|  | //===-- GlobalMerge.cpp - Internal globals merging  -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This pass merges globals with internal linkage into one. This way all the | 
|  | // globals which were merged into a biggest one can be addressed using offsets | 
|  | // from the same base pointer (no need for separate base pointer for each of the | 
|  | // global). Such a transformation can significantly reduce the register pressure | 
|  | // when many globals are involved. | 
|  | // | 
|  | // For example, consider the code which touches several global variables at | 
|  | // once: | 
|  | // | 
|  | // static int foo[N], bar[N], baz[N]; | 
|  | // | 
|  | // for (i = 0; i < N; ++i) { | 
|  | //    foo[i] = bar[i] * baz[i]; | 
|  | // } | 
|  | // | 
|  | //  On ARM the addresses of 3 arrays should be kept in the registers, thus | 
|  | //  this code has quite large register pressure (loop body): | 
|  | // | 
|  | //  ldr     r1, [r5], #4 | 
|  | //  ldr     r2, [r6], #4 | 
|  | //  mul     r1, r2, r1 | 
|  | //  str     r1, [r0], #4 | 
|  | // | 
|  | //  Pass converts the code to something like: | 
|  | // | 
|  | //  static struct { | 
|  | //    int foo[N]; | 
|  | //    int bar[N]; | 
|  | //    int baz[N]; | 
|  | //  } merged; | 
|  | // | 
|  | //  for (i = 0; i < N; ++i) { | 
|  | //    merged.foo[i] = merged.bar[i] * merged.baz[i]; | 
|  | //  } | 
|  | // | 
|  | //  and in ARM code this becomes: | 
|  | // | 
|  | //  ldr     r0, [r5, #40] | 
|  | //  ldr     r1, [r5, #80] | 
|  | //  mul     r0, r1, r0 | 
|  | //  str     r0, [r5], #4 | 
|  | // | 
|  | //  note that we saved 2 registers here almostly "for free". | 
|  | // | 
|  | // However, merging globals can have tradeoffs: | 
|  | // - it confuses debuggers, tools, and users | 
|  | // - it makes linker optimizations less useful (order files, LOHs, ...) | 
|  | // - it forces usage of indexed addressing (which isn't necessarily "free") | 
|  | // - it can increase register pressure when the uses are disparate enough. | 
|  | // | 
|  | // We use heuristics to discover the best global grouping we can (cf cl::opts). | 
|  | // ===---------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "global-merge" | 
|  |  | 
|  | // FIXME: This is only useful as a last-resort way to disable the pass. | 
|  | static cl::opt<bool> | 
|  | EnableGlobalMerge("enable-global-merge", cl::Hidden, | 
|  | cl::desc("Enable the global merge pass"), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> GlobalMergeGroupByUse( | 
|  | "global-merge-group-by-use", cl::Hidden, | 
|  | cl::desc("Improve global merge pass to look at uses"), cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> GlobalMergeIgnoreSingleUse( | 
|  | "global-merge-ignore-single-use", cl::Hidden, | 
|  | cl::desc("Improve global merge pass to ignore globals only used alone"), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, | 
|  | cl::desc("Enable global merge pass on constants"), | 
|  | cl::init(false)); | 
|  |  | 
|  | // FIXME: this could be a transitional option, and we probably need to remove | 
|  | // it if only we are sure this optimization could always benefit all targets. | 
|  | static cl::opt<bool> | 
|  | EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, | 
|  | cl::desc("Enable global merge pass on external linkage"), | 
|  | cl::init(false)); | 
|  |  | 
|  | STATISTIC(NumMerged, "Number of globals merged"); | 
|  | namespace { | 
|  | class GlobalMerge : public FunctionPass { | 
|  | const TargetMachine *TM; | 
|  | // FIXME: Infer the maximum possible offset depending on the actual users | 
|  | // (these max offsets are different for the users inside Thumb or ARM | 
|  | // functions), see the code that passes in the offset in the ARM backend | 
|  | // for more information. | 
|  | unsigned MaxOffset; | 
|  |  | 
|  | /// Whether we should try to optimize for size only. | 
|  | /// Currently, this applies a dead simple heuristic: only consider globals | 
|  | /// used in minsize functions for merging. | 
|  | /// FIXME: This could learn about optsize, and be used in the cost model. | 
|  | bool OnlyOptimizeForSize; | 
|  |  | 
|  | bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, | 
|  | Module &M, bool isConst, unsigned AddrSpace) const; | 
|  | /// \brief Merge everything in \p Globals for which the corresponding bit | 
|  | /// in \p GlobalSet is set. | 
|  | bool doMerge(SmallVectorImpl<GlobalVariable *> &Globals, | 
|  | const BitVector &GlobalSet, Module &M, bool isConst, | 
|  | unsigned AddrSpace) const; | 
|  |  | 
|  | /// \brief Check if the given variable has been identified as must keep | 
|  | /// \pre setMustKeepGlobalVariables must have been called on the Module that | 
|  | ///      contains GV | 
|  | bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { | 
|  | return MustKeepGlobalVariables.count(GV); | 
|  | } | 
|  |  | 
|  | /// Collect every variables marked as "used" or used in a landing pad | 
|  | /// instruction for this Module. | 
|  | void setMustKeepGlobalVariables(Module &M); | 
|  |  | 
|  | /// Collect every variables marked as "used" | 
|  | void collectUsedGlobalVariables(Module &M); | 
|  |  | 
|  | /// Keep track of the GlobalVariable that must not be merged away | 
|  | SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; | 
|  |  | 
|  | public: | 
|  | static char ID;             // Pass identification, replacement for typeid. | 
|  | explicit GlobalMerge(const TargetMachine *TM = nullptr, | 
|  | unsigned MaximalOffset = 0, | 
|  | bool OnlyOptimizeForSize = false) | 
|  | : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset), | 
|  | OnlyOptimizeForSize(OnlyOptimizeForSize) { | 
|  | initializeGlobalMergePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool doInitialization(Module &M) override; | 
|  | bool runOnFunction(Function &F) override; | 
|  | bool doFinalization(Module &M) override; | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "Merge internal globals"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char GlobalMerge::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables", | 
|  | false, false) | 
|  | INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables", | 
|  | false, false) | 
|  |  | 
|  | bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, | 
|  | Module &M, bool isConst, unsigned AddrSpace) const { | 
|  | auto &DL = M.getDataLayout(); | 
|  | // FIXME: Find better heuristics | 
|  | std::stable_sort( | 
|  | Globals.begin(), Globals.end(), | 
|  | [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) { | 
|  | Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType(); | 
|  | Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType(); | 
|  |  | 
|  | return (DL.getTypeAllocSize(Ty1) < DL.getTypeAllocSize(Ty2)); | 
|  | }); | 
|  |  | 
|  | // If we want to just blindly group all globals together, do so. | 
|  | if (!GlobalMergeGroupByUse) { | 
|  | BitVector AllGlobals(Globals.size()); | 
|  | AllGlobals.set(); | 
|  | return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); | 
|  | } | 
|  |  | 
|  | // If we want to be smarter, look at all uses of each global, to try to | 
|  | // discover all sets of globals used together, and how many times each of | 
|  | // these sets occured. | 
|  | // | 
|  | // Keep this reasonably efficient, by having an append-only list of all sets | 
|  | // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of | 
|  | // code (currently, a Function) to the set of globals seen so far that are | 
|  | // used together in that unit (GlobalUsesByFunction). | 
|  | // | 
|  | // When we look at the Nth global, we now that any new set is either: | 
|  | // - the singleton set {N}, containing this global only, or | 
|  | // - the union of {N} and a previously-discovered set, containing some | 
|  | //   combination of the previous N-1 globals. | 
|  | // Using that knowledge, when looking at the Nth global, we can keep: | 
|  | // - a reference to the singleton set {N} (CurGVOnlySetIdx) | 
|  | // - a list mapping each previous set to its union with {N} (EncounteredUGS), | 
|  | //   if it actually occurs. | 
|  |  | 
|  | // We keep track of the sets of globals used together "close enough". | 
|  | struct UsedGlobalSet { | 
|  | UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {} | 
|  | BitVector Globals; | 
|  | unsigned UsageCount; | 
|  | }; | 
|  |  | 
|  | // Each set is unique in UsedGlobalSets. | 
|  | std::vector<UsedGlobalSet> UsedGlobalSets; | 
|  |  | 
|  | // Avoid repeating the create-global-set pattern. | 
|  | auto CreateGlobalSet = [&]() -> UsedGlobalSet & { | 
|  | UsedGlobalSets.emplace_back(Globals.size()); | 
|  | return UsedGlobalSets.back(); | 
|  | }; | 
|  |  | 
|  | // The first set is the empty set. | 
|  | CreateGlobalSet().UsageCount = 0; | 
|  |  | 
|  | // We define "close enough" to be "in the same function". | 
|  | // FIXME: Grouping uses by function is way too aggressive, so we should have | 
|  | // a better metric for distance between uses. | 
|  | // The obvious alternative would be to group by BasicBlock, but that's in | 
|  | // turn too conservative.. | 
|  | // Anything in between wouldn't be trivial to compute, so just stick with | 
|  | // per-function grouping. | 
|  |  | 
|  | // The value type is an index into UsedGlobalSets. | 
|  | // The default (0) conveniently points to the empty set. | 
|  | DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction; | 
|  |  | 
|  | // Now, look at each merge-eligible global in turn. | 
|  |  | 
|  | // Keep track of the sets we already encountered to which we added the | 
|  | // current global. | 
|  | // Each element matches the same-index element in UsedGlobalSets. | 
|  | // This lets us efficiently tell whether a set has already been expanded to | 
|  | // include the current global. | 
|  | std::vector<size_t> EncounteredUGS; | 
|  |  | 
|  | for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) { | 
|  | GlobalVariable *GV = Globals[GI]; | 
|  |  | 
|  | // Reset the encountered sets for this global... | 
|  | std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0); | 
|  | // ...and grow it in case we created new sets for the previous global. | 
|  | EncounteredUGS.resize(UsedGlobalSets.size()); | 
|  |  | 
|  | // We might need to create a set that only consists of the current global. | 
|  | // Keep track of its index into UsedGlobalSets. | 
|  | size_t CurGVOnlySetIdx = 0; | 
|  |  | 
|  | // For each global, look at all its Uses. | 
|  | for (auto &U : GV->uses()) { | 
|  | // This Use might be a ConstantExpr.  We're interested in Instruction | 
|  | // users, so look through ConstantExpr... | 
|  | Use *UI, *UE; | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { | 
|  | if (CE->use_empty()) | 
|  | continue; | 
|  | UI = &*CE->use_begin(); | 
|  | UE = nullptr; | 
|  | } else if (isa<Instruction>(U.getUser())) { | 
|  | UI = &U; | 
|  | UE = UI->getNext(); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // ...to iterate on all the instruction users of the global. | 
|  | // Note that we iterate on Uses and not on Users to be able to getNext(). | 
|  | for (; UI != UE; UI = UI->getNext()) { | 
|  | Instruction *I = dyn_cast<Instruction>(UI->getUser()); | 
|  | if (!I) | 
|  | continue; | 
|  |  | 
|  | Function *ParentFn = I->getParent()->getParent(); | 
|  |  | 
