|  | //===----------------------- AlignmentFromAssumptions.cpp -----------------===// | 
|  | //                  Set Load/Store Alignments From Assumptions | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a ScalarEvolution-based transformation to set | 
|  | // the alignments of load, stores and memory intrinsics based on the truth | 
|  | // expressions of assume intrinsics. The primary motivation is to handle | 
|  | // complex alignment assumptions that apply to vector loads and stores that | 
|  | // appear after vectorization and unrolling. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define AA_NAME "alignment-from-assumptions" | 
|  | #define DEBUG_TYPE AA_NAME | 
|  | #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumLoadAlignChanged, | 
|  | "Number of loads changed by alignment assumptions"); | 
|  | STATISTIC(NumStoreAlignChanged, | 
|  | "Number of stores changed by alignment assumptions"); | 
|  | STATISTIC(NumMemIntAlignChanged, | 
|  | "Number of memory intrinsics changed by alignment assumptions"); | 
|  |  | 
|  | namespace { | 
|  | struct AlignmentFromAssumptions : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | AlignmentFromAssumptions() : FunctionPass(ID) { | 
|  | initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  |  | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<ScalarEvolutionWrapperPass>(); | 
|  | } | 
|  |  | 
|  | AlignmentFromAssumptionsPass Impl; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char AlignmentFromAssumptions::ID = 0; | 
|  | static const char aip_name[] = "Alignment from assumptions"; | 
|  | INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, | 
|  | aip_name, false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, | 
|  | aip_name, false, false) | 
|  |  | 
|  | FunctionPass *llvm::createAlignmentFromAssumptionsPass() { | 
|  | return new AlignmentFromAssumptions(); | 
|  | } | 
|  |  | 
|  | // Given an expression for the (constant) alignment, AlignSCEV, and an | 
|  | // expression for the displacement between a pointer and the aligned address, | 
|  | // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced | 
|  | // to a constant. Using SCEV to compute alignment handles the case where | 
|  | // DiffSCEV is a recurrence with constant start such that the aligned offset | 
|  | // is constant. e.g. {16,+,32} % 32 -> 16. | 
|  | static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, | 
|  | const SCEV *AlignSCEV, | 
|  | ScalarEvolution *SE) { | 
|  | // DiffUnits = Diff % int64_t(Alignment) | 
|  | const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " | 
|  | << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); | 
|  |  | 
|  | if (const SCEVConstant *ConstDUSCEV = | 
|  | dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { | 
|  | int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); | 
|  |  | 
|  | // If the displacement is an exact multiple of the alignment, then the | 
|  | // displaced pointer has the same alignment as the aligned pointer, so | 
|  | // return the alignment value. | 
|  | if (!DiffUnits) | 
|  | return (unsigned) | 
|  | cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue(); | 
|  |  | 
|  | // If the displacement is not an exact multiple, but the remainder is a | 
|  | // constant, then return this remainder (but only if it is a power of 2). | 
|  | uint64_t DiffUnitsAbs = std::abs(DiffUnits); | 
|  | if (isPowerOf2_64(DiffUnitsAbs)) | 
|  | return (unsigned) DiffUnitsAbs; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // There is an address given by an offset OffSCEV from AASCEV which has an | 
|  | // alignment AlignSCEV. Use that information, if possible, to compute a new | 
|  | // alignment for Ptr. | 
|  | static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, | 
|  | const SCEV *OffSCEV, Value *Ptr, | 
|  | ScalarEvolution *SE) { | 
|  | const SCEV *PtrSCEV = SE->getSCEV(Ptr); | 
|  | const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); | 
|  |  | 
|  | // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always | 
|  | // sign-extended OffSCEV to i64, so make sure they agree again. | 
|  | DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); | 
|  |  | 
|  | // What we really want to know is the overall offset to the aligned | 
|  | // address. This address is displaced by the provided offset. | 
|  | DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " | 
|  | << *AlignSCEV << " and offset " << *OffSCEV | 
|  | << " using diff " << *DiffSCEV << "\n"); | 
|  |  | 
|  | unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); | 
|  | LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); | 
|  |  | 
|  | if (NewAlignment) { | 
