|  | //=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file defines a meta-engine for path-sensitive dataflow analysis that | 
|  | //  is built on GREngine, but provides the boilerplate to execute transfer | 
|  | //  functions and build the ExplodedGraph at the expression level. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // FIXME: Restructure checker registration. | 
|  | #include "InternalChecks.h" | 
|  |  | 
|  | #include "clang/StaticAnalyzer/Core/CheckerManager.h" | 
|  | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" | 
|  | #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" | 
|  | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" | 
|  | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h" | 
|  | #include "clang/StaticAnalyzer/Core/PathSensitive/Checker.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/ParentMap.h" | 
|  | #include "clang/AST/StmtObjC.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/PrettyStackTrace.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/ImmutableList.h" | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | #include "llvm/Support/GraphWriter.h" | 
|  | #endif | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace ento; | 
|  | using llvm::dyn_cast; | 
|  | using llvm::dyn_cast_or_null; | 
|  | using llvm::cast; | 
|  | using llvm::APSInt; | 
|  |  | 
|  | namespace { | 
|  | // Trait class for recording returned expression in the state. | 
|  | struct ReturnExpr { | 
|  | static int TagInt; | 
|  | typedef const Stmt *data_type; | 
|  | }; | 
|  | int ReturnExpr::TagInt; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Utility functions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { | 
|  | IdentifierInfo* II = &Ctx.Idents.get(name); | 
|  | return Ctx.Selectors.getSelector(0, &II); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Checker worklist routines. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::CheckerVisit(const Stmt *S, ExplodedNodeSet &Dst, | 
|  | ExplodedNodeSet &Src, CallbackKind Kind) { | 
|  |  | 
|  | // Determine if we already have a cached 'CheckersOrdered' vector | 
|  | // specifically tailored for the provided <CallbackKind, Stmt kind>.  This | 
|  | // can reduce the number of checkers actually called. | 
|  | CheckersOrdered *CO = &Checkers; | 
|  | llvm::OwningPtr<CheckersOrdered> NewCO; | 
|  |  | 
|  | // The cache key is made up of the and the callback kind (pre- or post-visit) | 
|  | // and the statement kind. | 
|  | CallbackTag K = GetCallbackTag(Kind, S->getStmtClass()); | 
|  |  | 
|  | CheckersOrdered *& CO_Ref = COCache[K]; | 
|  |  | 
|  | if (!CO_Ref) { | 
|  | // If we have no previously cached CheckersOrdered vector for this | 
|  | // statement kind, then create one. | 
|  | NewCO.reset(new CheckersOrdered); | 
|  | } | 
|  | else { | 
|  | // Use the already cached set. | 
|  | CO = CO_Ref; | 
|  | } | 
|  |  | 
|  | if (CO->empty()) { | 
|  | // If there are no checkers, just delegate to the checker manager. | 
|  | getCheckerManager().runCheckersForStmt(Kind == PreVisitStmtCallback, | 
|  | Dst, Src, S, *this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet CheckersV1Dst; | 
|  | ExplodedNodeSet Tmp; | 
|  | ExplodedNodeSet *PrevSet = &Src; | 
|  | unsigned checkersEvaluated = 0; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=CO->begin(), E=CO->end(); I!=E; ++I) { | 
|  | // If all nodes are sunk, bail out early. | 
|  | if (PrevSet->empty()) | 
|  | break; | 
|  | ExplodedNodeSet *CurrSet = 0; | 
|  | if (I+1 == E) | 
|  | CurrSet = &CheckersV1Dst; | 
|  | else { | 
|  | CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; | 
|  | CurrSet->clear(); | 
|  | } | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  | bool respondsToCallback = true; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); | 
|  | NI != NE; ++NI) { | 
|  |  | 
|  | checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, tag, | 
|  | Kind == PreVisitStmtCallback, respondsToCallback); | 
|  |  | 
|  | } | 
|  |  | 
|  | PrevSet = CurrSet; | 
|  |  | 
|  | if (NewCO.get()) { | 
|  | ++checkersEvaluated; | 
|  | if (respondsToCallback) | 
|  | NewCO->push_back(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we built NewCO, check if we called all the checkers.  This is important | 
|  | // so that we know that we accurately determined the entire set of checkers | 
|  | // that responds to this callback.  Note that 'checkersEvaluated' might | 
|  | // not be the same as Checkers.size() if one of the Checkers generates | 
|  | // a sink node. | 
|  | if (NewCO.get() && checkersEvaluated == Checkers.size()) | 
|  | CO_Ref = NewCO.take(); | 
|  |  | 
|  | // Don't autotransition.  The CheckerContext objects should do this | 
|  | // automatically. | 
|  |  | 
|  | getCheckerManager().runCheckersForStmt(Kind == PreVisitStmtCallback, | 
|  | Dst, CheckersV1Dst, S, *this); | 
|  | } | 
|  |  | 
|  | void ExprEngine::CheckerVisitObjCMessage(const ObjCMessage &msg, | 
|  | ExplodedNodeSet &Dst, | 
|  | ExplodedNodeSet &Src, | 
|  | bool isPrevisit) { | 
|  |  | 
|  | if (Checkers.empty()) { | 
|  | getCheckerManager().runCheckersForObjCMessage(isPrevisit, Dst, Src, msg, | 
|  | *this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet CheckersV1Dst; | 
|  | ExplodedNodeSet Tmp; | 
|  | ExplodedNodeSet *PrevSet = &Src; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) | 
|  | { | 
|  | ExplodedNodeSet *CurrSet = 0; | 
|  | if (I+1 == E) | 
|  | CurrSet = &CheckersV1Dst; | 
|  | else { | 
|  | CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; | 
|  | CurrSet->clear(); | 
|  | } | 
|  |  | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); | 
|  | NI != NE; ++NI) | 
|  | checker->GR_visitObjCMessage(*CurrSet, *Builder, *this, msg, | 
|  | *NI, tag, isPrevisit); | 
|  |  | 
|  | // Update which NodeSet is the current one. | 
|  | PrevSet = CurrSet; | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForObjCMessage(isPrevisit, Dst, CheckersV1Dst, | 
|  | msg, *this); | 
|  | } | 
|  |  | 
|  | void ExprEngine::CheckerEvalNilReceiver(const ObjCMessage &msg, | 
|  | ExplodedNodeSet &Dst, | 
|  | const GRState *state, | 
|  | ExplodedNode *Pred) { | 
|  | bool evaluated = false; | 
|  | ExplodedNodeSet DstTmp; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  |  | 
|  | if (checker->GR_evalNilReceiver(DstTmp, *Builder, *this, msg, Pred, state, | 
|  | tag)) { | 
|  | evaluated = true; | 
|  | break; | 
|  | } else | 
|  | // The checker didn't evaluate the expr. Restore the Dst. | 
|  | DstTmp.clear(); | 
|  | } | 
|  |  | 
|  | if (evaluated) | 
|  | Dst.insert(DstTmp); | 
|  | else | 
|  | Dst.insert(Pred); | 
|  | } | 
|  |  | 
|  | // CheckerEvalCall returns true if one of the checkers processed the node. | 
|  | // This may return void when all call evaluation logic goes to some checker | 
|  | // in the future. | 
|  | bool ExprEngine::CheckerEvalCall(const CallExpr *CE, | 
|  | ExplodedNodeSet &Dst, | 
|  | ExplodedNode *Pred) { | 
|  | bool evaluated = false; | 
|  | ExplodedNodeSet DstTmp; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  |  | 
|  | if (checker->GR_evalCallExpr(DstTmp, *Builder, *this, CE, Pred, tag)) { | 
|  | evaluated = true; | 
|  | break; | 
|  | } else | 
|  | // The checker didn't evaluate the expr. Restore the DstTmp set. | 
|  | DstTmp.clear(); | 
|  | } | 
|  |  | 
|  | if (evaluated) { | 
|  | Dst.insert(DstTmp); | 
|  | return evaluated; | 
|  | } | 
|  |  | 
|  | class DefaultEval : public GraphExpander { | 
|  | bool &Evaluated; | 
|  | public: | 
|  | DefaultEval(bool &evaluated) : Evaluated(evaluated) { } | 
|  | virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) { | 
|  | Evaluated = false; | 
|  | Dst.insert(Pred); | 
|  | } | 
|  | }; | 
|  |  | 
|  | evaluated = true; | 
|  | DefaultEval defaultEval(evaluated); | 
|  | getCheckerManager().runCheckersForEvalCall(Dst, Pred, CE, *this, | 
|  | &defaultEval); | 
|  | return evaluated; | 
|  | } | 
|  |  | 
|  | // FIXME: This is largely copy-paste from CheckerVisit().  Need to | 
|  | // unify. | 
|  | void ExprEngine::CheckerVisitBind(const Stmt *StoreE, ExplodedNodeSet &Dst, | 
|  | ExplodedNodeSet &Src, SVal location, | 
|  | SVal val, bool isPrevisit) { | 
|  |  | 
|  | if (Checkers.empty()) { | 
|  | getCheckerManager().runCheckersForBind(Dst, Src, location, val, StoreE, | 
|  | *this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet CheckerV1Tmp; | 
|  | ExplodedNodeSet Tmp; | 
|  | ExplodedNodeSet *PrevSet = &Src; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) | 
|  | { | 
|  | ExplodedNodeSet *CurrSet = 0; | 
|  | if (I+1 == E) | 
|  | CurrSet = &CheckerV1Tmp; | 
|  | else { | 
|  | CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; | 
|  | CurrSet->clear(); | 
|  | } | 
|  |  | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); | 
|  | NI != NE; ++NI) | 
|  | checker->GR_VisitBind(*CurrSet, *Builder, *this, StoreE, | 
|  | *NI, tag, location, val, isPrevisit); | 
|  |  | 
|  | // Update which NodeSet is the current one. | 
|  | PrevSet = CurrSet; | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForBind(Dst, CheckerV1Tmp, location, val, | 
|  | StoreE, *this); | 
|  |  | 
|  | // Don't autotransition.  The CheckerContext objects should do this | 
|  | // automatically. | 
|  | } | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Engine construction and deletion. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf) | 
|  | : AMgr(mgr), | 
|  | Engine(*this), | 
|  | G(Engine.getGraph()), | 
|  | Builder(NULL), | 
|  | StateMgr(getContext(), mgr.getStoreManagerCreator(), | 
|  | mgr.getConstraintManagerCreator(), G.getAllocator(), | 
|  | *this), | 
|  | SymMgr(StateMgr.getSymbolManager()), | 
|  | svalBuilder(StateMgr.getSValBuilder()), | 
|  | EntryNode(NULL), currentStmt(NULL), | 
|  | NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), | 
|  | RaiseSel(GetNullarySelector("raise", getContext())), | 
|  | BR(mgr, *this), TF(tf) { | 
|  |  | 
|  | // FIXME: Eventually remove the TF object entirely. | 
|  | TF->RegisterChecks(*this); | 
|  | TF->RegisterPrinters(getStateManager().Printers); | 
|  |  | 
|  | if (mgr.shouldEagerlyTrimExplodedGraph()) { | 
|  | // Enable eager node reclaimation when constructing the ExplodedGraph. | 
|  | G.enableNodeReclamation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprEngine::~ExprEngine() { | 
|  | BR.FlushReports(); | 
|  | delete [] NSExceptionInstanceRaiseSelectors; | 
|  |  | 
|  | // Delete the set of checkers. | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(), E=Checkers.end(); I!=E;++I) | 
|  | delete I->second; | 
|  |  | 
|  | for (CheckersOrderedCache::iterator I=COCache.begin(), E=COCache.end(); | 
|  | I!=E;++I) | 
|  | delete I->second; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Utility methods. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) { | 
|  | const GRState *state = StateMgr.getInitialState(InitLoc); | 
|  |  | 
|  | // Preconditions. | 
|  |  | 
|  | // FIXME: It would be nice if we had a more general mechanism to add | 
|  | // such preconditions.  Some day. | 
|  | do { | 
|  | const Decl *D = InitLoc->getDecl(); | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // Precondition: the first argument of 'main' is an integer guaranteed | 
|  | //  to be > 0. | 
|  | const IdentifierInfo *II = FD->getIdentifier(); | 
|  | if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) | 
|  | break; | 
|  |  | 
|  | const ParmVarDecl *PD = FD->getParamDecl(0); | 
|  | QualType T = PD->getType(); | 
|  | if (!T->isIntegerType()) | 
|  | break; | 
|  |  | 
|  | const MemRegion *R = state->getRegion(PD, InitLoc); | 
|  | if (!R) | 
|  | break; | 
|  |  | 
|  | SVal V = state->getSVal(loc::MemRegionVal(R)); | 
|  | SVal Constraint_untested = evalBinOp(state, BO_GT, V, | 
|  | svalBuilder.makeZeroVal(T), | 
|  | getContext().IntTy); | 
|  |  | 
|  | DefinedOrUnknownSVal *Constraint = | 
|  | dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested); | 
|  |  | 
|  | if (!Constraint) | 
|  | break; | 
|  |  | 
|  | if (const GRState *newState = state->assume(*Constraint, true)) | 
|  | state = newState; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | // Precondition: 'self' is always non-null upon entry to an Objective-C | 
|  | // method. | 
|  | const ImplicitParamDecl *SelfD = MD->getSelfDecl(); | 
|  | const MemRegion *R = state->getRegion(SelfD, InitLoc); | 
|  | SVal V = state->getSVal(loc::MemRegionVal(R)); | 
|  |  | 
|  | if (const Loc *LV = dyn_cast<Loc>(&V)) { | 
|  | // Assume that the pointer value in 'self' is non-null. | 
|  | state = state->assume(*LV, true); | 
|  | assert(state && "'self' cannot be null"); | 
|  | } | 
|  | } | 
|  | } while (0); | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-level transfer function logic (Dispatcher). | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// evalAssume - Called by ConstraintManager. Used to call checker-specific | 
|  | ///  logic for handling assumptions on symbolic values. | 
|  | const GRState *ExprEngine::processAssume(const GRState *state, SVal cond, | 
|  | bool assumption) { | 
|  | // Determine if we already have a cached 'CheckersOrdered' vector | 
|  | // specifically tailored for processing assumptions.  This | 
|  | // can reduce the number of checkers actually called. | 
|  | CheckersOrdered *CO = &Checkers; | 
|  | llvm::OwningPtr<CheckersOrdered> NewCO; | 
|  |  | 
|  | CallbackTag K = GetCallbackTag(processAssumeCallback); | 
|  | CheckersOrdered *& CO_Ref = COCache[K]; | 
|  |  | 
|  | if (!CO_Ref) { | 
|  | // If we have no previously cached CheckersOrdered vector for this | 
|  | // statement kind, then create one. | 
|  | NewCO.reset(new CheckersOrdered); | 
|  | } | 
|  | else { | 
|  | // Use the already cached set. | 
|  | CO = CO_Ref; | 
|  | } | 
|  |  | 
|  | if (!CO->empty()) { | 
|  | // Let the checkers have a crack at the assume before the transfer functions | 
|  | // get their turn. | 
|  | for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I!=E; ++I) { | 
|  |  | 
|  | // If any checker declares the state infeasible (or if it starts that | 
|  | // way), bail out. | 
|  | if (!state) | 
|  | return NULL; | 
|  |  | 
|  | Checker *C = I->second; | 
|  | bool respondsToCallback = true; | 
|  |  | 
|  | state = C->evalAssume(state, cond, assumption, &respondsToCallback); | 
|  |  | 
|  | // Check if we're building the cache of checkers that care about | 
|  | // assumptions. | 
|  | if (NewCO.get() && respondsToCallback) | 
|  | NewCO->push_back(*I); | 
|  | } | 
|  |  | 
|  | // If we got through all the checkers, and we built a list of those that | 
|  | // care about assumptions, save it. | 
|  | if (NewCO.get()) | 
|  | CO_Ref = NewCO.take(); | 
|  | } | 
|  |  | 
|  | state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); | 
|  |  | 
|  | // If the state is infeasible at this point, bail out. | 
|  | if (!state) | 
|  | return NULL; | 
|  |  | 
|  | return TF->evalAssume(state, cond, assumption); | 
|  | } | 
|  |  | 
|  | bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) { | 
|  | CallbackTag K = GetCallbackTag(EvalRegionChangesCallback); | 
|  | CheckersOrdered *CO = COCache[K]; | 
|  |  | 
