))); | |
assert(Args.size() == 5 || Args.size() == 6); | |
if (Args.size() == 5) | |
Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); | |
Function *F = | |
CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); | |
return Builder.CreateCall(F, Args); | |
} | |
case AMDGPU::BI__builtin_amdgcn_div_fixup: | |
case AMDGPU::BI__builtin_amdgcn_div_fixupf: | |
case AMDGPU::BI__builtin_amdgcn_div_fixuph: | |
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); | |
case AMDGPU::BI__builtin_amdgcn_trig_preop: | |
case AMDGPU::BI__builtin_amdgcn_trig_preopf: | |
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); | |
case AMDGPU::BI__builtin_amdgcn_rcp: | |
case AMDGPU::BI__builtin_amdgcn_rcpf: | |
case AMDGPU::BI__builtin_amdgcn_rcph: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); | |
case AMDGPU::BI__builtin_amdgcn_rsq: | |
case AMDGPU::BI__builtin_amdgcn_rsqf: | |
case AMDGPU::BI__builtin_amdgcn_rsqh: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); | |
case AMDGPU::BI__builtin_amdgcn_rsq_clamp: | |
case AMDGPU::BI__builtin_amdgcn_rsq_clampf: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); | |
case AMDGPU::BI__builtin_amdgcn_sinf: | |
case AMDGPU::BI__builtin_amdgcn_sinh: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); | |
case AMDGPU::BI__builtin_amdgcn_cosf: | |
case AMDGPU::BI__builtin_amdgcn_cosh: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); | |
case AMDGPU::BI__builtin_amdgcn_log_clampf: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); | |
case AMDGPU::BI__builtin_amdgcn_ldexp: | |
case AMDGPU::BI__builtin_amdgcn_ldexpf: | |
case AMDGPU::BI__builtin_amdgcn_ldexph: | |
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); | |
case AMDGPU::BI__builtin_amdgcn_frexp_mant: | |
case AMDGPU::BI__builtin_amdgcn_frexp_mantf: | |
case AMDGPU::BI__builtin_amdgcn_frexp_manth: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); | |
case AMDGPU::BI__builtin_amdgcn_frexp_exp: | |
case AMDGPU::BI__builtin_amdgcn_frexp_expf: { | |
Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, | |
{ Builder.getInt32Ty(), Src0->getType() }); | |
return Builder.CreateCall(F, Src0); | |
} | |
case AMDGPU::BI__builtin_amdgcn_frexp_exph: { | |
Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, | |
{ Builder.getInt16Ty(), Src0->getType() }); | |
return Builder.CreateCall(F, Src0); | |
} | |
case AMDGPU::BI__builtin_amdgcn_fract: | |
case AMDGPU::BI__builtin_amdgcn_fractf: | |
case AMDGPU::BI__builtin_amdgcn_fracth: | |
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); | |
case AMDGPU::BI__builtin_amdgcn_lerp: | |
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); | |
case AMDGPU::BI__builtin_amdgcn_ubfe: | |
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); | |
case AMDGPU::BI__builtin_amdgcn_sbfe: | |
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); | |
case AMDGPU::BI__builtin_amdgcn_uicmp: | |
case AMDGPU::BI__builtin_amdgcn_uicmpl: | |
case AMDGPU::BI__builtin_amdgcn_sicmp: | |
case AMDGPU::BI__builtin_amdgcn_sicmpl: { | |
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); | |
// FIXME-GFX10: How should 32 bit mask be handled? | |
Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, | |
{ Builder.getInt64Ty(), Src0->getType() }); | |
return Builder.CreateCall(F, { Src0, Src1, Src2 }); | |
} | |
case AMDGPU::BI__builtin_amdgcn_fcmp: | |
case AMDGPU::BI__builtin_amdgcn_fcmpf: { | |
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); | |
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); | |
// FIXME-GFX10: How should 32 bit mask be handled? | |
Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, | |
{ Builder.getInt64Ty(), Src0->getType() }); | |
return Builder.CreateCall(F, { Src0, Src1, Src2 }); | |
} | |
case AMDGPU::BI__builtin_amdgcn_class: | |
case AMDGPU::BI__builtin_amdgcn_classf: | |
case AMDGPU::BI__builtin_amdgcn_classh: | |
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); | |
case AMDGPU::BI__builtin_amdgcn_fmed3f: | |
case AMDGPU::BI__builtin_amdgcn_fmed3h: | |
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); | |
case AMDGPU::BI__builtin_amdgcn_ds_append: | |
case AMDGPU::BI__builtin_amdgcn_ds_consume: { | |
Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? | |
Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; | |
Value *Src0 = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); | |
return Builder.CreateCall(F, { Src0, Builder.getFalse() }); | |
} | |
case AMDGPU::BI__builtin_amdgcn_read_exec: { | |
CallInst *CI = cast<CallInst>( | |
EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec")); | |
CI->setConvergent(); | |
return CI; | |
} | |
case AMDGPU::BI__builtin_amdgcn_read_exec_lo: | |
case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { | |
StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? | |
"exec_lo" : "exec_hi"; | |
CallInst *CI = cast<CallInst>( | |
EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName)); | |
CI->setConvergent(); | |
return CI; | |
} | |
// amdgcn workitem | |
case AMDGPU::BI__builtin_amdgcn_workitem_id_x: | |
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); | |
case AMDGPU::BI__builtin_amdgcn_workitem_id_y: | |
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); | |
case AMDGPU::BI__builtin_amdgcn_workitem_id_z: | |
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); | |
// r600 intrinsics | |
case AMDGPU::BI__builtin_r600_recipsqrt_ieee: | |
case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: | |
return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); | |
case AMDGPU::BI__builtin_r600_read_tidig_x: | |
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); | |
case AMDGPU::BI__builtin_r600_read_tidig_y: | |
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); | |
case AMDGPU::BI__builtin_r600_read_tidig_z: | |
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); | |
default: | |
return nullptr; | |
} | |
} | |
/// Handle a SystemZ function in which the final argument is a pointer | |
/// to an int that receives the post-instruction CC value. At the LLVM level | |
/// this is represented as a function that returns a {result, cc} pair. | |
static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, | |
unsigned IntrinsicID, | |
const CallExpr *E) { | |
unsigned NumArgs = E->getNumArgs() - 1; | |
SmallVector<Value *, 8> Args(NumArgs); | |
for (unsigned I = 0; I < NumArgs; ++I) | |
Args[I] = CGF.EmitScalarExpr(E->getArg(I)); | |
Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); | |
Function *F = CGF.CGM.getIntrinsic(IntrinsicID); | |
Value *Call = CGF.Builder.CreateCall(F, Args); | |
Value *CC = CGF.Builder.CreateExtractValue(Call, 1); | |
CGF.Builder.CreateStore(CC, CCPtr); | |
return CGF.Builder.CreateExtractValue(Call, 0); | |
} | |
Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
switch (BuiltinID) { | |
case SystemZ::BI__builtin_tbegin: { | |
Value *TDB = EmitScalarExpr(E->getArg(0)); | |
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); | |
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); | |
return Builder.CreateCall(F, {TDB, Control}); | |
} | |
case SystemZ::BI__builtin_tbegin_nofloat: { | |
Value *TDB = EmitScalarExpr(E->getArg(0)); | |
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); | |
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); | |
return Builder.CreateCall(F, {TDB, Control}); | |
} | |
case SystemZ::BI__builtin_tbeginc: { | |
Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); | |
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); | |
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); | |
return Builder.CreateCall(F, {TDB, Control}); | |
} | |
case SystemZ::BI__builtin_tabort: { | |
Value *Data = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); | |
return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); | |
} | |
case SystemZ::BI__builtin_non_tx_store: { | |
Value *Address = EmitScalarExpr(E->getArg(0)); | |
Value *Data = EmitScalarExpr(E->getArg(1)); | |
Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); | |
return Builder.CreateCall(F, {Data, Address}); | |
} | |
// Vector builtins. Note that most vector builtins are mapped automatically | |
// to target-specific LLVM intrinsics. The ones handled specially here can | |