|  | return NewAlignment; | 
|  | } else if (const SCEVAddRecExpr *DiffARSCEV = | 
|  | dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { | 
|  | // The relative offset to the alignment assumption did not yield a constant, | 
|  | // but we should try harder: if we assume that a is 32-byte aligned, then in | 
|  | // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are | 
|  | // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. | 
|  | // As a result, the new alignment will not be a constant, but can still | 
|  | // be improved over the default (of 4) to 16. | 
|  |  | 
|  | const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); | 
|  | const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " | 
|  | << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); | 
|  |  | 
|  | // Now compute the new alignment using the displacement to the value in the | 
|  | // first iteration, and also the alignment using the per-iteration delta. | 
|  | // If these are the same, then use that answer. Otherwise, use the smaller | 
|  | // one, but only if it divides the larger one. | 
|  | NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); | 
|  | unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); | 
|  |  | 
|  | if (!NewAlignment || !NewIncAlignment) { | 
|  | return 0; | 
|  | } else if (NewAlignment > NewIncAlignment) { | 
|  | if (NewAlignment % NewIncAlignment == 0) { | 
|  | LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment | 
|  | << "\n"); | 
|  | return NewIncAlignment; | 
|  | } | 
|  | } else if (NewIncAlignment > NewAlignment) { | 
|  | if (NewIncAlignment % NewAlignment == 0) { | 
|  | LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment | 
|  | << "\n"); | 
|  | return NewAlignment; | 
|  | } | 
|  | } else if (NewIncAlignment == NewAlignment) { | 
|  | LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment | 
|  | << "\n"); | 
|  | return NewAlignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, | 
|  | Value *&AAPtr, | 
|  | const SCEV *&AlignSCEV, | 
|  | const SCEV *&OffSCEV) { | 
|  | // An alignment assume must be a statement about the least-significant | 
|  | // bits of the pointer being zero, possibly with some offset. | 
|  | ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); | 
|  | if (!ICI) | 
|  | return false; | 
|  |  | 
|  | // This must be an expression of the form: x & m == 0. | 
|  | if (ICI->getPredicate() != ICmpInst::ICMP_EQ) | 
|  | return false; | 
|  |  | 
|  | // Swap things around so that the RHS is 0. | 
|  | Value *CmpLHS = ICI->getOperand(0); | 
|  | Value *CmpRHS = ICI->getOperand(1); | 
|  | const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); | 
|  | const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); | 
|  | if (CmpLHSSCEV->isZero()) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | else if (!CmpRHSSCEV->isZero()) | 
|  | return false; | 
|  |  | 
|  | BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); | 
|  | if (!CmpBO || CmpBO->getOpcode() != Instruction::And) | 
|  | return false; | 
|  |  | 
|  | // Swap things around so that the right operand of the and is a constant | 
|  | // (the mask); we cannot deal with variable masks. | 
|  | Value *AndLHS = CmpBO->getOperand(0); | 
|  | Value *AndRHS = CmpBO->getOperand(1); | 
|  | const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); | 
|  | const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); | 
|  | if (isa<SCEVConstant>(AndLHSSCEV)) { | 
|  | std::swap(AndLHS, AndRHS); | 
|  | std::swap(AndLHSSCEV, AndRHSSCEV); | 
|  | } | 
|  |  | 
|  | const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); | 
|  | if (!MaskSCEV) | 
|  | return false; | 
|  |  | 
|  | // The mask must have some trailing ones (otherwise the condition is | 
|  | // trivial and tells us nothing about the alignment of the left operand). | 
|  | unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes(); | 
|  | if (!TrailingOnes) | 
|  | return false; | 
|  |  | 
|  | // Cap the alignment at the maximum with which LLVM can deal (and make sure | 
|  | // we don't overflow the shift). | 
|  | uint64_t Alignment; | 
|  | TrailingOnes = std::min(TrailingOnes, | 
|  | unsigned(sizeof(unsigned) * CHAR_BIT - 1)); | 
|  | Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); | 
|  |  | 
|  | Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); | 
|  | AlignSCEV = SE->getConstant(Int64Ty, Alignment); | 
|  |  | 
|  | // The LHS might be a ptrtoint instruction, or it might be the pointer | 
|  | // with an offset. | 
|  | AAPtr = nullptr; | 
|  | OffSCEV = nullptr; | 
|  | if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { | 
|  | AAPtr = PToI->getPointerOperand(); | 