|  | if (!CO) | 
|  | CO = &Checkers; | 
|  |  | 
|  | for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I != E; ++I) { | 
|  | Checker *C = I->second; | 
|  | if (C->wantsRegionChangeUpdate(state)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return getCheckerManager().wantsRegionChangeUpdate(state); | 
|  | } | 
|  |  | 
|  | const GRState * | 
|  | ExprEngine::processRegionChanges(const GRState *state, | 
|  | const MemRegion * const *Begin, | 
|  | const MemRegion * const *End) { | 
|  | // FIXME: Most of this method is copy-pasted from processAssume. | 
|  |  | 
|  | // Determine if we already have a cached 'CheckersOrdered' vector | 
|  | // specifically tailored for processing region changes.  This | 
|  | // can reduce the number of checkers actually called. | 
|  | CheckersOrdered *CO = &Checkers; | 
|  | llvm::OwningPtr<CheckersOrdered> NewCO; | 
|  |  | 
|  | CallbackTag K = GetCallbackTag(EvalRegionChangesCallback); | 
|  | CheckersOrdered *& CO_Ref = COCache[K]; | 
|  |  | 
|  | if (!CO_Ref) { | 
|  | // If we have no previously cached CheckersOrdered vector for this | 
|  | // callback, then create one. | 
|  | NewCO.reset(new CheckersOrdered); | 
|  | } | 
|  | else { | 
|  | // Use the already cached set. | 
|  | CO = CO_Ref; | 
|  | } | 
|  |  | 
|  | // If there are no checkers, just delegate to the checker manager. | 
|  | if (CO->empty()) | 
|  | return getCheckerManager().runCheckersForRegionChanges(state, Begin, End); | 
|  |  | 
|  | for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I != E; ++I) { | 
|  | // If any checker declares the state infeasible (or if it starts that way), | 
|  | // bail out. | 
|  | if (!state) | 
|  | return NULL; | 
|  |  | 
|  | Checker *C = I->second; | 
|  | bool respondsToCallback = true; | 
|  |  | 
|  | state = C->EvalRegionChanges(state, Begin, End, &respondsToCallback); | 
|  |  | 
|  | // See if we're building a cache of checkers that care about region changes. | 
|  | if (NewCO.get() && respondsToCallback) | 
|  | NewCO->push_back(*I); | 
|  | } | 
|  |  | 
|  | // If we got through all the checkers, and we built a list of those that | 
|  | // care about region changes, save it. | 
|  | if (NewCO.get()) | 
|  | CO_Ref = NewCO.take(); | 
|  |  | 
|  | return getCheckerManager().runCheckersForRegionChanges(state, Begin, End); | 
|  | } | 
|  |  | 
|  | void ExprEngine::processEndWorklist(bool hasWorkRemaining) { | 
|  | for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); | 
|  | I != E; ++I) { | 
|  | I->second->VisitEndAnalysis(G, BR, *this); | 
|  | } | 
|  | getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); | 
|  | } | 
|  |  | 
|  | void ExprEngine::processCFGElement(const CFGElement E, | 
|  | StmtNodeBuilder& builder) { | 
|  | switch (E.getKind()) { | 
|  | case CFGElement::Statement: | 
|  | ProcessStmt(E.getAs<CFGStmt>(), builder); | 
|  | break; | 
|  | case CFGElement::Initializer: | 
|  | ProcessInitializer(E.getAs<CFGInitializer>(), builder); | 
|  | break; | 
|  | case CFGElement::ImplicitDtor: | 
|  | ProcessImplicitDtor(E.getAs<CFGImplicitDtor>(), builder); | 
|  | break; | 
|  | default: | 
|  | // Suppress compiler warning. | 
|  | llvm_unreachable("Unexpected CFGElement kind."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { | 
|  | // Reclaim any unnecessary nodes in the ExplodedGraph. | 
|  | G.reclaimRecentlyAllocatedNodes(); | 
|  | // Recycle any unused states in the GRStateManager. | 
|  | StateMgr.recycleUnusedStates(); | 
|  |  | 
|  | currentStmt = S.getStmt(); | 
|  | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
|  | currentStmt->getLocStart(), | 
|  | "Error evaluating statement"); | 
|  |  | 
|  | Builder = &builder; | 
|  | EntryNode = builder.getPredecessor(); | 
|  |  | 
|  | // Create the cleaned state. | 
|  | const LocationContext *LC = EntryNode->getLocationContext(); | 
|  | SymbolReaper SymReaper(LC, currentStmt, SymMgr); | 
|  |  | 
|  | if (AMgr.shouldPurgeDead()) { | 
|  | const GRState *St = EntryNode->getState(); | 
|  |  | 
|  | for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); | 
|  | I != E; ++I) { | 
|  | Checker *checker = I->second; | 
|  | checker->MarkLiveSymbols(St, SymReaper); | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForLiveSymbols(St, SymReaper); | 
|  |  | 
|  | const StackFrameContext *SFC = LC->getCurrentStackFrame(); | 
|  | CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper); | 
|  | } else { | 
|  | CleanedState = EntryNode->getState(); | 
|  | } | 
|  |  | 
|  | // Process any special transfer function for dead symbols. | 
|  | ExplodedNodeSet Tmp; | 
|  |  | 
|  | if (!SymReaper.hasDeadSymbols()) | 
|  | Tmp.Add(EntryNode); | 
|  | else { | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | SaveOr OldHasGen(Builder->hasGeneratedNode); | 
|  |  | 
|  | SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); | 
|  | Builder->PurgingDeadSymbols = true; | 
|  |  | 
|  | // FIXME: This should soon be removed. | 
|  | ExplodedNodeSet Tmp2; | 
|  | getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode, | 
|  | CleanedState, SymReaper); | 
|  |  | 
|  | ExplodedNodeSet checkersV1Tmp; | 
|  | if (Checkers.empty()) | 
|  | checkersV1Tmp.insert(Tmp2); | 
|  | else { | 
|  | ExplodedNodeSet Tmp3; | 
|  | ExplodedNodeSet *SrcSet = &Tmp2; | 
|  | for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); | 
|  | I != E; ++I) { | 
|  | ExplodedNodeSet *DstSet = 0; | 
|  | if (I+1 == E) | 
|  | DstSet = &checkersV1Tmp; | 
|  | else { | 
|  | DstSet = (SrcSet == &Tmp2) ? &Tmp3 : &Tmp2; | 
|  | DstSet->clear(); | 
|  | } | 
|  |  | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  | for (ExplodedNodeSet::iterator NI = SrcSet->begin(), NE = SrcSet->end(); | 
|  | NI != NE; ++NI) | 
|  | checker->GR_evalDeadSymbols(*DstSet, *Builder, *this, currentStmt, | 
|  | *NI, SymReaper, tag); | 
|  | SrcSet = DstSet; | 
|  | } | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForDeadSymbols(Tmp, checkersV1Tmp, | 
|  | SymReaper, currentStmt, *this); | 
|  |  | 
|  | if (!Builder->BuildSinks && !Builder->hasGeneratedNode) | 
|  | Tmp.Add(EntryNode); | 
|  | } | 
|  |  | 
|  | bool HasAutoGenerated = false; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | ExplodedNodeSet Dst; | 
|  |  | 
|  | // Set the cleaned state. | 
|  | Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); | 
|  |  | 
|  | // Visit the statement. | 
|  | Visit(currentStmt, *I, Dst); | 
|  |  | 
|  | // Do we need to auto-generate a node?  We only need to do this to generate | 
|  | // a node with a "cleaned" state; CoreEngine will actually handle | 
|  | // auto-transitions for other cases. | 
|  | if (Dst.size() == 1 && *Dst.begin() == EntryNode | 
|  | && !Builder->hasGeneratedNode && !HasAutoGenerated) { | 
|  | HasAutoGenerated = true; | 
|  | builder.generateNode(currentStmt, GetState(EntryNode), *I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // NULL out these variables to cleanup. | 
|  | CleanedState = NULL; | 
|  | EntryNode = NULL; | 
|  |  | 
|  | currentStmt = 0; | 
|  |  | 
|  | Builder = NULL; | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessInitializer(const CFGInitializer Init, | 
|  | StmtNodeBuilder &builder) { | 
|  | // We don't set EntryNode and currentStmt. And we don't clean up state. | 
|  | const CXXCtorInitializer *BMI = Init.getInitializer(); | 
|  |  | 
|  | ExplodedNode *pred = builder.getPredecessor(); | 
|  |  | 
|  | const StackFrameContext *stackFrame = cast<StackFrameContext>(pred->getLocationContext()); | 
|  | const CXXConstructorDecl *decl = cast<CXXConstructorDecl>(stackFrame->getDecl()); | 
|  | const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame); | 
|  |  | 
|  | SVal thisVal = pred->getState()->getSVal(thisReg); | 
|  |  | 
|  | if (BMI->isAnyMemberInitializer()) { | 
|  | ExplodedNodeSet Dst; | 
|  |  | 
|  | // Evaluate the initializer. | 
|  | Visit(BMI->getInit(), pred, Dst); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ | 
|  | ExplodedNode *Pred = *I; | 
|  | const GRState *state = Pred->getState(); | 
|  |  | 
|  | const FieldDecl *FD = BMI->getAnyMember(); | 
|  |  | 
|  | SVal FieldLoc = state->getLValue(FD, thisVal); | 
|  | SVal InitVal = state->getSVal(BMI->getInit()); | 
|  | state = state->bindLoc(FieldLoc, InitVal); | 
|  |  | 
|  | // Use a custom node building process. | 
|  | PostInitializer PP(BMI, stackFrame); | 
|  | // Builder automatically add the generated node to the deferred set, | 
|  | // which are processed in the builder's dtor. | 
|  | builder.generateNode(PP, state, Pred); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(BMI->isBaseInitializer()); | 
|  |  | 
|  | // Get the base class declaration. | 
|  | const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit()); | 
|  |  | 
|  | // Create the base object region. | 
|  | SVal baseVal = | 
|  | getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType()); | 
|  | const MemRegion *baseReg = baseVal.getAsRegion(); | 
|  | assert(baseReg); | 
|  | Builder = &builder; | 
|  | ExplodedNodeSet dst; | 
|  | VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst); | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, | 
|  | StmtNodeBuilder &builder) { | 
|  | Builder = &builder; | 
|  |  | 
|  | switch (D.getDtorKind()) { | 
|  | case CFGElement::AutomaticObjectDtor: | 
|  | ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder); | 
|  | break; | 
|  | case CFGElement::BaseDtor: | 
|  | ProcessBaseDtor(cast<CFGBaseDtor>(D), builder); | 
|  | break; | 
|  | case CFGElement::MemberDtor: | 
|  | ProcessMemberDtor(cast<CFGMemberDtor>(D), builder); | 
|  | break; | 
|  | case CFGElement::TemporaryDtor: | 
|  | ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected dtor kind."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, | 
|  | StmtNodeBuilder &builder) { | 
|  | ExplodedNode *pred = builder.getPredecessor(); | 
|  | const GRState *state = pred->getState(); | 
|  | const VarDecl *varDecl = dtor.getVarDecl(); | 
|  |  | 
|  | QualType varType = varDecl->getType(); | 
|  |  | 
|  | if (const ReferenceType *refType = varType->getAs<ReferenceType>()) | 
|  | varType = refType->getPointeeType(); | 
|  |  | 
|  | const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); | 
|  | assert(recordDecl && "get CXXRecordDecl fail"); | 
|  | const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); | 
|  |  | 
|  | Loc dest = state->getLValue(varDecl, pred->getLocationContext()); | 
|  |  | 
|  | ExplodedNodeSet dstSet; | 
|  | VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(), | 
|  | dtor.getTriggerStmt(), pred, dstSet); | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, | 
|  | StmtNodeBuilder &builder) { | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, | 
|  | StmtNodeBuilder &builder) { | 
|  | } | 
|  |  | 
|  | void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, | 
|  | StmtNodeBuilder &builder) { | 
|  | } | 
|  |  | 
|  | void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
|  | S->getLocStart(), | 
|  | "Error evaluating statement"); | 
|  |  | 
|  | // Expressions to ignore. | 
|  | if (const Expr *Ex = dyn_cast<Expr>(S)) | 
|  | S = Ex->IgnoreParens(); | 
|  |  | 
|  | // FIXME: add metadata to the CFG so that we can disable | 
|  | //  this check when we KNOW that there is no block-level subexpression. | 
|  | //  The motivation is that this check requires a hashtable lookup. | 
|  |  | 
|  | if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { | 
|  | Dst.Add(Pred); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | // C++ stuff we don't support yet. | 
|  | case Stmt::CXXBindTemporaryExprClass: | 
|  | case Stmt::CXXCatchStmtClass: | 
|  | case Stmt::CXXDefaultArgExprClass: | 
|  | case Stmt::CXXDependentScopeMemberExprClass: | 
|  | case Stmt::ExprWithCleanupsClass: | 
|  | case Stmt::CXXNullPtrLiteralExprClass: | 
|  | case Stmt::CXXPseudoDestructorExprClass: | 
|  | case Stmt::CXXTemporaryObjectExprClass: | 
|  | case Stmt::CXXThrowExprClass: | 
|  | case Stmt::CXXTryStmtClass: | 
|  | case Stmt::CXXTypeidExprClass: | 
|  | case Stmt::CXXUuidofExprClass: | 
|  | case Stmt::CXXUnresolvedConstructExprClass: | 
|  | case Stmt::CXXScalarValueInitExprClass: | 
|  | case Stmt::DependentScopeDeclRefExprClass: | 
|  | case Stmt::UnaryTypeTraitExprClass: | 
|  | case Stmt::BinaryTypeTraitExprClass: | 
|  | case Stmt::UnresolvedLookupExprClass: | 
|  | case Stmt::UnresolvedMemberExprClass: | 
|  | case Stmt::CXXNoexceptExprClass: | 
|  | case Stmt::PackExpansionExprClass: | 
|  | case Stmt::SubstNonTypeTemplateParmPackExprClass: | 
|  | { | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | Builder->BuildSinks = true; | 
|  | MakeNode(Dst, S, Pred, GetState(Pred)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::ParenExprClass: | 
|  | llvm_unreachable("ParenExprs already handled."); | 
|  | // Cases that should never be evaluated simply because they shouldn't | 
|  | // appear in the CFG. | 
|  | case Stmt::BreakStmtClass: | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::CompoundStmtClass: | 
|  | case Stmt::ContinueStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | case Stmt::DoStmtClass: | 
|  | case Stmt::GotoStmtClass: | 
|  | case Stmt::IndirectGotoStmtClass: | 
|  | case Stmt::LabelStmtClass: | 
|  | case Stmt::NoStmtClass: | 
|  | case Stmt::NullStmtClass: | 
|  | llvm_unreachable("Stmt should not be in analyzer evaluation loop"); | 
|  | break; | 
|  |  | 
|  | case Stmt::GNUNullExprClass: { | 
|  | MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::ObjCAtSynchronizedStmtClass: | 
|  | VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ObjCPropertyRefExprClass: | 
|  | VisitObjCPropertyRefExpr(cast<ObjCPropertyRefExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | // Cases not handled yet; but will handle some day. | 
|  | case Stmt::DesignatedInitExprClass: | 
|  | case Stmt::ExtVectorElementExprClass: | 
|  | case Stmt::ImaginaryLiteralClass: | 
|  | case Stmt::ImplicitValueInitExprClass: | 
|  | case Stmt::ObjCAtCatchStmtClass: | 
|  | case Stmt::ObjCAtFinallyStmtClass: | 
|  | case Stmt::ObjCAtTryStmtClass: | 
|  | case Stmt::ObjCEncodeExprClass: | 
|  | case Stmt::ObjCIsaExprClass: | 
|  | case Stmt::ObjCProtocolExprClass: | 
|  | case Stmt::ObjCSelectorExprClass: | 
|  | case Stmt::ObjCStringLiteralClass: | 
|  | case Stmt::ParenListExprClass: | 
|  | case Stmt::PredefinedExprClass: | 
|  | case Stmt::ShuffleVectorExprClass: | 
|  | case Stmt::VAArgExprClass: | 
|  | case Stmt::CUDAKernelCallExprClass: | 
|  | case Stmt::OpaqueValueExprClass: | 
|  | // Fall through. | 
|  |  | 
|  | // Cases we intentionally don't evaluate, since they don't need | 
|  | // to be explicitly evaluated. | 
|  | case Stmt::AddrLabelExprClass: | 
|  | case Stmt::IntegerLiteralClass: | 
|  | case Stmt::CharacterLiteralClass: | 
|  | case Stmt::CXXBoolLiteralExprClass: | 
|  | case Stmt::FloatingLiteralClass: | 
|  | case Stmt::SizeOfPackExprClass: | 
|  | Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. | 
|  | break; | 
|  |  | 
|  | case Stmt::ArraySubscriptExprClass: | 
|  | VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::AsmStmtClass: | 
|  | VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::BlockDeclRefExprClass: { | 