// be represented via standard LLVM IR, which is preferable to enable common | |
// LLVM optimizations. | |
case SystemZ::BI__builtin_s390_vpopctb: | |
case SystemZ::BI__builtin_s390_vpopcth: | |
case SystemZ::BI__builtin_s390_vpopctf: | |
case SystemZ::BI__builtin_s390_vpopctg: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
case SystemZ::BI__builtin_s390_vclzb: | |
case SystemZ::BI__builtin_s390_vclzh: | |
case SystemZ::BI__builtin_s390_vclzf: | |
case SystemZ::BI__builtin_s390_vclzg: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); | |
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); | |
return Builder.CreateCall(F, {X, Undef}); | |
} | |
case SystemZ::BI__builtin_s390_vctzb: | |
case SystemZ::BI__builtin_s390_vctzh: | |
case SystemZ::BI__builtin_s390_vctzf: | |
case SystemZ::BI__builtin_s390_vctzg: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); | |
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); | |
return Builder.CreateCall(F, {X, Undef}); | |
} | |
case SystemZ::BI__builtin_s390_vfsqsb: | |
case SystemZ::BI__builtin_s390_vfsqdb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
case SystemZ::BI__builtin_s390_vfmasb: | |
case SystemZ::BI__builtin_s390_vfmadb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
Value *Z = EmitScalarExpr(E->getArg(2)); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); | |
return Builder.CreateCall(F, {X, Y, Z}); | |
} | |
case SystemZ::BI__builtin_s390_vfmssb: | |
case SystemZ::BI__builtin_s390_vfmsdb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
Value *Z = EmitScalarExpr(E->getArg(2)); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); | |
return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); | |
} | |
case SystemZ::BI__builtin_s390_vfnmasb: | |
case SystemZ::BI__builtin_s390_vfnmadb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
Value *Z = EmitScalarExpr(E->getArg(2)); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); | |
return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub"); | |
} | |
case SystemZ::BI__builtin_s390_vfnmssb: | |
case SystemZ::BI__builtin_s390_vfnmsdb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
Value *Z = EmitScalarExpr(E->getArg(2)); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); | |
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); | |
Value *NegZ = Builder.CreateFSub(Zero, Z, "sub"); | |
return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ})); | |
} | |
case SystemZ::BI__builtin_s390_vflpsb: | |
case SystemZ::BI__builtin_s390_vflpdb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
case SystemZ::BI__builtin_s390_vflnsb: | |
case SystemZ::BI__builtin_s390_vflndb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); | |
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); | |
return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub"); | |
} | |
case SystemZ::BI__builtin_s390_vfisb: | |
case SystemZ::BI__builtin_s390_vfidb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
// Constant-fold the M4 and M5 mask arguments. | |
llvm::APSInt M4, M5; | |
bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext()); | |
bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext()); | |
assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"); | |
(void)IsConstM4; (void)IsConstM5; | |
// Check whether this instance can be represented via a LLVM standard | |
// intrinsic. We only support some combinations of M4 and M5. | |
Intrinsic::ID ID = Intrinsic::not_intrinsic; | |
switch (M4.getZExtValue()) { | |
default: break; | |
case 0: // IEEE-inexact exception allowed | |
switch (M5.getZExtValue()) { | |
default: break; | |
case 0: ID = Intrinsic::rint; break; | |
} | |
break; | |
case 4: // IEEE-inexact exception suppressed | |
switch (M5.getZExtValue()) { | |
default: break; | |
case 0: ID = Intrinsic::nearbyint; break; | |
case 1: ID = Intrinsic::round; break; | |
case 5: ID = Intrinsic::trunc; break; | |
case 6: ID = Intrinsic::ceil; break; | |
case 7: ID = Intrinsic::floor; break; | |
} | |
break; | |
} | |
if (ID != Intrinsic::not_intrinsic) { | |
Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
switch (BuiltinID) { | |
case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; | |
case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; | |
default: llvm_unreachable("Unknown BuiltinID"); | |
} | |
Function *F = CGM.getIntrinsic(ID); | |
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); | |
Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); | |
return Builder.CreateCall(F, {X, M4Value, M5Value}); | |
} | |
case SystemZ::BI__builtin_s390_vfmaxsb: | |
case SystemZ::BI__builtin_s390_vfmaxdb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
// Constant-fold the M4 mask argument. | |
llvm::APSInt M4; | |
bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); | |
assert(IsConstM4 && "Constant arg isn't actually constant?"); | |
(void)IsConstM4; | |
// Check whether this instance can be represented via a LLVM standard | |
// intrinsic. We only support some values of M4. | |
Intrinsic::ID ID = Intrinsic::not_intrinsic; | |
switch (M4.getZExtValue()) { | |
default: break; | |
case 4: ID = Intrinsic::maxnum; break; | |
} | |
if (ID != Intrinsic::not_intrinsic) { | |
Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, {X, Y}); | |
} | |
switch (BuiltinID) { | |
case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; | |
case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; | |
default: llvm_unreachable("Unknown BuiltinID"); | |
} | |
Function *F = CGM.getIntrinsic(ID); | |
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); | |
return Builder.CreateCall(F, {X, Y, M4Value}); | |
} | |
case SystemZ::BI__builtin_s390_vfminsb: | |
case SystemZ::BI__builtin_s390_vfmindb: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Value *Y = EmitScalarExpr(E->getArg(1)); | |
// Constant-fold the M4 mask argument. | |
llvm::APSInt M4; | |
bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); | |
assert(IsConstM4 && "Constant arg isn't actually constant?"); | |
(void)IsConstM4; | |
// Check whether this instance can be represented via a LLVM standard | |
// intrinsic. We only support some values of M4. | |
Intrinsic::ID ID = Intrinsic::not_intrinsic; | |
switch (M4.getZExtValue()) { | |
default: break; | |
case 4: ID = Intrinsic::minnum; break; | |
} | |
if (ID != Intrinsic::not_intrinsic) { | |
Function *F = CGM.getIntrinsic(ID, ResultType); | |
return Builder.CreateCall(F, {X, Y}); | |
} | |
switch (BuiltinID) { | |
case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; | |
case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; | |
default: llvm_unreachable("Unknown BuiltinID"); | |
} | |
Function *F = CGM.getIntrinsic(ID); | |
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); | |
return Builder.CreateCall(F, {X, Y, M4Value}); | |
} | |
case SystemZ::BI__builtin_s390_vlbrh: | |
case SystemZ::BI__builtin_s390_vlbrf: | |
case SystemZ::BI__builtin_s390_vlbrg: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *X = EmitScalarExpr(E->getArg(0)); | |
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); | |
return Builder.CreateCall(F, X); | |
} | |
// Vector intrinsics that output the post-instruction CC value. | |
#define INTRINSIC_WITH_CC(NAME) \ | |
case SystemZ::BI__builtin_##NAME: \ | |
return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) | |
INTRINSIC_WITH_CC(s390_vpkshs); | |
INTRINSIC_WITH_CC(s390_vpksfs); | |
INTRINSIC_WITH_CC(s390_vpksgs); | |
INTRINSIC_WITH_CC(s390_vpklshs); | |
INTRINSIC_WITH_CC(s390_vpklsfs); | |
INTRINSIC_WITH_CC(s390_vpklsgs); | |
INTRINSIC_WITH_CC(s390_vceqbs); | |
INTRINSIC_WITH_CC(s390_vceqhs); | |
INTRINSIC_WITH_CC(s390_vceqfs); | |
INTRINSIC_WITH_CC(s390_vceqgs); | |
INTRINSIC_WITH_CC(s390_vchbs); | |
INTRINSIC_WITH_CC(s390_vchhs); | |
INTRINSIC_WITH_CC(s390_vchfs); | |
INTRINSIC_WITH_CC(s390_vchgs); | |
INTRINSIC_WITH_CC(s390_vchlbs); | |
INTRINSIC_WITH_CC(s390_vchlhs); | |
INTRINSIC_WITH_CC(s390_vchlfs); | |
INTRINSIC_WITH_CC(s390_vchlgs); | |
INTRINSIC_WITH_CC(s390_vfaebs); | |
INTRINSIC_WITH_CC(s390_vfaehs); | |
INTRINSIC_WITH_CC(s390_vfaefs); | |
INTRINSIC_WITH_CC(s390_vfaezbs); | |