|  | // If we're only optimizing for size, ignore non-minsize functions. | 
|  | if (OnlyOptimizeForSize && | 
|  | !ParentFn->hasFnAttribute(Attribute::MinSize)) | 
|  | continue; | 
|  |  | 
|  | size_t UGSIdx = GlobalUsesByFunction[ParentFn]; | 
|  |  | 
|  | // If this is the first global the basic block uses, map it to the set | 
|  | // consisting of this global only. | 
|  | if (!UGSIdx) { | 
|  | // If that set doesn't exist yet, create it. | 
|  | if (!CurGVOnlySetIdx) { | 
|  | CurGVOnlySetIdx = UsedGlobalSets.size(); | 
|  | CreateGlobalSet().Globals.set(GI); | 
|  | } else { | 
|  | ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount; | 
|  | } | 
|  |  | 
|  | GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we already encountered this BB, just increment the counter. | 
|  | if (UsedGlobalSets[UGSIdx].Globals.test(GI)) { | 
|  | ++UsedGlobalSets[UGSIdx].UsageCount; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If not, the previous set wasn't actually used in this function. | 
|  | --UsedGlobalSets[UGSIdx].UsageCount; | 
|  |  | 
|  | // If we already expanded the previous set to include this global, just | 
|  | // reuse that expanded set. | 
|  | if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) { | 
|  | ++UsedGlobalSets[ExpandedIdx].UsageCount; | 
|  | GlobalUsesByFunction[ParentFn] = ExpandedIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If not, create a new set consisting of the union of the previous set | 
|  | // and this global.  Mark it as encountered, so we can reuse it later. | 
|  | GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] = | 
|  | UsedGlobalSets.size(); | 
|  |  | 
|  | UsedGlobalSet &NewUGS = CreateGlobalSet(); | 
|  | NewUGS.Globals.set(GI); | 
|  | NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we found a bunch of sets of globals used together.  We accumulated | 
|  | // the number of times we encountered the sets (i.e., the number of blocks | 
|  | // that use that exact set of globals). | 
|  | // | 
|  | // Multiply that by the size of the set to give us a crude profitability | 
|  | // metric. | 
|  | std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(), | 
|  | [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) { | 
|  | return UGS1.Globals.count() * UGS1.UsageCount < | 
|  | UGS2.Globals.count() * UGS2.UsageCount; | 
|  | }); | 
|  |  | 
|  | // We can choose to merge all globals together, but ignore globals never used | 
|  | // with another global.  This catches the obviously non-profitable cases of | 
|  | // having a single global, but is aggressive enough for any other case. | 
|  | if (GlobalMergeIgnoreSingleUse) { | 
|  | BitVector AllGlobals(Globals.size()); | 
|  | for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { | 
|  | const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; | 
|  | if (UGS.UsageCount == 0) | 
|  | continue; | 
|  | if (UGS.Globals.count() > 1) | 
|  | AllGlobals |= UGS.Globals; | 
|  | } | 
|  | return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); | 
|  | } | 
|  |  | 
|  | // Starting from the sets with the best (=biggest) profitability, find a | 
|  | // good combination. | 
|  | // The ideal (and expensive) solution can only be found by trying all | 
|  | // combinations, looking for the one with the best profitability. | 
|  | // Don't be smart about it, and just pick the first compatible combination, | 
|  | // starting with the sets with the best profitability. | 
|  | BitVector PickedGlobals(Globals.size()); | 
|  | bool Changed = false; | 
|  |  | 
|  | for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { | 
|  | const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; | 
|  | if (UGS.UsageCount == 0) | 
|  | continue; | 
|  | if (PickedGlobals.anyCommon(UGS.Globals)) | 
|  | continue; | 
|  | PickedGlobals |= UGS.Globals; | 
|  | // If the set only contains one global, there's no point in merging. | 
|  | // Ignore the global for inclusion in other sets though, so keep it in | 
|  | // PickedGlobals. | 
|  | if (UGS.Globals.count() < 2) | 
|  | continue; | 
|  | Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable *> &Globals, | 
|  | const BitVector &GlobalSet, Module &M, bool isConst, | 
|  | unsigned AddrSpace) const { | 
|  |  | 
|  | Type *Int32Ty = Type::getInt32Ty(M.getContext()); | 
|  | auto &DL = M.getDataLayout(); | 
|  |  | 
|  | assert(Globals.size() > 1); | 
|  |  | 
|  | DEBUG(dbgs() << " Trying to merge set, starts with #" | 
|  | << GlobalSet.find_first() << "\n"); | 
|  |  | 
|  | ssize_t i = GlobalSet.find_first(); | 
|  | while (i != -1) { | 
|  | ssize_t j = 0; | 
|  | uint64_t MergedSize = 0; | 
|  | std::vector<Type*> Tys; | 
|  | std::vector<Constant*> Inits; | 
|  |  | 
|  | bool HasExternal = false; | 
|  | GlobalVariable *TheFirstExternal = 0; | 
|  | for (j = i; j != -1; j = GlobalSet.find_next(j)) { | 
|  | Type *Ty = Globals[j]->getType()->getElementType(); | 
|  | MergedSize += DL.getTypeAllocSize(Ty); | 
|  | if (MergedSize > MaxOffset) { | 
|  | break; | 
|  | } | 
|  | Tys.push_back(Ty); | 
|  | Inits.push_back(Globals[j]->getInitializer()); | 
|  |  | 
|  | if (Globals[j]->hasExternalLinkage() && !HasExternal) { | 
|  | HasExternal = true; | 
|  | TheFirstExternal = Globals[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If merged variables doesn't have external linkage, we needn't to expose | 
|  | // the symbol after merging. | 
|  | GlobalValue::LinkageTypes Linkage = HasExternal | 
|  | ? GlobalValue::ExternalLinkage | 
|  | : GlobalValue::InternalLinkage; | 
|  |  | 
|  | StructType *MergedTy = StructType::get(M.getContext(), Tys); | 
|  | Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); | 
|  |  | 
|  | // If merged variables have external linkage, we use symbol name of the | 
|  | // first variable merged as the suffix of global symbol name. This would | 
|  | // be able to avoid the link-time naming conflict for globalm symbols. | 
|  | GlobalVariable *MergedGV = new GlobalVariable( | 
|  | M, MergedTy, isConst, Linkage, MergedInit, | 
|  | HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName() | 
|  | : "_MergedGlobals", | 
|  | nullptr, GlobalVariable::NotThreadLocal, AddrSpace); | 
|  |  | 
|  | for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k)) { | 
|  | GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); | 
|  | std::string Name = Globals[k]->getName(); | 
|  |  | 
|  | Constant *Idx[2] = { | 
|  | ConstantInt::get(Int32Ty, 0), | 
|  | ConstantInt::get(Int32Ty, idx++) | 
|  | }; | 
|  | Constant *GEP = | 
|  | ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); | 
|  | Globals[k]->replaceAllUsesWith(GEP); | 
|  | Globals[k]->eraseFromParent(); | 
|  |  | 
|  | if (Linkage != GlobalValue::InternalLinkage) { | 
|  | // Generate a new alias... | 
|  | auto *PTy = cast<PointerType>(GEP->getType()); | 
|  | GlobalAlias::create(PTy, Linkage, Name, GEP, &M); | 
|  | } | 
|  |  | 
|  | NumMerged++; | 
|  | } | 
|  | i = j; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void GlobalMerge::collectUsedGlobalVariables(Module &M) { | 
|  | // Extract global variables from llvm.used array | 
|  | const GlobalVariable *GV = M.getGlobalVariable("llvm.used"); | 
|  | if (!GV || !GV->hasInitializer()) return; | 
|  |  | 
|  | // Should be an array of 'i8*'. | 
|  | const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); | 
|  |  | 
|  | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) | 
|  | if (const GlobalVariable *G = | 
|  | dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) | 
|  | MustKeepGlobalVariables.insert(G); | 
|  | } | 
|  |  | 