|  | const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S); | 
|  | VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::BlockExprClass: | 
|  | VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::BinaryOperatorClass: { | 
|  | const BinaryOperator* B = cast<BinaryOperator>(S); | 
|  | if (B->isLogicalOp()) { | 
|  | VisitLogicalExpr(B, Pred, Dst); | 
|  | break; | 
|  | } | 
|  | else if (B->getOpcode() == BO_Comma) { | 
|  | const GRState* state = GetState(Pred); | 
|  | MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AMgr.shouldEagerlyAssume() && | 
|  | (B->isRelationalOp() || B->isEqualityOp())) { | 
|  | ExplodedNodeSet Tmp; | 
|  | VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); | 
|  | evalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); | 
|  | } | 
|  | else | 
|  | VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CallExprClass: { | 
|  | const CallExpr* C = cast<CallExpr>(S); | 
|  | VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXConstructExprClass: { | 
|  | const CXXConstructExpr *C = cast<CXXConstructExpr>(S); | 
|  | // For block-level CXXConstructExpr, we don't have a destination region. | 
|  | // Let VisitCXXConstructExpr() create one. | 
|  | VisitCXXConstructExpr(C, 0, Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXMemberCallExprClass: { | 
|  | const CXXMemberCallExpr *MCE = cast<CXXMemberCallExpr>(S); | 
|  | VisitCXXMemberCallExpr(MCE, Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXOperatorCallExprClass: { | 
|  | const CXXOperatorCallExpr *C = cast<CXXOperatorCallExpr>(S); | 
|  | VisitCXXOperatorCallExpr(C, Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXNewExprClass: { | 
|  | const CXXNewExpr *NE = cast<CXXNewExpr>(S); | 
|  | VisitCXXNewExpr(NE, Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXDeleteExprClass: { | 
|  | const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); | 
|  | VisitCXXDeleteExpr(CDE, Pred, Dst); | 
|  | break; | 
|  | } | 
|  | // FIXME: ChooseExpr is really a constant.  We need to fix | 
|  | //        the CFG do not model them as explicit control-flow. | 
|  |  | 
|  | case Stmt::ChooseExprClass: { // __builtin_choose_expr | 
|  | const ChooseExpr* C = cast<ChooseExpr>(S); | 
|  | VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CompoundAssignOperatorClass: | 
|  | VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::CompoundLiteralExprClass: | 
|  | VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::BinaryConditionalOperatorClass: | 
|  | case Stmt::ConditionalOperatorClass: { // '?' operator | 
|  | const AbstractConditionalOperator *C | 
|  | = cast<AbstractConditionalOperator>(S); | 
|  | VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::CXXThisExprClass: | 
|  | VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::DeclRefExprClass: { | 
|  | const DeclRefExpr *DE = cast<DeclRefExpr>(S); | 
|  | VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::DeclStmtClass: | 
|  | VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ForStmtClass: | 
|  | // This case isn't for branch processing, but for handling the | 
|  | // initialization of a condition variable. | 
|  | VisitCondInit(cast<ForStmt>(S)->getConditionVariable(), S, Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ImplicitCastExprClass: | 
|  | case Stmt::CStyleCastExprClass: | 
|  | case Stmt::CXXStaticCastExprClass: | 
|  | case Stmt::CXXDynamicCastExprClass: | 
|  | case Stmt::CXXReinterpretCastExprClass: | 
|  | case Stmt::CXXConstCastExprClass: | 
|  | case Stmt::CXXFunctionalCastExprClass: { | 
|  | const CastExpr* C = cast<CastExpr>(S); | 
|  | VisitCast(C, C->getSubExpr(), Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::IfStmtClass: | 
|  | // This case isn't for branch processing, but for handling the | 
|  | // initialization of a condition variable. | 
|  | VisitCondInit(cast<IfStmt>(S)->getConditionVariable(), S, Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::InitListExprClass: | 
|  | VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::MemberExprClass: | 
|  | VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); | 
|  | break; | 
|  | case Stmt::ObjCIvarRefExprClass: | 
|  | VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ObjCForCollectionStmtClass: | 
|  | VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ObjCMessageExprClass: | 
|  | VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::ObjCAtThrowStmtClass: { | 
|  | // FIXME: This is not complete.  We basically treat @throw as | 
|  | // an abort. | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | Builder->BuildSinks = true; | 
|  | MakeNode(Dst, S, Pred, GetState(Pred)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::ReturnStmtClass: | 
|  | VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::OffsetOfExprClass: | 
|  | VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::SizeOfAlignOfExprClass: | 
|  | VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::StmtExprClass: { | 
|  | const StmtExpr* SE = cast<StmtExpr>(S); | 
|  |  | 
|  | if (SE->getSubStmt()->body_empty()) { | 
|  | // Empty statement expression. | 
|  | assert(SE->getType() == getContext().VoidTy | 
|  | && "Empty statement expression must have void type."); | 
|  | Dst.Add(Pred); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { | 
|  | const GRState* state = GetState(Pred); | 
|  | MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); | 
|  | } | 
|  | else | 
|  | Dst.Add(Pred); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::StringLiteralClass: { | 
|  | const GRState* state = GetState(Pred); | 
|  | SVal V = state->getLValue(cast<StringLiteral>(S)); | 
|  | MakeNode(Dst, S, Pred, state->BindExpr(S, V)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Stmt::SwitchStmtClass: | 
|  | // This case isn't for branch processing, but for handling the | 
|  | // initialization of a condition variable. | 
|  | VisitCondInit(cast<SwitchStmt>(S)->getConditionVariable(), S, Pred, Dst); | 
|  | break; | 
|  |  | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | const UnaryOperator *U = cast<UnaryOperator>(S); | 
|  | if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { | 
|  | ExplodedNodeSet Tmp; | 
|  | VisitUnaryOperator(U, Pred, Tmp); | 
|  | evalEagerlyAssume(Dst, Tmp, U); | 
|  | } | 
|  | else | 
|  | VisitUnaryOperator(U, Pred, Dst); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::WhileStmtClass: | 
|  | // This case isn't for branch processing, but for handling the | 
|  | // initialization of a condition variable. | 
|  | VisitCondInit(cast<WhileStmt>(S)->getConditionVariable(), S, Pred, Dst); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Block entrance.  (Update counters). | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes, | 
|  | GenericNodeBuilder<BlockEntrance> &nodeBuilder){ | 
|  |  | 
|  | // FIXME: Refactor this into a checker. | 
|  | const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock(); | 
|  | ExplodedNode *pred = nodeBuilder.getPredecessor(); | 
|  |  | 
|  | if (nodeBuilder.getBlockCounter().getNumVisited( | 
|  | pred->getLocationContext()->getCurrentStackFrame(), | 
|  | block->getBlockID()) >= AMgr.getMaxVisit()) { | 
|  |  | 
|  | static int tag = 0; | 
|  | nodeBuilder.generateNode(pred->getState(), pred, &tag, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Generic node creation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, | 
|  | ExplodedNode* Pred, const GRState* St, | 
|  | ProgramPoint::Kind K, const void *tag) { | 
|  | assert (Builder && "StmtNodeBuilder not present."); | 
|  | SaveAndRestore<const void*> OldTag(Builder->Tag); | 
|  | Builder->Tag = tag; | 
|  | return Builder->MakeNode(Dst, S, Pred, St, K); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Branch processing. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const GRState* ExprEngine::MarkBranch(const GRState* state, | 
|  | const Stmt* Terminator, | 
|  | bool branchTaken) { | 
|  |  | 
|  | switch (Terminator->getStmtClass()) { | 
|  | default: | 
|  | return state; | 
|  |  | 
|  | case Stmt::BinaryOperatorClass: { // '&&' and '||' | 
|  |  | 
|  | const BinaryOperator* B = cast<BinaryOperator>(Terminator); | 
|  | BinaryOperator::Opcode Op = B->getOpcode(); | 
|  |  | 
|  | assert (Op == BO_LAnd || Op == BO_LOr); | 
|  |  | 
|  | // For &&, if we take the true branch, then the value of the whole | 
|  | // expression is that of the RHS expression. | 
|  | // | 
|  | // For ||, if we take the false branch, then the value of the whole | 
|  | // expression is that of the RHS expression. | 
|  |  | 
|  | const Expr* Ex = (Op == BO_LAnd && branchTaken) || | 
|  | (Op == BO_LOr && !branchTaken) | 
|  | ? B->getRHS() : B->getLHS(); | 
|  |  | 
|  | return state->BindExpr(B, UndefinedVal(Ex)); | 
|  | } | 
|  |  | 
|  | case Stmt::BinaryConditionalOperatorClass: | 
|  | case Stmt::ConditionalOperatorClass: { // ?: | 
|  | const AbstractConditionalOperator* C | 
|  | = cast<AbstractConditionalOperator>(Terminator); | 
|  |  | 
|  | // For ?, if branchTaken == true then the value is either the LHS or | 
|  | // the condition itself. (GNU extension). | 
|  |  | 
|  | const Expr* Ex; | 
|  |  | 
|  | if (branchTaken) | 
|  | Ex = C->getTrueExpr(); | 
|  | else | 
|  | Ex = C->getFalseExpr(); | 
|  |  | 
|  | return state->BindExpr(C, UndefinedVal(Ex)); | 
|  | } | 
|  |  | 
|  | case Stmt::ChooseExprClass: { // ?: | 
|  |  | 
|  | const ChooseExpr* C = cast<ChooseExpr>(Terminator); | 
|  |  | 
|  | const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); | 
|  | return state->BindExpr(C, UndefinedVal(Ex)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RecoverCastedSymbol - A helper function for ProcessBranch that is used | 
|  | /// to try to recover some path-sensitivity for casts of symbolic | 
|  | /// integers that promote their values (which are currently not tracked well). | 
|  | /// This function returns the SVal bound to Condition->IgnoreCasts if all the | 
|  | //  cast(s) did was sign-extend the original value. | 
|  | static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, | 
|  | const Stmt* Condition, ASTContext& Ctx) { | 
|  |  | 
|  | const Expr *Ex = dyn_cast<Expr>(Condition); | 
|  | if (!Ex) | 
|  | return UnknownVal(); | 
|  |  | 
|  | uint64_t bits = 0; | 
|  | bool bitsInit = false; | 
|  |  | 
|  | while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { | 
|  | QualType T = CE->getType(); | 
|  |  | 
|  | if (!T->isIntegerType()) | 
|  | return UnknownVal(); | 
|  |  | 
|  | uint64_t newBits = Ctx.getTypeSize(T); | 
|  | if (!bitsInit || newBits < bits) { | 
|  | bitsInit = true; | 
|  | bits = newBits; | 
|  | } | 
|  |  | 
|  | Ex = CE->getSubExpr(); | 
|  | } | 
|  |  | 
|  | // We reached a non-cast.  Is it a symbolic value? | 
|  | QualType T = Ex->getType(); | 
|  |  | 
|  | if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) | 
|  | return UnknownVal(); | 
|  |  | 
|  | return state->getSVal(Ex); | 
|  | } | 
|  |  | 
|  | void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term, | 
|  | BranchNodeBuilder& builder) { | 
|  |  | 
|  | // Check for NULL conditions; e.g. "for(;;)" | 
|  | if (!Condition) { | 
|  | builder.markInfeasible(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
|  | Condition->getLocStart(), | 
|  | "Error evaluating branch"); | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  | checker->VisitBranchCondition(builder, *this, Condition, tag); | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this); | 
|  |  | 
|  | // If the branch condition is undefined, return; | 
|  | if (!builder.isFeasible(true) && !builder.isFeasible(false)) | 
|  | return; | 
|  |  | 
|  | const GRState* PrevState = builder.getState(); | 
|  | SVal X = PrevState->getSVal(Condition); | 
|  |  | 
|  | if (X.isUnknownOrUndef()) { | 
|  | // Give it a chance to recover from unknown. | 
|  | if (const Expr *Ex = dyn_cast<Expr>(Condition)) { | 
|  | if (Ex->getType()->isIntegerType()) { | 
|  | // Try to recover some path-sensitivity.  Right now casts of symbolic | 
|  | // integers that promote their values are currently not tracked well. | 
|  | // If 'Condition' is such an expression, try and recover the | 
|  | // underlying value and use that instead. | 
|  | SVal recovered = RecoverCastedSymbol(getStateManager(), | 
|  | builder.getState(), Condition, | 
|  | getContext()); | 
|  |  | 
|  | if (!recovered.isUnknown()) { | 
|  | X = recovered; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If the condition is still unknown, give up. | 
|  | if (X.isUnknownOrUndef()) { | 
|  | builder.generateNode(MarkBranch(PrevState, Term, true), true); | 
|  | builder.generateNode(MarkBranch(PrevState, Term, false), false); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | DefinedSVal V = cast<DefinedSVal>(X); | 
|  |  | 
|  | // Process the true branch. | 
|  | if (builder.isFeasible(true)) { | 
|  | if (const GRState *state = PrevState->assume(V, true)) | 
|  | builder.generateNode(MarkBranch(state, Term, true), true); | 
|  | else | 
|  | builder.markInfeasible(true); | 
|  | } | 
|  |  | 
|  | // Process the false branch. | 
|  | if (builder.isFeasible(false)) { | 
|  | if (const GRState *state = PrevState->assume(V, false)) | 
|  | builder.generateNode(MarkBranch(state, Term, false), false); | 
|  | else | 
|  | builder.markInfeasible(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// processIndirectGoto - Called by CoreEngine.  Used to generate successor | 
|  | ///  nodes by processing the 'effects' of a computed goto jump. | 
|  | void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { | 
|  |  | 
|  | const GRState *state = builder.getState(); | 
|  | SVal V = state->getSVal(builder.getTarget()); | 
|  |  | 
|  | // Three possibilities: | 
|  | // | 
|  | //   (1) We know the computed label. | 
|  | //   (2) The label is NULL (or some other constant), or Undefined. | 
|  | //   (3) We have no clue about the label.  Dispatch to all targets. | 
|  | // | 
|  |  | 
|  | typedef IndirectGotoNodeBuilder::iterator iterator; | 
|  |  | 
|  | if (isa<loc::GotoLabel>(V)) { | 
|  | const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel(); | 
|  |  | 
|  | for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { | 
|  | if (I.getLabel() == L) { | 
|  | builder.generateNode(I, state); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(false && "No block with label."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { | 
|  | // Dispatch to the first target and mark it as a sink. | 
|  | //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); | 
|  | // FIXME: add checker visit. | 
|  | //    UndefBranches.insert(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This is really a catch-all.  We don't support symbolics yet. | 
|  | // FIXME: Implement dispatch for symbolic pointers. | 
|  |  | 
|  | for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) | 
|  | builder.generateNode(I, state); | 
|  | } | 
|  |  | 
|  |  | 
|  | void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L, | 
|  | const Expr* R, | 
|  | ExplodedNode* Pred, ExplodedNodeSet& Dst) { | 
|  |  | 
|  | assert(Ex == currentStmt && | 
|  | Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); | 
|  |  | 
|  | const GRState* state = GetState(Pred); | 
|  | SVal X = state->getSVal(Ex); | 
|  |  | 
|  | assert (X.isUndef()); | 
|  |  | 
|  | const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); | 
|  | assert(SE); | 
|  | X = state->getSVal(SE); | 
|  |  | 
|  | // Make sure that we invalidate the previous binding. | 
|  | MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); | 
|  | } | 
|  |  | 
|  | /// ProcessEndPath - Called by CoreEngine.  Used to generate end-of-path | 
|  | ///  nodes when the control reaches the end of a function. | 
|  | void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) { | 
|  | getTF().evalEndPath(*this, builder); | 
|  | StateMgr.EndPath(builder.getState()); | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  | EndOfFunctionNodeBuilder B = builder.withCheckerTag(tag); | 
|  | checker->evalEndPath(B, tag, *this); | 
|  | } | 
|  | getCheckerManager().runCheckersForEndPath(builder, *this); | 
|  | } | 
|  |  | 
|  | /// ProcessSwitch - Called by CoreEngine.  Used to generate successor | 
|  | ///  nodes by processing the 'effects' of a switch statement. | 
|  | void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { | 
|  | typedef SwitchNodeBuilder::iterator iterator; | 
|  | const GRState* state = builder.getState(); | 
|  | const Expr* CondE = builder.getCondition(); | 
|  | SVal  CondV_untested = state->getSVal(CondE); | 
|  |  | 
|  | if (CondV_untested.isUndef()) { | 
|  | //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); | 
|  | // FIXME: add checker | 
|  | //UndefBranches.insert(N); | 
|  |  | 
|  | return; | 
|  | } | 
|  | DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested); | 
|  |  | 
|  | const GRState *DefaultSt = state; | 
|  |  | 
|  | iterator I = builder.begin(), EI = builder.end(); | 
|  | bool defaultIsFeasible = I == EI; | 
|  |  | 
|  | for ( ; I != EI; ++I) { | 
|  | const CaseStmt* Case = I.getCase(); | 
|  |  | 
|  | // Evaluate the LHS of the case value. | 
|  | Expr::EvalResult V1; | 
|  | bool b = Case->getLHS()->Evaluate(V1, getContext()); | 
|  |  | 
|  | // Sanity checks.  These go away in Release builds. | 
|  | assert(b && V1.Val.isInt() && !V1.HasSideEffects | 
|  | && "Case condition must evaluate to an integer constant."); | 
|  | (void)b; // silence unused variable warning | 
|  | assert(V1.Val.getInt().getBitWidth() == | 
|  | getContext().getTypeSize(CondE->getType())); | 
|  |  | 
|  | // Get the RHS of the case, if it exists. | 
|  | Expr::EvalResult V2; | 
|  |  | 
|  | if (const Expr* E = Case->getRHS()) { | 
|  | b = E->Evaluate(V2, getContext()); | 
|  | assert(b && V2.Val.isInt() && !V2.HasSideEffects | 
|  | && "Case condition must evaluate to an integer constant."); | 
|  | (void)b; // silence unused variable warning | 
|  | } | 
|  | else | 
|  | V2 = V1; | 
|  |  | 
|  | // FIXME: Eventually we should replace the logic below with a range | 
|  | //  comparison, rather than concretize the values within the range. | 
|  | //  This should be easy once we have "ranges" for NonLVals. | 
|  |  | 
|  | do { | 
|  | nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); | 
|  | DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, | 
|  | CondV, CaseVal); | 
|  |  | 
|  | // Now "assume" that the case matches. | 
|  | if (const GRState* stateNew = state->assume(Res, true)) { | 
|  | builder.generateCaseStmtNode(I, stateNew); | 
|  |  | 
|  | // If CondV evaluates to a constant, then we know that this | 
|  | // is the *only* case that we can take, so stop evaluating the | 
|  | // others. | 
|  | if (isa<nonloc::ConcreteInt>(CondV)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Now "assume" that the case doesn't match.  Add this state | 
|  | // to the default state (if it is feasible). | 
|  | if (DefaultSt) { | 
|  | if (const GRState *stateNew = DefaultSt->assume(Res, false)) { | 
|  | defaultIsFeasible = true; | 
|  | DefaultSt = stateNew; | 
|  | } | 
|  | else { | 
|  | defaultIsFeasible = false; | 
|  | DefaultSt = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Concretize the next value in the range. | 
|  | if (V1.Val.getInt() == V2.Val.getInt()) | 
|  | break; | 
|  |  | 
|  | ++V1.Val.getInt(); | 
|  | assert (V1.Val.getInt() <= V2.Val.getInt()); | 
|  |  | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | if (!defaultIsFeasible) | 
|  | return; | 
|  |  | 
|  | // If we have switch(enum value), the default branch is not | 
|  | // feasible if all of the enum constants not covered by 'case:' statements | 
|  | // are not feasible values for the switch condition. | 
|  | // | 
|  | // Note that this isn't as accurate as it could be.  Even if there isn't | 
|  | // a case for a particular enum value as long as that enum value isn't | 
|  | // feasible then it shouldn't be considered for making 'default:' reachable. | 
|  | const SwitchStmt *SS = builder.getSwitch(); | 
|  | const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); | 
|  | if (CondExpr->getType()->getAs<EnumType>()) { | 
|  | if (SS->isAllEnumCasesCovered()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | builder.generateDefaultCaseNode(DefaultSt); | 
|  | } | 
|  |  | 
|  | void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) { | 
|  | const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext()); | 
|  | B.generateNode(state); | 
|  | } | 
|  |  | 
|  | void ExprEngine::processCallExit(CallExitNodeBuilder &B) { | 
|  | const GRState *state = B.getState(); | 
|  | const ExplodedNode *Pred = B.getPredecessor(); | 
|  | const StackFrameContext *calleeCtx = | 
|  | cast<StackFrameContext>(Pred->getLocationContext()); | 
|  | const Stmt *CE = calleeCtx->getCallSite(); | 
|  |  | 
|  | // If the callee returns an expression, bind its value to CallExpr. | 
|  | const Stmt *ReturnedExpr = state->get<ReturnExpr>(); | 
|  | if (ReturnedExpr) { | 
|  | SVal RetVal = state->getSVal(ReturnedExpr); | 
|  | state = state->BindExpr(CE, RetVal); | 
|  | // Clear the return expr GDM. | 
|  | state = state->remove<ReturnExpr>(); | 
|  | } | 
|  |  | 
|  | // Bind the constructed object value to CXXConstructExpr. | 
|  | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { | 
|  | const CXXThisRegion *ThisR = | 
|  | getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx); | 
|  |  | 
|  | SVal ThisV = state->getSVal(ThisR); | 
|  | // Always bind the region to the CXXConstructExpr. | 
|  | state = state->BindExpr(CCE, ThisV); | 
|  | } | 
|  |  | 
|  | B.generateNode(state); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer functions: logical operations ('&&', '||'). | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | assert(B->getOpcode() == BO_LAnd || | 
|  | B->getOpcode() == BO_LOr); | 
|  |  | 
|  | assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); | 
|  |  | 
|  | const GRState* state = GetState(Pred); | 
|  | SVal X = state->getSVal(B); | 
|  | assert(X.isUndef()); | 
|  |  | 
|  | const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData(); | 
|  | assert(Ex); | 
|  |  | 
|  | if (Ex == B->getRHS()) { | 
|  | X = state->getSVal(Ex); | 
|  |  | 
|  | // Handle undefined values. | 
|  | if (X.isUndef()) { | 
|  | MakeNode(Dst, B, Pred, state->BindExpr(B, X)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X); | 
|  |  | 
|  | // We took the RHS.  Because the value of the '&&' or '||' expression must | 
|  | // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 | 
|  | // or 1.  Alternatively, we could take a lazy approach, and calculate this | 
|  | // value later when necessary.  We don't have the machinery in place for | 
|  | // this right now, and since most logical expressions are used for branches, | 
|  | // the payoff is not likely to be large.  Instead, we do eager evaluation. | 
|  | if (const GRState *newState = state->assume(XD, true)) | 
|  | MakeNode(Dst, B, Pred, | 
|  | newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType()))); | 
|  |  | 
|  | if (const GRState *newState = state->assume(XD, false)) | 
|  | MakeNode(Dst, B, Pred, | 
|  | newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType()))); | 
|  | } | 
|  | else { | 
|  | // We took the LHS expression.  Depending on whether we are '&&' or | 
|  | // '||' we know what the value of the expression is via properties of | 
|  | // the short-circuiting. | 
|  | X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U, | 
|  | B->getType()); | 
|  | MakeNode(Dst, B, Pred, state->BindExpr(B, X)); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer functions: Loads and stores. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, | 
|  | ExplodedNodeSet &Dst) { | 
|  |  | 
|  | ExplodedNodeSet Tmp; | 
|  |  | 
|  | CanQualType T = getContext().getCanonicalType(BE->getType()); | 
|  | SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, | 
|  | Pred->getLocationContext()); | 
|  |  | 
|  | MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), | 
|  | ProgramPoint::PostLValueKind); | 
|  |  | 
|  | // Post-visit the BlockExpr. | 
|  | CheckerVisit(BE, Dst, Tmp, PostVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, | 
|  | ExplodedNode *Pred, | 
|  | ExplodedNodeSet &Dst) { | 
|  | const GRState *state = GetState(Pred); | 
|  |  | 
|  | if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { | 
|  | assert(Ex->isLValue()); | 
|  | SVal V = state->getLValue(VD, Pred->getLocationContext()); | 
|  |  | 
|  | // For references, the 'lvalue' is the pointer address stored in the | 
|  | // reference region. | 
|  | if (VD->getType()->isReferenceType()) { | 
|  | if (const MemRegion *R = V.getAsRegion()) | 
|  | V = state->getSVal(R); | 
|  | else | 
|  | V = UnknownVal(); | 
|  | } | 
|  |  | 
|  | MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), | 
|  | ProgramPoint::PostLValueKind); | 
|  | return; | 
|  | } | 
|  | if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { | 
|  | assert(!Ex->isLValue()); | 
|  | SVal V = svalBuilder.makeIntVal(ED->getInitVal()); | 
|  | MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); | 
|  | return; | 
|  | } | 
|  | if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { | 
|  | SVal V = svalBuilder.getFunctionPointer(FD); | 
|  | MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), | 
|  | ProgramPoint::PostLValueKind); | 
|  | return; | 
|  | } | 
|  | assert (false && | 
|  | "ValueDecl support for this ValueDecl not implemented."); | 
|  | } | 
|  |  | 
|  | /// VisitArraySubscriptExpr - Transfer function for array accesses | 
|  | void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst){ | 
|  |  | 
|  | const Expr* Base = A->getBase()->IgnoreParens(); | 
|  | const Expr* Idx  = A->getIdx()->IgnoreParens(); | 
|  |  | 
|  | // Evaluate the base. | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Base, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { | 
|  | ExplodedNodeSet Tmp2; | 
|  | Visit(Idx, *I1, Tmp2);     // Evaluate the index. | 
|  | ExplodedNodeSet Tmp3; | 
|  | CheckerVisit(A, Tmp3, Tmp2, PreVisitStmtCallback); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { | 
|  | const GRState* state = GetState(*I2); | 
|  | SVal V = state->getLValue(A->getType(), state->getSVal(Idx), | 
|  | state->getSVal(Base)); | 
|  | assert(A->isLValue()); | 
|  | MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// VisitMemberExpr - Transfer function for member expressions. | 
|  | void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | Expr *baseExpr = M->getBase()->IgnoreParens(); | 
|  | ExplodedNodeSet dstBase; | 
|  | Visit(baseExpr, Pred, dstBase); | 
|  |  | 
|  | FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl()); | 
|  | if (!field) // FIXME: skipping member expressions for non-fields | 
|  | return; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); | 
|  | I != E; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  | SVal baseExprVal = state->getSVal(baseExpr); | 
|  | if (isa<nonloc::LazyCompoundVal>(baseExprVal) || | 
|  | isa<nonloc::CompoundVal>(baseExprVal) || | 
|  | // FIXME: This can originate by conjuring a symbol for an unknown | 
|  | // temporary struct object, see test/Analysis/fields.c: | 
|  | // (p = getit()).x | 
|  | isa<nonloc::SymbolVal>(baseExprVal)) { | 
|  | MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: Should we insert some assumption logic in here to determine | 
|  | // if "Base" is a valid piece of memory?  Before we put this assumption | 
|  | // later when using FieldOffset lvals (which we no longer have). | 
|  |  | 
|  | // For all other cases, compute an lvalue. | 
|  | SVal L = state->getLValue(field, baseExprVal); | 
|  | if (M->isLValue()) | 
|  | MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); | 
|  | else | 
|  | evalLoad(Dst, M, *I, state, L); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// evalBind - Handle the semantics of binding a value to a specific location. | 
|  | ///  This method is used by evalStore and (soon) VisitDeclStmt, and others. | 
|  | void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE, | 
|  | ExplodedNode* Pred, const GRState* state, | 
|  | SVal location, SVal Val, bool atDeclInit) { | 
|  |  | 
|  |  | 
|  | // Do a previsit of the bind. | 
|  | ExplodedNodeSet CheckedSet, Src; | 
|  | Src.Add(Pred); | 
|  | CheckerVisitBind(StoreE, CheckedSet, Src, location, Val, true); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); | 
|  | I!=E; ++I) { | 
|  |  | 
|  | if (Pred != *I) | 
|  | state = GetState(*I); | 
|  |  | 
|  | const GRState* newState = 0; | 
|  |  | 
|  | if (atDeclInit) { | 
|  | const VarRegion *VR = | 
|  | cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion()); | 
|  |  | 
|  | newState = state->bindDecl(VR, Val); | 
|  | } | 
|  | else { | 
|  | if (location.isUnknown()) { | 
|  | // We know that the new state will be the same as the old state since | 
|  | // the location of the binding is "unknown".  Consequently, there | 
|  | // is no reason to just create a new node. | 
|  | newState = state; | 
|  | } | 
|  | else { | 
|  | // We are binding to a value other than 'unknown'.  Perform the binding | 
|  | // using the StoreManager. | 
|  | newState = state->bindLoc(cast<Loc>(location), Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The next thing to do is check if the TransferFuncs object wants to | 
|  | // update the state based on the new binding.  If the GRTransferFunc object | 
|  | // doesn't do anything, just auto-propagate the current state. | 
|  |  | 
|  | // NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE' | 
|  | // is non-NULL.  Checkers typically care about | 
|  |  | 
|  | StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, | 
|  | true); | 
|  |  | 
|  | getTF().evalBind(BuilderRef, location, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// evalStore - Handle the semantics of a store via an assignment. | 
|  | ///  @param Dst The node set to store generated state nodes | 
|  | ///  @param AssignE The assignment expression if the store happens in an | 
|  | ///         assignment. | 
|  | ///  @param LocatioinE The location expression that is stored to. | 
|  | ///  @param state The current simulation state | 
|  | ///  @param location The location to store the value | 
|  | ///  @param Val The value to be stored | 
|  | void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE, | 
|  | const Expr* LocationE, | 
|  | ExplodedNode* Pred, | 
|  | const GRState* state, SVal location, SVal Val, | 
|  | const void *tag) { | 
|  |  | 
|  | assert(Builder && "StmtNodeBuilder must be defined."); | 
|  |  | 
|  | // Proceed with the store.  We use AssignE as the anchor for the PostStore | 
|  | // ProgramPoint if it is non-NULL, and LocationE otherwise. | 
|  | const Expr *StoreE = AssignE ? AssignE : LocationE; | 
|  |  | 
|  | if (isa<loc::ObjCPropRef>(location)) { | 
|  | loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); | 
|  | ExplodedNodeSet src = Pred; | 
|  | return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(), | 
|  | StoreE, Val), src, Dst); | 
|  | } | 
|  |  | 
|  | // Evaluate the location (checks for bad dereferences). | 
|  | ExplodedNodeSet Tmp; | 
|  | evalLocation(Tmp, LocationE, Pred, state, location, tag, false); | 
|  |  | 
|  | if (Tmp.empty()) | 
|  | return; | 
|  |  | 
|  | if (location.isUndef()) | 
|  | return; | 
|  |  | 
|  | SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind, | 
|  | ProgramPoint::PostStoreKind); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) | 
|  | evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val); | 
|  | } | 
|  |  | 
|  | void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex, | 
|  | ExplodedNode* Pred, | 
|  | const GRState* state, SVal location, | 
|  | const void *tag, QualType LoadTy) { | 
|  | assert(!isa<NonLoc>(location) && "location cannot be a NonLoc."); | 
|  |  | 
|  | if (isa<loc::ObjCPropRef>(location)) { | 
|  | loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); | 
|  | ExplodedNodeSet src = Pred; | 
|  | return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex), | 
|  | src, Dst); | 
|  | } | 
|  |  | 
|  | // Are we loading from a region?  This actually results in two loads; one | 
|  | // to fetch the address of the referenced value and one to fetch the | 
|  | // referenced value. | 
|  | if (const TypedRegion *TR = | 
|  | dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { | 
|  |  | 
|  | QualType ValTy = TR->getValueType(); | 
|  | if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { | 
|  | static int loadReferenceTag = 0; | 
|  | ExplodedNodeSet Tmp; | 
|  | evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, | 
|  | getContext().getPointerType(RT->getPointeeType())); | 
|  |  | 
|  | // Perform the load from the referenced value. | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { | 
|  | state = GetState(*I); | 
|  | location = state->getSVal(Ex); | 
|  | evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); | 
|  | } | 
|  |  | 
|  | void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex, | 
|  | ExplodedNode* Pred, | 
|  | const GRState* state, SVal location, | 
|  | const void *tag, QualType LoadTy) { | 
|  |  | 
|  | // Evaluate the location (checks for bad dereferences). | 
|  | ExplodedNodeSet Tmp; | 
|  | evalLocation(Tmp, Ex, Pred, state, location, tag, true); | 
|  |  | 
|  | if (Tmp.empty()) | 
|  | return; | 
|  |  | 
|  | if (location.isUndef()) | 
|  | return; | 
|  |  | 
|  | SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); | 
|  |  | 
|  | // Proceed with the load. | 
|  | for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { | 
|  | state = GetState(*NI); | 
|  |  | 
|  | if (location.isUnknown()) { | 
|  | // This is important.  We must nuke the old binding. | 
|  | MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), | 
|  | ProgramPoint::PostLoadKind, tag); | 
|  | } | 
|  | else { | 
|  | if (LoadTy.isNull()) | 
|  | LoadTy = Ex->getType(); | 
|  | SVal V = state->getSVal(cast<Loc>(location), LoadTy); | 
|  | MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), | 
|  | ProgramPoint::PostLoadKind, tag); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, | 
|  | ExplodedNode* Pred, | 
|  | const GRState* state, SVal location, | 
|  | const void *tag, bool isLoad) { | 
|  | // Early checks for performance reason. | 
|  | if (location.isUnknown()) { | 
|  | Dst.Add(Pred); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Checkers.empty()) { | 
|  | ExplodedNodeSet Src; | 
|  | if (Builder->GetState(Pred) == state) { | 
|  | Src.Add(Pred); | 
|  | } else { | 
|  | // Associate this new state with an ExplodedNode. | 
|  | Src.Add(Builder->generateNode(S, state, Pred)); | 
|  | } | 
|  | getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S, | 
|  | *this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet Src; | 
|  | Src.Add(Pred); | 
|  | ExplodedNodeSet CheckersV1Dst; | 
|  | ExplodedNodeSet Tmp; | 
|  | ExplodedNodeSet *PrevSet = &Src; | 
|  |  | 
|  | for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) | 
|  | { | 
|  | ExplodedNodeSet *CurrSet = 0; | 
|  | if (I+1 == E) | 
|  | CurrSet = &CheckersV1Dst; | 
|  | else { | 
|  | CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; | 
|  | CurrSet->clear(); | 
|  | } | 
|  |  | 
|  | void *tag = I->first; | 
|  | Checker *checker = I->second; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); | 
|  | NI != NE; ++NI) { | 
|  | // Use the 'state' argument only when the predecessor node is the | 
|  | // same as Pred.  This allows us to catch updates to the state. | 
|  | checker->GR_visitLocation(*CurrSet, *Builder, *this, S, *NI, | 
|  | *NI == Pred ? state : GetState(*NI), | 
|  | location, tag, isLoad); | 
|  | } | 
|  |  | 
|  | // Update which NodeSet is the current one. | 
|  | PrevSet = CurrSet; | 
|  | } | 
|  |  | 
|  | getCheckerManager().runCheckersForLocation(Dst, CheckersV1Dst, location, | 
|  | isLoad, S, *this); | 
|  | } | 
|  |  | 
|  | bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, | 
|  | ExplodedNode *Pred) { | 
|  | const GRState *state = GetState(Pred); | 
|  | const Expr *Callee = CE->getCallee(); | 
|  | SVal L = state->getSVal(Callee); | 
|  |  | 
|  | const FunctionDecl *FD = L.getAsFunctionDecl(); | 
|  | if (!FD) | 
|  | return false; | 
|  |  | 
|  | // Check if the function definition is in the same translation unit. | 
|  | if (FD->hasBody(FD)) { | 
|  | const StackFrameContext *stackFrame = | 
|  | AMgr.getStackFrame(AMgr.getAnalysisContext(FD), | 
|  | Pred->getLocationContext(), | 
|  | CE, Builder->getBlock(), Builder->getIndex()); | 
|  | // Now we have the definition of the callee, create a CallEnter node. | 
|  | CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); | 
|  |  | 
|  | ExplodedNode *N = Builder->generateNode(Loc, state, Pred); | 
|  | Dst.Add(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we can find the function definition in other translation units. | 
|  | if (AMgr.hasIndexer()) { | 
|  | AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); | 
|  | if (C == 0) | 
|  | return false; | 
|  | const StackFrameContext *stackFrame = | 
|  | AMgr.getStackFrame(C, Pred->getLocationContext(), | 
|  | CE, Builder->getBlock(), Builder->getIndex()); | 
|  | CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); | 
|  | ExplodedNode *N = Builder->generateNode(Loc, state, Pred); | 
|  | Dst.Add(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitCall(const CallExpr* CE, ExplodedNode* Pred, | 
|  | CallExpr::const_arg_iterator AI, | 
|  | CallExpr::const_arg_iterator AE, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | // Determine the type of function we're calling (if available). | 
|  | const FunctionProtoType *Proto = NULL; | 
|  | QualType FnType = CE->getCallee()->IgnoreParens()->getType(); | 
|  | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) | 
|  | Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Evaluate the arguments. | 
|  | ExplodedNodeSet ArgsEvaluated; | 
|  | evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, ArgsEvaluated); | 
|  |  | 
|  | // Now process the call itself. | 
|  | ExplodedNodeSet DstTmp; | 
|  | const Expr* Callee = CE->getCallee()->IgnoreParens(); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(), | 
|  | NE=ArgsEvaluated.end(); NI != NE; ++NI) { | 
|  | // Evaluate the callee. | 
|  | ExplodedNodeSet DstTmp2; | 
|  | Visit(Callee, *NI, DstTmp2); | 
|  | // Perform the previsit of the CallExpr, storing the results in DstTmp. | 
|  | CheckerVisit(CE, DstTmp, DstTmp2, PreVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | // Finally, evaluate the function call.  We try each of the checkers | 
|  | // to see if the can evaluate the function call. | 
|  | ExplodedNodeSet DstTmp3; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); | 
|  | DI != DE; ++DI) { | 
|  |  | 
|  | const GRState* state = GetState(*DI); | 
|  | SVal L = state->getSVal(Callee); | 
|  |  | 
|  | // FIXME: Add support for symbolic function calls (calls involving | 
|  | //  function pointer values that are symbolic). | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | ExplodedNodeSet DstChecker; | 
|  |  | 
|  | // If the callee is processed by a checker, skip the rest logic. | 
|  | if (CheckerEvalCall(CE, DstChecker, *DI)) | 
|  | DstTmp3.insert(DstChecker); | 
|  | else if (AMgr.shouldInlineCall() && InlineCall(Dst, CE, *DI)) { | 
|  | // Callee is inlined. We shouldn't do post call checking. | 
|  | return; | 
|  | } | 
|  | else { | 
|  | for (ExplodedNodeSet::iterator DI_Checker = DstChecker.begin(), | 
|  | DE_Checker = DstChecker.end(); | 
|  | DI_Checker != DE_Checker; ++DI_Checker) { | 
|  |  | 
|  | // Dispatch to the plug-in transfer function. | 
|  | unsigned oldSize = DstTmp3.size(); | 
|  | SaveOr OldHasGen(Builder->hasGeneratedNode); | 
|  | Pred = *DI_Checker; | 
|  |  | 
|  | // Dispatch to transfer function logic to handle the call itself. | 
|  | // FIXME: Allow us to chain together transfer functions. | 
|  | assert(Builder && "StmtNodeBuilder must be defined."); | 
|  | getTF().evalCall(DstTmp3, *this, *Builder, CE, L, Pred); | 
|  |  | 
|  | // Handle the case where no nodes where generated.  Auto-generate that | 
|  | // contains the updated state if we aren't generating sinks. | 
|  | if (!Builder->BuildSinks && DstTmp3.size() == oldSize && | 
|  | !Builder->hasGeneratedNode) | 
|  | MakeNode(DstTmp3, CE, Pred, state); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, perform the post-condition check of the CallExpr and store | 
|  | // the created nodes in 'Dst'. | 
|  | CheckerVisit(CE, Dst, DstTmp3, PostVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C dot-syntax to access a property. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex, | 
|  | ExplodedNode *Pred, | 
|  | ExplodedNodeSet &Dst) { | 
|  | ExplodedNodeSet dstBase; | 
|  |  | 
|  | // Visit the receiver (if any). | 
|  | if (Ex->isObjectReceiver()) | 
|  | Visit(Ex->getBase(), Pred, dstBase); | 
|  | else | 
|  | dstBase = Pred; | 
|  |  | 
|  | ExplodedNodeSet dstPropRef; | 
|  |  | 
|  | // Using the base, compute the lvalue of the instance variable. | 
|  | for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); | 
|  | I!=E; ++I) { | 
|  | ExplodedNode *nodeBase = *I; | 
|  | const GRState *state = GetState(nodeBase); | 
|  | MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex))); | 
|  | } | 
|  |  | 
|  | Dst.insert(dstPropRef); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C ivar references. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static std::pair<const void*,const void*> EagerlyAssumeTag | 
|  | = std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0)); | 
|  |  | 
|  | void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, | 
|  | const Expr *Ex) { | 
|  | for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { | 
|  | ExplodedNode *Pred = *I; | 
|  |  | 
|  | // Test if the previous node was as the same expression.  This can happen | 
|  | // when the expression fails to evaluate to anything meaningful and | 
|  | // (as an optimization) we don't generate a node. | 
|  | ProgramPoint P = Pred->getLocation(); | 
|  | if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { | 
|  | Dst.Add(Pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const GRState* state = GetState(Pred); | 
|  | SVal V = state->getSVal(Ex); | 
|  | if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) { | 
|  | // First assume that the condition is true. | 
|  | if (const GRState *stateTrue = state->assume(*SEV, true)) { | 
|  | stateTrue = stateTrue->BindExpr(Ex, | 
|  | svalBuilder.makeIntVal(1U, Ex->getType())); | 
|  | Dst.Add(Builder->generateNode(PostStmtCustom(Ex, | 
|  | &EagerlyAssumeTag, Pred->getLocationContext()), | 
|  | stateTrue, Pred)); | 
|  | } | 
|  |  | 
|  | // Next, assume that the condition is false. | 
|  | if (const GRState *stateFalse = state->assume(*SEV, false)) { | 
|  | stateFalse = stateFalse->BindExpr(Ex, | 
|  | svalBuilder.makeIntVal(0U, Ex->getType())); | 
|  | Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, | 
|  | Pred->getLocationContext()), | 
|  | stateFalse, Pred)); | 
|  | } | 
|  | } | 
|  | else | 
|  | Dst.Add(Pred); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C @synchronized. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, | 
|  | ExplodedNode *Pred, | 
|  | ExplodedNodeSet &Dst) { | 
|  |  | 
|  | // The mutex expression is a CFGElement, so we don't need to explicitly | 
|  | // visit it since it will already be processed. | 
|  |  | 
|  | // Pre-visit the ObjCAtSynchronizedStmt. | 
|  | ExplodedNodeSet Tmp; | 
|  | Tmp.Add(Pred); | 
|  | CheckerVisit(S, Dst, Tmp, PreVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C ivar references. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | // Visit the base expression, which is needed for computing the lvalue | 
|  | // of the ivar. | 
|  | ExplodedNodeSet dstBase; | 
|  | const Expr *baseExpr = Ex->getBase(); | 
|  | Visit(baseExpr, Pred, dstBase); | 
|  |  | 
|  | ExplodedNodeSet dstIvar; | 
|  |  | 
|  | // Using the base, compute the lvalue of the instance variable. | 
|  | for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); | 
|  | I!=E; ++I) { | 
|  | ExplodedNode *nodeBase = *I; | 
|  | const GRState *state = GetState(nodeBase); | 
|  | SVal baseVal = state->getSVal(baseExpr); | 
|  | SVal location = state->getLValue(Ex->getDecl(), baseVal); | 
|  | MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location)); | 
|  | } | 
|  |  | 
|  | // Perform the post-condition check of the ObjCIvarRefExpr and store | 
|  | // the created nodes in 'Dst'. | 
|  | CheckerVisit(Ex, Dst, dstIvar, PostVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C fast enumeration 'for' statements. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S, | 
|  | ExplodedNode* Pred, ExplodedNodeSet& Dst) { | 
|  |  | 
|  | // ObjCForCollectionStmts are processed in two places.  This method | 
|  | // handles the case where an ObjCForCollectionStmt* occurs as one of the | 
|  | // statements within a basic block.  This transfer function does two things: | 
|  | // | 
|  | //  (1) binds the next container value to 'element'.  This creates a new | 
|  | //      node in the ExplodedGraph. | 
|  | // | 
|  | //  (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating | 
|  | //      whether or not the container has any more elements.  This value | 
|  | //      will be tested in ProcessBranch.  We need to explicitly bind | 
|  | //      this value because a container can contain nil elements. | 
|  | // | 
|  | // FIXME: Eventually this logic should actually do dispatches to | 
|  | //   'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). | 
|  | //   This will require simulating a temporary NSFastEnumerationState, either | 
|  | //   through an SVal or through the use of MemRegions.  This value can | 
|  | //   be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop | 
|  | //   terminates we reclaim the temporary (it goes out of scope) and we | 
|  | //   we can test if the SVal is 0 or if the MemRegion is null (depending | 
|  | //   on what approach we take). | 
|  | // | 
|  | //  For now: simulate (1) by assigning either a symbol or nil if the | 
|  | //    container is empty.  Thus this transfer function will by default | 
|  | //    result in state splitting. | 
|  |  | 
|  | const Stmt* elem = S->getElement(); | 
|  | SVal ElementV; | 
|  |  | 
|  | if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { | 
|  | const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); | 
|  | assert (ElemD->getInit() == 0); | 
|  | ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); | 
|  | VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(cast<Expr>(elem), Pred, Tmp); | 
|  | for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  | VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S, | 
|  | ExplodedNode* Pred, ExplodedNodeSet& Dst, | 
|  | SVal ElementV) { | 
|  |  | 
|  | // Check if the location we are writing back to is a null pointer. | 
|  | const Stmt* elem = S->getElement(); | 
|  | ExplodedNodeSet Tmp; | 
|  | evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); | 
|  |  | 
|  | if (Tmp.empty()) | 
|  | return; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { | 
|  | Pred = *NI; | 
|  | const GRState *state = GetState(Pred); | 
|  |  | 
|  | // Handle the case where the container still has elements. | 
|  | SVal TrueV = svalBuilder.makeTruthVal(1); | 
|  | const GRState *hasElems = state->BindExpr(S, TrueV); | 
|  |  | 
|  | // Handle the case where the container has no elements. | 
|  | SVal FalseV = svalBuilder.makeTruthVal(0); | 
|  | const GRState *noElems = state->BindExpr(S, FalseV); | 
|  |  | 
|  | if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) | 
|  | if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { | 
|  | // FIXME: The proper thing to do is to really iterate over the | 
|  | //  container.  We will do this with dispatch logic to the store. | 
|  | //  For now, just 'conjure' up a symbolic value. | 
|  | QualType T = R->getValueType(); | 
|  | assert(Loc::isLocType(T)); | 
|  | unsigned Count = Builder->getCurrentBlockCount(); | 
|  | SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); | 
|  | SVal V = svalBuilder.makeLoc(Sym); | 
|  | hasElems = hasElems->bindLoc(ElementV, V); | 
|  |  | 
|  | // Bind the location to 'nil' on the false branch. | 
|  | SVal nilV = svalBuilder.makeIntVal(0, T); | 
|  | noElems = noElems->bindLoc(ElementV, nilV); | 
|  | } | 
|  |  | 
|  | // Create the new nodes. | 
|  | MakeNode(Dst, S, Pred, hasElems); | 
|  | MakeNode(Dst, S, Pred, noElems); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer function: Objective-C message expressions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class ObjCMsgWLItem { | 
|  | public: | 
|  | ObjCMessageExpr::const_arg_iterator I; | 
|  | ExplodedNode *N; | 
|  |  | 
|  | ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n) | 
|  | : I(i), N(n) {} | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst){ | 
|  |  | 
|  | // Create a worklist to process both the arguments. | 
|  | llvm::SmallVector<ObjCMsgWLItem, 20> WL; | 
|  |  | 
|  | // But first evaluate the receiver (if any). | 
|  | ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); | 
|  | if (const Expr *Receiver = ME->getInstanceReceiver()) { | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Receiver, Pred, Tmp); | 
|  |  | 
|  | if (Tmp.empty()) | 
|  | return; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) | 
|  | WL.push_back(ObjCMsgWLItem(AI, *I)); | 
|  | } | 
|  | else | 
|  | WL.push_back(ObjCMsgWLItem(AI, Pred)); | 
|  |  | 
|  | // Evaluate the arguments. | 
|  | ExplodedNodeSet ArgsEvaluated; | 
|  | while (!WL.empty()) { | 
|  | ObjCMsgWLItem Item = WL.back(); | 
|  | WL.pop_back(); | 
|  |  | 
|  | if (Item.I == AE) { | 
|  | ArgsEvaluated.insert(Item.N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Evaluate the subexpression. | 
|  | ExplodedNodeSet Tmp; | 
|  |  | 
|  | // FIXME: [Objective-C++] handle arguments that are references | 
|  | Visit(*Item.I, Item.N, Tmp); | 
|  |  | 
|  | // Enqueue evaluating the next argument on the worklist. | 
|  | ++(Item.I); | 
|  | for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) | 
|  | WL.push_back(ObjCMsgWLItem(Item.I, *NI)); | 
|  | } | 
|  |  | 
|  | // Now that the arguments are processed, handle the ObjC message. | 
|  | VisitObjCMessage(ME, ArgsEvaluated, Dst); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitObjCMessage(const ObjCMessage &msg, | 
|  | ExplodedNodeSet &Src, ExplodedNodeSet& Dst) { | 
|  |  | 
|  | // Handle the previsits checks. | 
|  | ExplodedNodeSet DstPrevisit; | 
|  | CheckerVisitObjCMessage(msg, DstPrevisit, Src, /*isPreVisit=*/true); | 
|  |  | 
|  | // Proceed with evaluate the message expression. | 
|  | ExplodedNodeSet dstEval; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), | 
|  | DE = DstPrevisit.end(); DI != DE; ++DI) { | 
|  |  | 
|  | ExplodedNode *Pred = *DI; | 
|  | bool RaisesException = false; | 
|  | unsigned oldSize = dstEval.size(); | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | SaveOr OldHasGen(Builder->hasGeneratedNode); | 
|  |  | 
|  | if (const Expr *Receiver = msg.getInstanceReceiver()) { | 
|  | const GRState *state = GetState(Pred); | 
|  | SVal recVal = state->getSVal(Receiver); | 
|  | if (!recVal.isUndef()) { | 
|  | // Bifurcate the state into nil and non-nil ones. | 
|  | DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal); | 
|  |  | 
|  | const GRState *notNilState, *nilState; | 
|  | llvm::tie(notNilState, nilState) = state->assume(receiverVal); | 
|  |  | 
|  | // There are three cases: can be nil or non-nil, must be nil, must be | 
|  | // non-nil. We handle must be nil, and merge the rest two into non-nil. | 
|  | if (nilState && !notNilState) { | 
|  | CheckerEvalNilReceiver(msg, dstEval, nilState, Pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if the "raise" message was sent. | 
|  | assert(notNilState); | 
|  | if (msg.getSelector() == RaiseSel) | 
|  | RaisesException = true; | 
|  |  | 
|  | // Check if we raise an exception.  For now treat these as sinks. | 
|  | // Eventually we will want to handle exceptions properly. | 
|  | if (RaisesException) | 
|  | Builder->BuildSinks = true; | 
|  |  | 
|  | // Dispatch to plug-in transfer function. | 
|  | evalObjCMessage(dstEval, msg, Pred, notNilState); | 
|  | } | 
|  | } | 
|  | else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) { | 
|  | IdentifierInfo* ClsName = Iface->getIdentifier(); | 
|  | Selector S = msg.getSelector(); | 
|  |  | 
|  | // Check for special instance methods. | 
|  | if (!NSExceptionII) { | 
|  | ASTContext& Ctx = getContext(); | 
|  | NSExceptionII = &Ctx.Idents.get("NSException"); | 
|  | } | 
|  |  | 
|  | if (ClsName == NSExceptionII) { | 
|  | enum { NUM_RAISE_SELECTORS = 2 }; | 
|  |  | 
|  | // Lazily create a cache of the selectors. | 
|  | if (!NSExceptionInstanceRaiseSelectors) { | 
|  | ASTContext& Ctx = getContext(); | 
|  | NSExceptionInstanceRaiseSelectors = | 
|  | new Selector[NUM_RAISE_SELECTORS]; | 
|  | llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; | 
|  | unsigned idx = 0; | 
|  |  | 
|  | // raise:format: | 
|  | II.push_back(&Ctx.Idents.get("raise")); | 
|  | II.push_back(&Ctx.Idents.get("format")); | 
|  | NSExceptionInstanceRaiseSelectors[idx++] = | 
|  | Ctx.Selectors.getSelector(II.size(), &II[0]); | 
|  |  | 
|  | // raise:format::arguments: | 
|  | II.push_back(&Ctx.Idents.get("arguments")); | 
|  | NSExceptionInstanceRaiseSelectors[idx++] = | 
|  | Ctx.Selectors.getSelector(II.size(), &II[0]); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) | 
|  | if (S == NSExceptionInstanceRaiseSelectors[i]) { | 
|  | RaisesException = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we raise an exception.  For now treat these as sinks. | 
|  | // Eventually we will want to handle exceptions properly. | 
|  | if (RaisesException) | 
|  | Builder->BuildSinks = true; | 
|  |  | 
|  | // Dispatch to plug-in transfer function. | 
|  | evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred)); | 
|  | } | 
|  |  | 
|  | // Handle the case where no nodes where generated.  Auto-generate that | 
|  | // contains the updated state if we aren't generating sinks. | 
|  | if (!Builder->BuildSinks && dstEval.size() == oldSize && | 
|  | !Builder->hasGeneratedNode) | 
|  | MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred)); | 
|  | } | 
|  |  | 
|  | // Finally, perform the post-condition check of the ObjCMessageExpr and store | 
|  | // the created nodes in 'Dst'. | 
|  | CheckerVisitObjCMessage(msg, Dst, dstEval, /*isPreVisit=*/false); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer functions: Miscellaneous statements. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, | 
|  | ExplodedNode *Pred, ExplodedNodeSet &Dst) { | 
|  |  | 
|  | ExplodedNodeSet S1; | 
|  | Visit(Ex, Pred, S1); | 
|  | ExplodedNodeSet S2; | 
|  | CheckerVisit(CastE, S2, S1, PreVisitStmtCallback); | 
|  |  | 
|  | if (CastE->getCastKind() == CK_LValueToRValue || | 
|  | CastE->getCastKind() == CK_GetObjCProperty) { | 
|  | for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) { | 
|  | ExplodedNode *subExprNode = *I; | 
|  | const GRState *state = GetState(subExprNode); | 
|  | evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // All other casts. | 
|  | QualType T = CastE->getType(); | 
|  | QualType ExTy = Ex->getType(); | 
|  |  | 
|  | if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) | 
|  | T = ExCast->getTypeAsWritten(); | 
|  |  | 
|  | #if 0 | 
|  | // If we are evaluating the cast in an lvalue context, we implicitly want | 
|  | // the cast to evaluate to a location. | 
|  | if (asLValue) { | 
|  | ASTContext &Ctx = getContext(); | 
|  | T = Ctx.getPointerType(Ctx.getCanonicalType(T)); | 
|  | ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | switch (CastE->getCastKind()) { | 
|  | case CK_ToVoid: | 
|  | for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) | 
|  | Dst.Add(*I); | 
|  | return; | 
|  |  | 
|  | case CK_LValueToRValue: | 
|  | case CK_NoOp: | 
|  | case CK_FunctionToPointerDecay: | 
|  | for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { | 
|  | // Copy the SVal of Ex to CastE. | 
|  | ExplodedNode *N = *I; | 
|  | const GRState *state = GetState(N); | 
|  | SVal V = state->getSVal(Ex); | 
|  | state = state->BindExpr(CastE, V); | 
|  | MakeNode(Dst, CastE, N, state); | 
|  | } | 
|  | return; | 
|  |  | 
|  | case CK_GetObjCProperty: | 
|  | case CK_Dependent: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_BitCast: | 
|  | case CK_LValueBitCast: | 
|  | case CK_IntegralCast: | 
|  | case CK_NullToPointer: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_AnyPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  |  | 
|  | case CK_ObjCObjectLValueCast: { | 
|  | // Delegate to SValBuilder to process. | 
|  | for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { | 
|  | ExplodedNode* N = *I; | 
|  | const GRState* state = GetState(N); | 
|  | SVal V = state->getSVal(Ex); | 
|  | V = svalBuilder.evalCast(V, T, ExTy); | 
|  | state = state->BindExpr(CastE, V); | 
|  | MakeNode(Dst, CastE, N, state); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | // For DerivedToBase cast, delegate to the store manager. | 
|  | for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { | 
|  | ExplodedNode *node = *I; | 
|  | const GRState *state = GetState(node); | 
|  | SVal val = state->getSVal(Ex); | 
|  | val = getStoreManager().evalDerivedToBase(val, T); | 
|  | state = state->BindExpr(CastE, val); | 
|  | MakeNode(Dst, CastE, node, state); | 
|  | } | 
|  | return; | 
|  |  | 
|  | // Various C++ casts that are not handled yet. | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_BaseToDerived: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_UserDefinedConversion: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_VectorSplat: | 
|  | case CK_MemberPointerToBoolean: { | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | Builder->BuildSinks = true; | 
|  | MakeNode(Dst, CastE, Pred, GetState(Pred)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | const InitListExpr* ILE | 
|  | = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(ILE, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  | SVal ILV = state->getSVal(ILE); | 
|  | const LocationContext *LC = (*I)->getLocationContext(); | 
|  | state = state->bindCompoundLiteral(CL, LC, ILV); | 
|  |  | 
|  | if (CL->isLValue()) { | 
|  | MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); | 
|  | } | 
|  | else | 
|  | MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | // The CFG has one DeclStmt per Decl. | 
|  | const Decl* D = *DS->decl_begin(); | 
|  |  | 
|  | if (!D || !isa<VarDecl>(D)) | 
|  | return; | 
|  |  | 
|  | const VarDecl* VD = dyn_cast<VarDecl>(D); | 
|  | const Expr* InitEx = VD->getInit(); | 
|  |  | 
|  | // FIXME: static variables may have an initializer, but the second | 
|  | //  time a function is called those values may not be current. | 
|  | ExplodedNodeSet Tmp; | 
|  |  | 
|  | if (InitEx) { | 
|  | if (VD->getType()->isReferenceType() && !InitEx->isLValue()) { | 
|  | // If the initializer is C++ record type, it should already has a | 
|  | // temp object. | 
|  | if (!InitEx->getType()->isRecordType()) | 
|  | CreateCXXTemporaryObject(InitEx, Pred, Tmp); | 
|  | else | 
|  | Tmp.Add(Pred); | 
|  | } else | 
|  | Visit(InitEx, Pred, Tmp); | 
|  | } else | 
|  | Tmp.Add(Pred); | 
|  |  | 
|  | ExplodedNodeSet Tmp2; | 
|  | CheckerVisit(DS, Tmp2, Tmp, PreVisitStmtCallback); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { | 
|  | ExplodedNode *N = *I; | 
|  | const GRState *state = GetState(N); | 
|  |  | 
|  | // Decls without InitExpr are not initialized explicitly. | 
|  | const LocationContext *LC = N->getLocationContext(); | 
|  |  | 
|  | if (InitEx) { | 
|  | SVal InitVal = state->getSVal(InitEx); | 
|  |  | 
|  | // We bound the temp obj region to the CXXConstructExpr. Now recover | 
|  | // the lazy compound value when the variable is not a reference. | 
|  | if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() && | 
|  | !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){ | 
|  | InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion()); | 
|  | assert(isa<nonloc::LazyCompoundVal>(InitVal)); | 
|  | } | 
|  |  | 
|  | // Recover some path-sensitivity if a scalar value evaluated to | 
|  | // UnknownVal. | 
|  | if ((InitVal.isUnknown() || | 
|  | !getConstraintManager().canReasonAbout(InitVal)) && | 
|  | !VD->getType()->isReferenceType()) { | 