INTRINSIC_WITH_CC(s390_vfaezhs); | |
INTRINSIC_WITH_CC(s390_vfaezfs); | |
INTRINSIC_WITH_CC(s390_vfeebs); | |
INTRINSIC_WITH_CC(s390_vfeehs); | |
INTRINSIC_WITH_CC(s390_vfeefs); | |
INTRINSIC_WITH_CC(s390_vfeezbs); | |
INTRINSIC_WITH_CC(s390_vfeezhs); | |
INTRINSIC_WITH_CC(s390_vfeezfs); | |
INTRINSIC_WITH_CC(s390_vfenebs); | |
INTRINSIC_WITH_CC(s390_vfenehs); | |
INTRINSIC_WITH_CC(s390_vfenefs); | |
INTRINSIC_WITH_CC(s390_vfenezbs); | |
INTRINSIC_WITH_CC(s390_vfenezhs); | |
INTRINSIC_WITH_CC(s390_vfenezfs); | |
INTRINSIC_WITH_CC(s390_vistrbs); | |
INTRINSIC_WITH_CC(s390_vistrhs); | |
INTRINSIC_WITH_CC(s390_vistrfs); | |
INTRINSIC_WITH_CC(s390_vstrcbs); | |
INTRINSIC_WITH_CC(s390_vstrchs); | |
INTRINSIC_WITH_CC(s390_vstrcfs); | |
INTRINSIC_WITH_CC(s390_vstrczbs); | |
INTRINSIC_WITH_CC(s390_vstrczhs); | |
INTRINSIC_WITH_CC(s390_vstrczfs); | |
INTRINSIC_WITH_CC(s390_vfcesbs); | |
INTRINSIC_WITH_CC(s390_vfcedbs); | |
INTRINSIC_WITH_CC(s390_vfchsbs); | |
INTRINSIC_WITH_CC(s390_vfchdbs); | |
INTRINSIC_WITH_CC(s390_vfchesbs); | |
INTRINSIC_WITH_CC(s390_vfchedbs); | |
INTRINSIC_WITH_CC(s390_vftcisb); | |
INTRINSIC_WITH_CC(s390_vftcidb); | |
INTRINSIC_WITH_CC(s390_vstrsb); | |
INTRINSIC_WITH_CC(s390_vstrsh); | |
INTRINSIC_WITH_CC(s390_vstrsf); | |
INTRINSIC_WITH_CC(s390_vstrszb); | |
INTRINSIC_WITH_CC(s390_vstrszh); | |
INTRINSIC_WITH_CC(s390_vstrszf); | |
#undef INTRINSIC_WITH_CC | |
default: | |
return nullptr; | |
} | |
} | |
namespace { | |
// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. | |
struct NVPTXMmaLdstInfo { | |
unsigned NumResults; // Number of elements to load/store | |
// Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. | |
unsigned IID_col; | |
unsigned IID_row; | |
}; | |
#define MMA_INTR(geom_op_type, layout) \ | |
Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride | |
#define MMA_LDST(n, geom_op_type) \ | |
{ n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } | |
static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { | |
switch (BuiltinID) { | |
// FP MMA loads | |
case NVPTX::BI__hmma_m16n16k16_ld_a: | |
return MMA_LDST(8, m16n16k16_load_a_f16); | |
case NVPTX::BI__hmma_m16n16k16_ld_b: | |
return MMA_LDST(8, m16n16k16_load_b_f16); | |
case NVPTX::BI__hmma_m16n16k16_ld_c_f16: | |
return MMA_LDST(4, m16n16k16_load_c_f16); | |
case NVPTX::BI__hmma_m16n16k16_ld_c_f32: | |
return MMA_LDST(8, m16n16k16_load_c_f32); | |
case NVPTX::BI__hmma_m32n8k16_ld_a: | |
return MMA_LDST(8, m32n8k16_load_a_f16); | |
case NVPTX::BI__hmma_m32n8k16_ld_b: | |
return MMA_LDST(8, m32n8k16_load_b_f16); | |
case NVPTX::BI__hmma_m32n8k16_ld_c_f16: | |
return MMA_LDST(4, m32n8k16_load_c_f16); | |
case NVPTX::BI__hmma_m32n8k16_ld_c_f32: | |
return MMA_LDST(8, m32n8k16_load_c_f32); | |
case NVPTX::BI__hmma_m8n32k16_ld_a: | |
return MMA_LDST(8, m8n32k16_load_a_f16); | |
case NVPTX::BI__hmma_m8n32k16_ld_b: | |
return MMA_LDST(8, m8n32k16_load_b_f16); | |
case NVPTX::BI__hmma_m8n32k16_ld_c_f16: | |
return MMA_LDST(4, m8n32k16_load_c_f16); | |
case NVPTX::BI__hmma_m8n32k16_ld_c_f32: | |
return MMA_LDST(8, m8n32k16_load_c_f32); | |
// Integer MMA loads | |
case NVPTX::BI__imma_m16n16k16_ld_a_s8: | |
return MMA_LDST(2, m16n16k16_load_a_s8); | |
case NVPTX::BI__imma_m16n16k16_ld_a_u8: | |
return MMA_LDST(2, m16n16k16_load_a_u8); | |
case NVPTX::BI__imma_m16n16k16_ld_b_s8: | |
return MMA_LDST(2, m16n16k16_load_b_s8); | |
case NVPTX::BI__imma_m16n16k16_ld_b_u8: | |
return MMA_LDST(2, m16n16k16_load_b_u8); | |
case NVPTX::BI__imma_m16n16k16_ld_c: | |
return MMA_LDST(8, m16n16k16_load_c_s32); | |
case NVPTX::BI__imma_m32n8k16_ld_a_s8: | |
return MMA_LDST(4, m32n8k16_load_a_s8); | |
case NVPTX::BI__imma_m32n8k16_ld_a_u8: | |
return MMA_LDST(4, m32n8k16_load_a_u8); | |
case NVPTX::BI__imma_m32n8k16_ld_b_s8: | |
return MMA_LDST(1, m32n8k16_load_b_s8); | |
case NVPTX::BI__imma_m32n8k16_ld_b_u8: | |
return MMA_LDST(1, m32n8k16_load_b_u8); | |
case NVPTX::BI__imma_m32n8k16_ld_c: | |
return MMA_LDST(8, m32n8k16_load_c_s32); | |
case NVPTX::BI__imma_m8n32k16_ld_a_s8: | |
return MMA_LDST(1, m8n32k16_load_a_s8); | |
case NVPTX::BI__imma_m8n32k16_ld_a_u8: | |
return MMA_LDST(1, m8n32k16_load_a_u8); | |
case NVPTX::BI__imma_m8n32k16_ld_b_s8: | |
return MMA_LDST(4, m8n32k16_load_b_s8); | |
case NVPTX::BI__imma_m8n32k16_ld_b_u8: | |
return MMA_LDST(4, m8n32k16_load_b_u8); | |
case NVPTX::BI__imma_m8n32k16_ld_c: | |
return MMA_LDST(8, m8n32k16_load_c_s32); | |
// Sub-integer MMA loads. | |
// Only row/col layout is supported by A/B fragments. | |
case NVPTX::BI__imma_m8n8k32_ld_a_s4: | |
return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; | |
case NVPTX::BI__imma_m8n8k32_ld_a_u4: | |
return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; | |
case NVPTX::BI__imma_m8n8k32_ld_b_s4: | |
return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; | |
case NVPTX::BI__imma_m8n8k32_ld_b_u4: | |
return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; | |
case NVPTX::BI__imma_m8n8k32_ld_c: | |
return MMA_LDST(2, m8n8k32_load_c_s32); | |
case NVPTX::BI__bmma_m8n8k128_ld_a_b1: | |
return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; | |
case NVPTX::BI__bmma_m8n8k128_ld_b_b1: | |
return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; | |
case NVPTX::BI__bmma_m8n8k128_ld_c: | |
return MMA_LDST(2, m8n8k128_load_c_s32); | |
// NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike | |
// PTX and LLVM IR where stores always use fragment D, NVCC builtins always | |
// use fragment C for both loads and stores. | |
// FP MMA stores. | |
case NVPTX::BI__hmma_m16n16k16_st_c_f16: | |
return MMA_LDST(4, m16n16k16_store_d_f16); | |
case NVPTX::BI__hmma_m16n16k16_st_c_f32: | |
return MMA_LDST(8, m16n16k16_store_d_f32); | |
case NVPTX::BI__hmma_m32n8k16_st_c_f16: | |
return MMA_LDST(4, m32n8k16_store_d_f16); | |
case NVPTX::BI__hmma_m32n8k16_st_c_f32: | |
return MMA_LDST(8, m32n8k16_store_d_f32); | |
case NVPTX::BI__hmma_m8n32k16_st_c_f16: | |
return MMA_LDST(4, m8n32k16_store_d_f16); | |
case NVPTX::BI__hmma_m8n32k16_st_c_f32: | |
return MMA_LDST(8, m8n32k16_store_d_f32); | |
// Integer and sub-integer MMA stores. | |
// Another naming quirk. Unlike other MMA builtins that use PTX types in the | |
// name, integer loads/stores use LLVM's i32. | |
case NVPTX::BI__imma_m16n16k16_st_c_i32: | |
return MMA_LDST(8, m16n16k16_store_d_s32); | |
case NVPTX::BI__imma_m32n8k16_st_c_i32: | |
return MMA_LDST(8, m32n8k16_store_d_s32); | |
case NVPTX::BI__imma_m8n32k16_st_c_i32: | |
return MMA_LDST(8, m8n32k16_store_d_s32); | |
case NVPTX::BI__imma_m8n8k32_st_c_i32: | |
return MMA_LDST(2, m8n8k32_store_d_s32); | |
case NVPTX::BI__bmma_m8n8k128_st_c_i32: | |
return MMA_LDST(2, m8n8k128_store_d_s32); | |
default: | |
llvm_unreachable("Unknown MMA builtin"); | |
} | |
} | |
#undef MMA_LDST | |
#undef MMA_INTR | |
struct NVPTXMmaInfo { | |
unsigned NumEltsA; | |
unsigned NumEltsB; | |
unsigned NumEltsC; | |
unsigned NumEltsD; | |
std::array<unsigned, 8> Variants; | |
unsigned getMMAIntrinsic(int Layout, bool Satf) { | |
unsigned Index = Layout * 2 + Satf; | |
if (Index >= Variants.size()) | |
return 0; | |
return Variants[Index]; | |
} | |
}; | |
// Returns an intrinsic that matches Layout and Satf for valid combinations of | |
// Layout and Satf, 0 otherwise. | |
static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { | |
// clang-format off | |
#define MMA_VARIANTS(geom, type) {{ \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ | |
}} | |
// Sub-integer MMA only supports row.col layout. | |
#define MMA_VARIANTS_I4(geom, type) {{ \ | |
0, \ | |
0, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ | |
0, \ | |
0, \ | |
0, \ | |
0 \ | |
}} | |
// b1 MMA does not support .satfinite. | |
#define MMA_VARIANTS_B1(geom, type) {{ \ | |
0, \ | |
0, \ | |
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ | |
0, \ | |
0, \ | |
0, \ | |
0, \ | |
0 \ | |
}} | |
// clang-format on | |
switch (BuiltinID) { | |
// FP MMA | |
// Note that 'type' argument of MMA_VARIANT uses D_C notation, while | |
// NumEltsN of return value are ordered as A,B,C,D. | |
case NVPTX::BI__hmma_m16n16k16_mma_f16f16: | |
return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)}; | |
case NVPTX::BI__hmma_m16n16k16_mma_f32f16: | |
return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)}; | |
case NVPTX::BI__hmma_m16n16k16_mma_f16f32: | |
return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)}; | |
case NVPTX::BI__hmma_m16n16k16_mma_f32f32: | |
return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)}; | |
case NVPTX::BI__hmma_m32n8k16_mma_f16f16: | |
return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)}; | |
case NVPTX::BI__hmma_m32n8k16_mma_f32f16: | |
return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)}; | |
case NVPTX::BI__hmma_m32n8k16_mma_f16f32: | |
return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)}; | |
case NVPTX::BI__hmma_m32n8k16_mma_f32f32: | |
return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)}; | |
case NVPTX::BI__hmma_m8n32k16_mma_f16f16: | |
return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)}; | |
case NVPTX::BI__hmma_m8n32k16_mma_f32f16: | |
return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)}; | |
case NVPTX::BI__hmma_m8n32k16_mma_f16f32: | |
return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)}; | |
case NVPTX::BI__hmma_m8n32k16_mma_f32f32: | |
return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)}; | |
// Integer MMA | |
case NVPTX::BI__imma_m16n16k16_mma_s8: | |
return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)}; | |
case NVPTX::BI__imma_m16n16k16_mma_u8: | |
return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)}; | |
case NVPTX::BI__imma_m32n8k16_mma_s8: | |
return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)}; | |
case NVPTX::BI__imma_m32n8k16_mma_u8: | |
return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)}; | |
case NVPTX::BI__imma_m8n32k16_mma_s8: | |
return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)}; | |
case NVPTX::BI__imma_m8n32k16_mma_u8: | |
return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)}; | |
// Sub-integer MMA | |
case NVPTX::BI__imma_m8n8k32_mma_s4: | |
return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)}; | |
case NVPTX::BI__imma_m8n8k32_mma_u4: | |
return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)}; | |
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: | |
return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)}; | |
default: | |
llvm_unreachable("Unexpected builtin ID."); | |
} | |
#undef MMA_VARIANTS | |
#undef MMA_VARIANTS_I4 | |
#undef MMA_VARIANTS_B1 | |
} | |
} // namespace | |
Value * | |
CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { | |
auto MakeLdg = [&](unsigned IntrinsicID) { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
clang::CharUnits Align = | |
getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), | |
Ptr->getType()}), | |
{Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); | |
}; | |
auto MakeScopedAtomic = [&](unsigned IntrinsicID) { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), | |
Ptr->getType()}), | |
{Ptr, EmitScalarExpr(E->getArg(1))}); | |
}; | |
switch (BuiltinID) { | |
case NVPTX::BI__nvvm_atom_add_gen_i: | |
case NVPTX::BI__nvvm_atom_add_gen_l: | |
case NVPTX::BI__nvvm_atom_add_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); | |
case NVPTX::BI__nvvm_atom_sub_gen_i: | |
case NVPTX::BI__nvvm_atom_sub_gen_l: | |
case NVPTX::BI__nvvm_atom_sub_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); | |
case NVPTX::BI__nvvm_atom_and_gen_i: | |
case NVPTX::BI__nvvm_atom_and_gen_l: | |
case NVPTX::BI__nvvm_atom_and_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); | |
case NVPTX::BI__nvvm_atom_or_gen_i: | |
case NVPTX::BI__nvvm_atom_or_gen_l: | |
case NVPTX::BI__nvvm_atom_or_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); | |
case NVPTX::BI__nvvm_atom_xor_gen_i: | |
case NVPTX::BI__nvvm_atom_xor_gen_l: | |
case NVPTX::BI__nvvm_atom_xor_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); | |
case NVPTX::BI__nvvm_atom_xchg_gen_i: | |
case NVPTX::BI__nvvm_atom_xchg_gen_l: | |
case NVPTX::BI__nvvm_atom_xchg_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); | |
case NVPTX::BI__nvvm_atom_max_gen_i: | |
case NVPTX::BI__nvvm_atom_max_gen_l: | |
case NVPTX::BI__nvvm_atom_max_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); | |
case NVPTX::BI__nvvm_atom_max_gen_ui: | |
case NVPTX::BI__nvvm_atom_max_gen_ul: | |
case NVPTX::BI__nvvm_atom_max_gen_ull: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); | |
case NVPTX::BI__nvvm_atom_min_gen_i: | |
case NVPTX::BI__nvvm_atom_min_gen_l: | |
case NVPTX::BI__nvvm_atom_min_gen_ll: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); | |
case NVPTX::BI__nvvm_atom_min_gen_ui: | |
case NVPTX::BI__nvvm_atom_min_gen_ul: | |
case NVPTX::BI__nvvm_atom_min_gen_ull: | |
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); | |
case NVPTX::BI__nvvm_atom_cas_gen_i: | |
case NVPTX::BI__nvvm_atom_cas_gen_l: | |
case NVPTX::BI__nvvm_atom_cas_gen_ll: | |
// __nvvm_atom_cas_gen_* should return the old value rather than the | |
// success flag. | |
return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); | |
case NVPTX::BI__nvvm_atom_add_gen_f: | |
case NVPTX::BI__nvvm_atom_add_gen_d: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
Value *Val = EmitScalarExpr(E->getArg(1)); | |
return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, | |
AtomicOrdering::SequentiallyConsistent); | |
} | |
case NVPTX::BI__nvvm_atom_inc_gen_ui: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
Value *Val = EmitScalarExpr(E->getArg(1)); | |
Function *FnALI32 = | |
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); | |
return Builder.CreateCall(FnALI32, {Ptr, Val}); | |
} | |
case NVPTX::BI__nvvm_atom_dec_gen_ui: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
Value *Val = EmitScalarExpr(E->getArg(1)); | |
Function *FnALD32 = | |
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); | |
return Builder.CreateCall(FnALD32, {Ptr, Val}); | |
} | |
case NVPTX::BI__nvvm_ldg_c: | |
case NVPTX::BI__nvvm_ldg_c2: | |
case NVPTX::BI__nvvm_ldg_c4: | |
case NVPTX::BI__nvvm_ldg_s: | |
case NVPTX::BI__nvvm_ldg_s2: | |
case NVPTX::BI__nvvm_ldg_s4: | |
case NVPTX::BI__nvvm_ldg_i: | |
case NVPTX::BI__nvvm_ldg_i2: | |
case NVPTX::BI__nvvm_ldg_i4: | |
case NVPTX::BI__nvvm_ldg_l: | |
case NVPTX::BI__nvvm_ldg_ll: | |
case NVPTX::BI__nvvm_ldg_ll2: | |
case NVPTX::BI__nvvm_ldg_uc: | |
case NVPTX::BI__nvvm_ldg_uc2: | |
case NVPTX::BI__nvvm_ldg_uc4: | |
case NVPTX::BI__nvvm_ldg_us: | |
case NVPTX::BI__nvvm_ldg_us2: | |
case NVPTX::BI__nvvm_ldg_us4: | |
case NVPTX::BI__nvvm_ldg_ui: | |
case NVPTX::BI__nvvm_ldg_ui2: | |
case NVPTX::BI__nvvm_ldg_ui4: | |
case NVPTX::BI__nvvm_ldg_ul: | |
case NVPTX::BI__nvvm_ldg_ull: | |
case NVPTX::BI__nvvm_ldg_ull2: | |
// PTX Interoperability section 2.2: "For a vector with an even number of | |
// elements, its alignment is set to number of elements times the alignment | |
// of its member: n*alignof(t)." | |
return MakeLdg(Intrinsic::nvvm_ldg_global_i); | |
case NVPTX::BI__nvvm_ldg_f: | |
case NVPTX::BI__nvvm_ldg_f2: | |
case NVPTX::BI__nvvm_ldg_f4: | |
case NVPTX::BI__nvvm_ldg_d: | |
case NVPTX::BI__nvvm_ldg_d2: | |
return MakeLdg(Intrinsic::nvvm_ldg_global_f); | |
case NVPTX::BI__nvvm_atom_cta_add_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_add_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_add_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_add_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_add_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_add_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_add_gen_f: | |
case NVPTX::BI__nvvm_atom_cta_add_gen_d: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); | |
case NVPTX::BI__nvvm_atom_sys_add_gen_f: | |
case NVPTX::BI__nvvm_atom_sys_add_gen_d: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); | |
case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_max_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_max_gen_ui: | |
case NVPTX::BI__nvvm_atom_cta_max_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_max_gen_ul: | |
case NVPTX::BI__nvvm_atom_cta_max_gen_ll: | |
case NVPTX::BI__nvvm_atom_cta_max_gen_ull: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_max_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_max_gen_ui: | |
case NVPTX::BI__nvvm_atom_sys_max_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_max_gen_ul: | |
case NVPTX::BI__nvvm_atom_sys_max_gen_ll: | |
case NVPTX::BI__nvvm_atom_sys_max_gen_ull: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_min_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_min_gen_ui: | |
case NVPTX::BI__nvvm_atom_cta_min_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_min_gen_ul: | |
case NVPTX::BI__nvvm_atom_cta_min_gen_ll: | |
case NVPTX::BI__nvvm_atom_cta_min_gen_ull: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_min_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_min_gen_ui: | |
case NVPTX::BI__nvvm_atom_sys_min_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_min_gen_ul: | |
case NVPTX::BI__nvvm_atom_sys_min_gen_ll: | |
case NVPTX::BI__nvvm_atom_sys_min_gen_ull: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_and_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_and_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_and_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_and_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_and_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_and_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_or_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_or_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_or_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_or_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_or_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_or_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_xor_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_xor_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); | |
case NVPTX::BI__nvvm_atom_sys_xor_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_xor_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: | |
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); | |
case NVPTX::BI__nvvm_atom_cta_cas_gen_i: | |
case NVPTX::BI__nvvm_atom_cta_cas_gen_l: | |
case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic( | |
Intrinsic::nvvm_atomic_cas_gen_i_cta, | |
{Ptr->getType()->getPointerElementType(), Ptr->getType()}), | |
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); | |
} | |
case NVPTX::BI__nvvm_atom_sys_cas_gen_i: | |
case NVPTX::BI__nvvm_atom_sys_cas_gen_l: | |
case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { | |
Value *Ptr = EmitScalarExpr(E->getArg(0)); | |
return Builder.CreateCall( | |
CGM.getIntrinsic( | |
Intrinsic::nvvm_atomic_cas_gen_i_sys, | |
{Ptr->getType()->getPointerElementType(), Ptr->getType()}), | |
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); | |
} | |
case NVPTX::BI__nvvm_match_all_sync_i32p: | |
case NVPTX::BI__nvvm_match_all_sync_i64p: { | |
Value *Mask = EmitScalarExpr(E->getArg(0)); | |
Value *Val = EmitScalarExpr(E->getArg(1)); | |
Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); | |
Value *ResultPair = Builder.CreateCall( | |
CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p | |
? Intrinsic::nvvm_match_all_sync_i32p | |
: Intrinsic::nvvm_match_all_sync_i64p), | |
{Mask, Val}); | |
Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), | |
PredOutPtr.getElementType()); | |
Builder.CreateStore(Pred, PredOutPtr); | |
return Builder.CreateExtractValue(ResultPair, 0); | |
} | |
// FP MMA loads | |
case NVPTX::BI__hmma_m16n16k16_ld_a: | |
case NVPTX::BI__hmma_m16n16k16_ld_b: | |
case NVPTX::BI__hmma_m16n16k16_ld_c_f16: | |
case NVPTX::BI__hmma_m16n16k16_ld_c_f32: | |
case NVPTX::BI__hmma_m32n8k16_ld_a: | |
case NVPTX::BI__hmma_m32n8k16_ld_b: | |
case NVPTX::BI__hmma_m32n8k16_ld_c_f16: | |
case NVPTX::BI__hmma_m32n8k16_ld_c_f32: | |
case NVPTX::BI__hmma_m8n32k16_ld_a: | |
case NVPTX::BI__hmma_m8n32k16_ld_b: | |
case NVPTX::BI__hmma_m8n32k16_ld_c_f16: | |
case NVPTX::BI__hmma_m8n32k16_ld_c_f32: | |
// Integer MMA loads. | |
case NVPTX::BI__imma_m16n16k16_ld_a_s8: | |
case NVPTX::BI__imma_m16n16k16_ld_a_u8: | |
case NVPTX::BI__imma_m16n16k16_ld_b_s8: | |
case NVPTX::BI__imma_m16n16k16_ld_b_u8: | |
case NVPTX::BI__imma_m16n16k16_ld_c: | |
case NVPTX::BI__imma_m32n8k16_ld_a_s8: | |
case NVPTX::BI__imma_m32n8k16_ld_a_u8: | |
case NVPTX::BI__imma_m32n8k16_ld_b_s8: | |
case NVPTX::BI__imma_m32n8k16_ld_b_u8: | |
case NVPTX::BI__imma_m32n8k16_ld_c: | |
case NVPTX::BI__imma_m8n32k16_ld_a_s8: | |
case NVPTX::BI__imma_m8n32k16_ld_a_u8: | |
case NVPTX::BI__imma_m8n32k16_ld_b_s8: | |
case NVPTX::BI__imma_m8n32k16_ld_b_u8: | |
case NVPTX::BI__imma_m8n32k16_ld_c: | |
// Sub-integer MMA loads. | |
case NVPTX::BI__imma_m8n8k32_ld_a_s4: | |
case NVPTX::BI__imma_m8n8k32_ld_a_u4: | |
case NVPTX::BI__imma_m8n8k32_ld_b_s4: | |
case NVPTX::BI__imma_m8n8k32_ld_b_u4: | |
case NVPTX::BI__imma_m8n8k32_ld_c: | |
case NVPTX::BI__bmma_m8n8k128_ld_a_b1: | |
case NVPTX::BI__bmma_m8n8k128_ld_b_b1: | |
case NVPTX::BI__bmma_m8n8k128_ld_c: | |
{ | |
Address Dst = EmitPointerWithAlignment(E->getArg(0)); | |
Value *Src = EmitScalarExpr(E->getArg(1)); | |
Value *Ldm = EmitScalarExpr(E->getArg(2)); | |
llvm::APSInt isColMajorArg; | |
if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) | |
return nullptr; | |
bool isColMajor = isColMajorArg.getSExtValue(); | |
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); | |
unsigned IID = isColMajor ? II.IID_col : II.IID_row; | |
if (IID == 0) | |
return nullptr; | |
Value *Result = | |
Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); | |
// Save returned values. | |
assert(II.NumResults); | |
if (II.NumResults == 1) { | |
Builder.CreateAlignedStore(Result, Dst.getPointer(), | |
CharUnits::fromQuantity(4)); | |
} else { | |
for (unsigned i = 0; i < II.NumResults; ++i) { | |
Builder.CreateAlignedStore( | |
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), | |
Dst.getElementType()), | |
Builder.CreateGEP(Dst.getPointer(), | |
llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
} | |
} | |
return Result; | |
} | |
case NVPTX::BI__hmma_m16n16k16_st_c_f16: | |
case NVPTX::BI__hmma_m16n16k16_st_c_f32: | |
case NVPTX::BI__hmma_m32n8k16_st_c_f16: | |
case NVPTX::BI__hmma_m32n8k16_st_c_f32: | |
case NVPTX::BI__hmma_m8n32k16_st_c_f16: | |
case NVPTX::BI__hmma_m8n32k16_st_c_f32: | |
case NVPTX::BI__imma_m16n16k16_st_c_i32: | |
case NVPTX::BI__imma_m32n8k16_st_c_i32: | |
case NVPTX::BI__imma_m8n32k16_st_c_i32: | |
case NVPTX::BI__imma_m8n8k32_st_c_i32: | |
case NVPTX::BI__bmma_m8n8k128_st_c_i32: { | |
Value *Dst = EmitScalarExpr(E->getArg(0)); | |
Address Src = EmitPointerWithAlignment(E->getArg(1)); | |
Value *Ldm = EmitScalarExpr(E->getArg(2)); | |
llvm::APSInt isColMajorArg; | |
if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) | |
return nullptr; | |
bool isColMajor = isColMajorArg.getSExtValue(); | |
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); | |
unsigned IID = isColMajor ? II.IID_col : II.IID_row; | |
if (IID == 0) | |
return nullptr; | |
Function *Intrinsic = | |
CGM.getIntrinsic(IID, Dst->getType()); | |
llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); | |
SmallVector<Value *, 10> Values = {Dst}; | |
for (unsigned i = 0; i < II.NumResults; ++i) { | |
Value *V = Builder.CreateAlignedLoad( | |
Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
Values.push_back(Builder.CreateBitCast(V, ParamType)); | |
} | |
Values.push_back(Ldm); | |
Value *Result = Builder.CreateCall(Intrinsic, Values); | |
return Result; | |
} | |
// BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> | |
// Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> | |
case NVPTX::BI__hmma_m16n16k16_mma_f16f16: | |
case NVPTX::BI__hmma_m16n16k16_mma_f32f16: | |
case NVPTX::BI__hmma_m16n16k16_mma_f32f32: | |
case NVPTX::BI__hmma_m16n16k16_mma_f16f32: | |
case NVPTX::BI__hmma_m32n8k16_mma_f16f16: | |
case NVPTX::BI__hmma_m32n8k16_mma_f32f16: | |
case NVPTX::BI__hmma_m32n8k16_mma_f32f32: | |
case NVPTX::BI__hmma_m32n8k16_mma_f16f32: | |
case NVPTX::BI__hmma_m8n32k16_mma_f16f16: | |
case NVPTX::BI__hmma_m8n32k16_mma_f32f16: | |
case NVPTX::BI__hmma_m8n32k16_mma_f32f32: | |
case NVPTX::BI__hmma_m8n32k16_mma_f16f32: | |
case NVPTX::BI__imma_m16n16k16_mma_s8: | |
case NVPTX::BI__imma_m16n16k16_mma_u8: | |
case NVPTX::BI__imma_m32n8k16_mma_s8: | |
case NVPTX::BI__imma_m32n8k16_mma_u8: | |
case NVPTX::BI__imma_m8n32k16_mma_s8: | |
case NVPTX::BI__imma_m8n32k16_mma_u8: | |
case NVPTX::BI__imma_m8n8k32_mma_s4: | |
case NVPTX::BI__imma_m8n8k32_mma_u4: | |
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: { | |
Address Dst = EmitPointerWithAlignment(E->getArg(0)); | |
Address SrcA = EmitPointerWithAlignment(E->getArg(1)); | |
Address SrcB = EmitPointerWithAlignment(E->getArg(2)); | |
Address SrcC = EmitPointerWithAlignment(E->getArg(3)); | |
llvm::APSInt LayoutArg; | |
if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext())) | |
return nullptr; | |
int Layout = LayoutArg.getSExtValue(); | |
if (Layout < 0 || Layout > 3) | |
return nullptr; | |
llvm::APSInt SatfArg; | |
if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1) | |
SatfArg = 0; // .b1 does not have satf argument. | |
else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext())) | |
return nullptr; | |
bool Satf = SatfArg.getSExtValue(); | |
NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); | |
unsigned IID = MI.getMMAIntrinsic(Layout, Satf); | |
if (IID == 0) // Unsupported combination of Layout/Satf. | |
return nullptr; | |
SmallVector<Value *, 24> Values; | |
Function *Intrinsic = CGM.getIntrinsic(IID); | |
llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); | |
// Load A | |
for (unsigned i = 0; i < MI.NumEltsA; ++i) { | |
Value *V = Builder.CreateAlignedLoad( | |
Builder.CreateGEP(SrcA.getPointer(), | |
llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
Values.push_back(Builder.CreateBitCast(V, AType)); | |
} | |
// Load B | |
llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); | |
for (unsigned i = 0; i < MI.NumEltsB; ++i) { | |
Value *V = Builder.CreateAlignedLoad( | |
Builder.CreateGEP(SrcB.getPointer(), | |
llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
Values.push_back(Builder.CreateBitCast(V, BType)); | |
} | |
// Load C | |
llvm::Type *CType = | |
Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); | |
for (unsigned i = 0; i < MI.NumEltsC; ++i) { | |
Value *V = Builder.CreateAlignedLoad( | |
Builder.CreateGEP(SrcC.getPointer(), | |
llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
Values.push_back(Builder.CreateBitCast(V, CType)); | |
} | |
Value *Result = Builder.CreateCall(Intrinsic, Values); | |
llvm::Type *DType = Dst.getElementType(); | |
for (unsigned i = 0; i < MI.NumEltsD; ++i) | |
Builder.CreateAlignedStore( | |
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), | |
Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), | |
CharUnits::fromQuantity(4)); | |
return Result; | |
} | |
default: | |
return nullptr; | |
} | |
} | |
Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_memory_size: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *I = EmitScalarExpr(E->getArg(0)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); | |
return Builder.CreateCall(Callee, I); | |
} | |
case WebAssembly::BI__builtin_wasm_memory_grow: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Value *Args[] = { | |
EmitScalarExpr(E->getArg(0)), | |
EmitScalarExpr(E->getArg(1)) | |
}; | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); | |
return Builder.CreateCall(Callee, Args); | |
} | |
case WebAssembly::BI__builtin_wasm_memory_init: { | |
llvm::APSInt SegConst; | |
if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext())) | |
llvm_unreachable("Constant arg isn't actually constant?"); | |
llvm::APSInt MemConst; | |
if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext())) | |
llvm_unreachable("Constant arg isn't actually constant?"); | |
if (!MemConst.isNullValue()) | |
ErrorUnsupported(E, "non-zero memory index"); | |
Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst), | |
llvm::ConstantInt::get(getLLVMContext(), MemConst), | |
EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)), | |
EmitScalarExpr(E->getArg(4))}; | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init); | |
return Builder.CreateCall(Callee, Args); | |
} | |
case WebAssembly::BI__builtin_wasm_data_drop: { | |
llvm::APSInt SegConst; | |
if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext())) | |
llvm_unreachable("Constant arg isn't actually constant?"); | |
Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop); | |
return Builder.CreateCall(Callee, {Arg}); | |
} | |
case WebAssembly::BI__builtin_wasm_tls_size: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); | |
return Builder.CreateCall(Callee); | |
} | |
case WebAssembly::BI__builtin_wasm_tls_align: { | |
llvm::Type *ResultType = ConvertType(E->getType()); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); | |
return Builder.CreateCall(Callee); | |
} | |
case WebAssembly::BI__builtin_wasm_tls_base: { | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); | |
return Builder.CreateCall(Callee); | |
} | |
case WebAssembly::BI__builtin_wasm_throw: { | |
Value *Tag = EmitScalarExpr(E->getArg(0)); | |
Value *Obj = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); | |
return Builder.CreateCall(Callee, {Tag, Obj}); | |
} | |
case WebAssembly::BI__builtin_wasm_rethrow_in_catch: { | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch); | |
return Builder.CreateCall(Callee); | |
} | |
case WebAssembly::BI__builtin_wasm_atomic_wait_i32: { | |
Value *Addr = EmitScalarExpr(E->getArg(0)); | |
Value *Expected = EmitScalarExpr(E->getArg(1)); | |
Value *Timeout = EmitScalarExpr(E->getArg(2)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32); | |
return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); | |
} | |
case WebAssembly::BI__builtin_wasm_atomic_wait_i64: { | |
Value *Addr = EmitScalarExpr(E->getArg(0)); | |
Value *Expected = EmitScalarExpr(E->getArg(1)); | |
Value *Timeout = EmitScalarExpr(E->getArg(2)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64); | |
return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); | |
} | |
case WebAssembly::BI__builtin_wasm_atomic_notify: { | |
Value *Addr = EmitScalarExpr(E->getArg(0)); | |
Value *Count = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify); | |
return Builder.CreateCall(Callee, {Addr, Count}); | |
} | |
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { | |
Value *Src = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ResT = ConvertType(E->getType()); | |
Function *Callee = | |
CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); | |
return Builder.CreateCall(Callee, {Src}); | |
} | |
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { | |
Value *Src = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ResT = ConvertType(E->getType()); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, | |
{ResT, Src->getType()}); | |
return Builder.CreateCall(Callee, {Src}); | |
} | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: { | |
Value *Src = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ResT = ConvertType(E->getType()); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed, | |
{ResT, Src->getType()}); | |
return Builder.CreateCall(Callee, {Src}); | |
} | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: | |
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: { | |
Value *Src = EmitScalarExpr(E->getArg(0)); | |
llvm::Type *ResT = ConvertType(E->getType()); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned, | |
{ResT, Src->getType()}); | |
return Builder.CreateCall(Callee, {Src}); | |
} | |
case WebAssembly::BI__builtin_wasm_min_f32: | |
case WebAssembly::BI__builtin_wasm_min_f64: | |
case WebAssembly::BI__builtin_wasm_min_f32x4: | |
case WebAssembly::BI__builtin_wasm_min_f64x2: { | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::minimum, | |
ConvertType(E->getType())); | |
return Builder.CreateCall(Callee, {LHS, RHS}); | |
} | |
case WebAssembly::BI__builtin_wasm_max_f32: | |
case WebAssembly::BI__builtin_wasm_max_f64: | |
case WebAssembly::BI__builtin_wasm_max_f32x4: | |
case WebAssembly::BI__builtin_wasm_max_f64x2: { | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::maximum, | |
ConvertType(E->getType())); | |
return Builder.CreateCall(Callee, {LHS, RHS}); | |
} | |
case WebAssembly::BI__builtin_wasm_swizzle_v8x16: { | |
Value *Src = EmitScalarExpr(E->getArg(0)); | |
Value *Indices = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); | |
