|  | //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines an instruction selector for the ARM target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "arm-isel" | 
|  | #include "ARM.h" | 
|  | #include "ARMBaseInstrInfo.h" | 
|  | #include "ARMTargetMachine.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableShifterOp("disable-shifter-op", cl::Hidden, | 
|  | cl::desc("Disable isel of shifter-op"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | CheckVMLxHazard("check-vmlx-hazard", cl::Hidden, | 
|  | cl::desc("Check fp vmla / vmls hazard at isel time"), | 
|  | cl::init(true)); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ARMDAGToDAGISel - ARM specific code to select ARM machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | namespace { | 
|  |  | 
|  | enum AddrMode2Type { | 
|  | AM2_BASE, // Simple AM2 (+-imm12) | 
|  | AM2_SHOP  // Shifter-op AM2 | 
|  | }; | 
|  |  | 
|  | class ARMDAGToDAGISel : public SelectionDAGISel { | 
|  | ARMBaseTargetMachine &TM; | 
|  |  | 
|  | /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const ARMSubtarget *Subtarget; | 
|  |  | 
|  | public: | 
|  | explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, | 
|  | CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), TM(tm), | 
|  | Subtarget(&TM.getSubtarget<ARMSubtarget>()) { | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "ARM Instruction Selection"; | 
|  | } | 
|  |  | 
|  | virtual void PreprocessISelDAG(); | 
|  |  | 
|  | /// getI32Imm - Return a target constant of type i32 with the specified | 
|  | /// value. | 
|  | inline SDValue getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | SDNode *Select(SDNode *N); | 
|  |  | 
|  |  | 
|  | bool hasNoVMLxHazardUse(SDNode *N) const; | 
|  | bool isShifterOpProfitable(const SDValue &Shift, | 
|  | ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt); | 
|  | bool SelectRegShifterOperand(SDValue N, SDValue &A, | 
|  | SDValue &B, SDValue &C, | 
|  | bool CheckProfitability = true); | 
|  | bool SelectImmShifterOperand(SDValue N, SDValue &A, | 
|  | SDValue &B, bool CheckProfitability = true); | 
|  | bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, | 
|  | SDValue &B, SDValue &C) { | 
|  | // Don't apply the profitability check | 
|  | return SelectRegShifterOperand(N, A, B, C, false); | 
|  | } | 
|  | bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, | 
|  | SDValue &B) { | 
|  | // Don't apply the profitability check | 
|  | return SelectImmShifterOperand(N, A, B, false); | 
|  | } | 
|  |  | 
|  | bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); | 
|  | bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); | 
|  |  | 
|  | AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE; | 
|  | } | 
|  |  | 
|  | bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP; | 
|  | } | 
|  |  | 
|  | bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | SelectAddrMode2Worker(N, Base, Offset, Opc); | 
|  | //    return SelectAddrMode2ShOp(N, Base, Offset, Opc); | 
|  | // This always matches one way or another. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrOffsetNone(SDValue N, SDValue &Base); | 
|  | bool SelectAddrMode3(SDValue N, SDValue &Base, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrMode3Offset(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc); | 
|  | bool SelectAddrMode5(SDValue N, SDValue &Base, | 
|  | SDValue &Offset); | 
|  | bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align); | 
|  | bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset); | 
|  |  | 
|  | bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label); | 
|  |  | 
|  | // Thumb Addressing Modes: | 
|  | bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset); | 
|  | bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | unsigned Scale); | 
|  | bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset); | 
|  | bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset); | 
|  | bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset); | 
|  | bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm); | 
|  |  | 
|  | // Thumb 2 Addressing Modes: | 
|  | bool SelectT2ShifterOperandReg(SDValue N, | 
|  | SDValue &BaseReg, SDValue &Opc); | 
|  | bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); | 
|  | bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, | 
|  | SDValue &OffImm); | 
|  | bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base, | 
|  | SDValue &OffReg, SDValue &ShImm); | 
|  |  | 
|  | inline bool is_so_imm(unsigned Imm) const { | 
|  | return ARM_AM::getSOImmVal(Imm) != -1; | 
|  | } | 
|  |  | 
|  | inline bool is_so_imm_not(unsigned Imm) const { | 
|  | return ARM_AM::getSOImmVal(~Imm) != -1; | 
|  | } | 
|  |  | 
|  | inline bool is_t2_so_imm(unsigned Imm) const { | 
|  | return ARM_AM::getT2SOImmVal(Imm) != -1; | 
|  | } | 
|  |  | 
|  | inline bool is_t2_so_imm_not(unsigned Imm) const { | 
|  | return ARM_AM::getT2SOImmVal(~Imm) != -1; | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "ARMGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for | 
|  | /// ARM. | 
|  | SDNode *SelectARMIndexedLoad(SDNode *N); | 
|  | SDNode *SelectT2IndexedLoad(SDNode *N); | 
|  |  | 
|  | /// SelectVLD - Select NEON load intrinsics.  NumVecs should be | 
|  | /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for | 
|  | /// loads of D registers and even subregs and odd subregs of Q registers. | 
|  | /// For NumVecs <= 2, QOpcodes1 is not used. | 
|  | SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, | 
|  | const uint16_t *QOpcodes0, const uint16_t *QOpcodes1); | 
|  |  | 
|  | /// SelectVST - Select NEON store intrinsics.  NumVecs should | 
|  | /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for | 
|  | /// stores of D registers and even subregs and odd subregs of Q registers. | 
|  | /// For NumVecs <= 2, QOpcodes1 is not used. | 
|  | SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, | 
|  | const uint16_t *QOpcodes0, const uint16_t *QOpcodes1); | 
|  |  | 
|  | /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should | 
|  | /// be 2, 3 or 4.  The opcode arrays specify the instructions used for | 
|  | /// load/store of D registers and Q registers. | 
|  | SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, | 
|  | bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, const uint16_t *QOpcodes); | 
|  |  | 
|  | /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs | 
|  | /// should be 2, 3 or 4.  The opcode array specifies the instructions used | 
|  | /// for loading D registers.  (Q registers are not supported.) | 
|  | SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *Opcodes); | 
|  |  | 
|  | /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2, | 
|  | /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be | 
|  | /// generated to force the table registers to be consecutive. | 
|  | SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc); | 
|  |  | 
|  | /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM. | 
|  | SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned); | 
|  |  | 
|  | /// SelectCMOVOp - Select CMOV instructions for ARM. | 
|  | SDNode *SelectCMOVOp(SDNode *N); | 
|  | SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, | 
|  | SDValue InFlag); | 
|  | SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, | 
|  | SDValue InFlag); | 
|  | SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, | 
|  | SDValue InFlag); | 
|  | SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, | 
|  | SDValue InFlag); | 
|  |  | 
|  | // Select special operations if node forms integer ABS pattern | 
|  | SDNode *SelectABSOp(SDNode *N); | 
|  |  | 
|  | SDNode *SelectInlineAsm(SDNode *N); | 
|  |  | 
|  | SDNode *SelectConcatVector(SDNode *N); | 
|  |  | 
|  | SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions. | 
|  | virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps); | 
|  |  | 
|  | // Form pairs of consecutive R, S, D, or Q registers. | 
|  | SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1); | 
|  | SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1); | 
|  | SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1); | 
|  | SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1); | 
|  |  | 
|  | // Form sequences of 4 consecutive S, D, or Q registers. | 
|  | SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); | 
|  | SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); | 
|  | SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); | 
|  |  | 
|  | // Get the alignment operand for a NEON VLD or VST instruction. | 
|  | SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isInt32Immediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isInt32Immediate(SDValue N, unsigned &Imm) { | 
|  | return isInt32Immediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc && | 
|  | isInt32Immediate(N->getOperand(1).getNode(), Imm); | 
|  | } | 
|  |  | 
|  | /// \brief Check whether a particular node is a constant value representable as | 
|  | /// (N * Scale) where (N in [\p RangeMin, \p RangeMax). | 
|  | /// | 
|  | /// \param ScaledConstant [out] - On success, the pre-scaled constant value. | 
|  | static bool isScaledConstantInRange(SDValue Node, int Scale, | 
|  | int RangeMin, int RangeMax, | 
|  | int &ScaledConstant) { | 
|  | assert(Scale > 0 && "Invalid scale!"); | 
|  |  | 
|  | // Check that this is a constant. | 
|  | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | ScaledConstant = (int) C->getZExtValue(); | 
|  | if ((ScaledConstant % Scale) != 0) | 
|  | return false; | 
|  |  | 
|  | ScaledConstant /= Scale; | 
|  | return ScaledConstant >= RangeMin && ScaledConstant < RangeMax; | 
|  | } | 
|  |  | 
|  | void ARMDAGToDAGISel::PreprocessISelDAG() { | 
|  | if (!Subtarget->hasV6T2Ops()) | 
|  | return; | 
|  |  | 
|  | bool isThumb2 = Subtarget->isThumb(); | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ) { | 
|  | SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues. | 
|  |  | 
|  | if (N->getOpcode() != ISD::ADD) | 
|  | continue; | 
|  |  | 
|  | // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with | 
|  | // leading zeros, followed by consecutive set bits, followed by 1 or 2 | 
|  | // trailing zeros, e.g. 1020. | 
|  | // Transform the expression to | 
|  | // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number | 
|  | // of trailing zeros of c2. The left shift would be folded as an shifter | 
|  | // operand of 'add' and the 'and' and 'srl' would become a bits extraction | 
|  | // node (UBFX). | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | unsigned And_imm = 0; | 
|  | if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) { | 
|  | if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm)) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  | if (!And_imm) | 
|  | continue; | 
|  |  | 
|  | // Check if the AND mask is an immediate of the form: 000.....1111111100 | 
|  | unsigned TZ = countTrailingZeros(And_imm); | 
|  | if (TZ != 1 && TZ != 2) | 
|  | // Be conservative here. Shifter operands aren't always free. e.g. On | 
|  | // Swift, left shifter operand of 1 / 2 for free but others are not. | 
|  | // e.g. | 
|  | //  ubfx   r3, r1, #16, #8 | 
|  | //  ldr.w  r3, [r0, r3, lsl #2] | 
|  | // vs. | 
|  | //  mov.w  r9, #1020 | 
|  | //  and.w  r2, r9, r1, lsr #14 | 
|  | //  ldr    r2, [r0, r2] | 
|  | continue; | 
|  | And_imm >>= TZ; | 
|  | if (And_imm & (And_imm + 1)) | 
|  | continue; | 
|  |  | 
|  | // Look for (and (srl X, c1), c2). | 
|  | SDValue Srl = N1.getOperand(0); | 
|  | unsigned Srl_imm = 0; | 
|  | if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) || | 
|  | (Srl_imm <= 2)) | 
|  | continue; | 
|  |  | 
|  | // Make sure first operand is not a shifter operand which would prevent | 
|  | // folding of the left shift. | 
|  | SDValue CPTmp0; | 
|  | SDValue CPTmp1; | 
|  | SDValue CPTmp2; | 
|  | if (isThumb2) { | 
|  | if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1)) | 
|  | continue; | 
|  | } else { | 
|  | if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) || | 
|  | SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Now make the transformation. | 
|  | Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32, | 
|  | Srl.getOperand(0), | 
|  | CurDAG->getConstant(Srl_imm+TZ, MVT::i32)); | 
|  | N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32, | 
|  | Srl, CurDAG->getConstant(And_imm, MVT::i32)); | 
|  | N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32, | 
|  | N1, CurDAG->getConstant(TZ, MVT::i32)); | 
|  | CurDAG->UpdateNodeOperands(N, N0, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS | 
|  | /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at | 
|  | /// least on current ARM implementations) which should be avoidded. | 
|  | bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return true; | 
|  |  | 
|  | if (!CheckVMLxHazard) | 
|  | return true; | 
|  |  | 
|  | if (!Subtarget->isCortexA8() && !Subtarget->isLikeA9() && | 
|  | !Subtarget->isSwift()) | 
|  | return true; | 
|  |  | 
|  | if (!N->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | SDNode *Use = *N->use_begin(); | 
|  | if (Use->getOpcode() == ISD::CopyToReg) | 
|  | return true; | 
|  | if (Use->isMachineOpcode()) { | 
|  | const ARMBaseInstrInfo *TII = | 
|  | static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo()); | 
|  |  | 
|  | const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode()); | 
|  | if (MCID.mayStore()) | 
|  | return true; | 
|  | unsigned Opcode = MCID.getOpcode(); | 
|  | if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD) | 
|  | return true; | 
|  | // vmlx feeding into another vmlx. We actually want to unfold | 
|  | // the use later in the MLxExpansion pass. e.g. | 
|  | // vmla | 
|  | // vmla (stall 8 cycles) | 
|  | // | 
|  | // vmul (5 cycles) | 
|  | // vadd (5 cycles) | 
|  | // vmla | 
|  | // This adds up to about 18 - 19 cycles. | 
|  | // | 
|  | // vmla | 
|  | // vmul (stall 4 cycles) | 
|  | // vadd adds up to about 14 cycles. | 
|  | return TII->isFpMLxInstruction(Opcode); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift, | 
|  | ARM_AM::ShiftOpc ShOpcVal, | 
|  | unsigned ShAmt) { | 
|  | if (!Subtarget->isLikeA9() && !Subtarget->isSwift()) | 
|  | return true; | 
|  | if (Shift.hasOneUse()) | 
|  | return true; | 
|  | // R << 2 is free. | 
|  | return ShOpcVal == ARM_AM::lsl && | 
|  | (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1)); | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N, | 
|  | SDValue &BaseReg, | 
|  | SDValue &Opc, | 
|  | bool CheckProfitability) { | 
|  | if (DisableShifterOp) | 
|  | return false; | 
|  |  | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); | 
|  |  | 
|  | // Don't match base register only case. That is matched to a separate | 
|  | // lower complexity pattern with explicit register operand. | 
|  | if (ShOpcVal == ARM_AM::no_shift) return false; | 
|  |  | 
|  | BaseReg = N.getOperand(0); | 
|  | unsigned ShImmVal = 0; | 
|  | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!RHS) return false; | 
|  | ShImmVal = RHS->getZExtValue() & 31; | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N, | 
|  | SDValue &BaseReg, | 
|  | SDValue &ShReg, | 
|  | SDValue &Opc, | 
|  | bool CheckProfitability) { | 
|  | if (DisableShifterOp) | 
|  | return false; | 
|  |  | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); | 
|  |  | 
|  | // Don't match base register only case. That is matched to a separate | 
|  | // lower complexity pattern with explicit register operand. | 
|  | if (ShOpcVal == ARM_AM::no_shift) return false; | 
|  |  | 
|  | BaseReg = N.getOperand(0); | 
|  | unsigned ShImmVal = 0; | 
|  | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (RHS) return false; | 
|  |  | 
|  | ShReg = N.getOperand(1); | 
|  | if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal)) | 
|  | return false; | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | // Match simple R + imm12 operands. | 
|  |  | 
|  | // Base only. | 
|  | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && | 
|  | !CurDAG->isBaseWithConstantOffset(N)) { | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | // Match frame index. | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() == ARMISD::Wrapper && | 
|  | !(Subtarget->useMovt() && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { | 
|  | Base = N.getOperand(0); | 
|  | } else | 
|  | Base = N; | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | int RHSC = (int)RHS->getZExtValue(); | 
|  | if (N.getOpcode() == ISD::SUB) | 
|  | RHSC = -RHSC; | 
|  |  | 
|  | if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) | 
|  | Base   = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Base only. | 
|  | Base = N; | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | if (N.getOpcode() == ISD::MUL && | 
|  | ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) { | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | // X * [3,5,9] -> X + X * [2,4,8] etc. | 
|  | int RHSC = (int)RHS->getZExtValue(); | 
|  | if (RHSC & 1) { | 
|  | RHSC = RHSC & ~1; | 
|  | ARM_AM::AddrOpc AddSub = ARM_AM::add; | 
|  | if (RHSC < 0) { | 
|  | AddSub = ARM_AM::sub; | 
|  | RHSC = - RHSC; | 
|  | } | 
|  | if (isPowerOf2_32(RHSC)) { | 
|  | unsigned ShAmt = Log2_32(RHSC); | 
|  | Base = Offset = N.getOperand(0); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, | 
|  | ARM_AM::lsl), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && | 
|  | // ISD::OR that is equivalent to an ISD::ADD. | 
|  | !CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  |  | 
|  | // Leave simple R +/- imm12 operands for LDRi12 | 
|  | if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) { | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, | 
|  | -0x1000+1, 0x1000, RHSC)) // 12 bits. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise this is R +/- [possibly shifted] R. | 
|  | ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add; | 
|  | ARM_AM::ShiftOpc ShOpcVal = | 
|  | ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode()); | 
|  | unsigned ShAmt = 0; | 
|  |  | 
|  | Base   = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  |  | 
|  | if (ShOpcVal != ARM_AM::no_shift) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't fold | 
|  | // it. | 
|  | if (ConstantSDNode *Sh = | 
|  | dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt)) | 
|  | Offset = N.getOperand(1).getOperand(0); | 
|  | else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try matching (R shl C) + (R). | 
|  | if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && | 
|  | !(Subtarget->isLikeA9() || Subtarget->isSwift() || | 
|  | N.getOperand(0).hasOneUse())) { | 
|  | ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode()); | 
|  | if (ShOpcVal != ARM_AM::no_shift) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't | 
|  | // fold it. | 
|  | if (ConstantSDNode *Sh = | 
|  | dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) { | 
|  | Offset = N.getOperand(0).getOperand(0); | 
|  | Base = N.getOperand(1); | 
|  | } else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | //----- | 
|  |  | 
|  | AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | if (N.getOpcode() == ISD::MUL && | 
|  | (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) { | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | // X * [3,5,9] -> X + X * [2,4,8] etc. | 
|  | int RHSC = (int)RHS->getZExtValue(); | 
|  | if (RHSC & 1) { | 
|  | RHSC = RHSC & ~1; | 
|  | ARM_AM::AddrOpc AddSub = ARM_AM::add; | 
|  | if (RHSC < 0) { | 
|  | AddSub = ARM_AM::sub; | 
|  | RHSC = - RHSC; | 
|  | } | 
|  | if (isPowerOf2_32(RHSC)) { | 
|  | unsigned ShAmt = Log2_32(RHSC); | 
|  | Base = Offset = N.getOperand(0); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, | 
|  | ARM_AM::lsl), | 
|  | MVT::i32); | 
|  | return AM2_SHOP; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && | 
|  | // ISD::OR that is equivalent to an ADD. | 
|  | !CurDAG->isBaseWithConstantOffset(N)) { | 
|  | Base = N; | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } else if (N.getOpcode() == ARMISD::Wrapper && | 
|  | !(Subtarget->useMovt() && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, | 
|  | ARM_AM::no_shift), | 
|  | MVT::i32); | 
|  | return AM2_BASE; | 
|  | } | 
|  |  | 
|  | // Match simple R +/- imm12 operands. | 
|  | if (N.getOpcode() != ISD::SUB) { | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, | 
|  | -0x1000+1, 0x1000, RHSC)) { // 12 bits. | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  |  | 
|  | ARM_AM::AddrOpc AddSub = ARM_AM::add; | 
|  | if (RHSC < 0) { | 
|  | AddSub = ARM_AM::sub; | 
|  | RHSC = - RHSC; | 
|  | } | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, | 
|  | ARM_AM::no_shift), | 
|  | MVT::i32); | 
|  | return AM2_BASE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) { | 
|  | // Compute R +/- (R << N) and reuse it. | 
|  | Base = N; | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, | 
|  | ARM_AM::no_shift), | 
|  | MVT::i32); | 
|  | return AM2_BASE; | 
|  | } | 
|  |  | 
|  | // Otherwise this is R +/- [possibly shifted] R. | 
|  | ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub; | 
|  | ARM_AM::ShiftOpc ShOpcVal = | 
|  | ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode()); | 
|  | unsigned ShAmt = 0; | 
|  |  | 
|  | Base   = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  |  | 
|  | if (ShOpcVal != ARM_AM::no_shift) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't fold | 
|  | // it. | 
|  | if (ConstantSDNode *Sh = | 
|  | dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt)) | 
|  | Offset = N.getOperand(1).getOperand(0); | 
|  | else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try matching (R shl C) + (R). | 
|  | if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && | 
|  | !(Subtarget->isLikeA9() || Subtarget->isSwift() || | 
|  | N.getOperand(0).hasOneUse())) { | 
|  | ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode()); | 
|  | if (ShOpcVal != ARM_AM::no_shift) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't | 
|  | // fold it. | 
|  | if (ConstantSDNode *Sh = | 
|  | dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) { | 
|  | Offset = N.getOperand(0).getOperand(0); | 
|  | Base = N.getOperand(1); | 
|  | } else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), | 
|  | MVT::i32); | 
|  | return AM2_SHOP; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc) { | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) | 
|  | ? cast<LoadSDNode>(Op)->getAddressingMode() | 
|  | : cast<StoreSDNode>(Op)->getAddressingMode(); | 
|  | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) | 
|  | ? ARM_AM::add : ARM_AM::sub; | 
|  | int Val; | 
|  | if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) | 
|  | return false; | 
|  |  | 
|  | Offset = N; | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); | 
|  | unsigned ShAmt = 0; | 
|  | if (ShOpcVal != ARM_AM::no_shift) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't fold | 
|  | // it. | 
|  | if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (isShifterOpProfitable(N, ShOpcVal, ShAmt)) | 
|  | Offset = N.getOperand(0); | 
|  | else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc) { | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) | 
|  | ? cast<LoadSDNode>(Op)->getAddressingMode() | 
|  | : cast<StoreSDNode>(Op)->getAddressingMode(); | 
|  | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) | 
|  | ? ARM_AM::add : ARM_AM::sub; | 
|  | int Val; | 
|  | if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. | 
|  | if (AddSub == ARM_AM::sub) Val *= -1; | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(Val, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc) { | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) | 
|  | ? cast<LoadSDNode>(Op)->getAddressingMode() | 
|  | : cast<StoreSDNode>(Op)->getAddressingMode(); | 
|  | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) | 
|  | ? ARM_AM::add : ARM_AM::sub; | 
|  | int Val; | 
|  | if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, | 
|  | ARM_AM::no_shift), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) { | 
|  | Base = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N, | 
|  | SDValue &Base, SDValue &Offset, | 
|  | SDValue &Opc) { | 
|  | if (N.getOpcode() == ISD::SUB) { | 
|  | // X - C  is canonicalize to X + -C, no need to handle it here. | 
|  | Base = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) { | 
|  | Base = N; | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the RHS is +/- imm8, fold into addr mode. | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, | 
|  | -256 + 1, 256, RHSC)) { // 8 bits. | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  |  | 
|  | ARM_AM::AddrOpc AddSub = ARM_AM::add; | 
|  | if (RHSC < 0) { | 
|  | AddSub = ARM_AM::sub; | 
|  | RHSC = -RHSC; | 
|  | } | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, | 
|  | SDValue &Offset, SDValue &Opc) { | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) | 
|  | ? cast<LoadSDNode>(Op)->getAddressingMode() | 
|  | : cast<StoreSDNode>(Op)->getAddressingMode(); | 
|  | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) | 
|  | ? ARM_AM::add : ARM_AM::sub; | 
|  | int Val; | 
|  | if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits. | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Offset = N; | 
|  | Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N, | 
|  | SDValue &Base, SDValue &Offset) { | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) { | 
|  | Base = N; | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } else if (N.getOpcode() == ARMISD::Wrapper && | 
|  | !(Subtarget->useMovt() && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the RHS is +/- imm8, fold into addr mode. | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, | 
|  | -256 + 1, 256, RHSC)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  |  | 
|  | ARM_AM::AddrOpc AddSub = ARM_AM::add; | 
|  | if (RHSC < 0) { | 
|  | AddSub = ARM_AM::sub; | 
|  | RHSC = -RHSC; | 
|  | } | 
|  | Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Base = N; | 
|  | Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr, | 
|  | SDValue &Align) { | 
|  | Addr = N; | 
|  |  | 
|  | unsigned Alignment = 0; | 
|  | if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) { | 
|  | // This case occurs only for VLD1-lane/dup and VST1-lane instructions. | 
|  | // The maximum alignment is equal to the memory size being referenced. | 
|  | unsigned LSNAlign = LSN->getAlignment(); | 
|  | unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8; | 
|  | if (LSNAlign >= MemSize && MemSize > 1) | 
|  | Alignment = MemSize; | 
|  | } else { | 
|  | // All other uses of addrmode6 are for intrinsics.  For now just record | 
|  | // the raw alignment value; it will be refined later based on the legal | 
|  | // alignment operands for the intrinsic. | 
|  | Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment(); | 
|  | } | 
|  |  | 
|  | Align = CurDAG->getTargetConstant(Alignment, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N, | 
|  | SDValue &Offset) { | 
|  | LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op); | 
|  | ISD::MemIndexedMode AM = LdSt->getAddressingMode(); | 