|  | InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, | 
|  | Builder->getCurrentBlockCount()); | 
|  | } | 
|  |  | 
|  | evalBind(Dst, DS, *I, state, | 
|  | loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); | 
|  | } | 
|  | else { | 
|  | state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); | 
|  | MakeNode(Dst, DS, *I, state); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitCondInit(const VarDecl *VD, const Stmt *S, | 
|  | ExplodedNode *Pred, ExplodedNodeSet& Dst) { | 
|  |  | 
|  | const Expr* InitEx = VD->getInit(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(InitEx, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | ExplodedNode *N = *I; | 
|  | const GRState *state = GetState(N); | 
|  |  | 
|  | const LocationContext *LC = N->getLocationContext(); | 
|  | SVal InitVal = state->getSVal(InitEx); | 
|  |  | 
|  | // Recover some path-sensitivity if a scalar value evaluated to | 
|  | // UnknownVal. | 
|  | if (InitVal.isUnknown() || | 
|  | !getConstraintManager().canReasonAbout(InitVal)) { | 
|  | InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, | 
|  | Builder->getCurrentBlockCount()); | 
|  | } | 
|  |  | 
|  | evalBind(Dst, S, N, state, | 
|  | loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // This class is used by VisitInitListExpr as an item in a worklist | 
|  | // for processing the values contained in an InitListExpr. | 
|  | class InitListWLItem { | 
|  | public: | 
|  | llvm::ImmutableList<SVal> Vals; | 
|  | ExplodedNode* N; | 
|  | InitListExpr::const_reverse_iterator Itr; | 
|  |  | 
|  | InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals, | 
|  | InitListExpr::const_reverse_iterator itr) | 
|  | : Vals(vals), N(n), Itr(itr) {} | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | const GRState* state = GetState(Pred); | 
|  | QualType T = getContext().getCanonicalType(E->getType()); | 
|  | unsigned NumInitElements = E->getNumInits(); | 
|  |  | 
|  | if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { | 
|  | llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); | 
|  |  | 
|  | // Handle base case where the initializer has no elements. | 
|  | // e.g: static int* myArray[] = {}; | 
|  | if (NumInitElements == 0) { | 
|  | SVal V = svalBuilder.makeCompoundVal(T, StartVals); | 
|  | MakeNode(Dst, E, Pred, state->BindExpr(E, V)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create a worklist to process the initializers. | 
|  | llvm::SmallVector<InitListWLItem, 10> WorkList; | 
|  | WorkList.reserve(NumInitElements); | 
|  | WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); | 
|  | InitListExpr::const_reverse_iterator ItrEnd = E->rend(); | 
|  | assert(!(E->rbegin() == E->rend())); | 
|  |  | 
|  | // Process the worklist until it is empty. | 
|  | while (!WorkList.empty()) { | 
|  | InitListWLItem X = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(*X.Itr, X.N, Tmp); | 
|  |  | 
|  | InitListExpr::const_reverse_iterator NewItr = X.Itr + 1; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { | 
|  | // Get the last initializer value. | 
|  | state = GetState(*NI); | 
|  | SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); | 
|  |  | 
|  | // Construct the new list of values by prepending the new value to | 
|  | // the already constructed list. | 
|  | llvm::ImmutableList<SVal> NewVals = | 
|  | getBasicVals().consVals(InitV, X.Vals); | 
|  |  | 
|  | if (NewItr == ItrEnd) { | 
|  | // Now we have a list holding all init values. Make CompoundValData. | 
|  | SVal V = svalBuilder.makeCompoundVal(T, NewVals); | 
|  |  | 
|  | // Make final state and node. | 
|  | MakeNode(Dst, E, *NI, state->BindExpr(E, V)); | 
|  | } | 
|  | else { | 
|  | // Still some initializer values to go.  Push them onto the worklist. | 
|  | WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Loc::isLocType(T) || T->isIntegerType()) { | 
|  | assert (E->getNumInits() == 1); | 
|  | ExplodedNodeSet Tmp; | 
|  | const Expr* Init = E->getInit(0); | 
|  | Visit(Init, Pred, Tmp); | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { | 
|  | state = GetState(*I); | 
|  | MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(0 && "unprocessed InitListExpr type"); | 
|  | } | 
|  |  | 
|  | /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). | 
|  | void ExprEngine::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr* Ex, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | QualType T = Ex->getTypeOfArgument(); | 
|  | CharUnits amt; | 
|  |  | 
|  | if (Ex->isSizeOf()) { | 
|  | if (T == getContext().VoidTy) { | 
|  | // sizeof(void) == 1 byte. | 
|  | amt = CharUnits::One(); | 
|  | } | 
|  | else if (!T->isConstantSizeType()) { | 
|  | assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); | 
|  |  | 
|  | // FIXME: Add support for VLA type arguments, not just VLA expressions. | 
|  | // When that happens, we should probably refactor VLASizeChecker's code. | 
|  | if (Ex->isArgumentType()) { | 
|  | Dst.Add(Pred); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the size by getting the extent of the sub-expression. | 
|  | // First, visit the sub-expression to find its region. | 
|  | const Expr *Arg = Ex->getArgumentExpr(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Arg, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  | const MemRegion *MR = state->getSVal(Arg).getAsRegion(); | 
|  |  | 
|  | // If the subexpression can't be resolved to a region, we don't know | 
|  | // anything about its size. Just leave the state as is and continue. | 
|  | if (!MR) { | 
|  | Dst.Add(*I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The result is the extent of the VLA. | 
|  | SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder); | 
|  | MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | else if (T->getAs<ObjCObjectType>()) { | 
|  | // Some code tries to take the sizeof an ObjCObjectType, relying that | 
|  | // the compiler has laid out its representation.  Just report Unknown | 
|  | // for these. | 
|  | Dst.Add(Pred); | 
|  | return; | 
|  | } | 
|  | else { | 
|  | // All other cases. | 
|  | amt = getContext().getTypeSizeInChars(T); | 
|  | } | 
|  | } | 
|  | else  // Get alignment of the type. | 
|  | amt = getContext().getTypeAlignInChars(T); | 
|  |  | 
|  | MakeNode(Dst, Ex, Pred, | 
|  | GetState(Pred)->BindExpr(Ex, | 
|  | svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()))); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE, | 
|  | ExplodedNode* Pred, ExplodedNodeSet& Dst) { | 
|  | Expr::EvalResult Res; | 
|  | if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { | 
|  | const APSInt &IV = Res.Val.getInt(); | 
|  | assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); | 
|  | assert(OOE->getType()->isIntegerType()); | 
|  | assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); | 
|  | SVal X = svalBuilder.makeIntVal(IV); | 
|  | MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); | 
|  | return; | 
|  | } | 
|  | // FIXME: Handle the case where __builtin_offsetof is not a constant. | 
|  | Dst.Add(Pred); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  |  | 
|  | switch (U->getOpcode()) { | 
|  |  | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case UO_Real: { | 
|  | const Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Ex, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  |  | 
|  | // FIXME: We don't have complex SValues yet. | 
|  | if (Ex->getType()->isAnyComplexType()) { | 
|  | // Just report "Unknown." | 
|  | Dst.Add(*I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For all other types, UO_Real is an identity operation. | 
|  | assert (U->getType() == Ex->getType()); | 
|  | const GRState* state = GetState(*I); | 
|  | MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case UO_Imag: { | 
|  |  | 
|  | const Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Ex, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | // FIXME: We don't have complex SValues yet. | 
|  | if (Ex->getType()->isAnyComplexType()) { | 
|  | // Just report "Unknown." | 
|  | Dst.Add(*I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For all other types, UO_Imag returns 0. | 
|  | const GRState* state = GetState(*I); | 
|  | SVal X = svalBuilder.makeZeroVal(Ex->getType()); | 
|  | MakeNode(Dst, U, *I, state->BindExpr(U, X)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case UO_Plus: | 
|  | assert(!U->isLValue()); | 
|  | // FALL-THROUGH. | 
|  | case UO_Deref: | 
|  | case UO_AddrOf: | 
|  | case UO_Extension: { | 
|  |  | 
|  | // Unary "+" is a no-op, similar to a parentheses.  We still have places | 
|  | // where it may be a block-level expression, so we need to | 
|  | // generate an extra node that just propagates the value of the | 
|  | // subexpression. | 
|  |  | 
|  | const Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Ex, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  | MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case UO_LNot: | 
|  | case UO_Minus: | 
|  | case UO_Not: { | 
|  | assert (!U->isLValue()); | 
|  | const Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(Ex, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
|  | const GRState* state = GetState(*I); | 
|  |  | 
|  | // Get the value of the subexpression. | 
|  | SVal V = state->getSVal(Ex); | 
|  |  | 
|  | if (V.isUnknownOrUndef()) { | 
|  | MakeNode(Dst, U, *I, state->BindExpr(U, V)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | //        QualType DstT = getContext().getCanonicalType(U->getType()); | 
|  | //        QualType SrcT = getContext().getCanonicalType(Ex->getType()); | 
|  | // | 
|  | //        if (DstT != SrcT) // Perform promotions. | 
|  | //          V = evalCast(V, DstT); | 
|  | // | 
|  | //        if (V.isUnknownOrUndef()) { | 
|  | //          MakeNode(Dst, U, *I, BindExpr(St, U, V)); | 
|  | //          continue; | 
|  | //        } | 
|  |  | 
|  | switch (U->getOpcode()) { | 
|  | default: | 
|  | assert(false && "Invalid Opcode."); | 
|  | break; | 
|  |  | 
|  | case UO_Not: | 
|  | // FIXME: Do we need to handle promotions? | 
|  | state = state->BindExpr(U, evalComplement(cast<NonLoc>(V))); | 
|  | break; | 
|  |  | 
|  | case UO_Minus: | 
|  | // FIXME: Do we need to handle promotions? | 
|  | state = state->BindExpr(U, evalMinus(cast<NonLoc>(V))); | 
|  | break; | 
|  |  | 
|  | case UO_LNot: | 
|  |  | 
|  | // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." | 
|  | // | 
|  | //  Note: technically we do "E == 0", but this is the same in the | 
|  | //    transfer functions as "0 == E". | 
|  | SVal Result; | 
|  |  | 
|  | if (isa<Loc>(V)) { | 
|  | Loc X = svalBuilder.makeNull(); | 
|  | Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X, | 
|  | U->getType()); | 
|  | } | 
|  | else { | 
|  | nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); | 
|  | Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X, | 
|  | U->getType()); | 
|  | } | 
|  |  | 
|  | state = state->BindExpr(U, Result); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | MakeNode(Dst, U, *I, state); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle ++ and -- (both pre- and post-increment). | 
|  | assert (U->isIncrementDecrementOp()); | 
|  | ExplodedNodeSet Tmp; | 
|  | const Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
|  | Visit(Ex, Pred, Tmp); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
|  |  | 
|  | const GRState* state = GetState(*I); | 
|  | SVal loc = state->getSVal(Ex); | 
|  |  | 
|  | // Perform a load. | 
|  | ExplodedNodeSet Tmp2; | 
|  | evalLoad(Tmp2, Ex, *I, state, loc); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { | 
|  |  | 
|  | state = GetState(*I2); | 
|  | SVal V2_untested = state->getSVal(Ex); | 
|  |  | 
|  | // Propagate unknown and undefined values. | 
|  | if (V2_untested.isUnknownOrUndef()) { | 
|  | MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); | 
|  | continue; | 
|  | } | 
|  | DefinedSVal V2 = cast<DefinedSVal>(V2_untested); | 
|  |  | 
|  | // Handle all other values. | 
|  | BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add | 
|  | : BO_Sub; | 
|  |  | 
|  | // If the UnaryOperator has non-location type, use its type to create the | 
|  | // constant value. If the UnaryOperator has location type, create the | 
|  | // constant with int type and pointer width. | 
|  | SVal RHS; | 
|  |  | 
|  | if (U->getType()->isAnyPointerType()) | 
|  | RHS = svalBuilder.makeArrayIndex(1); | 
|  | else | 
|  | RHS = svalBuilder.makeIntVal(1, U->getType()); | 
|  |  | 
|  | SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); | 
|  |  | 
|  | // Conjure a new symbol if necessary to recover precision. | 
|  | if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ | 
|  | DefinedOrUnknownSVal SymVal = | 
|  | svalBuilder.getConjuredSymbolVal(NULL, Ex, | 
|  | Builder->getCurrentBlockCount()); | 
|  | Result = SymVal; | 
|  |  | 
|  | // If the value is a location, ++/-- should always preserve | 
|  | // non-nullness.  Check if the original value was non-null, and if so | 
|  | // propagate that constraint. | 
|  | if (Loc::isLocType(U->getType())) { | 
|  | DefinedOrUnknownSVal Constraint = | 
|  | svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); | 
|  |  | 
|  | if (!state->assume(Constraint, true)) { | 
|  | // It isn't feasible for the original value to be null. | 
|  | // Propagate this constraint. | 
|  | Constraint = svalBuilder.evalEQ(state, SymVal, | 
|  | svalBuilder.makeZeroVal(U->getType())); | 
|  |  | 
|  |  | 
|  | state = state->assume(Constraint, false); | 
|  | assert(state); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since the lvalue-to-rvalue conversion is explicit in the AST, | 
|  | // we bind an l-value if the operator is prefix and an lvalue (in C++). | 
|  | if (U->isLValue()) | 
|  | state = state->BindExpr(U, loc); | 
|  | else | 
|  | state = state->BindExpr(U, V2); | 
|  |  | 
|  | // Perform the store. | 
|  | evalStore(Dst, NULL, U, *I2, state, loc, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A, | 
|  | AsmStmt::const_outputs_iterator I, | 
|  | AsmStmt::const_outputs_iterator E, | 
|  | ExplodedNode* Pred, ExplodedNodeSet& Dst) { | 
|  | if (I == E) { | 
|  | VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(*I, Pred, Tmp); | 
|  | ++I; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) | 
|  | VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A, | 
|  | AsmStmt::const_inputs_iterator I, | 
|  | AsmStmt::const_inputs_iterator E, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | if (I == E) { | 
|  |  | 
|  | // We have processed both the inputs and the outputs.  All of the outputs | 
|  | // should evaluate to Locs.  Nuke all of their values. | 
|  |  | 
|  | // FIXME: Some day in the future it would be nice to allow a "plug-in" | 
|  | // which interprets the inline asm and stores proper results in the | 
|  | // outputs. | 
|  |  | 
|  | const GRState* state = GetState(Pred); | 
|  |  | 
|  | for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), | 
|  | OE = A->end_outputs(); OI != OE; ++OI) { | 
|  |  | 
|  | SVal X = state->getSVal(*OI); | 
|  | assert (!isa<NonLoc>(X));  // Should be an Lval, or unknown, undef. | 
|  |  | 
|  | if (isa<Loc>(X)) | 
|  | state = state->bindLoc(cast<Loc>(X), UnknownVal()); | 
|  | } | 
|  |  | 
|  | MakeNode(Dst, A, Pred, state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet Tmp; | 
|  | Visit(*I, Pred, Tmp); | 
|  |  | 
|  | ++I; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) | 
|  | VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); | 
|  | } | 
|  |  | 
|  | void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, | 
|  | ExplodedNodeSet &Dst) { | 
|  | ExplodedNodeSet Src; | 
|  | if (const Expr *RetE = RS->getRetValue()) { | 
|  | // Record the returned expression in the state. It will be used in | 
|  | // processCallExit to bind the return value to the call expr. | 
|  | { | 
|  | static int tag = 0; | 
|  | const GRState *state = GetState(Pred); | 
|  | state = state->set<ReturnExpr>(RetE); | 
|  | Pred = Builder->generateNode(RetE, state, Pred, &tag); | 
|  | } | 
|  | // We may get a NULL Pred because we generated a cached node. | 
|  | if (Pred) | 
|  | Visit(RetE, Pred, Src); | 
|  | } | 
|  | else { | 
|  | Src.Add(Pred); | 
|  | } | 
|  |  | 
|  | ExplodedNodeSet CheckedSet; | 
|  | CheckerVisit(RS, CheckedSet, Src, PreVisitStmtCallback); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | assert(Builder && "StmtNodeBuilder must be defined."); | 
|  |  | 
|  | Pred = *I; | 
|  | unsigned size = Dst.size(); | 
|  |  | 
|  | SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
|  | SaveOr OldHasGen(Builder->hasGeneratedNode); | 
|  |  | 
|  | getTF().evalReturn(Dst, *this, *Builder, RS, Pred); | 
|  |  | 
|  | // Handle the case where no nodes where generated. | 
|  | if (!Builder->BuildSinks && Dst.size() == size && | 
|  | !Builder->hasGeneratedNode) | 
|  | MakeNode(Dst, RS, Pred, GetState(Pred)); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transfer functions: Binary operators. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, | 
|  | ExplodedNode* Pred, | 
|  | ExplodedNodeSet& Dst) { | 
|  | ExplodedNodeSet Tmp1; | 
|  | Expr* LHS = B->getLHS()->IgnoreParens(); | 
|  | Expr* RHS = B->getRHS()->IgnoreParens(); | 
|  |  | 
|  | Visit(LHS, Pred, Tmp1); | 
|  | ExplodedNodeSet Tmp3; | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { | 
|  | SVal LeftV = GetState(*I1)->getSVal(LHS); | 
|  | ExplodedNodeSet Tmp2; | 
|  | Visit(RHS, *I1, Tmp2); | 
|  |  | 
|  | ExplodedNodeSet CheckedSet; | 
|  | CheckerVisit(B, CheckedSet, Tmp2, PreVisitStmtCallback); | 
|  |  | 
|  | // With both the LHS and RHS evaluated, process the operation itself. | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); | 
|  | I2 != E2; ++I2) { | 
|  |  | 
|  | const GRState *state = GetState(*I2); | 
|  | SVal RightV = state->getSVal(RHS); | 
|  |  | 
|  | BinaryOperator::Opcode Op = B->getOpcode(); | 
|  |  | 
|  | if (Op == BO_Assign) { | 
|  | // EXPERIMENTAL: "Conjured" symbols. | 
|  | // FIXME: Handle structs. | 
|  | if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV)) | 
|  | { | 
|  | unsigned Count = Builder->getCurrentBlockCount(); | 
|  | RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count); | 
|  | } | 
|  |  | 
|  | SVal ExprVal = B->isLValue() ? LeftV : RightV; | 
|  |  | 
|  | // Simulate the effects of a "store":  bind the value of the RHS | 
|  | // to the L-Value represented by the LHS. | 
|  | evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!B->isAssignmentOp()) { | 
|  | // Process non-assignments except commas or short-circuited | 
|  | // logical expressions (LAnd and LOr). | 
|  | SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); | 
|  |  | 
|  | if (Result.isUnknown()) { | 
|  | MakeNode(Tmp3, B, *I2, state); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | state = state->BindExpr(B, Result); | 
|  |  | 
|  | MakeNode(Tmp3, B, *I2, state); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert (B->isCompoundAssignmentOp()); | 
|  |  | 
|  | switch (Op) { | 
|  | default: | 
|  | assert(0 && "Invalid opcode for compound assignment."); | 
|  | case BO_MulAssign: Op = BO_Mul; break; | 
|  | case BO_DivAssign: Op = BO_Div; break; | 
|  | case BO_RemAssign: Op = BO_Rem; break; | 
|  | case BO_AddAssign: Op = BO_Add; break; | 
|  | case BO_SubAssign: Op = BO_Sub; break; | 
|  | case BO_ShlAssign: Op = BO_Shl; break; | 
|  | case BO_ShrAssign: Op = BO_Shr; break; | 
|  | case BO_AndAssign: Op = BO_And; break; | 
|  | case BO_XorAssign: Op = BO_Xor; break; | 
|  | case BO_OrAssign:  Op = BO_Or;  break; | 
|  | } | 
|  |  | 
|  | // Perform a load (the LHS).  This performs the checks for | 
|  | // null dereferences, and so on. | 
|  | ExplodedNodeSet Tmp4; | 
|  | SVal location = state->getSVal(LHS); | 
|  | evalLoad(Tmp4, LHS, *I2, state, location); | 
|  |  | 
|  | for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; | 
|  | ++I4) { | 
|  | state = GetState(*I4); | 
|  | SVal V = state->getSVal(LHS); | 
|  |  | 
|  | // Get the computation type. | 
|  | QualType CTy = | 
|  | cast<CompoundAssignOperator>(B)->getComputationResultType(); | 
|  | CTy = getContext().getCanonicalType(CTy); | 
|  |  | 
|  | QualType CLHSTy = | 
|  | cast<CompoundAssignOperator>(B)->getComputationLHSType(); | 
|  | CLHSTy = getContext().getCanonicalType(CLHSTy); | 
|  |  | 
|  | QualType LTy = getContext().getCanonicalType(LHS->getType()); | 
|  |  | 
|  | // Promote LHS. | 
|  | V = svalBuilder.evalCast(V, CLHSTy, LTy); | 
|  |  | 
|  | // Compute the result of the operation. | 
|  | SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), | 
|  | B->getType(), CTy); | 
|  |  | 
|  | // EXPERIMENTAL: "Conjured" symbols. | 
|  | // FIXME: Handle structs. | 
|  |  | 
|  | SVal LHSVal; | 
|  |  | 
|  | if (Result.isUnknown() || | 
|  | !getConstraintManager().canReasonAbout(Result)) { | 
|  |  | 
|  | unsigned Count = Builder->getCurrentBlockCount(); | 
|  |  | 
|  | // The symbolic value is actually for the type of the left-hand side | 
|  | // expression, not the computation type, as this is the value the | 
|  | // LValue on the LHS will bind to. | 
|  | LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); | 
|  |  | 
|  | // However, we need to convert the symbol to the computation type. | 
|  | Result = svalBuilder.evalCast(LHSVal, CTy, LTy); | 
|  | } | 
|  | else { | 
|  | // The left-hand side may bind to a different value then the | 
|  | // computation type. | 
|  | LHSVal = svalBuilder.evalCast(Result, LTy, CTy); | 
|  | } | 
|  |  | 
|  | // In C++, assignment and compound assignment operators return an | 
|  | // lvalue. | 
|  | if (B->isLValue()) | 
|  | state = state->BindExpr(B, location); | 
|  | else | 
|  | state = state->BindExpr(B, Result); | 
|  |  | 
|  | evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CheckerVisit(B, Dst, Tmp3, PostVisitStmtCallback); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Checker registration/lookup. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Checker *ExprEngine::lookupChecker(void *tag) const { | 
|  | CheckerMap::const_iterator I = CheckerM.find(tag); | 
|  | return (I == CheckerM.end()) ? NULL : Checkers[I->second].second; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Visualization. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static ExprEngine* GraphPrintCheckerState; | 
|  | static SourceManager* GraphPrintSourceManager; | 
|  |  | 
|  | namespace llvm { | 
|  | template<> | 
|  | struct DOTGraphTraits<ExplodedNode*> : | 
|  | public DefaultDOTGraphTraits { | 
|  |  | 
|  | DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} | 
|  |  | 
|  | // FIXME: Since we do not cache error nodes in ExprEngine now, this does not | 
|  | // work. | 
|  | static std::string getNodeAttributes(const ExplodedNode* N, void*) { | 
|  |  | 
|  | #if 0 | 
|  | // FIXME: Replace with a general scheme to tell if the node is | 
|  | // an error node. | 
|  | if (GraphPrintCheckerState->isImplicitNullDeref(N) || | 
|  | GraphPrintCheckerState->isExplicitNullDeref(N) || | 
|  | GraphPrintCheckerState->isUndefDeref(N) || | 
|  | GraphPrintCheckerState->isUndefStore(N) || | 
|  | GraphPrintCheckerState->isUndefControlFlow(N) || | 
|  | GraphPrintCheckerState->isUndefResult(N) || | 
|  | GraphPrintCheckerState->isBadCall(N) || | 
|  | GraphPrintCheckerState->isUndefArg(N)) | 
|  | return "color=\"red\",style=\"filled\""; | 
|  |  | 
|  | if (GraphPrintCheckerState->isNoReturnCall(N)) | 
|  | return "color=\"blue\",style=\"filled\""; | 
|  | #endif | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | static std::string getNodeLabel(const ExplodedNode* N, void*){ | 
|  |  | 
|  | std::string sbuf; | 
|  | llvm::raw_string_ostream Out(sbuf); | 
|  |  | 
|  | // Program Location. | 
|  | ProgramPoint Loc = N->getLocation(); | 
|  |  | 
|  | switch (Loc.getKind()) { | 
|  | case ProgramPoint::BlockEntranceKind: | 
|  | Out << "Block Entrance: B" | 
|  | << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); | 
|  | break; | 
|  |  | 
|  | case ProgramPoint::BlockExitKind: | 
|  | assert (false); | 
|  | break; | 
|  |  | 
|  | case ProgramPoint::CallEnterKind: | 
|  | Out << "CallEnter"; | 
|  | break; | 
|  |  | 
|  | case ProgramPoint::CallExitKind: | 
|  | Out << "CallExit"; | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { | 
|  | const Stmt* S = L->getStmt(); | 
|  | SourceLocation SLoc = S->getLocStart(); | 
|  |  | 
|  | Out << S->getStmtClassName() << ' ' << (void*) S << ' '; | 
|  | LangOptions LO; // FIXME. | 
|  | S->printPretty(Out, 0, PrintingPolicy(LO)); | 
|  |  | 
|  | if (SLoc.isFileID()) { | 
|  | Out << "\\lline=" | 
|  | << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
|  | << " col=" | 
|  | << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) | 
|  | << "\\l"; | 
|  | } | 
|  |  | 
|  | if (isa<PreStmt>(Loc)) | 
|  | Out << "\\lPreStmt\\l;"; | 
|  | else if (isa<PostLoad>(Loc)) | 
|  | Out << "\\lPostLoad\\l;"; | 
|  | else if (isa<PostStore>(Loc)) | 
|  | Out << "\\lPostStore\\l"; | 
|  | else if (isa<PostLValue>(Loc)) | 
|  | Out << "\\lPostLValue\\l"; | 
|  |  | 
|  | #if 0 | 
|  | // FIXME: Replace with a general scheme to determine | 
|  | // the name of the check. | 
|  | if (GraphPrintCheckerState->isImplicitNullDeref(N)) | 
|  | Out << "\\|Implicit-Null Dereference.\\l"; | 
|  | else if (GraphPrintCheckerState->isExplicitNullDeref(N)) | 
|  | Out << "\\|Explicit-Null Dereference.\\l"; | 
|  | else if (GraphPrintCheckerState->isUndefDeref(N)) | 
|  | Out << "\\|Dereference of undefialied value.\\l"; | 
|  | else if (GraphPrintCheckerState->isUndefStore(N)) | 
|  | Out << "\\|Store to Undefined Loc."; | 
|  | else if (GraphPrintCheckerState->isUndefResult(N)) | 
|  | Out << "\\|Result of operation is undefined."; | 
|  | else if (GraphPrintCheckerState->isNoReturnCall(N)) | 
|  | Out << "\\|Call to function marked \"noreturn\"."; | 
|  | else if (GraphPrintCheckerState->isBadCall(N)) | 
|  | Out << "\\|Call to NULL/Undefined."; | 
|  | else if (GraphPrintCheckerState->isUndefArg(N)) | 
|  | Out << "\\|Argument in call is undefined"; | 
|  | #endif | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | const BlockEdge& E = cast<BlockEdge>(Loc); | 
|  | Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" | 
|  | << E.getDst()->getBlockID()  << ')'; | 
|  |  | 
|  | if (const Stmt* T = E.getSrc()->getTerminator()) { | 
|  |  | 
|  | SourceLocation SLoc = T->getLocStart(); | 
|  |  | 
|  | Out << "\\|Terminator: "; | 
|  | LangOptions LO; // FIXME. | 
|  | E.getSrc()->printTerminator(Out, LO); | 
|  |  | 
|  | if (SLoc.isFileID()) { | 
|  | Out << "\\lline=" | 
|  | << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
|  | << " col=" | 
|  | << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); | 
|  | } | 
|  |  | 
|  | if (isa<SwitchStmt>(T)) { | 
|  | const Stmt* Label = E.getDst()->getLabel(); | 
|  |  | 
|  | if (Label) { | 
|  | if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) { | 
|  | Out << "\\lcase "; | 
|  | LangOptions LO; // FIXME. | 
|  | C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); | 
|  |  | 
|  | if (const Stmt* RHS = C->getRHS()) { | 
|  | Out << " .. "; | 
|  | RHS->printPretty(Out, 0, PrintingPolicy(LO)); | 
|  | } | 
|  |  | 
|  | Out << ":"; | 
|  | } | 
|  | else { | 
|  | assert (isa<DefaultStmt>(Label)); | 
|  | Out << "\\ldefault:"; | 
|  | } | 
|  | } | 
|  | else | 
|  | Out << "\\l(implicit) default:"; | 
|  | } | 
|  | else if (isa<IndirectGotoStmt>(T)) { | 
|  | // FIXME | 
|  | } | 
|  | else { | 
|  | Out << "\\lCondition: "; | 
|  | if (*E.getSrc()->succ_begin() == E.getDst()) | 
|  | Out << "true"; | 
|  | else | 
|  | Out << "false"; | 
|  | } | 
|  |  | 
|  | Out << "\\l"; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // FIXME: Replace with a general scheme to determine | 
|  | // the name of the check. | 
|  | if (GraphPrintCheckerState->isUndefControlFlow(N)) { | 
|  | Out << "\\|Control-flow based on\\lUndefined value.\\l"; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | const GRState *state = N->getState(); | 
|  | Out << "\\|StateID: " << (void*) state | 
|  | << " NodeID: " << (void*) N << "\\|"; | 
|  | state->printDOT(Out, *N->getLocationContext()->getCFG()); | 
|  | Out << "\\l"; | 
|  | return Out.str(); | 
|  | } | 
|  | }; | 
|  | } // end llvm namespace | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | template <typename ITERATOR> | 
|  | ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } | 
|  |  | 
|  | template <> ExplodedNode* | 
|  | GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> | 
|  | (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { | 
|  | return I->first; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ExprEngine::ViewGraph(bool trim) { | 
|  | #ifndef NDEBUG | 
|  | if (trim) { | 
|  | std::vector<ExplodedNode*> Src; | 
|  |  | 
|  | // Flush any outstanding reports to make sure we cover all the nodes. | 
|  | // This does not cause them to get displayed. | 
|  | for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) | 
|  | const_cast<BugType*>(*I)->FlushReports(BR); | 
|  |  | 
|  | // Iterate through the reports and get their nodes. | 
|  | for (BugReporter::EQClasses_iterator | 
|  | EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { | 
|  | BugReportEquivClass& EQ = *EI; | 
|  | const BugReport &R = **EQ.begin(); | 
|  | ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode()); | 
|  | if (N) Src.push_back(N); | 
|  | } | 
|  |  | 
|  | ViewGraph(&Src[0], &Src[0]+Src.size()); | 
|  | } | 
|  | else { | 
|  | GraphPrintCheckerState = this; | 
|  | GraphPrintSourceManager = &getContext().getSourceManager(); | 
|  |  | 
|  | llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); | 
|  |  | 
|  | GraphPrintCheckerState = NULL; | 
|  | GraphPrintSourceManager = NULL; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { | 
|  | #ifndef NDEBUG | 
|  | GraphPrintCheckerState = this; | 
|  | GraphPrintSourceManager = &getContext().getSourceManager(); | 
|  |  | 
|  | std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); | 
|  |  | 
|  | if (!TrimmedG.get()) | 
|  | llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; | 
|  | else | 
|  | llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); | 
|  |  | 
|  | GraphPrintCheckerState = NULL; | 
|  | GraphPrintSourceManager = NULL; | 
|  | #endif | 
|  | } |