return Builder.CreateCall(Callee, {Src, Indices}); | |
} | |
case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: | |
case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: | |
case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: | |
case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: { | |
llvm::APSInt LaneConst; | |
if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) | |
llvm_unreachable("Constant arg isn't actually constant?"); | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); | |
Value *Extract = Builder.CreateExtractElement(Vec, Lane); | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: | |
return Builder.CreateSExt(Extract, ConvertType(E->getType())); | |
case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: | |
return Builder.CreateZExt(Extract, ConvertType(E->getType())); | |
case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: | |
case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: | |
case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: | |
case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: | |
return Extract; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
} | |
case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: | |
case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: | |
case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: | |
case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: | |
case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: | |
case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: { | |
llvm::APSInt LaneConst; | |
if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) | |
llvm_unreachable("Constant arg isn't actually constant?"); | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); | |
Value *Val = EmitScalarExpr(E->getArg(2)); | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: | |
case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: { | |
llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType(); | |
Value *Trunc = Builder.CreateTrunc(Val, ElemType); | |
return Builder.CreateInsertElement(Vec, Trunc, Lane); | |
} | |
case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: | |
case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: | |
case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: | |
case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: | |
return Builder.CreateInsertElement(Vec, Val, Lane); | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
} | |
case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: { | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: | |
IntNo = Intrinsic::sadd_sat; | |
break; | |
case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: | |
IntNo = Intrinsic::uadd_sat; | |
break; | |
case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: | |
IntNo = Intrinsic::wasm_sub_saturate_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: | |
IntNo = Intrinsic::wasm_sub_saturate_unsigned; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); | |
return Builder.CreateCall(Callee, {LHS, RHS}); | |
} | |
case WebAssembly::BI__builtin_wasm_bitselect: { | |
Value *V1 = EmitScalarExpr(E->getArg(0)); | |
Value *V2 = EmitScalarExpr(E->getArg(1)); | |
Value *C = EmitScalarExpr(E->getArg(2)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect, | |
ConvertType(E->getType())); | |
return Builder.CreateCall(Callee, {V1, V2, C}); | |
} | |
case WebAssembly::BI__builtin_wasm_min_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_min_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_max_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_max_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_min_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_min_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_max_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_max_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_min_s_i32x4: | |
case WebAssembly::BI__builtin_wasm_min_u_i32x4: | |
case WebAssembly::BI__builtin_wasm_max_s_i32x4: | |
case WebAssembly::BI__builtin_wasm_max_u_i32x4: { | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_min_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_min_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_min_s_i32x4: | |
IntNo = Intrinsic::wasm_min_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_min_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_min_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_min_u_i32x4: | |
IntNo = Intrinsic::wasm_min_unsigned; | |
break; | |
case WebAssembly::BI__builtin_wasm_max_s_i8x16: | |
case WebAssembly::BI__builtin_wasm_max_s_i16x8: | |
case WebAssembly::BI__builtin_wasm_max_s_i32x4: | |
IntNo = Intrinsic::wasm_max_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_max_u_i8x16: | |
case WebAssembly::BI__builtin_wasm_max_u_i16x8: | |
case WebAssembly::BI__builtin_wasm_max_u_i32x4: | |
IntNo = Intrinsic::wasm_max_unsigned; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); | |
return Builder.CreateCall(Callee, {LHS, RHS}); | |
} | |
case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { | |
Value *LHS = EmitScalarExpr(E->getArg(0)); | |
Value *RHS = EmitScalarExpr(E->getArg(1)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); | |
return Builder.CreateCall(Callee, {LHS, RHS}); | |
} | |
case WebAssembly::BI__builtin_wasm_any_true_i8x16: | |
case WebAssembly::BI__builtin_wasm_any_true_i16x8: | |
case WebAssembly::BI__builtin_wasm_any_true_i32x4: | |
case WebAssembly::BI__builtin_wasm_any_true_i64x2: | |
case WebAssembly::BI__builtin_wasm_all_true_i8x16: | |
case WebAssembly::BI__builtin_wasm_all_true_i16x8: | |
case WebAssembly::BI__builtin_wasm_all_true_i32x4: | |
case WebAssembly::BI__builtin_wasm_all_true_i64x2: { | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_any_true_i8x16: | |
case WebAssembly::BI__builtin_wasm_any_true_i16x8: | |
case WebAssembly::BI__builtin_wasm_any_true_i32x4: | |
case WebAssembly::BI__builtin_wasm_any_true_i64x2: | |
IntNo = Intrinsic::wasm_anytrue; | |
break; | |
case WebAssembly::BI__builtin_wasm_all_true_i8x16: | |
case WebAssembly::BI__builtin_wasm_all_true_i16x8: | |
case WebAssembly::BI__builtin_wasm_all_true_i32x4: | |
case WebAssembly::BI__builtin_wasm_all_true_i64x2: | |
IntNo = Intrinsic::wasm_alltrue; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); | |
return Builder.CreateCall(Callee, {Vec}); | |
} | |
case WebAssembly::BI__builtin_wasm_abs_f32x4: | |
case WebAssembly::BI__builtin_wasm_abs_f64x2: { | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); | |
return Builder.CreateCall(Callee, {Vec}); | |
} | |
case WebAssembly::BI__builtin_wasm_sqrt_f32x4: | |
case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); | |
return Builder.CreateCall(Callee, {Vec}); | |
} | |
case WebAssembly::BI__builtin_wasm_qfma_f32x4: | |
case WebAssembly::BI__builtin_wasm_qfms_f32x4: | |
case WebAssembly::BI__builtin_wasm_qfma_f64x2: | |
case WebAssembly::BI__builtin_wasm_qfms_f64x2: { | |
Value *A = EmitScalarExpr(E->getArg(0)); | |
Value *B = EmitScalarExpr(E->getArg(1)); | |
Value *C = EmitScalarExpr(E->getArg(2)); | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_qfma_f32x4: | |
case WebAssembly::BI__builtin_wasm_qfma_f64x2: | |
IntNo = Intrinsic::wasm_qfma; | |
break; | |
case WebAssembly::BI__builtin_wasm_qfms_f32x4: | |
case WebAssembly::BI__builtin_wasm_qfms_f64x2: | |
IntNo = Intrinsic::wasm_qfms; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); | |
return Builder.CreateCall(Callee, {A, B, C}); | |
} | |
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: | |
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: | |
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: | |
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { | |
Value *Low = EmitScalarExpr(E->getArg(0)); | |
Value *High = EmitScalarExpr(E->getArg(1)); | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: | |
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: | |
IntNo = Intrinsic::wasm_narrow_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: | |
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: | |
IntNo = Intrinsic::wasm_narrow_unsigned; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Function *Callee = | |
CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); | |
return Builder.CreateCall(Callee, {Low, High}); | |
} | |
case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: | |
case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: | |
case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: | |
case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: { | |
Value *Vec = EmitScalarExpr(E->getArg(0)); | |
unsigned IntNo; | |
switch (BuiltinID) { | |
case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: | |
IntNo = Intrinsic::wasm_widen_low_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: | |
IntNo = Intrinsic::wasm_widen_high_signed; | |
break; | |
case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: | |
IntNo = Intrinsic::wasm_widen_low_unsigned; | |
break; | |
case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: | |
case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: | |
IntNo = Intrinsic::wasm_widen_high_unsigned; | |
break; | |
default: | |
llvm_unreachable("unexpected builtin ID"); | |
} | |
Function *Callee = | |
CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()}); | |
return Builder.CreateCall(Callee, Vec); | |
} | |
default: | |
return nullptr; | |
} | |
} | |
Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, | |
const CallExpr *E) { | |
SmallVector<llvm::Value *, 4> Ops; | |
Intrinsic::ID ID = Intrinsic::not_intrinsic; | |
auto MakeCircLd = [&](unsigned IntID, bool HasImm) { | |
// The base pointer is passed by address, so it needs to be loaded. | |
Address BP = EmitPointerWithAlignment(E->getArg(0)); | |
BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), | |
BP.getAlignment()); | |
llvm::Value *Base = Builder.CreateLoad(BP); | |
// Operands are Base, Increment, Modifier, Start. | |
if (HasImm) | |
Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), | |
EmitScalarExpr(E->getArg(3)) }; | |
else | |
Ops = { Base, EmitScalarExpr(E->getArg(1)), | |
EmitScalarExpr(E->getArg(2)) }; | |
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); | |
llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1); | |
llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), | |
NewBase->getType()->getPointerTo()); | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
// The intrinsic generates two results. The new value for the base pointer | |
// needs to be stored. | |
Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); | |
return Builder.CreateExtractValue(Result, 0); | |
}; | |
auto MakeCircSt = [&](unsigned IntID, bool HasImm) { | |
// The base pointer is passed by address, so it needs to be loaded. | |
Address BP = EmitPointerWithAlignment(E->getArg(0)); | |
BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), | |
BP.getAlignment()); | |
llvm::Value *Base = Builder.CreateLoad(BP); | |
// Operands are Base, Increment, Modifier, Value, Start. | |
if (HasImm) | |
Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), | |
EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) }; | |
else | |
Ops = { Base, EmitScalarExpr(E->getArg(1)), | |
EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) }; | |
llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); | |
llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), | |
NewBase->getType()->getPointerTo()); | |
Address Dest = EmitPointerWithAlignment(E->getArg(0)); | |
// The intrinsic generates one result, which is the new value for the base | |
// pointer. It needs to be stored. | |
return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); | |
}; | |
// Handle the conversion of bit-reverse load intrinsics to bit code. | |
// The intrinsic call after this function only reads from memory and the | |
// write to memory is dealt by the store instruction. | |
auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) { | |
// The intrinsic generates one result, which is the new value for the base | |
// pointer. It needs to be returned. The result of the load instruction is | |
// passed to intrinsic by address, so the value needs to be stored. | |
llvm::Value *BaseAddress = | |
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); | |
// Expressions like &(*pt++) will be incremented per evaluation. | |
// EmitPointerWithAlignment and EmitScalarExpr evaluates the expression | |
// per call. | |
Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); | |
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), | |
DestAddr.getAlignment()); | |
llvm::Value *DestAddress = DestAddr.getPointer(); | |
// Operands are Base, Dest, Modifier. | |
// The intrinsic format in LLVM IR is defined as | |
// { ValueType, i8* } (i8*, i32). | |
Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))}; | |
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); | |
// The value needs to be stored as the variable is passed by reference. | |
llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); | |
// The store needs to be truncated to fit the destination type. | |
// While i32 and i64 are natively supported on Hexagon, i8 and i16 needs | |
// to be handled with stores of respective destination type. | |
DestVal = Builder.CreateTrunc(DestVal, DestTy); | |
llvm::Value *DestForStore = | |
Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); | |
Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); | |
// The updated value of the base pointer is returned. | |
return Builder.CreateExtractValue(Result, 1); | |
}; | |
switch (BuiltinID) { | |
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: | |
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(2)); | |
unsigned Size; | |
if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) { | |
Size = 512; | |
ID = Intrinsic::hexagon_V6_vaddcarry; | |
} else { | |
Size = 1024; | |
ID = Intrinsic::hexagon_V6_vaddcarry_128B; | |
} | |
Dest = Builder.CreateBitCast(Dest, | |
llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); | |
LoadInst *QLd = Builder.CreateLoad(Dest); | |
Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; | |
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); | |
llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), | |
Vprd->getType()->getPointerTo(0)); | |
Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); | |
return Builder.CreateExtractValue(Result, 0); | |
} | |
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: | |
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { | |
Address Dest = EmitPointerWithAlignment(E->getArg(2)); | |
unsigned Size; | |
if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) { | |
Size = 512; | |
ID = Intrinsic::hexagon_V6_vsubcarry; | |
} else { | |
Size = 1024; | |
ID = Intrinsic::hexagon_V6_vsubcarry_128B; | |
} | |
Dest = Builder.CreateBitCast(Dest, | |
llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); | |
LoadInst *QLd = Builder.CreateLoad(Dest); | |
Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; | |
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); | |
llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); | |
llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), | |
Vprd->getType()->getPointerTo(0)); | |
Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); | |
return Builder.CreateExtractValue(Result, 0); | |
} | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: | |
return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: | |
return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: | |
return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: | |
return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false); | |
case Hexagon::BI__builtin_brev_ldub: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); | |
case Hexagon::BI__builtin_brev_ldb: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); | |
case Hexagon::BI__builtin_brev_lduh: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); | |
case Hexagon::BI__builtin_brev_ldh: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); | |
case Hexagon::BI__builtin_brev_ldw: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); | |
case Hexagon::BI__builtin_brev_ldd: | |
return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); | |
default: | |
break; | |
} // switch | |
return nullptr; | |
} |