|  | void GlobalMerge::setMustKeepGlobalVariables(Module &M) { | 
|  | collectUsedGlobalVariables(M); | 
|  |  | 
|  | for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn; | 
|  | ++IFn) { | 
|  | for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end(); | 
|  | IBB != IEndBB; ++IBB) { | 
|  | // Follow the invoke link to find the landing pad instruction | 
|  | const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator()); | 
|  | if (!II) continue; | 
|  |  | 
|  | const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst(); | 
|  | // Look for globals in the clauses of the landing pad instruction | 
|  | for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses(); | 
|  | Idx != NumClauses; ++Idx) | 
|  | if (const GlobalVariable *GV = | 
|  | dyn_cast<GlobalVariable>(LPInst->getClause(Idx) | 
|  | ->stripPointerCasts())) | 
|  | MustKeepGlobalVariables.insert(GV); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GlobalMerge::doInitialization(Module &M) { | 
|  | if (!EnableGlobalMerge) | 
|  | return false; | 
|  |  | 
|  | auto &DL = M.getDataLayout(); | 
|  | DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals, | 
|  | BSSGlobals; | 
|  | bool Changed = false; | 
|  | setMustKeepGlobalVariables(M); | 
|  |  | 
|  | // Grab all non-const globals. | 
|  | for (Module::global_iterator I = M.global_begin(), | 
|  | E = M.global_end(); I != E; ++I) { | 
|  | // Merge is safe for "normal" internal or external globals only | 
|  | if (I->isDeclaration() || I->isThreadLocal() || I->hasSection()) | 
|  | continue; | 
|  |  | 
|  | if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) && | 
|  | !I->hasInternalLinkage()) | 
|  | continue; | 
|  |  | 
|  | PointerType *PT = dyn_cast<PointerType>(I->getType()); | 
|  | assert(PT && "Global variable is not a pointer!"); | 
|  |  | 
|  | unsigned AddressSpace = PT->getAddressSpace(); | 
|  |  | 
|  | // Ignore fancy-aligned globals for now. | 
|  | unsigned Alignment = DL.getPreferredAlignment(I); | 
|  | Type *Ty = I->getType()->getElementType(); | 
|  | if (Alignment > DL.getABITypeAlignment(Ty)) | 
|  | continue; | 
|  |  | 
|  | // Ignore all 'special' globals. | 
|  | if (I->getName().startswith("llvm.") || | 
|  | I->getName().startswith(".llvm.")) | 
|  | continue; | 
|  |  | 
|  | // Ignore all "required" globals: | 
|  | if (isMustKeepGlobalVariable(I)) | 
|  | continue; | 
|  |  | 
|  | if (DL.getTypeAllocSize(Ty) < MaxOffset) { | 
|  | if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal()) | 
|  | BSSGlobals[AddressSpace].push_back(I); | 
|  | else if (I->isConstant()) | 
|  | ConstGlobals[AddressSpace].push_back(I); | 
|  | else | 
|  | Globals[AddressSpace].push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator | 
|  | I = Globals.begin(), E = Globals.end(); I != E; ++I) | 
|  | if (I->second.size() > 1) | 
|  | Changed |= doMerge(I->second, M, false, I->first); | 
|  |  | 
|  | for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator | 
|  | I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I) | 
|  | if (I->second.size() > 1) | 
|  | Changed |= doMerge(I->second, M, false, I->first); | 
|  |  | 
|  | if (EnableGlobalMergeOnConst) | 
|  | for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator | 
|  | I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I) | 
|  | if (I->second.size() > 1) | 
|  | Changed |= doMerge(I->second, M, true, I->first); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool GlobalMerge::runOnFunction(Function &F) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GlobalMerge::doFinalization(Module &M) { | 
|  | MustKeepGlobalVariables.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset, | 
|  | bool OnlyOptimizeForSize) { | 
|  | return new GlobalMerge(TM, Offset, OnlyOptimizeForSize); | 
|  | } |