|  | //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass hoists and/or decomposes/recomposes integer division and remainder | 
|  | // instructions to enable CFG improvements and better codegen. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/DivRemPairs.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/DebugCounter.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "div-rem-pairs" | 
|  | STATISTIC(NumPairs, "Number of div/rem pairs"); | 
|  | STATISTIC(NumRecomposed, "Number of instructions recomposed"); | 
|  | STATISTIC(NumHoisted, "Number of instructions hoisted"); | 
|  | STATISTIC(NumDecomposed, "Number of instructions decomposed"); | 
|  | DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", | 
|  | "Controls transformations in div-rem-pairs pass"); | 
|  |  | 
|  | namespace { | 
|  | struct ExpandedMatch { | 
|  | DivRemMapKey Key; | 
|  | Instruction *Value; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// See if we can match: (which is the form we expand into) | 
|  | ///   X - ((X ?/ Y) * Y) | 
|  | /// which is equivalent to: | 
|  | ///   X ?% Y | 
|  | static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { | 
|  | Value *Dividend, *XroundedDownToMultipleOfY; | 
|  | if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) | 
|  | return llvm::None; | 
|  |  | 
|  | Value *Divisor; | 
|  | Instruction *Div; | 
|  | // Look for  ((X / Y) * Y) | 
|  | if (!match( | 
|  | XroundedDownToMultipleOfY, | 
|  | m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), | 
|  | m_Instruction(Div)), | 
|  | m_Deferred(Divisor)))) | 
|  | return llvm::None; | 
|  |  | 
|  | ExpandedMatch M; | 
|  | M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; | 
|  | M.Key.Dividend = Dividend; | 
|  | M.Key.Divisor = Divisor; | 
|  | M.Value = &I; | 
|  | return M; | 
|  | } | 
|  |  | 
|  | /// A thin wrapper to store two values that we matched as div-rem pair. | 
|  | /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. | 
|  | struct DivRemPairWorklistEntry { | 
|  | /// The actual udiv/sdiv instruction. Source of truth. | 
|  | AssertingVH<Instruction> DivInst; | 
|  |  | 
|  | /// The instruction that we have matched as a remainder instruction. | 
|  | /// Should only be used as Value, don't introspect it. | 
|  | AssertingVH<Instruction> RemInst; | 
|  |  | 
|  | DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) | 
|  | : DivInst(DivInst_), RemInst(RemInst_) { | 
|  | assert((DivInst->getOpcode() == Instruction::UDiv || | 
|  | DivInst->getOpcode() == Instruction::SDiv) && | 
|  | "Not a division."); | 
|  | assert(DivInst->getType() == RemInst->getType() && "Types should match."); | 
|  | // We can't check anything else about remainder instruction, | 
|  | // it's not strictly required to be a urem/srem. | 
|  | } | 
|  |  | 
|  | /// The type for this pair, identical for both the div and rem. | 
|  | Type *getType() const { return DivInst->getType(); } | 
|  |  | 
|  | /// Is this pair signed or unsigned? | 
|  | bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } | 
|  |  | 
|  | /// In this pair, what are the divident and divisor? | 
|  | Value *getDividend() const { return DivInst->getOperand(0); } | 
|  | Value *getDivisor() const { return DivInst->getOperand(1); } | 
|  |  | 
|  | bool isRemExpanded() const { | 
|  | switch (RemInst->getOpcode()) { | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | return false; // single 'rem' instruction - unexpanded form. | 
|  | default: | 
|  | return true; // anything else means we have remainder in expanded form. | 
|  | } | 
|  | } | 
|  | }; | 
|  | using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; | 
|  |  | 
|  | /// Find matching pairs of integer div/rem ops (they have the same numerator, | 
|  | /// denominator, and signedness). Place those pairs into a worklist for further | 
|  | /// processing. This indirection is needed because we have to use TrackingVH<> | 
|  | /// because we will be doing RAUW, and if one of the rem instructions we change | 
|  | /// happens to be an input to another div/rem in the maps, we'd have problems. | 
|  | static DivRemWorklistTy getWorklist(Function &F) { | 
|  | // Insert all divide and remainder instructions into maps keyed by their | 
|  | // operands and opcode (signed or unsigned). | 
|  | DenseMap<DivRemMapKey, Instruction *> DivMap; | 
|  | // Use a MapVector for RemMap so that instructions are moved/inserted in a | 
|  | // deterministic order. | 
|  | MapVector<DivRemMapKey, Instruction *> RemMap; | 