|  | if (AM != ISD::POST_INC) | 
|  | return false; | 
|  | Offset = N; | 
|  | if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) { | 
|  | if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits()) | 
|  | Offset = CurDAG->getRegister(0, MVT::i32); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N, | 
|  | SDValue &Offset, SDValue &Label) { | 
|  | if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { | 
|  | Offset = N.getOperand(0); | 
|  | SDValue N1 = N.getOperand(1); | 
|  | Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(), | 
|  | MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Thumb Addressing Modes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, | 
|  | SDValue &Base, SDValue &Offset){ | 
|  | if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) { | 
|  | ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N); | 
|  | if (!NC || !NC->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | Base = Offset = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base, | 
|  | SDValue &Offset, unsigned Scale) { | 
|  | if (Scale == 4) { | 
|  | SDValue TmpBase, TmpOffImm; | 
|  | if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm)) | 
|  | return false;  // We want to select tLDRspi / tSTRspi instead. | 
|  |  | 
|  | if (N.getOpcode() == ARMISD::Wrapper && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetConstantPool) | 
|  | return false;  // We want to select tLDRpci instead. | 
|  | } | 
|  |  | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  |  | 
|  | // Thumb does not have [sp, r] address mode. | 
|  | RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); | 
|  | RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1)); | 
|  | if ((LHSR && LHSR->getReg() == ARM::SP) || | 
|  | (RHSR && RHSR->getReg() == ARM::SP)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Why do we explicitly check for a match here and then return false? | 
|  | // Presumably to allow something else to match, but shouldn't this be | 
|  | // documented? | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) | 
|  | return false; | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Offset = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &Offset) { | 
|  | return SelectThumbAddrModeRI(N, Base, Offset, 1); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &Offset) { | 
|  | return SelectThumbAddrModeRI(N, Base, Offset, 2); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &Offset) { | 
|  | return SelectThumbAddrModeRI(N, Base, Offset, 4); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, | 
|  | SDValue &Base, SDValue &OffImm) { | 
|  | if (Scale == 4) { | 
|  | SDValue TmpBase, TmpOffImm; | 
|  | if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm)) | 
|  | return false;  // We want to select tLDRspi / tSTRspi instead. | 
|  |  | 
|  | if (N.getOpcode() == ARMISD::Wrapper && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetConstantPool) | 
|  | return false;  // We want to select tLDRpci instead. | 
|  | } | 
|  |  | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) { | 
|  | if (N.getOpcode() == ARMISD::Wrapper && | 
|  | !(Subtarget->useMovt() && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { | 
|  | Base = N.getOperand(0); | 
|  | } else { | 
|  | Base = N; | 
|  | } | 
|  |  | 
|  | OffImm = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); | 
|  | RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1)); | 
|  | if ((LHSR && LHSR->getReg() == ARM::SP) || | 
|  | (RHSR && RHSR->getReg() == ARM::SP)) { | 
|  | ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0)); | 
|  | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | unsigned LHSC = LHS ? LHS->getZExtValue() : 0; | 
|  | unsigned RHSC = RHS ? RHS->getZExtValue() : 0; | 
|  |  | 
|  | // Thumb does not have [sp, #imm5] address mode for non-zero imm5. | 
|  | if (LHSC != 0 || RHSC != 0) return false; | 
|  |  | 
|  | Base = N; | 
|  | OffImm = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the RHS is + imm5 * scale, fold into addr mode. | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) { | 
|  | Base = N.getOperand(0); | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | OffImm = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | return SelectThumbAddrModeImm5S(N, 4, Base, OffImm); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | return SelectThumbAddrModeImm5S(N, 2, Base, OffImm); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | return SelectThumbAddrModeImm5S(N, 1, Base, OffImm); | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N, | 
|  | SDValue &Base, SDValue &OffImm) { | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | OffImm = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  |  | 
|  | RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); | 
|  | if (N.getOperand(0).getOpcode() == ISD::FrameIndex || | 
|  | (LHSR && LHSR->getReg() == ARM::SP)) { | 
|  | // If the RHS is + imm8 * scale, fold into addr mode. | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Thumb 2 Addressing Modes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg, | 
|  | SDValue &Opc) { | 
|  | if (DisableShifterOp) | 
|  | return false; | 
|  |  | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); | 
|  |  | 
|  | // Don't match base register only case. That is matched to a separate | 
|  | // lower complexity pattern with explicit register operand. | 
|  | if (ShOpcVal == ARM_AM::no_shift) return false; | 
|  |  | 
|  | BaseReg = N.getOperand(0); | 
|  | unsigned ShImmVal = 0; | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | ShImmVal = RHS->getZExtValue() & 31; | 
|  | Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N, | 
|  | SDValue &Base, SDValue &OffImm) { | 
|  | // Match simple R + imm12 operands. | 
|  |  | 
|  | // Base only. | 
|  | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && | 
|  | !CurDAG->isBaseWithConstantOffset(N)) { | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | // Match frame index. | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() == ARMISD::Wrapper && | 
|  | !(Subtarget->useMovt() && | 
|  | N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::TargetConstantPool) | 
|  | return false;  // We want to select t2LDRpci instead. | 
|  | } else | 
|  | Base = N; | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | if (SelectT2AddrModeImm8(N, Base, OffImm)) | 
|  | // Let t2LDRi8 handle (R - imm8). | 
|  | return false; | 
|  |  | 
|  | int RHSC = (int)RHS->getZExtValue(); | 
|  | if (N.getOpcode() == ISD::SUB) | 
|  | RHSC = -RHSC; | 
|  |  | 
|  | if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) | 
|  | Base   = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Base only. | 
|  | Base = N; | 
|  | OffImm  = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, | 
|  | SDValue &Base, SDValue &OffImm) { | 
|  | // Match simple R - imm8 operands. | 
|  | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && | 
|  | !CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  |  | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | int RHSC = (int)RHS->getSExtValue(); | 
|  | if (N.getOpcode() == ISD::SUB) | 
|  | RHSC = -RHSC; | 
|  |  | 
|  | if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, | 
|  | SDValue &OffImm){ | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) | 
|  | ? cast<LoadSDNode>(Op)->getAddressingMode() | 
|  | : cast<StoreSDNode>(Op)->getAddressingMode(); | 
|  | int RHSC; | 
|  | if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits. | 
|  | OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) | 
|  | ? CurDAG->getTargetConstant(RHSC, MVT::i32) | 
|  | : CurDAG->getTargetConstant(-RHSC, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N, | 
|  | SDValue &Base, | 
|  | SDValue &OffReg, SDValue &ShImm) { | 
|  | // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. | 
|  | if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  |  | 
|  | // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | int RHSC = (int)RHS->getZExtValue(); | 
|  | if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) | 
|  | return false; | 
|  | else if (RHSC < 0 && RHSC >= -255) // 8 bits | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look for (R + R) or (R + (R << [1,2,3])). | 
|  | unsigned ShAmt = 0; | 
|  | Base   = N.getOperand(0); | 
|  | OffReg = N.getOperand(1); | 
|  |  | 
|  | // Swap if it is ((R << c) + R). | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode()); | 
|  | if (ShOpcVal != ARM_AM::lsl) { | 
|  | ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode()); | 
|  | if (ShOpcVal == ARM_AM::lsl) | 
|  | std::swap(Base, OffReg); | 
|  | } | 
|  |  | 
|  | if (ShOpcVal == ARM_AM::lsl) { | 
|  | // Check to see if the RHS of the shift is a constant, if not, we can't fold | 
|  | // it. | 
|  | if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) { | 
|  | ShAmt = Sh->getZExtValue(); | 
|  | if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt)) | 
|  | OffReg = OffReg.getOperand(0); | 
|  | else { | 
|  | ShAmt = 0; | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } else { | 
|  | ShOpcVal = ARM_AM::no_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// getAL - Returns a ARMCC::AL immediate node. | 
|  | static inline SDValue getAL(SelectionDAG *CurDAG) { | 
|  | return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | if (AM == ISD::UNINDEXED) | 
|  | return NULL; | 
|  |  | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | SDValue Offset, AMOpc; | 
|  | bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); | 
|  | unsigned Opcode = 0; | 
|  | bool Match = false; | 
|  | if (LoadedVT == MVT::i32 && isPre && | 
|  | SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Opcode = ARM::LDR_PRE_IMM; | 
|  | Match = true; | 
|  | } else if (LoadedVT == MVT::i32 && !isPre && | 
|  | SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Opcode = ARM::LDR_POST_IMM; | 
|  | Match = true; | 
|  | } else if (LoadedVT == MVT::i32 && | 
|  | SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG; | 
|  | Match = true; | 
|  |  | 
|  | } else if (LoadedVT == MVT::i16 && | 
|  | SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Match = true; | 
|  | Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) | 
|  | ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) | 
|  | : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); | 
|  | } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { | 
|  | if (LD->getExtensionType() == ISD::SEXTLOAD) { | 
|  | if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Match = true; | 
|  | Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; | 
|  | } | 
|  | } else { | 
|  | if (isPre && | 
|  | SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Match = true; | 
|  | Opcode = ARM::LDRB_PRE_IMM; | 
|  | } else if (!isPre && | 
|  | SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Match = true; | 
|  | Opcode = ARM::LDRB_POST_IMM; | 
|  | } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { | 
|  | Match = true; | 
|  | Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Match) { | 
|  | if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[]= { Base, AMOpc, getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), Chain }; | 
|  | return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, | 
|  | MVT::i32, MVT::Other, Ops); | 
|  | } else { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), Chain }; | 
|  | return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, | 
|  | MVT::i32, MVT::Other, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | if (AM == ISD::UNINDEXED) | 
|  | return NULL; | 
|  |  | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | SDValue Offset; | 
|  | bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); | 
|  | unsigned Opcode = 0; | 
|  | bool Match = false; | 
|  | if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i32: | 
|  | Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (isSExtLd) | 
|  | Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; | 
|  | else | 
|  | Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i1: | 
|  | if (isSExtLd) | 
|  | Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; | 
|  | else | 
|  | Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; | 
|  | break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  | Match = true; | 
|  | } | 
|  |  | 
|  | if (Match) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[]= { Base, Offset, getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), Chain }; | 
|  | return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32, | 
|  | MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /// \brief Form a GPRPair pseudo register from a pair of GPR regs. | 
|  | SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = | 
|  | CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form a D register from a pair of S registers. | 
|  | SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = | 
|  | CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form a quad register from a pair of D registers. | 
|  | SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form 4 consecutive D registers from a pair of Q registers. | 
|  | SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form 4 consecutive S registers. | 
|  | SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, | 
|  | SDValue V2, SDValue V3) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = | 
|  | CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); | 
|  | SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32); | 
|  | SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, | 
|  | V2, SubReg2, V3, SubReg3 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form 4 consecutive D registers. | 
|  | SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, | 
|  | SDValue V2, SDValue V3) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); | 
|  | SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); | 
|  | SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, | 
|  | V2, SubReg2, V3, SubReg3 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Form 4 consecutive Q registers. | 
|  | SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, | 
|  | SDValue V2, SDValue V3) { | 
|  | SDLoc dl(V0.getNode()); | 
|  | SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32); | 
|  | SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); | 
|  | SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); | 
|  | SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32); | 
|  | SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32); | 
|  | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, | 
|  | V2, SubReg2, V3, SubReg3 }; | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand | 
|  | /// of a NEON VLD or VST instruction.  The supported values depend on the | 
|  | /// number of registers being loaded. | 
|  | SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs, | 
|  | bool is64BitVector) { | 
|  | unsigned NumRegs = NumVecs; | 
|  | if (!is64BitVector && NumVecs < 3) | 
|  | NumRegs *= 2; | 
|  |  | 
|  | unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); | 
|  | if (Alignment >= 32 && NumRegs == 4) | 
|  | Alignment = 32; | 
|  | else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4)) | 
|  | Alignment = 16; | 
|  | else if (Alignment >= 8) | 
|  | Alignment = 8; | 
|  | else | 
|  | Alignment = 0; | 
|  |  | 
|  | return CurDAG->getTargetConstant(Alignment, MVT::i32); | 
|  | } | 
|  |  | 
|  | // Get the register stride update opcode of a VLD/VST instruction that | 
|  | // is otherwise equivalent to the given fixed stride updating instruction. | 
|  | static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register; | 
|  | case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register; | 
|  | case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register; | 
|  | case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register; | 
|  | case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register; | 
|  | case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register; | 
|  | case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register; | 
|  | case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register; | 
|  |  | 
|  | case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register; | 
|  | case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register; | 
|  | case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register; | 
|  | case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register; | 
|  | case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register; | 
|  | case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register; | 
|  | case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register; | 
|  | case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register; | 
|  | case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register; | 
|  | case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register; | 
|  |  | 
|  | case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register; | 
|  | case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register; | 
|  | case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register; | 
|  | case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register; | 
|  | case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register; | 
|  | case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register; | 
|  |  | 
|  | case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register; | 
|  | case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register; | 
|  | case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register; | 
|  | case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register; | 
|  | case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register; | 
|  | case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register; | 
|  |  | 
|  | case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register; | 
|  | case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register; | 
|  | case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register; | 
|  | } | 
|  | return Opc; // If not one we handle, return it unchanged. | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, | 
|  | const uint16_t *QOpcodes0, | 
|  | const uint16_t *QOpcodes1) { | 
|  | assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | SDValue MemAddr, Align; | 
|  | unsigned AddrOpIdx = isUpdating ? 1 : 2; | 
|  | if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) | 
|  | return NULL; | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | bool is64BitVector = VT.is64BitVector(); | 
|  | Align = GetVLDSTAlign(Align, NumVecs, is64BitVector); | 
|  |  | 
|  | unsigned OpcodeIndex; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("unhandled vld type"); | 
|  | // Double-register operations: | 
|  | case MVT::v8i8:  OpcodeIndex = 0; break; | 
|  | case MVT::v4i16: OpcodeIndex = 1; break; | 
|  | case MVT::v2f32: | 
|  | case MVT::v2i32: OpcodeIndex = 2; break; | 
|  | case MVT::v1i64: OpcodeIndex = 3; break; | 
|  | // Quad-register operations: | 
|  | case MVT::v16i8: OpcodeIndex = 0; break; | 
|  | case MVT::v8i16: OpcodeIndex = 1; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: OpcodeIndex = 2; break; | 
|  | case MVT::v2i64: OpcodeIndex = 3; | 
|  | assert(NumVecs == 1 && "v2i64 type only supported for VLD1"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | EVT ResTy; | 
|  | if (NumVecs == 1) | 
|  | ResTy = VT; | 
|  | else { | 
|  | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; | 
|  | if (!is64BitVector) | 
|  | ResTyElts *= 2; | 
|  | ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts); | 
|  | } | 
|  | std::vector<EVT> ResTys; | 
|  | ResTys.push_back(ResTy); | 
|  | if (isUpdating) | 
|  | ResTys.push_back(MVT::i32); | 
|  | ResTys.push_back(MVT::Other); | 
|  |  | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | SDNode *VLd; | 
|  | SmallVector<SDValue, 7> Ops; | 
|  |  | 
|  | // Double registers and VLD1/VLD2 quad registers are directly supported. | 
|  | if (is64BitVector || NumVecs <= 2) { | 
|  | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : | 
|  | QOpcodes0[OpcodeIndex]); | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | SDValue Inc = N->getOperand(AddrOpIdx + 1); | 
|  | // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0 | 
|  | // case entirely when the rest are updated to that form, too. | 
|  | if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode())) | 
|  | Opc = getVLDSTRegisterUpdateOpcode(Opc); | 
|  | // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so | 
|  | // check for that explicitly too. Horribly hacky, but temporary. | 
|  | if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) || | 
|  | !isa<ConstantSDNode>(Inc.getNode())) | 
|  | Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); | 
|  | } | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  | VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | } else { | 
|  | // Otherwise, quad registers are loaded with two separate instructions, | 
|  | // where one loads the even registers and the other loads the odd registers. | 
|  | EVT AddrTy = MemAddr.getValueType(); | 
|  |  | 
|  | // Load the even subregs.  This is always an updating load, so that it | 
|  | // provides the address to the second load for the odd subregs. | 
|  | SDValue ImplDef = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0); | 
|  | const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain }; | 
|  | SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, | 
|  | ResTy, AddrTy, MVT::Other, OpsA); | 
|  | Chain = SDValue(VLdA, 2); | 
|  |  | 
|  | // Load the odd subregs. | 
|  | Ops.push_back(SDValue(VLdA, 1)); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | SDValue Inc = N->getOperand(AddrOpIdx + 1); | 
|  | assert(isa<ConstantSDNode>(Inc.getNode()) && | 
|  | "only constant post-increment update allowed for VLD3/4"); | 
|  | (void)Inc; | 
|  | Ops.push_back(Reg0); | 
|  | } | 
|  | Ops.push_back(SDValue(VLdA, 0)); | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  | VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops); | 
|  | } | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | if (NumVecs == 1) | 
|  | return VLd; | 
|  |  | 
|  | // Extract out the subregisters. | 
|  | SDValue SuperReg = SDValue(VLd, 0); | 
|  | assert(ARM::dsub_7 == ARM::dsub_0+7 && | 
|  | ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); | 
|  | unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0); | 
|  | for (unsigned Vec = 0; Vec < NumVecs; ++Vec) | 
|  | ReplaceUses(SDValue(N, Vec), | 
|  | CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1)); | 
|  | if (isUpdating) | 
|  | ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, | 
|  | const uint16_t *QOpcodes0, | 
|  | const uint16_t *QOpcodes1) { | 
|  | assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range"); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | SDValue MemAddr, Align; | 
|  | unsigned AddrOpIdx = isUpdating ? 1 : 2; | 
|  | unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) | 
|  | if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) | 
|  | return NULL; | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | EVT VT = N->getOperand(Vec0Idx).getValueType(); | 
|  | bool is64BitVector = VT.is64BitVector(); | 
|  | Align = GetVLDSTAlign(Align, NumVecs, is64BitVector); | 
|  |  | 
|  | unsigned OpcodeIndex; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("unhandled vst type"); | 
|  | // Double-register operations: | 
|  | case MVT::v8i8:  OpcodeIndex = 0; break; | 
|  | case MVT::v4i16: OpcodeIndex = 1; break; | 
|  | case MVT::v2f32: | 
|  | case MVT::v2i32: OpcodeIndex = 2; break; | 
|  | case MVT::v1i64: OpcodeIndex = 3; break; | 
|  | // Quad-register operations: | 
|  | case MVT::v16i8: OpcodeIndex = 0; break; | 
|  | case MVT::v8i16: OpcodeIndex = 1; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: OpcodeIndex = 2; break; | 
|  | case MVT::v2i64: OpcodeIndex = 3; | 
|  | assert(NumVecs == 1 && "v2i64 type only supported for VST1"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | std::vector<EVT> ResTys; | 
|  | if (isUpdating) | 
|  | ResTys.push_back(MVT::i32); | 
|  | ResTys.push_back(MVT::Other); | 
|  |  | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | SmallVector<SDValue, 7> Ops; | 
|  |  | 
|  | // Double registers and VST1/VST2 quad registers are directly supported. | 
|  | if (is64BitVector || NumVecs <= 2) { | 
|  | SDValue SrcReg; | 
|  | if (NumVecs == 1) { | 
|  | SrcReg = N->getOperand(Vec0Idx); | 
|  | } else if (is64BitVector) { | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SDValue V0 = N->getOperand(Vec0Idx + 0); | 
|  | SDValue V1 = N->getOperand(Vec0Idx + 1); | 
|  | if (NumVecs == 2) | 
|  | SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0); | 
|  | else { | 
|  | SDValue V2 = N->getOperand(Vec0Idx + 2); | 
|  | // If it's a vst3, form a quad D-register and leave the last part as | 
|  | // an undef. | 
|  | SDValue V3 = (NumVecs == 3) | 
|  | ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) | 
|  | : N->getOperand(Vec0Idx + 3); | 
|  | SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0); | 
|  | } | 
|  | } else { | 
|  | // Form a QQ register. | 
|  | SDValue Q0 = N->getOperand(Vec0Idx); | 
|  | SDValue Q1 = N->getOperand(Vec0Idx + 1); | 
|  | SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0); | 
|  | } | 
|  |  | 
|  | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : | 
|  | QOpcodes0[OpcodeIndex]); | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | SDValue Inc = N->getOperand(AddrOpIdx + 1); | 
|  | // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0 | 
|  | // case entirely when the rest are updated to that form, too. | 
|  | if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode())) | 
|  | Opc = getVLDSTRegisterUpdateOpcode(Opc); | 
|  | // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so | 
|  | // check for that explicitly too. Horribly hacky, but temporary. | 
|  | if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) || | 
|  | !isa<ConstantSDNode>(Inc.getNode())) | 
|  | Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); | 
|  | } | 
|  | Ops.push_back(SrcReg); | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  | SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | return VSt; | 
|  | } | 
|  |  | 
|  | // Otherwise, quad registers are stored with two separate instructions, | 
|  | // where one stores the even registers and the other stores the odd registers. | 
|  |  | 
|  | // Form the QQQQ REG_SEQUENCE. | 
|  | SDValue V0 = N->getOperand(Vec0Idx + 0); | 
|  | SDValue V1 = N->getOperand(Vec0Idx + 1); | 
|  | SDValue V2 = N->getOperand(Vec0Idx + 2); | 
|  | SDValue V3 = (NumVecs == 3) | 
|  | ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) | 
|  | : N->getOperand(Vec0Idx + 3); | 
|  | SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0); | 
|  |  | 
|  | // Store the even D registers.  This is always an updating store, so that it | 
|  | // provides the address to the second store for the odd subregs. | 
|  | const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain }; | 
|  | SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, | 
|  | MemAddr.getValueType(), | 
|  | MVT::Other, OpsA); | 
|  | cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1); | 
|  | Chain = SDValue(VStA, 1); | 
|  |  | 
|  | // Store the odd D registers. | 
|  | Ops.push_back(SDValue(VStA, 0)); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | SDValue Inc = N->getOperand(AddrOpIdx + 1); | 
|  | assert(isa<ConstantSDNode>(Inc.getNode()) && | 
|  | "only constant post-increment update allowed for VST3/4"); | 
|  | (void)Inc; | 
|  | Ops.push_back(Reg0); | 
|  | } | 
|  | Ops.push_back(RegSeq); | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  | SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, | 
|  | Ops); | 
|  | cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1); | 
|  | return VStB; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, | 
|  | bool isUpdating, unsigned NumVecs, | 
|  | const uint16_t *DOpcodes, | 
|  | const uint16_t *QOpcodes) { | 
|  | assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | SDValue MemAddr, Align; | 
|  | unsigned AddrOpIdx = isUpdating ? 1 : 2; | 
|  | unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) | 
|  | if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) | 
|  | return NULL; | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | unsigned Lane = | 
|  | cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue(); | 
|  | EVT VT = N->getOperand(Vec0Idx).getValueType(); | 
|  | bool is64BitVector = VT.is64BitVector(); | 
|  |  | 
|  | unsigned Alignment = 0; | 
|  | if (NumVecs != 3) { | 
|  | Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); | 
|  | unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8; | 
|  | if (Alignment > NumBytes) | 
|  | Alignment = NumBytes; | 
|  | if (Alignment < 8 && Alignment < NumBytes) | 
|  | Alignment = 0; | 
|  | // Alignment must be a power of two; make sure of that. | 
|  | Alignment = (Alignment & -Alignment); | 
|  | if (Alignment == 1) | 
|  | Alignment = 0; | 
|  | } | 
|  | Align = CurDAG->getTargetConstant(Alignment, MVT::i32); | 
|  |  | 
|  | unsigned OpcodeIndex; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("unhandled vld/vst lane type"); | 
|  | // Double-register operations: | 
|  | case MVT::v8i8:  OpcodeIndex = 0; break; | 
|  | case MVT::v4i16: OpcodeIndex = 1; break; | 
|  | case MVT::v2f32: | 
|  | case MVT::v2i32: OpcodeIndex = 2; break; | 
|  | // Quad-register operations: | 
|  | case MVT::v8i16: OpcodeIndex = 0; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: OpcodeIndex = 1; break; | 
|  | } | 
|  |  | 
|  | std::vector<EVT> ResTys; | 
|  | if (IsLoad) { | 
|  | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; | 
|  | if (!is64BitVector) | 
|  | ResTyElts *= 2; | 
|  | ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), | 
|  | MVT::i64, ResTyElts)); | 
|  | } | 
|  | if (isUpdating) | 
|  | ResTys.push_back(MVT::i32); | 
|  | ResTys.push_back(MVT::Other); | 
|  |  | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | SDValue Inc = N->getOperand(AddrOpIdx + 1); | 
|  | Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); | 
|  | } | 
|  |  | 
|  | SDValue SuperReg; | 
|  | SDValue V0 = N->getOperand(Vec0Idx + 0); | 
|  | SDValue V1 = N->getOperand(Vec0Idx + 1); | 
|  | if (NumVecs == 2) { | 
|  | if (is64BitVector) | 
|  | SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0); | 
|  | else | 
|  | SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0); | 
|  | } else { | 
|  | SDValue V2 = N->getOperand(Vec0Idx + 2); | 
|  | SDValue V3 = (NumVecs == 3) | 
|  | ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) | 
|  | : N->getOperand(Vec0Idx + 3); | 
|  | if (is64BitVector) | 
|  | SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0); | 
|  | else | 
|  | SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0); | 
|  | } | 
|  | Ops.push_back(SuperReg); | 
|  | Ops.push_back(getI32Imm(Lane)); | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : | 
|  | QOpcodes[OpcodeIndex]); | 
|  | SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  | cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1); | 
|  | if (!IsLoad) | 
|  | return VLdLn; | 
|  |  | 
|  | // Extract the subregisters. | 
|  | SuperReg = SDValue(VLdLn, 0); | 
|  | assert(ARM::dsub_7 == ARM::dsub_0+7 && | 
|  | ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); | 
|  | unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; | 
|  | for (unsigned Vec = 0; Vec < NumVecs; ++Vec) | 
|  | ReplaceUses(SDValue(N, Vec), | 
|  | CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1)); | 
|  | if (isUpdating) | 
|  | ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating, | 
|  | unsigned NumVecs, | 
|  | const uint16_t *Opcodes) { | 
|  | assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range"); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | SDValue MemAddr, Align; | 
|  | if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align)) | 
|  | return NULL; | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned Alignment = 0; | 
|  | if (NumVecs != 3) { | 
|  | Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); | 
|  | unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8; | 
|  | if (Alignment > NumBytes) | 
|  | Alignment = NumBytes; | 
|  | if (Alignment < 8 && Alignment < NumBytes) | 
|  | Alignment = 0; | 
|  | // Alignment must be a power of two; make sure of that. | 
|  | Alignment = (Alignment & -Alignment); | 
|  | if (Alignment == 1) | 
|  | Alignment = 0; | 
|  | } | 
|  | Align = CurDAG->getTargetConstant(Alignment, MVT::i32); | 
|  |  | 
|  | unsigned OpcodeIndex; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("unhandled vld-dup type"); | 
|  | case MVT::v8i8:  OpcodeIndex = 0; break; | 
|  | case MVT::v4i16: OpcodeIndex = 1; break; | 
|  | case MVT::v2f32: | 
|  | case MVT::v2i32: OpcodeIndex = 2; break; | 
|  | } | 
|  |  | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue SuperReg; | 
|  | unsigned Opc = Opcodes[OpcodeIndex]; | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(Align); | 
|  | if (isUpdating) { | 
|  | // fixed-stride update instructions don't have an explicit writeback | 
|  | // operand. It's implicit in the opcode itself. | 
|  | SDValue Inc = N->getOperand(2); | 
|  | if (!isa<ConstantSDNode>(Inc.getNode())) | 
|  | Ops.push_back(Inc); | 
|  | // FIXME: VLD3 and VLD4 haven't been updated to that form yet. | 
|  | else if (NumVecs > 2) | 
|  | Ops.push_back(Reg0); | 
|  | } | 
|  | Ops.push_back(Pred); | 
|  | Ops.push_back(Reg0); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; | 
|  | std::vector<EVT> ResTys; | 
|  | ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts)); | 
|  | if (isUpdating) | 
|  | ResTys.push_back(MVT::i32); | 
|  | ResTys.push_back(MVT::Other); | 
|  | SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  | cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1); | 
|  | SuperReg = SDValue(VLdDup, 0); | 
|  |  | 
|  | // Extract the subregisters. | 
|  | assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); | 
|  | unsigned SubIdx = ARM::dsub_0; | 
|  | for (unsigned Vec = 0; Vec < NumVecs; ++Vec) | 
|  | ReplaceUses(SDValue(N, Vec), | 
|  | CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg)); | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1)); | 
|  | if (isUpdating) | 
|  | ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range"); | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned FirstTblReg = IsExt ? 2 : 1; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SDValue RegSeq; | 
|  | SDValue V0 = N->getOperand(FirstTblReg + 0); | 
|  | SDValue V1 = N->getOperand(FirstTblReg + 1); | 
|  | if (NumVecs == 2) | 
|  | RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0); | 
|  | else { | 
|  | SDValue V2 = N->getOperand(FirstTblReg + 2); | 
|  | // If it's a vtbl3, form a quad D-register and leave the last part as | 
|  | // an undef. | 
|  | SDValue V3 = (NumVecs == 3) | 
|  | ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) | 
|  | : N->getOperand(FirstTblReg + 3); | 
|  | RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | if (IsExt) | 
|  | Ops.push_back(N->getOperand(1)); | 
|  | Ops.push_back(RegSeq); | 
|  | Ops.push_back(N->getOperand(FirstTblReg + NumVecs)); | 
|  | Ops.push_back(getAL(CurDAG)); // predicate | 
|  | Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register | 
|  | return CurDAG->getMachineNode(Opc, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N, | 
|  | bool isSigned) { | 
|  | if (!Subtarget->hasV6T2Ops()) | 
|  | return NULL; | 
|  |  | 
|  | unsigned Opc = isSigned | 
|  | ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) | 
|  | : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); | 
|  |  | 
|  | // For unsigned extracts, check for a shift right and mask | 
|  | unsigned And_imm = 0; | 
|  | if (N->getOpcode() == ISD::AND) { | 
|  | if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) { | 
|  |  | 
|  | // The immediate is a mask of the low bits iff imm & (imm+1) == 0 | 
|  | if (And_imm & (And_imm + 1)) | 
|  | return NULL; | 
|  |  | 
|  | unsigned Srl_imm = 0; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, | 
|  | Srl_imm)) { | 
|  | assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); | 
|  |  | 
|  | // Note: The width operand is encoded as width-1. | 
|  | unsigned Width = CountTrailingOnes_32(And_imm) - 1; | 
|  | unsigned LSB = Srl_imm; | 
|  |  | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  |  | 
|  | if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) { | 
|  | // It's cheaper to use a right shift to extract the top bits. | 
|  | if (Subtarget->isThumb()) { | 
|  | Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri; | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | CurDAG->getTargetConstant(LSB, MVT::i32), | 
|  | getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  |  | 
|  | // ARM models shift instructions as MOVsi with shifter operand. | 
|  | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL); | 
|  | SDValue ShOpc = | 
|  | CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), | 
|  | MVT::i32); | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc, | 
|  | getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5); | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | CurDAG->getTargetConstant(LSB, MVT::i32), | 
|  | CurDAG->getTargetConstant(Width, MVT::i32), | 
|  | getAL(CurDAG), Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Otherwise, we're looking for a shift of a shift | 
|  | unsigned Shl_imm = 0; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { | 
|  | assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); | 
|  | unsigned Srl_imm = 0; | 
|  | if (isInt32Immediate(N->getOperand(1), Srl_imm)) { | 
|  | assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); | 
|  | // Note: The width operand is encoded as width-1. | 
|  | unsigned Width = 32 - Srl_imm - 1; | 
|  | int LSB = Srl_imm - Shl_imm; | 
|  | if (LSB < 0) | 
|  | return NULL; | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | CurDAG->getTargetConstant(LSB, MVT::i32), | 
|  | CurDAG->getTargetConstant(Width, MVT::i32), | 
|  | getAL(CurDAG), Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel:: | 
|  | SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { | 
|  | SDValue CPTmp0; | 
|  | SDValue CPTmp1; | 
|  | if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) { | 
|  | unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue(); | 
|  | unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); | 
|  | unsigned Opc = 0; | 
|  | switch (SOShOp) { | 
|  | case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; | 
|  | case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; | 
|  | case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; | 
|  | case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; | 
|  | default: | 
|  | llvm_unreachable("Unknown so_reg opcode!"); | 
|  | } | 
|  | SDValue SOShImm = | 
|  | CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); | 
|  | SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel:: | 
|  | SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { | 
|  | SDValue CPTmp0; | 
|  | SDValue CPTmp1; | 
|  | SDValue CPTmp2; | 
|  | if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) { | 
|  | SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6); | 
|  | } | 
|  |  | 
|  | if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) { | 
|  | SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel:: | 
|  | SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { | 
|  | ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); | 
|  | if (!T) | 
|  | return 0; | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | unsigned TrueImm = T->getZExtValue(); | 
|  | if (is_t2_so_imm(TrueImm)) { | 
|  | Opc = ARM::t2MOVCCi; | 
|  | } else if (TrueImm <= 0xffff) { | 
|  | Opc = ARM::t2MOVCCi16; | 
|  | } else if (is_t2_so_imm_not(TrueImm)) { | 
|  | TrueImm = ~TrueImm; | 
|  | Opc = ARM::t2MVNCCi; | 
|  | } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) { | 
|  | // Large immediate. | 
|  | Opc = ARM::t2MOVCCi32imm; | 
|  | } | 
|  |  | 
|  | if (Opc) { | 
|  | SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32); | 
|  | SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel:: | 
|  | SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, | 
|  | ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { | 
|  | ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); | 
|  | if (!T) | 
|  | return 0; | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | unsigned TrueImm = T->getZExtValue(); | 
|  | bool isSoImm = is_so_imm(TrueImm); | 
|  | if (isSoImm) { | 
|  | Opc = ARM::MOVCCi; | 
|  | } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) { | 
|  | Opc = ARM::MOVCCi16; | 
|  | } else if (is_so_imm_not(TrueImm)) { | 
|  | TrueImm = ~TrueImm; | 
|  | Opc = ARM::MVNCCi; | 
|  | } else if (TrueVal.getNode()->hasOneUse() && | 
|  | (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) { | 
|  | // Large immediate. | 
|  | Opc = ARM::MOVCCi32imm; | 
|  | } | 
|  |  | 
|  | if (Opc) { | 
|  | SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32); | 
|  | SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue FalseVal = N->getOperand(0); | 
|  | SDValue TrueVal  = N->getOperand(1); | 
|  | SDValue CC = N->getOperand(2); | 
|  | SDValue CCR = N->getOperand(3); | 
|  | SDValue InFlag = N->getOperand(4); | 
|  | assert(CC.getOpcode() == ISD::Constant); | 
|  | assert(CCR.getOpcode() == ISD::Register); | 
|  | ARMCC::CondCodes CCVal = | 
|  | (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue(); | 
|  |  | 
|  | if (!Subtarget->isThumb1Only() && VT == MVT::i32) { | 
|  | // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) | 
|  | // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) | 
|  | // Pattern complexity = 18  cost = 1  size = 0 | 
|  | if (Subtarget->isThumb()) { | 
|  | SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal, | 
|  | CCVal, CCR, InFlag); | 
|  | if (!Res) | 
|  | Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal, | 
|  | ARMCC::getOppositeCondition(CCVal), CCR, InFlag); | 
|  | if (Res) | 
|  | return Res; | 
|  | } else { | 
|  | SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal, | 
|  | CCVal, CCR, InFlag); | 
|  | if (!Res) | 
|  | Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal, | 
|  | ARMCC::getOppositeCondition(CCVal), CCR, InFlag); | 
|  | if (Res) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Pattern: (ARMcmov:i32 GPR:i32:$false, | 
|  | //             (imm:i32)<<P:Pred_so_imm>>:$true, | 
|  | //             (imm:i32):$cc) | 
|  | // Emits: (MOVCCi:i32 GPR:i32:$false, | 
|  | //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) | 
|  | // Pattern complexity = 10  cost = 1  size = 0 | 
|  | if (Subtarget->isThumb()) { | 
|  | SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal, | 
|  | CCVal, CCR, InFlag); | 
|  | if (!Res) | 
|  | Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal, | 
|  | ARMCC::getOppositeCondition(CCVal), CCR, InFlag); | 
|  | if (Res) | 
|  | return Res; | 
|  | } else { | 
|  | SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal, | 
|  | CCVal, CCR, InFlag); | 
|  | if (!Res) | 
|  | Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal, | 
|  | ARMCC::getOppositeCondition(CCVal), CCR, InFlag); | 
|  | if (Res) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) | 
|  | // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) | 
|  | // Pattern complexity = 6  cost = 1  size = 0 | 
|  | // | 
|  | // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) | 
|  | // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) | 
|  | // Pattern complexity = 6  cost = 11  size = 0 | 
|  | // | 
|  | // Also VMOVScc and VMOVDcc. | 
|  | SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32); | 
|  | SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag }; | 
|  | unsigned Opc = 0; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Illegal conditional move type!"); | 
|  | case MVT::i32: | 
|  | Opc = Subtarget->isThumb() | 
|  | ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) | 
|  | : ARM::MOVCCr; | 
|  | break; | 
|  | case MVT::f32: | 
|  | Opc = ARM::VMOVScc; | 
|  | break; | 
|  | case MVT::f64: | 
|  | Opc = ARM::VMOVDcc; | 
|  | break; | 
|  | } | 
|  | return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); | 
|  | } | 
|  |  | 
|  | /// Target-specific DAG combining for ISD::XOR. | 
|  | /// Target-independent combining lowers SELECT_CC nodes of the form | 
|  | /// select_cc setg[ge] X,  0,  X, -X | 
|  | /// select_cc setgt    X, -1,  X, -X | 
|  | /// select_cc setl[te] X,  0, -X,  X | 
|  | /// select_cc setlt    X,  1, -X,  X | 
|  | /// which represent Integer ABS into: | 
|  | /// Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | /// ARM instruction selection detects the latter and matches it to | 
|  | /// ARM::ABS or ARM::t2ABS machine node. | 
|  | SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){ | 
|  | SDValue XORSrc0 = N->getOperand(0); | 
|  | SDValue XORSrc1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (Subtarget->isThumb1Only()) | 
|  | return NULL; | 
|  |  | 
|  | if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA) | 
|  | return NULL; | 
|  |  | 
|  | SDValue ADDSrc0 = XORSrc0.getOperand(0); | 
|  | SDValue ADDSrc1 = XORSrc0.getOperand(1); | 
|  | SDValue SRASrc0 = XORSrc1.getOperand(0); | 
|  | SDValue SRASrc1 = XORSrc1.getOperand(1); | 
|  | ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1); | 
|  | EVT XType = SRASrc0.getValueType(); | 
|  | unsigned Size = XType.getSizeInBits() - 1; | 
|  |  | 
|  | if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 && | 
|  | XType.isInteger() && SRAConstant != NULL && | 
|  | Size == SRAConstant->getZExtValue()) { | 
|  | unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS; | 
|  | return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) { | 
|  | // The only time a CONCAT_VECTORS operation can have legal types is when | 
|  | // two 64-bit vectors are concatenated to a 128-bit vector. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.is128BitVector() || N->getNumOperands() != 2) | 
|  | llvm_unreachable("unexpected CONCAT_VECTORS"); | 
|  | return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | Ops.push_back(Node->getOperand(1)); // Ptr | 
|  | Ops.push_back(Node->getOperand(2)); // Low part of Val1 | 
|  | Ops.push_back(Node->getOperand(3)); // High part of Val1 | 
|  | if (Opc == ARM::ATOMCMPXCHG6432) { | 
|  | Ops.push_back(Node->getOperand(4)); // Low part of Val2 | 
|  | Ops.push_back(Node->getOperand(5)); // High part of Val2 | 
|  | } | 
|  | Ops.push_back(Node->getOperand(0)); // Chain | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); | 
|  | SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), | 
|  | MVT::i32, MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); | 
|  | return ResNode; | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::Select(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  |  | 
|  | if (N->isMachineOpcode()) | 
|  | return NULL;   // Already selected. | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::INLINEASM: { | 
|  | SDNode *ResNode = SelectInlineAsm(N); | 
|  | if (ResNode) | 
|  | return ResNode; | 
|  | break; | 
|  | } | 
|  | case ISD::XOR: { | 
|  | // Select special operations if XOR node forms integer ABS pattern | 
|  | SDNode *ResNode = SelectABSOp(N); | 
|  | if (ResNode) | 
|  | return ResNode; | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::Constant: { | 
|  | unsigned Val = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | bool UseCP = true; | 
|  | if (Subtarget->hasThumb2()) | 
|  | // Thumb2-aware targets have the MOVT instruction, so all immediates can | 
|  | // be done with MOV + MOVT, at worst. | 
|  | UseCP = 0; | 
|  | else { | 
|  | if (Subtarget->isThumb()) { | 
|  | UseCP = (Val > 255 &&                          // MOV | 
|  | ~Val > 255 &&                         // MOV + MVN | 
|  | !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL | 
|  | } else | 
|  | UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV | 
|  | ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN | 
|  | !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs. | 
|  | } | 
|  |  | 
|  | if (UseCP) { | 
|  | SDValue CPIdx = | 
|  | CurDAG->getTargetConstantPool(ConstantInt::get( | 
|  | Type::getInt32Ty(*CurDAG->getContext()), Val), | 
|  | getTargetLowering()->getPointerTy()); | 
|  |  | 
|  | SDNode *ResNode; | 
|  | if (Subtarget->isThumb1Only()) { | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue PredReg = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; | 
|  | ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | } else { | 
|  | SDValue Ops[] = { | 
|  | CPIdx, | 
|  | CurDAG->getTargetConstant(0, MVT::i32), | 
|  | getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getEntryNode() | 
|  | }; | 
|  | ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | } | 
|  | ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::FrameIndex: { | 
|  | // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex(FI, | 
|  | getTargetLowering()->getPointerTy()); | 
|  | if (Subtarget->isThumb1Only()) { | 
|  | SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4); | 
|  | } else { | 
|  | unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? | 
|  | ARM::t2ADDri : ARM::ADDri); | 
|  | SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); | 
|  | } | 
|  | } | 
|  | case ISD::SRL: | 
|  | if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) | 
|  | return I; | 
|  | break; | 
|  | case ISD::SRA: | 
|  | if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true)) | 
|  | return I; | 
|  | break; | 
|  | case ISD::MUL: | 
|  | if (Subtarget->isThumb1Only()) | 
|  | break; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { | 
|  | unsigned RHSV = C->getZExtValue(); | 
|  | if (!RHSV) break; | 
|  | if (isPowerOf2_32(RHSV-1)) {  // 2^n+1? | 
|  | unsigned ShImm = Log2_32(RHSV-1); | 
|  | if (ShImm >= 32) | 
|  | break; | 
|  | SDValue V = N->getOperand(0); | 
|  | ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); | 
|  | SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); | 
|  | } else { | 
|  | SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7); | 
|  | } | 
|  | } | 
|  | if (isPowerOf2_32(RHSV+1)) {  // 2^n-1? | 
|  | unsigned ShImm = Log2_32(RHSV+1); | 
|  | if (ShImm >= 32) | 
|  | break; | 
|  | SDValue V = N->getOperand(0); | 
|  | ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); | 
|  | SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); | 
|  | SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6); | 
|  | } else { | 
|  | SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; | 
|  | return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::AND: { | 
|  | // Check for unsigned bitfield extract | 
|  | if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) | 
|  | return I; | 
|  |  | 
|  | // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits | 
|  | // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits | 
|  | // are entirely contributed by c2 and lower 16-bits are entirely contributed | 
|  | // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). | 
|  | // Select it to: "movt x, ((c1 & 0xffff) >> 16) | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | break; | 
|  | unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) | 
|  | ? ARM::t2MOVTi16 | 
|  | : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); | 
|  | if (!Opc) | 
|  | break; | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (!N1C) | 
|  | break; | 
|  | if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { | 
|  | SDValue N2 = N0.getOperand(1); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); | 
|  | if (!N2C) | 
|  | break; | 
|  | unsigned N1CVal = N1C->getZExtValue(); | 
|  | unsigned N2CVal = N2C->getZExtValue(); | 
|  | if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && | 
|  | (N1CVal & 0xffffU) == 0xffffU && | 
|  | (N2CVal & 0xffffU) == 0x0U) { | 
|  | SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, | 
|  | MVT::i32); | 
|  | SDValue Ops[] = { N0.getOperand(0), Imm16, | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(Opc, dl, VT, Ops); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARMISD::VMOVRRD: | 
|  | return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32, | 
|  | N->getOperand(0), getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32)); | 
|  | case ISD::UMUL_LOHI: { | 
|  | if (Subtarget->isThumb1Only()) | 
|  | break; | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops); | 
|  | } else { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? | 
|  | ARM::UMULL : ARM::UMULLv5, | 
|  | dl, MVT::i32, MVT::i32, Ops); | 
|  | } | 
|  | } | 
|  | case ISD::SMUL_LOHI: { | 
|  | if (Subtarget->isThumb1Only()) | 
|  | break; | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops); | 
|  | } else { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), | 
|  | getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? | 
|  | ARM::SMULL : ARM::SMULLv5, | 
|  | dl, MVT::i32, MVT::i32, Ops); | 
|  | } | 
|  | } | 
|  | case ARMISD::UMLAL:{ | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3), getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32)}; | 
|  | return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops); | 
|  | }else{ | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3), getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? | 
|  | ARM::UMLAL : ARM::UMLALv5, | 
|  | dl, MVT::i32, MVT::i32, Ops); | 
|  | } | 
|  | } | 
|  | case ARMISD::SMLAL:{ | 
|  | if (Subtarget->isThumb()) { | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3), getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32)}; | 
|  | return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops); | 
|  | }else{ | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3), getAL(CurDAG), | 
|  | CurDAG->getRegister(0, MVT::i32), | 
|  | CurDAG->getRegister(0, MVT::i32) }; | 
|  | return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? | 
|  | ARM::SMLAL : ARM::SMLALv5, | 
|  | dl, MVT::i32, MVT::i32, Ops); | 
|  | } | 
|  | } | 
|  | case ISD::LOAD: { | 
|  | SDNode *ResNode = 0; | 
|  | if (Subtarget->isThumb() && Subtarget->hasThumb2()) | 
|  | ResNode = SelectT2IndexedLoad(N); | 
|  | else | 
|  | ResNode = SelectARMIndexedLoad(N); | 
|  | if (ResNode) | 
|  | return ResNode; | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ARMISD::BRCOND: { | 
|  | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Pattern complexity = 6  cost = 1  size = 0 | 
|  |  | 
|  | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Pattern complexity = 6  cost = 1  size = 0 | 
|  |  | 
|  | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) | 
|  | // Pattern complexity = 6  cost = 1  size = 0 | 
|  |  | 
|  | unsigned Opc = Subtarget->isThumb() ? | 
|  | ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDValue N3 = N->getOperand(3); | 
|  | SDValue InFlag = N->getOperand(4); | 
|  | assert(N1.getOpcode() == ISD::BasicBlock); | 
|  | assert(N2.getOpcode() == ISD::Constant); | 
|  | assert(N3.getOpcode() == ISD::Register); | 
|  |  | 
|  | SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) | 
|  | cast<ConstantSDNode>(N2)->getZExtValue()), | 
|  | MVT::i32); | 
|  | SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; | 
|  | SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, | 
|  | MVT::Glue, Ops); | 
|  | Chain = SDValue(ResNode, 0); | 
|  | if (N->getNumValues() == 2) { | 
|  | InFlag = SDValue(ResNode, 1); | 
|  | ReplaceUses(SDValue(N, 1), InFlag); | 
|  | } | 
|  | ReplaceUses(SDValue(N, 0), | 
|  | SDValue(Chain.getNode(), Chain.getResNo())); | 
|  | return NULL; | 
|  | } | 
|  | case ARMISD::CMOV: | 
|  | return SelectCMOVOp(N); | 
|  | case ARMISD::VZIP: { | 
|  | unsigned Opc = 0; | 
|  | EVT VT = N->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: return NULL; | 
|  | case MVT::v8i8:  Opc = ARM::VZIPd8; break; | 
|  | case MVT::v4i16: Opc = ARM::VZIPd16; break; | 
|  | case MVT::v2f32: | 
|  | // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. | 
|  | case MVT::v2i32: Opc = ARM::VTRNd32; break; | 
|  | case MVT::v16i8: Opc = ARM::VZIPq8; break; | 
|  | case MVT::v8i16: Opc = ARM::VZIPq16; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: Opc = ARM::VZIPq32; break; | 
|  | } | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue PredReg = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; | 
|  | return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops); | 
|  | } | 
|  | case ARMISD::VUZP: { | 
|  | unsigned Opc = 0; | 
|  | EVT VT = N->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: return NULL; | 
|  | case MVT::v8i8:  Opc = ARM::VUZPd8; break; | 
|  | case MVT::v4i16: Opc = ARM::VUZPd16; break; | 
|  | case MVT::v2f32: | 
|  | // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. | 
|  | case MVT::v2i32: Opc = ARM::VTRNd32; break; | 
|  | case MVT::v16i8: Opc = ARM::VUZPq8; break; | 
|  | case MVT::v8i16: Opc = ARM::VUZPq16; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: Opc = ARM::VUZPq32; break; | 
|  | } | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue PredReg = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; | 
|  | return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops); | 
|  | } | 
|  | case ARMISD::VTRN: { | 
|  | unsigned Opc = 0; | 
|  | EVT VT = N->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: return NULL; | 
|  | case MVT::v8i8:  Opc = ARM::VTRNd8; break; | 
|  | case MVT::v4i16: Opc = ARM::VTRNd16; break; | 
|  | case MVT::v2f32: | 
|  | case MVT::v2i32: Opc = ARM::VTRNd32; break; | 
|  | case MVT::v16i8: Opc = ARM::VTRNq8; break; | 
|  | case MVT::v8i16: Opc = ARM::VTRNq16; break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: Opc = ARM::VTRNq32; break; | 
|  | } | 
|  | SDValue Pred = getAL(CurDAG); | 
|  | SDValue PredReg = CurDAG->getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; | 
|  | return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops); | 
|  | } | 
|  | case ARMISD::BUILD_VECTOR: { | 
|  | EVT VecVT = N->getValueType(0); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | unsigned NumElts = VecVT.getVectorNumElements(); | 
|  | if (EltVT == MVT::f64) { | 
|  | assert(NumElts == 2 && "unexpected type for BUILD_VECTOR"); | 
|  | return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)); | 
|  | } | 
|  | assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR"); | 
|  | if (NumElts == 2) | 
|  | return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)); | 
|  | assert(NumElts == 4 && "unexpected type for BUILD_VECTOR"); | 
|  | return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1), | 
|  | N->getOperand(2), N->getOperand(3)); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD2DUP: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16, | 
|  | ARM::VLD2DUPd32 }; | 
|  | return SelectVLDDup(N, false, 2, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD3DUP: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo, | 
|  | ARM::VLD3DUPd16Pseudo, | 
|  | ARM::VLD3DUPd32Pseudo }; | 
|  | return SelectVLDDup(N, false, 3, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD4DUP: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo, | 
|  | ARM::VLD4DUPd16Pseudo, | 
|  | ARM::VLD4DUPd32Pseudo }; | 
|  | return SelectVLDDup(N, false, 4, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD2DUP_UPD: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed, | 
|  | ARM::VLD2DUPd16wb_fixed, | 
|  | ARM::VLD2DUPd32wb_fixed }; | 
|  | return SelectVLDDup(N, true, 2, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD3DUP_UPD: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, | 
|  | ARM::VLD3DUPd16Pseudo_UPD, | 
|  | ARM::VLD3DUPd32Pseudo_UPD }; | 
|  | return SelectVLDDup(N, true, 3, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD4DUP_UPD: { | 
|  | static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, | 
|  | ARM::VLD4DUPd16Pseudo_UPD, | 
|  | ARM::VLD4DUPd32Pseudo_UPD }; | 
|  | return SelectVLDDup(N, true, 4, Opcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD1_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed, | 
|  | ARM::VLD1d16wb_fixed, | 
|  | ARM::VLD1d32wb_fixed, | 
|  | ARM::VLD1d64wb_fixed }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed, | 
|  | ARM::VLD1q16wb_fixed, | 
|  | ARM::VLD1q32wb_fixed, | 
|  | ARM::VLD1q64wb_fixed }; | 
|  | return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD2_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed, | 
|  | ARM::VLD2d16wb_fixed, | 
|  | ARM::VLD2d32wb_fixed, | 
|  | ARM::VLD1q64wb_fixed}; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed, | 
|  | ARM::VLD2q16PseudoWB_fixed, | 
|  | ARM::VLD2q32PseudoWB_fixed }; | 
|  | return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD3_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, | 
|  | ARM::VLD3d16Pseudo_UPD, | 
|  | ARM::VLD3d32Pseudo_UPD, | 
|  | ARM::VLD1q64wb_fixed}; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, | 
|  | ARM::VLD3q16Pseudo_UPD, | 
|  | ARM::VLD3q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD, | 
|  | ARM::VLD3q16oddPseudo_UPD, | 
|  | ARM::VLD3q32oddPseudo_UPD }; | 
|  | return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD4_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, | 
|  | ARM::VLD4d16Pseudo_UPD, | 
|  | ARM::VLD4d32Pseudo_UPD, | 
|  | ARM::VLD1q64wb_fixed}; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, | 
|  | ARM::VLD4q16Pseudo_UPD, | 
|  | ARM::VLD4q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD, | 
|  | ARM::VLD4q16oddPseudo_UPD, | 
|  | ARM::VLD4q32oddPseudo_UPD }; | 
|  | return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD2LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, | 
|  | ARM::VLD2LNd16Pseudo_UPD, | 
|  | ARM::VLD2LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD, | 
|  | ARM::VLD2LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD3LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, | 
|  | ARM::VLD3LNd16Pseudo_UPD, | 
|  | ARM::VLD3LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD, | 
|  | ARM::VLD3LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VLD4LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, | 
|  | ARM::VLD4LNd16Pseudo_UPD, | 
|  | ARM::VLD4LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD, | 
|  | ARM::VLD4LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST1_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed, | 
|  | ARM::VST1d16wb_fixed, | 
|  | ARM::VST1d32wb_fixed, | 
|  | ARM::VST1d64wb_fixed }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed, | 
|  | ARM::VST1q16wb_fixed, | 
|  | ARM::VST1q32wb_fixed, | 
|  | ARM::VST1q64wb_fixed }; | 
|  | return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST2_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed, | 
|  | ARM::VST2d16wb_fixed, | 
|  | ARM::VST2d32wb_fixed, | 
|  | ARM::VST1q64wb_fixed}; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed, | 
|  | ARM::VST2q16PseudoWB_fixed, | 
|  | ARM::VST2q32PseudoWB_fixed }; | 
|  | return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST3_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD, | 
|  | ARM::VST3d16Pseudo_UPD, | 
|  | ARM::VST3d32Pseudo_UPD, | 
|  | ARM::VST1d64TPseudoWB_fixed}; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, | 
|  | ARM::VST3q16Pseudo_UPD, | 
|  | ARM::VST3q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD, | 
|  | ARM::VST3q16oddPseudo_UPD, | 
|  | ARM::VST3q32oddPseudo_UPD }; | 
|  | return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST4_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD, | 
|  | ARM::VST4d16Pseudo_UPD, | 
|  | ARM::VST4d32Pseudo_UPD, | 
|  | ARM::VST1d64QPseudoWB_fixed}; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, | 
|  | ARM::VST4q16Pseudo_UPD, | 
|  | ARM::VST4q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD, | 
|  | ARM::VST4q16oddPseudo_UPD, | 
|  | ARM::VST4q32oddPseudo_UPD }; | 
|  | return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST2LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, | 
|  | ARM::VST2LNd16Pseudo_UPD, | 
|  | ARM::VST2LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD, | 
|  | ARM::VST2LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST3LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, | 
|  | ARM::VST3LNd16Pseudo_UPD, | 
|  | ARM::VST3LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD, | 
|  | ARM::VST3LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ARMISD::VST4LN_UPD: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, | 
|  | ARM::VST4LNd16Pseudo_UPD, | 
|  | ARM::VST4LNd32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD, | 
|  | ARM::VST4LNq32Pseudo_UPD }; | 
|  | return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case Intrinsic::arm_ldrexd: { | 
|  | SDValue MemAddr = N->getOperand(2); | 
|  | SDLoc dl(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  |  | 
|  | bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2(); | 
|  | unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD; | 
|  |  | 
|  | // arm_ldrexd returns a i64 value in {i32, i32} | 
|  | std::vector<EVT> ResTys; | 
|  | if (isThumb) { | 
|  | ResTys.push_back(MVT::i32); | 
|  | ResTys.push_back(MVT::i32); | 
|  | } else | 
|  | ResTys.push_back(MVT::Untyped); | 
|  | ResTys.push_back(MVT::Other); | 
|  |  | 
|  | // Place arguments in the right order. | 
|  | SmallVector<SDValue, 7> Ops; | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(getAL(CurDAG)); | 
|  | Ops.push_back(CurDAG->getRegister(0, MVT::i32)); | 
|  | Ops.push_back(Chain); | 
|  | SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops); | 
|  | // Transfer memoperands. | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | // Remap uses. | 
|  | SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1); | 
|  | if (!SDValue(N, 0).use_empty()) { | 
|  | SDValue Result; | 
|  | if (isThumb) | 
|  | Result = SDValue(Ld, 0); | 
|  | else { | 
|  | SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32); | 
|  | SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | dl, MVT::i32, SDValue(Ld, 0), SubRegIdx); | 
|  | Result = SDValue(ResNode,0); | 
|  | } | 
|  | ReplaceUses(SDValue(N, 0), Result); | 
|  | } | 
|  | if (!SDValue(N, 1).use_empty()) { | 
|  | SDValue Result; | 
|  | if (isThumb) | 
|  | Result = SDValue(Ld, 1); | 
|  | else { | 
|  | SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32); | 
|  | SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | dl, MVT::i32, SDValue(Ld, 0), SubRegIdx); | 
|  | Result = SDValue(ResNode,0); | 
|  | } | 
|  | ReplaceUses(SDValue(N, 1), Result); | 
|  | } | 
|  | ReplaceUses(SDValue(N, 2), OutChain); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_strexd: { | 
|  | SDLoc dl(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Val0 = N->getOperand(2); | 
|  | SDValue Val1 = N->getOperand(3); | 
|  | SDValue MemAddr = N->getOperand(4); | 
|  |  | 
|  | // Store exclusive double return a i32 value which is the return status | 
|  | // of the issued store. | 
|  | EVT ResTys[] = { MVT::i32, MVT::Other }; | 
|  |  | 
|  | bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2(); | 
|  | // Place arguments in the right order. | 
|  | SmallVector<SDValue, 7> Ops; | 
|  | if (isThumb) { | 
|  | Ops.push_back(Val0); | 
|  | Ops.push_back(Val1); | 
|  | } else | 
|  | // arm_strexd uses GPRPair. | 
|  | Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0)); | 
|  | Ops.push_back(MemAddr); | 
|  | Ops.push_back(getAL(CurDAG)); | 
|  | Ops.push_back(CurDAG->getRegister(0, MVT::i32)); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD; | 
|  |  | 
|  | SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops); | 
|  | // Transfer memoperands. | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | return St; | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld1: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, | 
|  | ARM::VLD1d32, ARM::VLD1d64 }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, | 
|  | ARM::VLD1q32, ARM::VLD1q64}; | 
|  | return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld2: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, | 
|  | ARM::VLD2d32, ARM::VLD1q64 }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo, | 
|  | ARM::VLD2q32Pseudo }; | 
|  | return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld3: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo, | 
|  | ARM::VLD3d16Pseudo, | 
|  | ARM::VLD3d32Pseudo, | 
|  | ARM::VLD1d64TPseudo }; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, | 
|  | ARM::VLD3q16Pseudo_UPD, | 
|  | ARM::VLD3q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo, | 
|  | ARM::VLD3q16oddPseudo, | 
|  | ARM::VLD3q32oddPseudo }; | 
|  | return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld4: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo, | 
|  | ARM::VLD4d16Pseudo, | 
|  | ARM::VLD4d32Pseudo, | 
|  | ARM::VLD1d64QPseudo }; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, | 
|  | ARM::VLD4q16Pseudo_UPD, | 
|  | ARM::VLD4q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo, | 
|  | ARM::VLD4q16oddPseudo, | 
|  | ARM::VLD4q32oddPseudo }; | 
|  | return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld2lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo, | 
|  | ARM::VLD2LNd16Pseudo, | 
|  | ARM::VLD2LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo, | 
|  | ARM::VLD2LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld3lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo, | 
|  | ARM::VLD3LNd16Pseudo, | 
|  | ARM::VLD3LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo, | 
|  | ARM::VLD3LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vld4lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo, | 
|  | ARM::VLD4LNd16Pseudo, | 
|  | ARM::VLD4LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo, | 
|  | ARM::VLD4LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst1: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, | 
|  | ARM::VST1d32, ARM::VST1d64 }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16, | 
|  | ARM::VST1q32, ARM::VST1q64 }; | 
|  | return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst2: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, | 
|  | ARM::VST2d32, ARM::VST1q64 }; | 
|  | static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo, | 
|  | ARM::VST2q32Pseudo }; | 
|  | return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst3: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo, | 
|  | ARM::VST3d16Pseudo, | 
|  | ARM::VST3d32Pseudo, | 
|  | ARM::VST1d64TPseudo }; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, | 
|  | ARM::VST3q16Pseudo_UPD, | 
|  | ARM::VST3q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo, | 
|  | ARM::VST3q16oddPseudo, | 
|  | ARM::VST3q32oddPseudo }; | 
|  | return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst4: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo, | 
|  | ARM::VST4d16Pseudo, | 
|  | ARM::VST4d32Pseudo, | 
|  | ARM::VST1d64QPseudo }; | 
|  | static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, | 
|  | ARM::VST4q16Pseudo_UPD, | 
|  | ARM::VST4q32Pseudo_UPD }; | 
|  | static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo, | 
|  | ARM::VST4q16oddPseudo, | 
|  | ARM::VST4q32oddPseudo }; | 
|  | return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst2lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo, | 
|  | ARM::VST2LNd16Pseudo, | 
|  | ARM::VST2LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo, | 
|  | ARM::VST2LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst3lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo, | 
|  | ARM::VST3LNd16Pseudo, | 
|  | ARM::VST3LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo, | 
|  | ARM::VST3LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes); | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vst4lane: { | 
|  | static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo, | 
|  | ARM::VST4LNd16Pseudo, | 
|  | ARM::VST4LNd32Pseudo }; | 
|  | static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo, | 
|  | ARM::VST4LNq32Pseudo }; | 
|  | return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case Intrinsic::arm_neon_vtbl2: | 
|  | return SelectVTBL(N, false, 2, ARM::VTBL2); | 
|  | case Intrinsic::arm_neon_vtbl3: | 
|  | return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo); | 
|  | case Intrinsic::arm_neon_vtbl4: | 
|  | return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo); | 
|  |  | 
|  | case Intrinsic::arm_neon_vtbx2: | 
|  | return SelectVTBL(N, true, 2, ARM::VTBX2); | 
|  | case Intrinsic::arm_neon_vtbx3: | 
|  | return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo); | 
|  | case Intrinsic::arm_neon_vtbx4: | 
|  | return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ARMISD::VTBL1: { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SmallVector<SDValue, 6> Ops; | 
|  |  | 
|  | Ops.push_back(N->getOperand(0)); | 
|  | Ops.push_back(N->getOperand(1)); | 
|  | Ops.push_back(getAL(CurDAG));                    // Predicate | 
|  | Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register | 
|  | return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops); | 
|  | } | 
|  | case ARMISD::VTBL2: { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SDValue V0 = N->getOperand(0); | 
|  | SDValue V1 = N->getOperand(1); | 
|  | SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0); | 
|  |  | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | Ops.push_back(RegSeq); | 
|  | Ops.push_back(N->getOperand(2)); | 
|  | Ops.push_back(getAL(CurDAG));                    // Predicate | 
|  | Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register | 
|  | return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | case ISD::CONCAT_VECTORS: | 
|  | return SelectConcatVector(N); | 
|  |  | 
|  | case ARMISD::ATOMOR64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMOR6432); | 
|  | case ARMISD::ATOMXOR64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMXOR6432); | 
|  | case ARMISD::ATOMADD64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMADD6432); | 
|  | case ARMISD::ATOMSUB64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMSUB6432); | 
|  | case ARMISD::ATOMNAND64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMNAND6432); | 
|  | case ARMISD::ATOMAND64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMAND6432); | 
|  | case ARMISD::ATOMSWAP64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMSWAP6432); | 
|  | case ARMISD::ATOMCMPXCHG64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMCMPXCHG6432); | 
|  |  | 
|  | case ARMISD::ATOMMIN64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMMIN6432); | 
|  | case ARMISD::ATOMUMIN64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMUMIN6432); | 
|  | case ARMISD::ATOMMAX64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMMAX6432); | 
|  | case ARMISD::ATOMUMAX64_DAG: | 
|  | return SelectAtomic64(N, ARM::ATOMUMAX6432); | 
|  | } | 
|  |  | 
|  | return SelectCode(N); | 
|  | } | 
|  |  | 
|  | SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){ | 
|  | std::vector<SDValue> AsmNodeOperands; | 
|  | unsigned Flag, Kind; | 
|  | bool Changed = false; | 
|  | unsigned NumOps = N->getNumOperands(); | 
|  |  | 
|  | // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint. | 
|  | // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require | 
|  | // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs | 
|  | // respectively. Since there is no constraint to explicitly specify a | 
|  | // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb, | 
|  | // the 64-bit data may be referred by H, Q, R modifiers, so we still pack | 
|  | // them into a GPRPair. | 
|  |  | 
|  | SDLoc dl(N); | 
|  | SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) : SDValue(0,0); | 
|  |  | 
|  | SmallVector<bool, 8> OpChanged; | 
|  | // Glue node will be appended late. | 
|  | for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) { | 
|  | SDValue op = N->getOperand(i); | 
|  | AsmNodeOperands.push_back(op); | 
|  |  | 
|  | if (i < InlineAsm::Op_FirstOperand) | 
|  | continue; | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) { | 
|  | Flag = C->getZExtValue(); | 
|  | Kind = InlineAsm::getKind(Flag); | 
|  | } | 
|  | else | 
|  | continue; | 
|  |  | 
|  | // Immediate operands to inline asm in the SelectionDAG are modeled with | 
|  | // two operands. The first is a constant of value InlineAsm::Kind_Imm, and | 
|  | // the second is a constant with the value of the immediate. If we get here | 
|  | // and we have a Kind_Imm, skip the next operand, and continue. | 
|  | if (Kind == InlineAsm::Kind_Imm) { | 
|  | SDValue op = N->getOperand(++i); | 
|  | AsmNodeOperands.push_back(op); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag); | 
|  | if (NumRegs) | 
|  | OpChanged.push_back(false); | 
|  |  | 
|  | unsigned DefIdx = 0; | 
|  | bool IsTiedToChangedOp = false; | 
|  | // If it's a use that is tied with a previous def, it has no | 
|  | // reg class constraint. | 
|  | if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx)) | 
|  | IsTiedToChangedOp = OpChanged[DefIdx]; | 
|  |  | 
|  | if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef | 
|  | && Kind != InlineAsm::Kind_RegDefEarlyClobber) | 
|  | continue; | 
|  |  | 
|  | unsigned RC; | 
|  | bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC); | 
|  | if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID)) | 
|  | || NumRegs != 2) | 
|  | continue; | 
|  |  | 
|  | assert((i+2 < NumOps) && "Invalid number of operands in inline asm"); | 
|  | SDValue V0 = N->getOperand(i+1); | 
|  | SDValue V1 = N->getOperand(i+2); | 
|  | unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg(); | 
|  | unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg(); | 
|  | SDValue PairedReg; | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | if (Kind == InlineAsm::Kind_RegDef || | 
|  | Kind == InlineAsm::Kind_RegDefEarlyClobber) { | 
|  | // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to | 
|  | // the original GPRs. | 
|  |  | 
|  | unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass); | 
|  | PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped); | 
|  | SDValue Chain = SDValue(N,0); | 
|  |  | 
|  | SDNode *GU = N->getGluedUser(); | 
|  | SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped, | 
|  | Chain.getValue(1)); | 
|  |  | 
|  | // Extract values from a GPRPair reg and copy to the original GPR reg. | 
|  | SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32, | 
|  | RegCopy); | 
|  | SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32, | 
|  | RegCopy); | 
|  | SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0, | 
|  | RegCopy.getValue(1)); | 
|  | SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1)); | 
|  |  | 
|  | // Update the original glue user. | 
|  | std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1); | 
|  | Ops.push_back(T1.getValue(1)); | 
|  | CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size()); | 
|  | GU = T1.getNode(); | 
|  | } | 
|  | else { | 
|  | // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a | 
|  | // GPRPair and then pass the GPRPair to the inline asm. | 
|  | SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain]; | 
|  |  | 
|  | // As REG_SEQ doesn't take RegisterSDNode, we copy them first. | 
|  | SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32, | 
|  | Chain.getValue(1)); | 
|  | SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32, | 
|  | T0.getValue(1)); | 
|  | SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0); | 
|  |  | 
|  | // Copy REG_SEQ into a GPRPair-typed VR and replace the original two | 
|  | // i32 VRs of inline asm with it. | 
|  | unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass); | 
|  | PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped); | 
|  | Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1)); | 
|  |  | 
|  | AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; | 
|  | Glue = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Changed = true; | 
|  |  | 
|  | if(PairedReg.getNode()) { | 
|  | OpChanged[OpChanged.size() -1 ] = true; | 
|  | Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/); | 
|  | Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID); | 
|  | // Replace the current flag. | 
|  | AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant( | 
|  | Flag, MVT::i32); | 
|  | // Add the new register node and skip the original two GPRs. | 
|  | AsmNodeOperands.push_back(PairedReg); | 
|  | // Skip the next two GPRs. | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Glue.getNode()) | 
|  | AsmNodeOperands.push_back(Glue); | 
|  | if (!Changed) | 
|  | return NULL; | 
|  |  | 
|  | SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), | 
|  | CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0], | 
|  | AsmNodeOperands.size()); | 
|  | New->setNodeId(-1); | 
|  | return New.getNode(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool ARMDAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); | 
|  | // Require the address to be in a register.  That is safe for all ARM | 
|  | // variants and it is hard to do anything much smarter without knowing | 
|  | // how the operand is used. | 
|  | OutOps.push_back(Op); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// createARMISelDag - This pass converts a legalized DAG into a | 
|  | /// ARM-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new ARMDAGToDAGISel(TM, OptLevel); | 
|  | } |