|  | OffSCEV = SE->getZero(Int64Ty); | 
|  | } else if (const SCEVAddExpr* AndLHSAddSCEV = | 
|  | dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { | 
|  | // Try to find the ptrtoint; subtract it and the rest is the offset. | 
|  | for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), | 
|  | JE = AndLHSAddSCEV->op_end(); J != JE; ++J) | 
|  | if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) | 
|  | if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { | 
|  | AAPtr = PToI->getPointerOperand(); | 
|  | OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AAPtr) | 
|  | return false; | 
|  |  | 
|  | // Sign extend the offset to 64 bits (so that it is like all of the other | 
|  | // expressions). | 
|  | unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); | 
|  | if (OffSCEVBits < 64) | 
|  | OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); | 
|  | else if (OffSCEVBits > 64) | 
|  | return false; | 
|  |  | 
|  | AAPtr = AAPtr->stripPointerCasts(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { | 
|  | Value *AAPtr; | 
|  | const SCEV *AlignSCEV, *OffSCEV; | 
|  | if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) | 
|  | return false; | 
|  |  | 
|  | // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't | 
|  | // affect other users. | 
|  | if (isa<ConstantData>(AAPtr)) | 
|  | return false; | 
|  |  | 
|  | const SCEV *AASCEV = SE->getSCEV(AAPtr); | 
|  |  | 
|  | // Apply the assumption to all other users of the specified pointer. | 
|  | SmallPtrSet<Instruction *, 32> Visited; | 
|  | SmallVector<Instruction*, 16> WorkList; | 
|  | for (User *J : AAPtr->users()) { | 
|  | if (J == ACall) | 
|  | continue; | 
|  |  | 
|  | if (Instruction *K = dyn_cast<Instruction>(J)) | 
|  | if (isValidAssumeForContext(ACall, K, DT)) | 
|  | WorkList.push_back(K); | 
|  | } | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | Instruction *J = WorkList.pop_back_val(); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(J)) { | 
|  | unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, | 
|  | LI->getPointerOperand(), SE); | 
|  |  | 
|  | if (NewAlignment > LI->getAlignment()) { | 
|  | LI->setAlignment(NewAlignment); | 
|  | ++NumLoadAlignChanged; | 
|  | } | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { | 
|  | unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, | 
|  | SI->getPointerOperand(), SE); | 
|  |  | 
|  | if (NewAlignment > SI->getAlignment()) { | 
|  | SI->setAlignment(NewAlignment); | 
|  | ++NumStoreAlignChanged; | 
|  | } | 
|  | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { | 
|  | unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, | 
|  | MI->getDest(), SE); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";); | 
|  | if (NewDestAlignment > MI->getDestAlignment()) { | 
|  | MI->setDestAlignment(NewDestAlignment); | 
|  | ++NumMemIntAlignChanged; | 
|  | } | 
|  |  | 
|  | // For memory transfers, there is also a source alignment that | 
|  | // can be set. | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, | 
|  | MTI->getSource(), SE); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";); | 
|  |  | 
|  | if (NewSrcAlignment > MTI->getSourceAlignment()) { | 
|  | MTI->setSourceAlignment(NewSrcAlignment); | 
|  | ++NumMemIntAlignChanged; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've updated that use of the pointer, look for other uses of | 
|  | // the pointer to update. | 
|  | Visited.insert(J); | 
|  | for (User *UJ : J->users()) { | 
|  | Instruction *K = cast<Instruction>(UJ); | 
|  | if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT)) | 
|  | WorkList.push_back(K); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AlignmentFromAssumptions::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  |  | 
|  | return Impl.runImpl(F, AC, SE, DT); | 
|  | } | 
|  |  | 
|  | bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, | 
|  | ScalarEvolution *SE_, | 
|  | DominatorTree *DT_) { | 
|  | SE = SE_; | 
|  | DT = DT_; | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto &AssumeVH : AC.assumptions()) | 
|  | if (AssumeVH) | 
|  | Changed |= processAssumption(cast<CallInst>(AssumeVH)); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses | 
|  | AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  |  | 
|  | AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); | 
|  | ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); | 
|  | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | if (!runImpl(F, AC, &SE, &DT)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<AAManager>(); | 
|  | PA.preserve<ScalarEvolutionAnalysis>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } |