|  | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for PowerPC, | 
|  | // converting from a legalized dag to a PPC dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCHazardRecognizers.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Visibility.h" | 
|  | #include <iostream> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// PPCDAGToDAGISel - PPC specific code to select PPC machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel { | 
|  | PPCTargetMachine &TM; | 
|  | PPCTargetLowering PPCLowering; | 
|  | unsigned GlobalBaseReg; | 
|  | public: | 
|  | PPCDAGToDAGISel(PPCTargetMachine &tm) | 
|  | : SelectionDAGISel(PPCLowering), TM(tm), | 
|  | PPCLowering(*TM.getTargetLowering()) {} | 
|  |  | 
|  | virtual bool runOnFunction(Function &Fn) { | 
|  | // Make sure we re-emit a set of the global base reg if necessary | 
|  | GlobalBaseReg = 0; | 
|  | SelectionDAGISel::runOnFunction(Fn); | 
|  |  | 
|  | InsertVRSaveCode(Fn); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDOperand getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI64Imm - Return a target constant with the specified value, of type | 
|  | /// i64. | 
|  | inline SDOperand getI64Imm(uint64_t Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i64); | 
|  | } | 
|  |  | 
|  | /// getSmallIPtrImm - Return a target constant of pointer type. | 
|  | inline SDOperand getSmallIPtrImm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC | 
|  | /// base register.  Return the virtual register that holds this value. | 
|  | SDOperand getGlobalBaseReg(); | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void Select(SDOperand &Result, SDOperand Op); | 
|  |  | 
|  | SDNode *SelectBitfieldInsert(SDNode *N); | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the | 
|  | /// specified condition code, returning the CR# of the expression. | 
|  | SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); | 
|  |  | 
|  | /// SelectAddrImm - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement [r+imm]. | 
|  | bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base); | 
|  |  | 
|  | /// SelectAddrIdx - Given the specified addressed, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation.  Returns false if it can | 
|  | /// be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index); | 
|  |  | 
|  | /// SelectAddrIdxOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index); | 
|  |  | 
|  | /// SelectAddrImmShift - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable | 
|  | /// for use by STD and friends. | 
|  | bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base); | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions. | 
|  | virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op, | 
|  | char ConstraintCode, | 
|  | std::vector<SDOperand> &OutOps, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand Op0, Op1; | 
|  | switch (ConstraintCode) { | 
|  | default: return true; | 
|  | case 'm':   // memory | 
|  | if (!SelectAddrIdx(Op, Op0, Op1)) | 
|  | SelectAddrImm(Op, Op0, Op1); | 
|  | break; | 
|  | case 'o':   // offsetable | 
|  | if (!SelectAddrImm(Op, Op0, Op1)) { | 
|  | Select(Op0, Op);     // r+0. | 
|  | Op1 = getSmallIPtrImm(0); | 
|  | } | 
|  | break; | 
|  | case 'v':   // not offsetable | 
|  | SelectAddrIdxOnly(Op, Op0, Op1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | OutOps.push_back(Op0); | 
|  | OutOps.push_back(Op1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDOperand BuildSDIVSequence(SDNode *N); | 
|  | SDOperand BuildUDIVSequence(SDNode *N); | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); | 
|  |  | 
|  | void InsertVRSaveCode(Function &Fn); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "PowerPC DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for | 
|  | /// this target when scheduling the DAG. | 
|  | virtual HazardRecognizer *CreateTargetHazardRecognizer() { | 
|  | // Should use subtarget info to pick the right hazard recognizer.  For | 
|  | // now, always return a PPC970 recognizer. | 
|  | const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo(); | 
|  | assert(II && "No InstrInfo?"); | 
|  | return new PPCHazardRecognizer970(*II); | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "PPCGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | SDOperand SelectSETCC(SDOperand Op); | 
|  | void MySelect_PPCbctrl(SDOperand &Result, SDOperand N); | 
|  | void MySelect_PPCcall(SDOperand &Result, SDOperand N); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { | 
|  | DEBUG(BB->dump()); | 
|  |  | 
|  | // The selection process is inherently a bottom-up recursive process (users | 
|  | // select their uses before themselves).  Given infinite stack space, we | 
|  | // could just start selecting on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, select the entry node, then all its uses, | 
|  | // iteratively instead of recursively. | 
|  | std::vector<SDOperand> Worklist; | 
|  | Worklist.push_back(DAG.getEntryNode()); | 
|  |  | 
|  | // Note that we can do this in the PPC target (scanning forward across token | 
|  | // chain edges) because no nodes ever get folded across these edges.  On a | 
|  | // target like X86 which supports load/modify/store operations, this would | 
|  | // have to be more careful. | 
|  | while (!Worklist.empty()) { | 
|  | SDOperand Node = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | // Chose from the least deep of the top two nodes. | 
|  | if (!Worklist.empty() && | 
|  | Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) | 
|  | std::swap(Worklist.back(), Node); | 
|  |  | 
|  | if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && | 
|  | Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || | 
|  | CodeGenMap.count(Node)) continue; | 
|  |  | 
|  | for (SDNode::use_iterator UI = Node.Val->use_begin(), | 
|  | E = Node.Val->use_end(); UI != E; ++UI) { | 
|  | // Scan the values.  If this use has a value that is a token chain, add it | 
|  | // to the worklist. | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) | 
|  | if (User->getValueType(i) == MVT::Other) { | 
|  | Worklist.push_back(SDOperand(User, i)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, legalize this node. | 
|  | SDOperand Dummy; | 
|  | Select(Dummy, Node); | 
|  | } | 
|  |  | 
|  | // Select target instructions for the DAG. | 
|  | DAG.setRoot(SelectRoot(DAG.getRoot())); | 
|  | assert(InFlightSet.empty() && "ISel InFlightSet has not been emptied!"); | 
|  | CodeGenMap.clear(); | 
|  | HandleMap.clear(); | 
|  | ReplaceMap.clear(); | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | // Emit machine code to BB. | 
|  | ScheduleAndEmitDAG(DAG); | 
|  | } | 
|  |  | 
|  | /// InsertVRSaveCode - Once the entire function has been instruction selected, | 
|  | /// all virtual registers are created and all machine instructions are built, | 
|  | /// check to see if we need to save/restore VRSAVE.  If so, do it. | 
|  | void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) { | 
|  | // Check to see if this function uses vector registers, which means we have to | 
|  | // save and restore the VRSAVE register and update it with the regs we use. | 
|  | // | 
|  | // In this case, there will be virtual registers of vector type type created | 
|  | // by the scheduler.  Detect them now. | 
|  | MachineFunction &Fn = MachineFunction::get(&F); | 
|  | SSARegMap *RegMap = Fn.getSSARegMap(); | 
|  | bool HasVectorVReg = false; | 
|  | for (unsigned i = MRegisterInfo::FirstVirtualRegister, | 
|  | e = RegMap->getLastVirtReg()+1; i != e; ++i) | 
|  | if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) { | 
|  | HasVectorVReg = true; | 
|  | break; | 
|  | } | 
|  | if (!HasVectorVReg) return;  // nothing to do. | 
|  |  | 
|  | // If we have a vector register, we want to emit code into the entry and exit | 
|  | // blocks to save and restore the VRSAVE register.  We do this here (instead | 
|  | // of marking all vector instructions as clobbering VRSAVE) for two reasons: | 
|  | // | 
|  | // 1. This (trivially) reduces the load on the register allocator, by not | 
|  | //    having to represent the live range of the VRSAVE register. | 
|  | // 2. This (more significantly) allows us to create a temporary virtual | 
|  | //    register to hold the saved VRSAVE value, allowing this temporary to be | 
|  | //    register allocated, instead of forcing it to be spilled to the stack. | 
|  |  | 
|  | // Create two vregs - one to hold the VRSAVE register that is live-in to the | 
|  | // function and one for the value after having bits or'd into it. | 
|  | unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  |  | 
|  | MachineBasicBlock &EntryBB = *Fn.begin(); | 
|  | // Emit the following code into the entry block: | 
|  | // InVRSAVE = MFVRSAVE | 
|  | // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE | 
|  | // MTVRSAVE UpdatedVRSAVE | 
|  | MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point | 
|  | BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE); | 
|  | BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE); | 
|  | BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE); | 
|  |  | 
|  | // Find all return blocks, outputting a restore in each epilog. | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) { | 
|  | IP = BB->end(); --IP; | 
|  |  | 
|  | // Skip over all terminator instructions, which are part of the return | 
|  | // sequence. | 
|  | MachineBasicBlock::iterator I2 = IP; | 
|  | while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode())) | 
|  | IP = I2; | 
|  |  | 
|  | // Emit: MTVRSAVE InVRSave | 
|  | BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getGlobalBaseReg - Output the instructions required to put the | 
|  | /// base address to use for accessing globals into a register. | 
|  | /// | 
|  | SDOperand PPCDAGToDAGISel::getGlobalBaseReg() { | 
|  | if (!GlobalBaseReg) { | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = BB->getParent()->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | SSARegMap *RegMap = BB->getParent()->getSSARegMap(); | 
|  |  | 
|  | if (PPCLowering.getPointerTy() == MVT::i32) | 
|  | GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass); | 
|  | else | 
|  | GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass); | 
|  |  | 
|  | BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); | 
|  | BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); | 
|  | } | 
|  | return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()); | 
|  | } | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (N->getOpcode() != ISD::Constant) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue(); | 
|  | } | 
|  |  | 
|  | static bool isIntS16Immediate(SDOperand Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.Val, Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant | 
|  | /// operand.  If so Imm will receive the 64-bit value. | 
|  | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isInt32Immediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isInt32Immediate(SDOperand N, unsigned &Imm) { | 
|  | return isInt32Immediate(N.Val, Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with | 
|  | // any number of 0s on either side.  The 1s are allowed to wrap from LSB to | 
|  | // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is | 
|  | // not, since all 1s are not contiguous. | 
|  | static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // look for the first non-zero bit | 
|  | MB = CountLeadingZeros_32(Val); | 
|  | // look for the first zero bit after the run of ones | 
|  | ME = CountLeadingZeros_32((Val - 1) ^ Val); | 
|  | return true; | 
|  | } else { | 
|  | Val = ~Val; // invert mask | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // effectively look for the first zero bit | 
|  | ME = CountLeadingZeros_32(Val) - 1; | 
|  | // effectively look for the first one bit after the run of zeros | 
|  | MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // no run present | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate | 
|  | // and mask opcode and mask operation. | 
|  | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, | 
|  | unsigned &SH, unsigned &MB, unsigned &ME) { | 
|  | // Don't even go down this path for i64, since different logic will be | 
|  | // necessary for rldicl/rldicr/rldimi. | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Shift  = 32; | 
|  | unsigned Indeterminant = ~0;  // bit mask marking indeterminant results | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (N->getNumOperands() != 2 || | 
|  | !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::SHL) { | 
|  | // apply shift left to mask if it comes first | 
|  | if (IsShiftMask) Mask = Mask << Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu << Shift); | 
|  | } else if (Opcode == ISD::SRL) { | 
|  | // apply shift right to mask if it comes first | 
|  | if (IsShiftMask) Mask = Mask >> Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu >> Shift); | 
|  | // adjust for the left rotate | 
|  | Shift = 32 - Shift; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the mask doesn't intersect any Indeterminant bits | 
|  | if (Mask && !(Mask & Indeterminant)) { | 
|  | SH = Shift & 31; | 
|  | // make sure the mask is still a mask (wrap arounds may not be) | 
|  | return isRunOfOnes(Mask, MB, ME); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectBitfieldInsert - turn an or of two masked values into | 
|  | /// the rotate left word immediate then mask insert (rlwimi) instruction. | 
|  | SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { | 
|  | SDOperand Op0 = N->getOperand(0); | 
|  | SDOperand Op1 = N->getOperand(1); | 
|  |  | 
|  | uint64_t LKZ, LKO, RKZ, RKO; | 
|  | TLI.ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO); | 
|  | TLI.ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO); | 
|  |  | 
|  | unsigned TargetMask = LKZ; | 
|  | unsigned InsertMask = RKZ; | 
|  |  | 
|  | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { | 
|  | unsigned Op0Opc = Op0.getOpcode(); | 
|  | unsigned Op1Opc = Op1.getOpcode(); | 
|  | unsigned Value, SH = 0; | 
|  | TargetMask = ~TargetMask; | 
|  | InsertMask = ~InsertMask; | 
|  |  | 
|  | // If the LHS has a foldable shift and the RHS does not, then swap it to the | 
|  | // RHS so that we can fold the shift into the insert. | 
|  | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { | 
|  | if (Op0.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { | 
|  | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { | 
|  | SDOperand Tmp1, Tmp2, Tmp3; | 
|  | bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF; | 
|  |  | 
|  | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0); | 
|  | SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | if (Op1Opc == ISD::AND) { | 
|  | unsigned SHOpc = Op1.getOperand(0).getOpcode(); | 
|  | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0).getOperand(0); | 
|  | SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value; | 
|  | } else { | 
|  | Op1 = Op1.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0; | 
|  | Select(Tmp1, Tmp3); | 
|  | Select(Tmp2, Op1); | 
|  | SH &= 31; | 
|  | return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, | 
|  | getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SelectAddrImm - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement [r+imm]. | 
|  | bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp, | 
|  | SDOperand &Base) { | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddrIdx(N, Disp, Base)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | Disp = getI32Imm((int)imm & 0xFFFF); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | uint64_t LHSKnownZero, LHSKnownOne; | 
|  | PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, | 
|  | LHSKnownZero, LHSKnownOne); | 
|  | if ((LHSKnownZero|~(unsigned)imm) == ~0U) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = getI32Imm((int)imm & 0xFFFF); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address. | 
|  |  | 
|  | // If this address fits entirely in a 16-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = CurDAG->getTargetConstant(Imm, CN->getValueType(0)); | 
|  | Base = CurDAG->getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Handle small sext constant offsets in PPC64 mode also! | 
|  | if (CN->getValueType(0) == MVT::i32) { | 
|  | int Addr = (int)CN->getValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = getI32Imm((short)Addr); | 
|  | Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = getSmallIPtrImm(0); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx - Given the specified addressed, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation.  Returns false if it can | 
|  | /// be represented by [r+imm], which are preferred. | 
|  | bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base, | 
|  | SDOperand &Index) { | 
|  | short imm = 0; | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i | 
|  | if (N.getOperand(1).getOpcode() == PPCISD::Lo) | 
|  | return false;    // r+i | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i can fold it if we can. | 
|  |  | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are provably | 
|  | // disjoint. | 
|  | uint64_t LHSKnownZero, LHSKnownOne; | 
|  | uint64_t RHSKnownZero, RHSKnownOne; | 
|  | PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, | 
|  | LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if (LHSKnownZero) { | 
|  | PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U, | 
|  | RHSKnownZero, RHSKnownOne); | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | if ((LHSKnownZero | RHSKnownZero) == ~0U) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdxOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base, | 
|  | SDOperand &Index) { | 
|  | // Check to see if we can easily represent this as an [r+r] address.  This | 
|  | // will fail if it thinks that the address is more profitably represented as | 
|  | // reg+imm, e.g. where imm = 0. | 
|  | if (SelectAddrIdx(N, Base, Index)) | 
|  | return true; | 
|  |  | 
|  | // If the operand is an addition, always emit this as [r+r], since this is | 
|  | // better (for code size, and execution, as the memop does the add for free) | 
|  | // than emitting an explicit add. | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, do it the hard way, using R0 as the base register. | 
|  | Base = CurDAG->getRegister(PPC::R0, N.getValueType()); | 
|  | Index = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmShift - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable | 
|  | /// for use by STD and friends. | 
|  | bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp, | 
|  | SDOperand &Base) { | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddrIdx(N, Disp, Base)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | Disp = getI32Imm(((int)imm & 0xFFFF) >> 2); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | uint64_t LHSKnownZero, LHSKnownOne; | 
|  | PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, | 
|  | LHSKnownZero, LHSKnownOne); | 
|  | if ((LHSKnownZero|~(unsigned)imm) == ~0U) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | Base = N.getOperand(0); | 
|  | Disp = getI32Imm(((int)imm & 0xFFFF) >> 2); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address. | 
|  |  | 
|  | // If this address fits entirely in a 14-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm)) { | 
|  | Disp = getSmallIPtrImm((unsigned short)Imm >> 2); | 
|  | Base = CurDAG->getRegister(PPC::R0, CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Handle small sext constant offsets in PPC64 mode also! | 
|  | if (CN->getValueType(0) == MVT::i32) { | 
|  | int Addr = (int)CN->getValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = getI32Imm((short)Addr >> 2); | 
|  | Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = getSmallIPtrImm(0); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) | 
|  | Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the specified | 
|  | /// condition code, returning the CR# of the expression. | 
|  | SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, | 
|  | ISD::CondCode CC) { | 
|  | // Always select the LHS. | 
|  | Select(LHS, LHS); | 
|  | unsigned Opc; | 
|  |  | 
|  | if (LHS.getValueType() == MVT::i32) { | 
|  | unsigned Imm; | 
|  | if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt32Immediate(RHS, Imm) && isUInt16(Imm)) | 
|  | return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  | Opc = PPC::CMPLW; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS, | 
|  | getI32Imm((int)SImm & 0xFFFF)), | 
|  | 0); | 
|  | Opc = PPC::CMPW; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::i64) { | 
|  | uint64_t Imm; | 
|  | if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm)) | 
|  | return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS, | 
|  | getI64Imm(Imm & 0xFFFF)), 0); | 
|  | Opc = PPC::CMPLD; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS, | 
|  | getI64Imm((int)SImm & 0xFFFF)), | 
|  | 0); | 
|  | Opc = PPC::CMPD; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::f32) { | 
|  | Opc = PPC::FCMPUS; | 
|  | } else { | 
|  | assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); | 
|  | Opc = PPC::FCMPUD; | 
|  | } | 
|  | Select(RHS, RHS); | 
|  | return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0); | 
|  | } | 
|  |  | 
|  | /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding | 
|  | /// to Condition. | 
|  | static unsigned getBCCForSetCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown condition!"); abort(); | 
|  | case ISD::SETOEQ:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:  return PPC::BEQ; | 
|  | case ISD::SETONE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  return PPC::BNE; | 
|  | case ISD::SETOLT:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  return PPC::BLT; | 
|  | case ISD::SETOLE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  return PPC::BLE; | 
|  | case ISD::SETOGT:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT:  return PPC::BGT; | 
|  | case ISD::SETOGE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  return PPC::BGE; | 
|  |  | 
|  | case ISD::SETO:   return PPC::BUN; | 
|  | case ISD::SETUO:  return PPC::BNU; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getCRIdxForSetCC - Return the index of the condition register field | 
|  | /// associated with the SetCC condition, and whether or not the field is | 
|  | /// treated as inverted.  That is, lt = 0; ge = 0 inverted. | 
|  | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown condition!"); abort(); | 
|  | case ISD::SETOLT:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  Inv = false;  return 0; | 
|  | case ISD::SETOGE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  Inv = true;   return 0; | 
|  | case ISD::SETOGT:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT:  Inv = false;  return 1; | 
|  | case ISD::SETOLE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  Inv = true;   return 1; | 
|  | case ISD::SETOEQ:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:  Inv = false;  return 2; | 
|  | case ISD::SETONE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  Inv = true;   return 2; | 
|  | case ISD::SETO:   Inv = true;   return 3; | 
|  | case ISD::SETUO:  Inv = false;  return 3; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | unsigned Imm; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | if (isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | // We can codegen setcc op, imm very efficiently compared to a brcond. | 
|  | // Check for those cases here. | 
|  | // setcc op, 0 | 
|  | if (Imm == 0) { | 
|  | SDOperand Op; | 
|  | Select(Op, N->getOperand(0)); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), | 
|  | getI32Imm(5), getI32Imm(31)); | 
|  | case ISD::SETNE: { | 
|  | SDOperand AD = | 
|  | SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, | 
|  | AD.getValue(1)); | 
|  | } | 
|  | case ISD::SETLT: | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | case ISD::SETGT: { | 
|  | SDOperand T = | 
|  | SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0); | 
|  | T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | } | 
|  | } | 
|  | } else if (Imm == ~0U) {        // setcc op, -1 | 
|  | SDOperand Op; | 
|  | Select(Op, N->getOperand(0)); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(1)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32, | 
|  | getI32Imm(0)), 0), | 
|  | Op.getValue(1)); | 
|  | case ISD::SETNE: { | 
|  | Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0); | 
|  | SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)); | 
|  | return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), | 
|  | Op, SDOperand(AD, 1)); | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, | 
|  | getI32Imm(1)), 0); | 
|  | SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, | 
|  | Op), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | } | 
|  | case ISD::SETGT: | 
|  | Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, | 
|  | getI32Imm(1), getI32Imm(31), | 
|  | getI32Imm(31)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  | SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); | 
|  | SDOperand IntCR; | 
|  |  | 
|  | // Force the ccreg into CR7. | 
|  | SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); | 
|  |  | 
|  | SDOperand InFlag(0, 0);  // Null incoming flag value. | 
|  | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, | 
|  | InFlag).getValue(1); | 
|  |  | 
|  | if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) | 
|  | IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, | 
|  | CCReg), 0); | 
|  | else | 
|  | IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0); | 
|  |  | 
|  | if (!Inv) { | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, | 
|  | getI32Imm((32-(3-Idx)) & 31), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | } else { | 
|  | SDOperand Tmp = | 
|  | SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, | 
|  | getI32Imm((32-(3-Idx)) & 31), | 
|  | getI32Imm(31),getI32Imm(31)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END && | 
|  | N->getOpcode() < PPCISD::FIRST_NUMBER) { | 
|  | Result = Op; | 
|  | return;   // Already selected. | 
|  | } | 
|  |  | 
|  | // If this has already been converted, use it. | 
|  | std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op); | 
|  | if (CGMI != CodeGenMap.end()) { | 
|  | Result = CGMI->second; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SETCC: | 
|  | Result = SelectSETCC(Op); | 
|  | return; | 
|  | case PPCISD::GlobalBaseReg: | 
|  | Result = getGlobalBaseReg(); | 
|  | return; | 
|  |  | 
|  | case ISD::FrameIndex: { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType()); | 
|  | unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8; | 
|  | if (N->hasOneUse()) { | 
|  | Result = CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI, | 
|  | getSmallIPtrImm(0)); | 
|  | return; | 
|  | } | 
|  | Result = CodeGenMap[Op] = | 
|  | SDOperand(CurDAG->getTargetNode(Opc, Op.getValueType(), TFI, | 
|  | getSmallIPtrImm(0)), 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PPCISD::MFCR: { | 
|  | SDOperand InFlag; | 
|  | Select(InFlag, N->getOperand(1)); | 
|  | // Use MFOCRF if supported. | 
|  | if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) | 
|  | Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, | 
|  | N->getOperand(0), InFlag), 0); | 
|  | else | 
|  | Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0); | 
|  | CodeGenMap[Op] = Result; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::SDIV: { | 
|  | // FIXME: since this depends on the setting of the carry flag from the srawi | 
|  | //        we should really be making notes about that for the scheduler. | 
|  | // FIXME: It sure would be nice if we could cheaply recognize the | 
|  | //        srl/add/sra pattern the dag combiner will generate for this as | 
|  | //        sra/addze rather than having to handle sdiv ourselves.  oh well. | 
|  | unsigned Imm; | 
|  | if (isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | SDOperand N0; | 
|  | Select(N0, N->getOperand(0)); | 
|  | if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { | 
|  | SDNode *Op = | 
|  | CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, | 
|  | N0, getI32Imm(Log2_32(Imm))); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDOperand(Op, 0), SDOperand(Op, 1)); | 
|  | } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { | 
|  | SDNode *Op = | 
|  | CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, | 
|  | N0, getI32Imm(Log2_32(-Imm))); | 
|  | SDOperand PT = | 
|  | SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, | 
|  | SDOperand(Op, 0), SDOperand(Op, 1)), | 
|  | 0); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::AND: { | 
|  | unsigned Imm, Imm2; | 
|  | // If this is an and of a value rotated between 0 and 31 bits and then and'd | 
|  | // with a mask, emit rlwinm | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | (isShiftedMask_32(Imm) || isShiftedMask_32(~Imm))) { | 
|  | SDOperand Val; | 
|  | unsigned SH, MB, ME; | 
|  | if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) { | 
|  | Select(Val, N->getOperand(0).getOperand(0)); | 
|  | } else if (Imm == 0) { | 
|  | // AND X, 0 -> 0, not "rlwinm 32". | 
|  | Select(Result, N->getOperand(1)); | 
|  | return ; | 
|  | } else { | 
|  | Select(Val, N->getOperand(0)); | 
|  | isRunOfOnes(Imm, MB, ME); | 
|  | SH = 0; | 
|  | } | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, | 
|  | getI32Imm(SH), getI32Imm(MB), | 
|  | getI32Imm(ME)); | 
|  | return; | 
|  | } | 
|  | // ISD::OR doesn't get all the bitfield insertion fun. | 
|  | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | N->getOperand(0).getOpcode() == ISD::OR && | 
|  | isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { | 
|  | unsigned MB, ME; | 
|  | Imm = ~(Imm^Imm2); | 
|  | if (isRunOfOnes(Imm, MB, ME)) { | 
|  | SDOperand Tmp1, Tmp2; | 
|  | Select(Tmp1, N->getOperand(0).getOperand(0)); | 
|  | Select(Tmp2, N->getOperand(0).getOperand(1)); | 
|  | Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, | 
|  | Tmp1, Tmp2, | 
|  | getI32Imm(0), getI32Imm(MB), | 
|  | getI32Imm(ME)), 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | if (SDNode *I = SelectBitfieldInsert(N)) { | 
|  | Result = CodeGenMap[Op] = SDOperand(I, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | case ISD::SHL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDOperand Val; | 
|  | Select(Val, N->getOperand(0).getOperand(0)); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, | 
|  | Val, getI32Imm(SH), getI32Imm(MB), | 
|  | getI32Imm(ME)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDOperand Val; | 
|  | Select(Val, N->getOperand(0).getOperand(0)); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, | 
|  | Val, getI32Imm(SH), getI32Imm(MB), | 
|  | getI32Imm(ME)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
|  |  | 
|  | // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (N1C->isNullValue() && N3C->isNullValue() && | 
|  | N2C->getValue() == 1ULL && CC == ISD::SETNE && | 
|  | // FIXME: Implement this optzn for PPC64. | 
|  | N->getValueType(0) == MVT::i32) { | 
|  | SDOperand LHS; | 
|  | Select(LHS, N->getOperand(0)); | 
|  | SDNode *Tmp = | 
|  | CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | LHS, getI32Imm(~0U)); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, | 
|  | SDOperand(Tmp, 0), LHS, | 
|  | SDOperand(Tmp, 1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); | 
|  | unsigned BROpc = getBCCForSetCC(CC); | 
|  |  | 
|  | bool isFP = MVT::isFloatingPoint(N->getValueType(0)); | 
|  | unsigned SelectCCOp; | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | SelectCCOp = PPC::SELECT_CC_I4; | 
|  | else if (N->getValueType(0) == MVT::i64) | 
|  | SelectCCOp = PPC::SELECT_CC_I8; | 
|  | else if (N->getValueType(0) == MVT::f32) | 
|  | SelectCCOp = PPC::SELECT_CC_F4; | 
|  | else if (N->getValueType(0) == MVT::f64) | 
|  | SelectCCOp = PPC::SELECT_CC_F8; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_VRRC; | 
|  |  | 
|  | SDOperand N2, N3; | 
|  | Select(N2, N->getOperand(2)); | 
|  | Select(N3, N->getOperand(3)); | 
|  | Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, | 
|  | N2, N3, getI32Imm(BROpc)); | 
|  | return; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | SDOperand Chain; | 
|  | Select(Chain, N->getOperand(0)); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, | 
|  | CondCode, getI32Imm(getBCCForSetCC(CC)), | 
|  | N->getOperand(4), Chain); | 
|  | return; | 
|  | } | 
|  | case ISD::BRIND: { | 
|  | // FIXME: Should custom lower this. | 
|  | SDOperand Chain, Target; | 
|  | Select(Chain, N->getOperand(0)); | 
|  | Select(Target,N->getOperand(1)); | 
|  | unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; | 
|  | Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target, | 
|  | Chain), 0); | 
|  | Result = CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain); | 
|  | return; | 
|  | } | 
|  | // FIXME: These are manually selected because tblgen isn't handling varargs | 
|  | // nodes correctly. | 
|  | case PPCISD::BCTRL:            MySelect_PPCbctrl(Result, Op); return; | 
|  | case PPCISD::CALL:             MySelect_PPCcall(Result, Op); return; | 
|  | } | 
|  |  | 
|  | SelectCode(Result, Op); | 
|  | } | 
|  |  | 
|  |  | 
|  | // FIXME: This is manually selected because tblgen isn't handling varargs nodes | 
|  | // correctly. | 
|  | void PPCDAGToDAGISel::MySelect_PPCbctrl(SDOperand &Result, SDOperand N) { | 
|  | SDOperand Chain(0, 0); | 
|  | SDOperand InFlag(0, 0); | 
|  | SDNode *ResNode; | 
|  |  | 
|  | bool hasFlag = | 
|  | N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag; | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | // Push varargs arguments, including optional flag. | 
|  | for (unsigned i = 1, e = N.getNumOperands()-hasFlag; i != e; ++i) { | 
|  | Select(Chain, N.getOperand(i)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  |  | 
|  | Select(Chain, N.getOperand(0)); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | if (hasFlag) { | 
|  | Select(Chain, N.getOperand(N.getNumOperands()-1)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  |  | 
|  | ResNode = CurDAG->getTargetNode(PPC::BCTRL, MVT::Other, MVT::Flag, Ops); | 
|  | Chain = SDOperand(ResNode, 0); | 
|  | InFlag = SDOperand(ResNode, 1); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, Chain.Val, | 
|  | Chain.ResNo); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, InFlag.Val, | 
|  | InFlag.ResNo); | 
|  | Result = SDOperand(ResNode, N.ResNo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: This is manually selected because tblgen isn't handling varargs nodes | 
|  | // correctly. | 
|  | void PPCDAGToDAGISel::MySelect_PPCcall(SDOperand &Result, SDOperand N) { | 
|  | SDOperand Chain(0, 0); | 
|  | SDOperand InFlag(0, 0); | 
|  | SDOperand N1(0, 0); | 
|  | SDOperand Tmp0(0, 0); | 
|  | SDNode *ResNode; | 
|  | Chain = N.getOperand(0); | 
|  | N1 = N.getOperand(1); | 
|  |  | 
|  | // Pattern: (PPCcall:void (imm:i32):$func) | 
|  | // Emits: (BLA:void (imm:i32):$func) | 
|  | // Pattern complexity = 4  cost = 1 | 
|  | if (N1.getOpcode() == ISD::Constant) { | 
|  | unsigned Tmp0C = (unsigned)cast<ConstantSDNode>(N1)->getValue(); | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(CurDAG->getTargetConstant(Tmp0C, MVT::i32)); | 
|  |  | 
|  | bool hasFlag = | 
|  | N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag; | 
|  |  | 
|  | // Push varargs arguments, not including optional flag. | 
|  | for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) { | 
|  | Select(Chain, N.getOperand(i)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  | Select(Chain, N.getOperand(0)); | 
|  | Ops.push_back(Chain); | 
|  | if (hasFlag) { | 
|  | Select(Chain, N.getOperand(N.getNumOperands()-1)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  | ResNode = CurDAG->getTargetNode(PPC::BLA, MVT::Other, MVT::Flag, Ops); | 
|  |  | 
|  | Chain = SDOperand(ResNode, 0); | 
|  | InFlag = SDOperand(ResNode, 1); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, Chain.Val, | 
|  | Chain.ResNo); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, InFlag.Val, | 
|  | InFlag.ResNo); | 
|  | Result = SDOperand(ResNode, N.ResNo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Pattern: (PPCcall:void (tglobaladdr:i32):$dst) | 
|  | // Emits: (BL:void (tglobaladdr:i32):$dst) | 
|  | // Pattern complexity = 4  cost = 1 | 
|  | if (N1.getOpcode() == ISD::TargetGlobalAddress) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(N1); | 
|  |  | 
|  | bool hasFlag = | 
|  | N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag; | 
|  |  | 
|  | // Push varargs arguments, not including optional flag. | 
|  | for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) { | 
|  | Select(Chain, N.getOperand(i)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  | Select(Chain, N.getOperand(0)); | 
|  | Ops.push_back(Chain); | 
|  | if (hasFlag) { | 
|  | Select(Chain, N.getOperand(N.getNumOperands()-1)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  |  | 
|  | ResNode = CurDAG->getTargetNode(PPC::BL, MVT::Other, MVT::Flag, Ops); | 
|  |  | 
|  | Chain = SDOperand(ResNode, 0); | 
|  | InFlag = SDOperand(ResNode, 1); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, Chain.Val, | 
|  | Chain.ResNo); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, InFlag.Val, | 
|  | InFlag.ResNo); | 
|  | Result = SDOperand(ResNode, N.ResNo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Pattern: (PPCcall:void (texternalsym:i32):$dst) | 
|  | // Emits: (BL:void (texternalsym:i32):$dst) | 
|  | // Pattern complexity = 4  cost = 1 | 
|  | if (N1.getOpcode() == ISD::TargetExternalSymbol) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(N1); | 
|  |  | 
|  | bool hasFlag = | 
|  | N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag; | 
|  |  | 
|  | // Push varargs arguments, not including optional flag. | 
|  | for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) { | 
|  | Select(Chain, N.getOperand(i)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  | Select(Chain, N.getOperand(0)); | 
|  | Ops.push_back(Chain); | 
|  | if (hasFlag) { | 
|  | Select(Chain, N.getOperand(N.getNumOperands()-1)); | 
|  | Ops.push_back(Chain); | 
|  | } | 
|  |  | 
|  | ResNode = CurDAG->getTargetNode(PPC::BL, MVT::Other, MVT::Flag, Ops); | 
|  |  | 
|  | Chain = SDOperand(ResNode, 0); | 
|  | InFlag = SDOperand(ResNode, 1); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, Chain.Val, | 
|  | Chain.ResNo); | 
|  | SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, InFlag.Val, | 
|  | InFlag.ResNo); | 
|  | Result = SDOperand(ResNode, N.ResNo); | 
|  | return; | 
|  | } | 
|  | std::cerr << "Cannot yet select: "; | 
|  | N.Val->dump(CurDAG); | 
|  | std::cerr << '\n'; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// createPPCISelDag - This pass converts a legalized DAG into a | 
|  | /// PowerPC-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { | 
|  | return new PPCDAGToDAGISel(TM); | 
|  | } | 
|  |  |