|  | for (auto &BB : F) { | 
|  | for (auto &I : BB) { | 
|  | if (I.getOpcode() == Instruction::SDiv) | 
|  | DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; | 
|  | else if (I.getOpcode() == Instruction::UDiv) | 
|  | DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; | 
|  | else if (I.getOpcode() == Instruction::SRem) | 
|  | RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; | 
|  | else if (I.getOpcode() == Instruction::URem) | 
|  | RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; | 
|  | else if (auto Match = matchExpandedRem(I)) | 
|  | RemMap[Match->Key] = Match->Value; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We'll accumulate the matching pairs of div-rem instructions here. | 
|  | DivRemWorklistTy Worklist; | 
|  |  | 
|  | // We can iterate over either map because we are only looking for matched | 
|  | // pairs. Choose remainders for efficiency because they are usually even more | 
|  | // rare than division. | 
|  | for (auto &RemPair : RemMap) { | 
|  | // Find the matching division instruction from the division map. | 
|  | Instruction *DivInst = DivMap[RemPair.first]; | 
|  | if (!DivInst) | 
|  | continue; | 
|  |  | 
|  | // We have a matching pair of div/rem instructions. | 
|  | NumPairs++; | 
|  | Instruction *RemInst = RemPair.second; | 
|  |  | 
|  | // Place it in the worklist. | 
|  | Worklist.emplace_back(DivInst, RemInst); | 
|  | } | 
|  |  | 
|  | return Worklist; | 
|  | } | 
|  |  | 
|  | /// Find matching pairs of integer div/rem ops (they have the same numerator, | 
|  | /// denominator, and signedness). If they exist in different basic blocks, bring | 
|  | /// them together by hoisting or replace the common division operation that is | 
|  | /// implicit in the remainder: | 
|  | /// X % Y <--> X - ((X / Y) * Y). | 
|  | /// | 
|  | /// We can largely ignore the normal safety and cost constraints on speculation | 
|  | /// of these ops when we find a matching pair. This is because we are already | 
|  | /// guaranteed that any exceptions and most cost are already incurred by the | 
|  | /// first member of the pair. | 
|  | /// | 
|  | /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or | 
|  | /// SimplifyCFG, but it's split off on its own because it's different enough | 
|  | /// that it doesn't quite match the stated objectives of those passes. | 
|  | static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, | 
|  | const DominatorTree &DT) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Get the matching pairs of div-rem instructions. We want this extra | 
|  | // indirection to avoid dealing with having to RAUW the keys of the maps. | 
|  | DivRemWorklistTy Worklist = getWorklist(F); | 
|  |  | 
|  | // Process each entry in the worklist. | 
|  | for (DivRemPairWorklistEntry &E : Worklist) { | 
|  | if (!DebugCounter::shouldExecute(DRPCounter)) | 
|  | continue; | 
|  |  | 
|  | bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); | 
|  |  | 
|  | auto &DivInst = E.DivInst; | 
|  | auto &RemInst = E.RemInst; | 
|  |  | 
|  | const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); | 
|  | (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning | 
|  |  | 
|  | if (HasDivRemOp && E.isRemExpanded()) { | 
|  | // The target supports div+rem but the rem is expanded. | 
|  | // We should recompose it first. | 
|  | Value *X = E.getDividend(); | 
|  | Value *Y = E.getDivisor(); | 
|  | Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) | 
|  | : BinaryOperator::CreateURem(X, Y); | 
|  | // Note that we place it right next to the original expanded instruction, | 
|  | // and letting further handling to move it if needed. | 
|  | RealRem->setName(RemInst->getName() + ".recomposed"); | 
|  | RealRem->insertAfter(RemInst); | 
|  | Instruction *OrigRemInst = RemInst; | 
|  | // Update AssertingVH<> with new instruction so it doesn't assert. | 
|  | RemInst = RealRem; | 
|  | // And replace the original instruction with the new one. | 
|  | OrigRemInst->replaceAllUsesWith(RealRem); | 
|  | OrigRemInst->eraseFromParent(); | 
|  | NumRecomposed++; | 
|  | // Note that we have left ((X / Y) * Y) around. | 
|  | // If it had other uses we could rewrite it as X - X % Y | 
|  | } | 
|  |  | 
|  | assert((!E.isRemExpanded() || !HasDivRemOp) && | 
|  | "*If* the target supports div-rem, then by now the RemInst *is* " | 
|  | "Instruction::[US]Rem."); | 
|  |  | 
|  | // If the target supports div+rem and the instructions are in the same block | 
|  | // already, there's nothing to do. The backend should handle this. If the | 
|  | // target does not support div+rem, then we will decompose the rem. | 
|  | if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) | 
|  | continue; | 
|  |  | 
|  | bool DivDominates = DT.dominates(DivInst, RemInst); | 
|  | if (!DivDominates && !DT.dominates(RemInst, DivInst)) { | 
|  | // We have matching div-rem pair, but they are in two different blocks, | 
|  | // neither of which dominates one another. | 
|  | assert(!RemOriginallyWasInExpandedForm && | 
|  | "Won't happen for expanded-form rem."); | 
|  | // FIXME: We could hoist both ops to the common predecessor block? | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The target does not have a single div/rem operation, | 
|  | // and the rem is already in expanded form. Nothing to do. | 
|  | if (!HasDivRemOp && E.isRemExpanded()) | 
|  | continue; | 
|  |  | 
|  | if (HasDivRemOp) { | 
|  | // The target has a single div/rem operation. Hoist the lower instruction | 
|  | // to make the matched pair visible to the backend. | 
|  | if (DivDominates) | 
|  | RemInst->moveAfter(DivInst); | 
|  | else | 
|  | DivInst->moveAfter(RemInst); | 
|  | NumHoisted++; | 
|  | } else { | 
|  | // The target does not have a single div/rem operation, | 
|  | // and the rem is *not* in a already-expanded form. | 
|  | // Decompose the remainder calculation as: | 
|  | // X % Y --> X - ((X / Y) * Y). | 
|  |  | 
|  | assert(!RemOriginallyWasInExpandedForm && | 
|  | "We should not be expanding if the rem was in expanded form to " | 
|  | "begin with."); | 
|  |  | 
|  | Value *X = E.getDividend(); | 
|  | Value *Y = E.getDivisor(); | 
|  | Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); | 
|  | Instruction *Sub = BinaryOperator::CreateSub(X, Mul); | 
|  |  | 
|  | // If the remainder dominates, then hoist the division up to that block: | 
|  | // | 
|  | // bb1: | 
|  | //   %rem = srem %x, %y | 
|  | // bb2: | 
|  | //   %div = sdiv %x, %y | 
|  | // --> | 
|  | // bb1: | 
|  | //   %div = sdiv %x, %y | 
|  | //   %mul = mul %div, %y | 
|  | //   %rem = sub %x, %mul | 
|  | // | 
|  | // If the division dominates, it's already in the right place. The mul+sub | 
|  | // will be in a different block because we don't assume that they are | 
|  | // cheap to speculatively execute: | 
|  | // | 
|  | // bb1: | 
|  | //   %div = sdiv %x, %y | 
|  | // bb2: | 
|  | //   %rem = srem %x, %y | 
|  | // --> | 
|  | // bb1: | 
|  | //   %div = sdiv %x, %y | 
|  | // bb2: | 
|  | //   %mul = mul %div, %y | 
|  | //   %rem = sub %x, %mul | 
|  | // | 
|  | // If the div and rem are in the same block, we do the same transform, | 
|  | // but any code movement would be within the same block. | 
|  |  | 
|  | if (!DivDominates) | 
|  | DivInst->moveBefore(RemInst); | 
|  | Mul->insertAfter(RemInst); | 
|  | Sub->insertAfter(Mul); | 
|  |  | 
|  | // Now kill the explicit remainder. We have replaced it with: | 
|  | // (sub X, (mul (div X, Y), Y) | 
|  | Sub->setName(RemInst->getName() + ".decomposed"); | 
|  | Instruction *OrigRemInst = RemInst; | 
|  | // Update AssertingVH<> with new instruction so it doesn't assert. | 
|  | RemInst = Sub; | 
|  | // And replace the original instruction with the new one. | 
|  | OrigRemInst->replaceAllUsesWith(Sub); | 
|  | OrigRemInst->eraseFromParent(); | 
|  | NumDecomposed++; | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Pass manager boilerplate below here. | 
|  |  | 
|  | namespace { | 
|  | struct DivRemPairsLegacyPass : public FunctionPass { | 
|  | static char ID; | 
|  | DivRemPairsLegacyPass() : FunctionPass(ID) { | 
|  | initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | return optimizeDivRem(F, TTI, DT); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | char DivRemPairsLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", | 
|  | "Hoist/decompose integer division and remainder", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", | 
|  | "Hoist/decompose integer division and remainder", false, | 
|  | false) | 
|  | FunctionPass *llvm::createDivRemPairsPass() { | 
|  | return new DivRemPairsLegacyPass(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses DivRemPairsPass::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); | 
|  | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); | 
|  | if (!optimizeDivRem(F, TTI, DT)) | 
|  | return PreservedAnalyses::all(); | 
|  | // TODO: This pass just hoists/replaces math ops - all analyses are preserved? | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } |