|  | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/CXXFieldCollector.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclVisitor.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <map> | 
|  | #include <set> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CheckDefaultArgumentVisitor | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
|  | /// the default argument of a parameter to determine whether it | 
|  | /// contains any ill-formed subexpressions. For example, this will | 
|  | /// diagnose the use of local variables or parameters within the | 
|  | /// default argument expression. | 
|  | class CheckDefaultArgumentVisitor | 
|  | : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
|  | Expr *DefaultArg; | 
|  | Sema *S; | 
|  |  | 
|  | public: | 
|  | CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) | 
|  | : DefaultArg(defarg), S(s) {} | 
|  |  | 
|  | bool VisitExpr(Expr *Node); | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
|  | bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
|  | }; | 
|  |  | 
|  | /// VisitExpr - Visit all of the children of this expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
|  | bool IsInvalid = false; | 
|  | for (Stmt::child_iterator I = Node->child_begin(), | 
|  | E = Node->child_end(); I != E; ++I) | 
|  | IsInvalid |= Visit(*I); | 
|  | return IsInvalid; | 
|  | } | 
|  |  | 
|  | /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
|  | /// determine whether this declaration can be used in the default | 
|  | /// argument expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | NamedDecl *Decl = DRE->getDecl(); | 
|  | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p9 | 
|  | //   Default arguments are evaluated each time the function is | 
|  | //   called. The order of evaluation of function arguments is | 
|  | //   unspecified. Consequently, parameters of a function shall not | 
|  | //   be used in default argument expressions, even if they are not | 
|  | //   evaluated. Parameters of a function declared before a default | 
|  | //   argument expression are in scope and can hide namespace and | 
|  | //   class member names. | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_param) | 
|  | << Param->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p7 | 
|  | //   Local variables shall not be used in default argument | 
|  | //   expressions. | 
|  | if (VDecl->isBlockVarDecl()) | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_local) | 
|  | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
|  | // C++ [dcl.fct.default]p8: | 
|  | //   The keyword this shall not be used in a default argument of a | 
|  | //   member function. | 
|  | return S->Diag(ThisE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_this) | 
|  | << ThisE->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | 
|  | SourceLocation EqualLoc) { | 
|  | if (RequireCompleteType(Param->getLocation(), Param->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Param->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p5 | 
|  | //   A default argument expression is implicitly converted (clause | 
|  | //   4) to the parameter type. The default argument expression has | 
|  | //   the same semantic constraints as the initializer expression in | 
|  | //   a declaration of a variable of the parameter type, using the | 
|  | //   copy-initialization semantics (8.5). | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | 
|  | Param); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | 
|  | EqualLoc); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, &Arg, 1)); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | Arg = Result.takeAs<Expr>(); | 
|  |  | 
|  | Arg = MaybeCreateCXXExprWithTemporaries(Arg); | 
|  |  | 
|  | // Okay: add the default argument to the parameter | 
|  | Param->setDefaultArg(Arg); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgument - Check whether the default argument | 
|  | /// provided for a function parameter is well-formed. If so, attach it | 
|  | /// to the parameter declaration. | 
|  | void | 
|  | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, | 
|  | Expr *DefaultArg) { | 
|  | if (!param || !DefaultArg) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  |  | 
|  | // Default arguments are only permitted in C++ | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | Diag(EqualLoc, diag::err_param_default_argument) | 
|  | << DefaultArg->getSourceRange(); | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the default argument is well-formed | 
|  | CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); | 
|  | if (DefaultArgChecker.Visit(DefaultArg)) { | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SetParamDefaultArgument(Param, DefaultArg, EqualLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
|  | /// argument for a function parameter, but we can't parse it yet | 
|  | /// because we're inside a class definition. Note that this default | 
|  | /// argument will be parsed later. | 
|  | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, | 
|  | SourceLocation EqualLoc, | 
|  | SourceLocation ArgLoc) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  | if (Param) | 
|  | Param->setUnparsedDefaultArg(); | 
|  |  | 
|  | UnparsedDefaultArgLocs[Param] = ArgLoc; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
|  | /// the default argument for the parameter param failed. | 
|  | void Sema::ActOnParamDefaultArgumentError(Decl *param) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  |  | 
|  | Param->setInvalidDecl(); | 
|  |  | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  | } | 
|  |  | 
|  | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
|  | /// arguments in the declarator, which is not a function declaration | 
|  | /// or definition and therefore is not permitted to have default | 
|  | /// arguments. This routine should be invoked for every declarator | 
|  | /// that is not a function declaration or definition. | 
|  | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
|  | // C++ [dcl.fct.default]p3 | 
|  | //   A default argument expression shall be specified only in the | 
|  | //   parameter-declaration-clause of a function declaration or in a | 
|  | //   template-parameter (14.1). It shall not be specified for a | 
|  | //   parameter pack. If it is specified in a | 
|  | //   parameter-declaration-clause, it shall not occur within a | 
|  | //   declarator or abstract-declarator of a parameter-declaration. | 
|  | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | 
|  | DeclaratorChunk &chunk = D.getTypeObject(i); | 
|  | if (chunk.Kind == DeclaratorChunk::Function) { | 
|  | for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { | 
|  | ParmVarDecl *Param = | 
|  | cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param); | 
|  | if (Param->hasUnparsedDefaultArg()) { | 
|  | CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); | 
|  | delete Toks; | 
|  | chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; | 
|  | } else if (Param->getDefaultArg()) { | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << Param->getDefaultArg()->getSourceRange(); | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
|  | // function, once we already know that they have the same | 
|  | // type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
|  | // error, false otherwise. | 
|  | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   For non-template functions, default arguments can be added in | 
|  | //   later declarations of a function in the same | 
|  | //   scope. Declarations in different scopes have completely | 
|  | //   distinct sets of default arguments. That is, declarations in | 
|  | //   inner scopes do not acquire default arguments from | 
|  | //   declarations in outer scopes, and vice versa. In a given | 
|  | //   function declaration, all parameters subsequent to a | 
|  | //   parameter with a default argument shall have default | 
|  | //   arguments supplied in this or previous declarations. A | 
|  | //   default argument shall not be redefined by a later | 
|  | //   declaration (not even to the same value). | 
|  | // | 
|  | // C++ [dcl.fct.default]p6: | 
|  | //   Except for member functions of class templates, the default arguments | 
|  | //   in a member function definition that appears outside of the class | 
|  | //   definition are added to the set of default arguments provided by the | 
|  | //   member function declaration in the class definition. | 
|  | for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { | 
|  | ParmVarDecl *OldParam = Old->getParamDecl(p); | 
|  | ParmVarDecl *NewParam = New->getParamDecl(p); | 
|  |  | 
|  | if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { | 
|  | // FIXME: If we knew where the '=' was, we could easily provide a fix-it | 
|  | // hint here. Alternatively, we could walk the type-source information | 
|  | // for NewParam to find the last source location in the type... but it | 
|  | // isn't worth the effort right now. This is the kind of test case that | 
|  | // is hard to get right: | 
|  |  | 
|  | //   int f(int); | 
|  | //   void g(int (*fp)(int) = f); | 
|  | //   void g(int (*fp)(int) = &f); | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_redefinition) | 
|  | << NewParam->getDefaultArgRange(); | 
|  |  | 
|  | // Look for the function declaration where the default argument was | 
|  | // actually written, which may be a declaration prior to Old. | 
|  | for (FunctionDecl *Older = Old->getPreviousDeclaration(); | 
|  | Older; Older = Older->getPreviousDeclaration()) { | 
|  | if (!Older->getParamDecl(p)->hasDefaultArg()) | 
|  | break; | 
|  |  | 
|  | OldParam = Older->getParamDecl(p); | 
|  | } | 
|  |  | 
|  | Diag(OldParam->getLocation(), diag::note_previous_definition) | 
|  | << OldParam->getDefaultArgRange(); | 
|  | Invalid = true; | 
|  | } else if (OldParam->hasDefaultArg()) { | 
|  | // Merge the old default argument into the new parameter. | 
|  | // It's important to use getInit() here;  getDefaultArg() | 
|  | // strips off any top-level CXXExprWithTemporaries. | 
|  | NewParam->setHasInheritedDefaultArg(); | 
|  | if (OldParam->hasUninstantiatedDefaultArg()) | 
|  | NewParam->setUninstantiatedDefaultArg( | 
|  | OldParam->getUninstantiatedDefaultArg()); | 
|  | else | 
|  | NewParam->setDefaultArg(OldParam->getInit()); | 
|  | } else if (NewParam->hasDefaultArg()) { | 
|  | if (New->getDescribedFunctionTemplate()) { | 
|  | // Paragraph 4, quoted above, only applies to non-template functions. | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_template_redecl) | 
|  | << NewParam->getDefaultArgRange(); | 
|  | Diag(Old->getLocation(), diag::note_template_prev_declaration) | 
|  | << false; | 
|  | } else if (New->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation && | 
|  | New->getTemplateSpecializationKind() != TSK_Undeclared) { | 
|  | // C++ [temp.expr.spec]p21: | 
|  | //   Default function arguments shall not be specified in a declaration | 
|  | //   or a definition for one of the following explicit specializations: | 
|  | //     - the explicit specialization of a function template; | 
|  | //     - the explicit specialization of a member function template; | 
|  | //     - the explicit specialization of a member function of a class | 
|  | //       template where the class template specialization to which the | 
|  | //       member function specialization belongs is implicitly | 
|  | //       instantiated. | 
|  | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | 
|  | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | 
|  | << New->getDeclName() | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } else if (New->getDeclContext()->isDependentContext()) { | 
|  | // C++ [dcl.fct.default]p6 (DR217): | 
|  | //   Default arguments for a member function of a class template shall | 
|  | //   be specified on the initial declaration of the member function | 
|  | //   within the class template. | 
|  | // | 
|  | // Reading the tea leaves a bit in DR217 and its reference to DR205 | 
|  | // leads me to the conclusion that one cannot add default function | 
|  | // arguments for an out-of-line definition of a member function of a | 
|  | // dependent type. | 
|  | int WhichKind = 2; | 
|  | if (CXXRecordDecl *Record | 
|  | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | 
|  | if (Record->getDescribedClassTemplate()) | 
|  | WhichKind = 0; | 
|  | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | 
|  | WhichKind = 1; | 
|  | else | 
|  | WhichKind = 2; | 
|  | } | 
|  |  | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_member_template_redecl) | 
|  | << WhichKind | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckEquivalentExceptionSpec(Old, New)) | 
|  | Invalid = true; | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
|  | /// function declaration are well-formed according to C++ | 
|  | /// [dcl.fct.default]. | 
|  | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
|  | unsigned NumParams = FD->getNumParams(); | 
|  | unsigned p; | 
|  |  | 
|  | // Find first parameter with a default argument | 
|  | for (p = 0; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   In a given function declaration, all parameters | 
|  | //   subsequent to a parameter with a default argument shall | 
|  | //   have default arguments supplied in this or previous | 
|  | //   declarations. A default argument shall not be redefined | 
|  | //   by a later declaration (not even to the same value). | 
|  | unsigned LastMissingDefaultArg = 0; | 
|  | for (; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (!Param->hasDefaultArg()) { | 
|  | if (Param->isInvalidDecl()) | 
|  | /* We already complained about this parameter. */; | 
|  | else if (Param->getIdentifier()) | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing_name) | 
|  | << Param->getIdentifier(); | 
|  | else | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing); | 
|  |  | 
|  | LastMissingDefaultArg = p; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastMissingDefaultArg > 0) { | 
|  | // Some default arguments were missing. Clear out all of the | 
|  | // default arguments up to (and including) the last missing | 
|  | // default argument, so that we leave the function parameters | 
|  | // in a semantically valid state. | 
|  | for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) { | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isCurrentClassName - Determine whether the identifier II is the | 
|  | /// name of the class type currently being defined. In the case of | 
|  | /// nested classes, this will only return true if II is the name of | 
|  | /// the innermost class. | 
|  | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, | 
|  | const CXXScopeSpec *SS) { | 
|  | assert(getLangOptions().CPlusPlus && "No class names in C!"); | 
|  |  | 
|  | CXXRecordDecl *CurDecl; | 
|  | if (SS && SS->isSet() && !SS->isInvalid()) { | 
|  | DeclContext *DC = computeDeclContext(*SS, true); | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
|  | } else | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
|  |  | 
|  | if (CurDecl && CurDecl->getIdentifier()) | 
|  | return &II == CurDecl->getIdentifier(); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check the validity of a C++ base class specifier. | 
|  | /// | 
|  | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
|  | /// and returns NULL otherwise. | 
|  | CXXBaseSpecifier * | 
|  | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
|  | SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | TypeSourceInfo *TInfo) { | 
|  | QualType BaseType = TInfo->getType(); | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not have base classes. | 
|  | if (Class->isUnion()) { | 
|  | Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
|  | << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BaseType->isDependentType()) | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == TTK_Class, | 
|  | Access, TInfo); | 
|  |  | 
|  | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); | 
|  |  | 
|  | // Base specifiers must be record types. | 
|  | if (!BaseType->isRecordType()) { | 
|  | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not be used as a base class. | 
|  | if (BaseType->isUnionType()) { | 
|  | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.derived]p2: | 
|  | //   The class-name in a base-specifier shall not be an incompletely | 
|  | //   defined class. | 
|  | if (RequireCompleteType(BaseLoc, BaseType, | 
|  | PDiag(diag::err_incomplete_base_class) | 
|  | << SpecifierRange)) { | 
|  | Class->setInvalidDecl(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | 
|  | RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); | 
|  | assert(BaseDecl && "Record type has no declaration"); | 
|  | BaseDecl = BaseDecl->getDefinition(); | 
|  | assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
|  | CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | 
|  | assert(CXXBaseDecl && "Base type is not a C++ type"); | 
|  |  | 
|  | // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. | 
|  | if (CXXBaseDecl->hasAttr<FinalAttr>()) { | 
|  | Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); | 
|  | Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) | 
|  | << BaseType; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); | 
|  |  | 
|  | if (BaseDecl->isInvalidDecl()) | 
|  | Class->setInvalidDecl(); | 
|  |  | 
|  | // Create the base specifier. | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == TTK_Class, | 
|  | Access, TInfo); | 
|  | } | 
|  |  | 
|  | void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, | 
|  | const CXXRecordDecl *BaseClass, | 
|  | bool BaseIsVirtual) { | 
|  | // A class with a non-empty base class is not empty. | 
|  | // FIXME: Standard ref? | 
|  | if (!BaseClass->isEmpty()) | 
|  | Class->setEmpty(false); | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that [...] inherits a virtual function is called a polymorphic | 
|  | //   class. | 
|  | if (BaseClass->isPolymorphic()) | 
|  | Class->setPolymorphic(true); | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is [...] a class with [...] no base classes [...]. | 
|  | Class->setAggregate(false); | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | Class->setPOD(false); | 
|  |  | 
|  | if (BaseIsVirtual) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if its class has no virtual base classes. | 
|  | Class->setHasTrivialConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p6: | 
|  | //   A copy constructor is trivial if its class has no virtual base classes. | 
|  | Class->setHasTrivialCopyConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p11: | 
|  | //   A copy assignment operator is trivial if its class has no virtual | 
|  | //   base classes. | 
|  | Class->setHasTrivialCopyAssignment(false); | 
|  |  | 
|  | // C++0x [meta.unary.prop] is_empty: | 
|  | //    T is a class type, but not a union type, with ... no virtual base | 
|  | //    classes | 
|  | Class->setEmpty(false); | 
|  | } else { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if all the direct base classes of its | 
|  | //   class have trivial constructors. | 
|  | if (!BaseClass->hasTrivialConstructor()) | 
|  | Class->setHasTrivialConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p6: | 
|  | //   A copy constructor is trivial if all the direct base classes of its | 
|  | //   class have trivial copy constructors. | 
|  | if (!BaseClass->hasTrivialCopyConstructor()) | 
|  | Class->setHasTrivialCopyConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p11: | 
|  | //   A copy assignment operator is trivial if all the direct base classes | 
|  | //   of its class have trivial copy assignment operators. | 
|  | if (!BaseClass->hasTrivialCopyAssignment()) | 
|  | Class->setHasTrivialCopyAssignment(false); | 
|  | } | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A destructor is trivial if all the direct base classes of its class | 
|  | //   have trivial destructors. | 
|  | if (!BaseClass->hasTrivialDestructor()) | 
|  | Class->setHasTrivialDestructor(false); | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
|  | /// one entry in the base class list of a class specifier, for | 
|  | /// example: | 
|  | ///    class foo : public bar, virtual private baz { | 
|  | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
|  | BaseResult | 
|  | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | ParsedType basetype, SourceLocation BaseLoc) { | 
|  | if (!classdecl) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(classdecl); | 
|  | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); | 
|  | if (!Class) | 
|  | return true; | 
|  |  | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | GetTypeFromParser(basetype, &TInfo); | 
|  | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
|  | Virtual, Access, TInfo)) | 
|  | return BaseSpec; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Performs the actual work of attaching the given base class | 
|  | /// specifiers to a C++ class. | 
|  | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, | 
|  | unsigned NumBases) { | 
|  | if (NumBases == 0) | 
|  | return false; | 
|  |  | 
|  | // Used to keep track of which base types we have already seen, so | 
|  | // that we can properly diagnose redundant direct base types. Note | 
|  | // that the key is always the unqualified canonical type of the base | 
|  | // class. | 
|  | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
|  |  | 
|  | // Copy non-redundant base specifiers into permanent storage. | 
|  | unsigned NumGoodBases = 0; | 
|  | bool Invalid = false; | 
|  | for (unsigned idx = 0; idx < NumBases; ++idx) { | 
|  | QualType NewBaseType | 
|  | = Context.getCanonicalType(Bases[idx]->getType()); | 
|  | NewBaseType = NewBaseType.getLocalUnqualifiedType(); | 
|  | if (!Class->hasObjectMember()) { | 
|  | if (const RecordType *FDTTy = | 
|  | NewBaseType.getTypePtr()->getAs<RecordType>()) | 
|  | if (FDTTy->getDecl()->hasObjectMember()) | 
|  | Class->setHasObjectMember(true); | 
|  | } | 
|  |  | 
|  | if (KnownBaseTypes[NewBaseType]) { | 
|  | // C++ [class.mi]p3: | 
|  | //   A class shall not be specified as a direct base class of a | 
|  | //   derived class more than once. | 
|  | Diag(Bases[idx]->getSourceRange().getBegin(), | 
|  | diag::err_duplicate_base_class) | 
|  | << KnownBaseTypes[NewBaseType]->getType() | 
|  | << Bases[idx]->getSourceRange(); | 
|  |  | 
|  | // Delete the duplicate base class specifier; we're going to | 
|  | // overwrite its pointer later. | 
|  | Context.Deallocate(Bases[idx]); | 
|  |  | 
|  | Invalid = true; | 
|  | } else { | 
|  | // Okay, add this new base class. | 
|  | KnownBaseTypes[NewBaseType] = Bases[idx]; | 
|  | Bases[NumGoodBases++] = Bases[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attach the remaining base class specifiers to the derived class. | 
|  | Class->setBases(Bases, NumGoodBases); | 
|  |  | 
|  | // Delete the remaining (good) base class specifiers, since their | 
|  | // data has been copied into the CXXRecordDecl. | 
|  | for (unsigned idx = 0; idx < NumGoodBases; ++idx) | 
|  | Context.Deallocate(Bases[idx]); | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
|  | /// class, after checking whether there are any duplicate base | 
|  | /// classes. | 
|  | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases, | 
|  | unsigned NumBases) { | 
|  | if (!ClassDecl || !Bases || !NumBases) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ClassDecl); | 
|  | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), | 
|  | (CXXBaseSpecifier**)(Bases), NumBases); | 
|  | } | 
|  |  | 
|  | static CXXRecordDecl *GetClassForType(QualType T) { | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl()); | 
|  | else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>()) | 
|  | return ICT->getDecl(); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = GetClassForType(Derived); | 
|  | if (!DerivedRD) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *BaseRD = GetClassForType(Base); | 
|  | if (!BaseRD) | 
|  | return false; | 
|  |  | 
|  | // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this. | 
|  | return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = GetClassForType(Derived); | 
|  | if (!DerivedRD) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *BaseRD = GetClassForType(Base); | 
|  | if (!BaseRD) | 
|  | return false; | 
|  |  | 
|  | return DerivedRD->isDerivedFrom(BaseRD, Paths); | 
|  | } | 
|  |  | 
|  | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, | 
|  | CXXCastPath &BasePathArray) { | 
|  | assert(BasePathArray.empty() && "Base path array must be empty!"); | 
|  | assert(Paths.isRecordingPaths() && "Must record paths!"); | 
|  |  | 
|  | const CXXBasePath &Path = Paths.front(); | 
|  |  | 
|  | // We first go backward and check if we have a virtual base. | 
|  | // FIXME: It would be better if CXXBasePath had the base specifier for | 
|  | // the nearest virtual base. | 
|  | unsigned Start = 0; | 
|  | for (unsigned I = Path.size(); I != 0; --I) { | 
|  | if (Path[I - 1].Base->isVirtual()) { | 
|  | Start = I - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now add all bases. | 
|  | for (unsigned I = Start, E = Path.size(); I != E; ++I) | 
|  | BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given base path includes a virtual | 
|  | /// base class. | 
|  | bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { | 
|  | for (CXXCastPath::const_iterator B = BasePath.begin(), | 
|  | BEnd = BasePath.end(); | 
|  | B != BEnd; ++B) | 
|  | if ((*B)->isVirtual()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | 
|  | /// conversion (where Derived and Base are class types) is | 
|  | /// well-formed, meaning that the conversion is unambiguous (and | 
|  | /// that all of the base classes are accessible). Returns true | 
|  | /// and emits a diagnostic if the code is ill-formed, returns false | 
|  | /// otherwise. Loc is the location where this routine should point to | 
|  | /// if there is an error, and Range is the source range to highlight | 
|  | /// if there is an error. | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | unsigned InaccessibleBaseID, | 
|  | unsigned AmbigiousBaseConvID, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName Name, | 
|  | CXXCastPath *BasePath) { | 
|  | // First, determine whether the path from Derived to Base is | 
|  | // ambiguous. This is slightly more expensive than checking whether | 
|  | // the Derived to Base conversion exists, because here we need to | 
|  | // explore multiple paths to determine if there is an ambiguity. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); | 
|  | assert(DerivationOkay && | 
|  | "Can only be used with a derived-to-base conversion"); | 
|  | (void)DerivationOkay; | 
|  |  | 
|  | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { | 
|  | if (InaccessibleBaseID) { | 
|  | // Check that the base class can be accessed. | 
|  | switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), | 
|  | InaccessibleBaseID)) { | 
|  | case AR_inaccessible: | 
|  | return true; | 
|  | case AR_accessible: | 
|  | case AR_dependent: | 
|  | case AR_delayed: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a base path if necessary. | 
|  | if (BasePath) | 
|  | BuildBasePathArray(Paths, *BasePath); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We know that the derived-to-base conversion is ambiguous, and | 
|  | // we're going to produce a diagnostic. Perform the derived-to-base | 
|  | // search just one more time to compute all of the possible paths so | 
|  | // that we can print them out. This is more expensive than any of | 
|  | // the previous derived-to-base checks we've done, but at this point | 
|  | // performance isn't as much of an issue. | 
|  | Paths.clear(); | 
|  | Paths.setRecordingPaths(true); | 
|  | bool StillOkay = IsDerivedFrom(Derived, Base, Paths); | 
|  | assert(StillOkay && "Can only be used with a derived-to-base conversion"); | 
|  | (void)StillOkay; | 
|  |  | 
|  | // Build up a textual representation of the ambiguous paths, e.g., | 
|  | // D -> B -> A, that will be used to illustrate the ambiguous | 
|  | // conversions in the diagnostic. We only print one of the paths | 
|  | // to each base class subobject. | 
|  | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
|  |  | 
|  | Diag(Loc, AmbigiousBaseConvID) | 
|  | << Derived << Base << PathDisplayStr << Range << Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | CXXCastPath *BasePath, | 
|  | bool IgnoreAccess) { | 
|  | return CheckDerivedToBaseConversion(Derived, Base, | 
|  | IgnoreAccess ? 0 | 
|  | : diag::err_upcast_to_inaccessible_base, | 
|  | diag::err_ambiguous_derived_to_base_conv, | 
|  | Loc, Range, DeclarationName(), | 
|  | BasePath); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// @brief Builds a string representing ambiguous paths from a | 
|  | /// specific derived class to different subobjects of the same base | 
|  | /// class. | 
|  | /// | 
|  | /// This function builds a string that can be used in error messages | 
|  | /// to show the different paths that one can take through the | 
|  | /// inheritance hierarchy to go from the derived class to different | 
|  | /// subobjects of a base class. The result looks something like this: | 
|  | /// @code | 
|  | /// struct D -> struct B -> struct A | 
|  | /// struct D -> struct C -> struct A | 
|  | /// @endcode | 
|  | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | 
|  | std::string PathDisplayStr; | 
|  | std::set<unsigned> DisplayedPaths; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | 
|  | // We haven't displayed a path to this particular base | 
|  | // class subobject yet. | 
|  | PathDisplayStr += "\n    "; | 
|  | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | 
|  | for (CXXBasePath::const_iterator Element = Path->begin(); | 
|  | Element != Path->end(); ++Element) | 
|  | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return PathDisplayStr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // C++ class member Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. | 
|  | Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access, | 
|  | SourceLocation ASLoc, | 
|  | SourceLocation ColonLoc) { | 
|  | assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); | 
|  | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, | 
|  | ASLoc, ColonLoc); | 
|  | CurContext->addHiddenDecl(ASDecl); | 
|  | return ASDecl; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
|  | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
|  | /// bitfield width if there is one and 'InitExpr' specifies the initializer if | 
|  | /// any. | 
|  | Decl * | 
|  | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, | 
|  | bool Deleted) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | SourceLocation Loc = NameInfo.getLoc(); | 
|  | Expr *BitWidth = static_cast<Expr*>(BW); | 
|  | Expr *Init = static_cast<Expr*>(InitExpr); | 
|  |  | 
|  | assert(isa<CXXRecordDecl>(CurContext)); | 
|  | assert(!DS.isFriendSpecified()); | 
|  |  | 
|  | bool isFunc = false; | 
|  | if (D.isFunctionDeclarator()) | 
|  | isFunc = true; | 
|  | else if (D.getNumTypeObjects() == 0 && | 
|  | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) { | 
|  | QualType TDType = GetTypeFromParser(DS.getRepAsType()); | 
|  | isFunc = TDType->isFunctionType(); | 
|  | } | 
|  |  | 
|  | // C++ 9.2p6: A member shall not be declared to have automatic storage | 
|  | // duration (auto, register) or with the extern storage-class-specifier. | 
|  | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
|  | // data members and cannot be applied to names declared const or static, | 
|  | // and cannot be applied to reference members. | 
|  | switch (DS.getStorageClassSpec()) { | 
|  | case DeclSpec::SCS_unspecified: | 
|  | case DeclSpec::SCS_typedef: | 
|  | case DeclSpec::SCS_static: | 
|  | // FALL THROUGH. | 
|  | break; | 
|  | case DeclSpec::SCS_mutable: | 
|  | if (isFunc) { | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); | 
|  |  | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_storageclass_invalid_for_member); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
|  | !isFunc); | 
|  |  | 
|  | Decl *Member; | 
|  | if (isInstField) { | 
|  | // FIXME: Check for template parameters! | 
|  | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, | 
|  | AS); | 
|  | assert(Member && "HandleField never returns null"); | 
|  | } else { | 
|  | Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition); | 
|  | if (!Member) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Non-instance-fields can't have a bitfield. | 
|  | if (BitWidth) { | 
|  | if (Member->isInvalidDecl()) { | 
|  | // don't emit another diagnostic. | 
|  | } else if (isa<VarDecl>(Member)) { | 
|  | // C++ 9.6p3: A bit-field shall not be a static member. | 
|  | // "static member 'A' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_static_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else if (isa<TypedefDecl>(Member)) { | 
|  | // "typedef member 'x' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_typedef_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else { | 
|  | // A function typedef ("typedef int f(); f a;"). | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | Diag(Loc, diag::err_not_integral_type_bitfield) | 
|  | << Name << cast<ValueDecl>(Member)->getType() | 
|  | << BitWidth->getSourceRange(); | 
|  | } | 
|  |  | 
|  | BitWidth = 0; | 
|  | Member->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | Member->setAccess(AS); | 
|  |  | 
|  | // If we have declared a member function template, set the access of the | 
|  | // templated declaration as well. | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | 
|  | FunTmpl->getTemplatedDecl()->setAccess(AS); | 
|  | } | 
|  |  | 
|  | assert((Name || isInstField) && "No identifier for non-field ?"); | 
|  |  | 
|  | if (Init) | 
|  | AddInitializerToDecl(Member, Init, false); | 
|  | if (Deleted) // FIXME: Source location is not very good. | 
|  | SetDeclDeleted(Member, D.getSourceRange().getBegin()); | 
|  |  | 
|  | if (isInstField) { | 
|  | FieldCollector->Add(cast<FieldDecl>(Member)); | 
|  | return 0; | 
|  | } | 
|  | return Member; | 
|  | } | 
|  |  | 
|  | /// \brief Find the direct and/or virtual base specifiers that | 
|  | /// correspond to the given base type, for use in base initialization | 
|  | /// within a constructor. | 
|  | static bool FindBaseInitializer(Sema &SemaRef, | 
|  | CXXRecordDecl *ClassDecl, | 
|  | QualType BaseType, | 
|  | const CXXBaseSpecifier *&DirectBaseSpec, | 
|  | const CXXBaseSpecifier *&VirtualBaseSpec) { | 
|  | // First, check for a direct base class. | 
|  | DirectBaseSpec = 0; | 
|  | for (CXXRecordDecl::base_class_const_iterator Base | 
|  | = ClassDecl->bases_begin(); | 
|  | Base != ClassDecl->bases_end(); ++Base) { | 
|  | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { | 
|  | // We found a direct base of this type. That's what we're | 
|  | // initializing. | 
|  | DirectBaseSpec = &*Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a virtual base class. | 
|  | // FIXME: We might be able to short-circuit this if we know in advance that | 
|  | // there are no virtual bases. | 
|  | VirtualBaseSpec = 0; | 
|  | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
|  | // We haven't found a base yet; search the class hierarchy for a | 
|  | // virtual base class. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), | 
|  | BaseType, Paths)) { | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (Path->back().Base->isVirtual()) { | 
|  | VirtualBaseSpec = Path->back().Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DirectBaseSpec || VirtualBaseSpec; | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializer - Handle a C++ member initializer. | 
|  | MemInitResult | 
|  | Sema::ActOnMemInitializer(Decl *ConstructorD, | 
|  | Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | ParsedType TemplateTypeTy, | 
|  | SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | ExprTy **Args, unsigned NumArgs, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!ConstructorD) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorD); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorD); | 
|  | if (!Constructor) { | 
|  | // The user wrote a constructor initializer on a function that is | 
|  | // not a C++ constructor. Ignore the error for now, because we may | 
|  | // have more member initializers coming; we'll diagnose it just | 
|  | // once in ActOnMemInitializers. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   Names in a mem-initializer-id are looked up in the scope of the | 
|  | //   constructor’s class and, if not found in that scope, are looked | 
|  | //   up in the scope containing the constructor’s | 
|  | //   definition. [Note: if the constructor’s class contains a member | 
|  | //   with the same name as a direct or virtual base class of the | 
|  | //   class, a mem-initializer-id naming the member or base class and | 
|  | //   composed of a single identifier refers to the class member. A | 
|  | //   mem-initializer-id for the hidden base class may be specified | 
|  | //   using a qualified name. ] | 
|  | if (!SS.getScopeRep() && !TemplateTypeTy) { | 
|  | // Look for a member, first. | 
|  | FieldDecl *Member = 0; | 
|  | DeclContext::lookup_result Result | 
|  | = ClassDecl->lookup(MemberOrBase); | 
|  | if (Result.first != Result.second) | 
|  | Member = dyn_cast<FieldDecl>(*Result.first); | 
|  |  | 
|  | // FIXME: Handle members of an anonymous union. | 
|  |  | 
|  | if (Member) | 
|  | return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, | 
|  | LParenLoc, RParenLoc); | 
|  | } | 
|  | // It didn't name a member, so see if it names a class. | 
|  | QualType BaseType; | 
|  | TypeSourceInfo *TInfo = 0; | 
|  |  | 
|  | if (TemplateTypeTy) { | 
|  | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | 
|  | } else { | 
|  | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | 
|  | if (!TyD) { | 
|  | if (R.isAmbiguous()) return true; | 
|  |  | 
|  | // We don't want access-control diagnostics here. | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | if (SS.isSet() && isDependentScopeSpecifier(SS)) { | 
|  | bool NotUnknownSpecialization = false; | 
|  | DeclContext *DC = computeDeclContext(SS, false); | 
|  | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) | 
|  | NotUnknownSpecialization = !Record->hasAnyDependentBases(); | 
|  |  | 
|  | if (!NotUnknownSpecialization) { | 
|  | // When the scope specifier can refer to a member of an unknown | 
|  | // specialization, we take it as a type name. | 
|  | BaseType = CheckTypenameType(ETK_None, | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | *MemberOrBase, SourceLocation(), | 
|  | SS.getRange(), IdLoc); | 
|  | if (BaseType.isNull()) | 
|  | return true; | 
|  |  | 
|  | R.clear(); | 
|  | R.setLookupName(MemberOrBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If no results were found, try to correct typos. | 
|  | if (R.empty() && BaseType.isNull() && | 
|  | CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) && | 
|  | R.isSingleResult()) { | 
|  | if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) { | 
|  | if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) { | 
|  | // We have found a non-static data member with a similar | 
|  | // name to what was typed; complain and initialize that | 
|  | // member. | 
|  | Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << true << R.getLookupName() | 
|  | << FixItHint::CreateReplacement(R.getNameLoc(), | 
|  | R.getLookupName().getAsString()); | 
|  | Diag(Member->getLocation(), diag::note_previous_decl) | 
|  | << Member->getDeclName(); | 
|  |  | 
|  | return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, | 
|  | LParenLoc, RParenLoc); | 
|  | } | 
|  | } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) { | 
|  | const CXXBaseSpecifier *DirectBaseSpec; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec; | 
|  | if (FindBaseInitializer(*this, ClassDecl, | 
|  | Context.getTypeDeclType(Type), | 
|  | DirectBaseSpec, VirtualBaseSpec)) { | 
|  | // We have found a direct or virtual base class with a | 
|  | // similar name to what was typed; complain and initialize | 
|  | // that base class. | 
|  | Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << false << R.getLookupName() | 
|  | << FixItHint::CreateReplacement(R.getNameLoc(), | 
|  | R.getLookupName().getAsString()); | 
|  |  | 
|  | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec | 
|  | : VirtualBaseSpec; | 
|  | Diag(BaseSpec->getSourceRange().getBegin(), | 
|  | diag::note_base_class_specified_here) | 
|  | << BaseSpec->getType() | 
|  | << BaseSpec->getSourceRange(); | 
|  |  | 
|  | TyD = Type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TyD && BaseType.isNull()) { | 
|  | Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
|  | << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseType.isNull()) { | 
|  | BaseType = Context.getTypeDeclType(TyD); | 
|  | if (SS.isSet()) { | 
|  | NestedNameSpecifier *Qualifier = | 
|  | static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
|  |  | 
|  | // FIXME: preserve source range information | 
|  | BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | 
|  |  | 
|  | return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, | 
|  | LParenLoc, RParenLoc, ClassDecl); | 
|  | } | 
|  |  | 
|  | /// Checks an initializer expression for use of uninitialized fields, such as | 
|  | /// containing the field that is being initialized. Returns true if there is an | 
|  | /// uninitialized field was used an updates the SourceLocation parameter; false | 
|  | /// otherwise. | 
|  | static bool InitExprContainsUninitializedFields(const Stmt *S, | 
|  | const FieldDecl *LhsField, | 
|  | SourceLocation *L) { | 
|  | if (isa<CallExpr>(S)) { | 
|  | // Do not descend into function calls or constructors, as the use | 
|  | // of an uninitialized field may be valid. One would have to inspect | 
|  | // the contents of the function/ctor to determine if it is safe or not. | 
|  | // i.e. Pass-by-value is never safe, but pass-by-reference and pointers | 
|  | // may be safe, depending on what the function/ctor does. | 
|  | return false; | 
|  | } | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) { | 
|  | const NamedDecl *RhsField = ME->getMemberDecl(); | 
|  | if (RhsField == LhsField) { | 
|  | // Initializing a field with itself. Throw a warning. | 
|  | // But wait; there are exceptions! | 
|  | // Exception #1:  The field may not belong to this record. | 
|  | // e.g. Foo(const Foo& rhs) : A(rhs.A) {} | 
|  | const Expr *base = ME->getBase(); | 
|  | if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { | 
|  | // Even though the field matches, it does not belong to this record. | 
|  | return false; | 
|  | } | 
|  | // None of the exceptions triggered; return true to indicate an | 
|  | // uninitialized field was used. | 
|  | *L = ME->getMemberLoc(); | 
|  | return true; | 
|  | } | 
|  | } else if (isa<SizeOfAlignOfExpr>(S)) { | 
|  | // sizeof/alignof doesn't reference contents, do not warn. | 
|  | return false; | 
|  | } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) { | 
|  | // address-of doesn't reference contents (the pointer may be dereferenced | 
|  | // in the same expression but it would be rare; and weird). | 
|  | if (UOE->getOpcode() == UO_AddrOf) | 
|  | return false; | 
|  | } | 
|  | for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end(); | 
|  | it != e; ++it) { | 
|  | if (!*it) { | 
|  | // An expression such as 'member(arg ?: "")' may trigger this. | 
|  | continue; | 
|  | } | 
|  | if (InitExprContainsUninitializedFields(*it, LhsField, L)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MemInitResult | 
|  | Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, | 
|  | unsigned NumArgs, SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | // Diagnose value-uses of fields to initialize themselves, e.g. | 
|  | //   foo(foo) | 
|  | // where foo is not also a parameter to the constructor. | 
|  | // TODO: implement -Wuninitialized and fold this into that framework. | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | SourceLocation L; | 
|  | if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { | 
|  | // FIXME: Return true in the case when other fields are used before being | 
|  | // uninitialized. For example, let this field be the i'th field. When | 
|  | // initializing the i'th field, throw a warning if any of the >= i'th | 
|  | // fields are used, as they are not yet initialized. | 
|  | // Right now we are only handling the case where the i'th field uses | 
|  | // itself in its initializer. | 
|  | Diag(L, diag::warn_field_is_uninit); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasDependentArg = false; | 
|  | for (unsigned i = 0; i < NumArgs; i++) | 
|  | HasDependentArg |= Args[i]->isTypeDependent(); | 
|  |  | 
|  | if (Member->getType()->isDependentType() || HasDependentArg) { | 
|  | // Can't check initialization for a member of dependent type or when | 
|  | // any of the arguments are type-dependent expressions. | 
|  | Expr *Init | 
|  | = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, | 
|  | RParenLoc); | 
|  |  | 
|  | // Erase any temporaries within this evaluation context; we're not | 
|  | // going to track them in the AST, since we'll be rebuilding the | 
|  | // ASTs during template instantiation. | 
|  | ExprTemporaries.erase( | 
|  | ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, | 
|  | ExprTemporaries.end()); | 
|  |  | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, | 
|  | LParenLoc, | 
|  | Init, | 
|  | RParenLoc); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (Member->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | // Initialize the member. | 
|  | InitializedEntity MemberEntity = | 
|  | InitializedEntity::InitializeMember(Member, 0); | 
|  | InitializationKind Kind = | 
|  | InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); | 
|  |  | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(*this, MemberEntity, Kind, | 
|  | MultiExprArg(*this, Args, NumArgs), 0); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // C++0x [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get()); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // If we are in a dependent context, template instantiation will | 
|  | // perform this type-checking again. Just save the arguments that we | 
|  | // received in a ParenListExpr. | 
|  | // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
|  | // of the information that we have about the member | 
|  | // initializer. However, deconstructing the ASTs is a dicey process, | 
|  | // and this approach is far more likely to get the corner cases right. | 
|  | if (CurContext->isDependentContext()) { | 
|  | // Bump the reference count of all of the arguments. | 
|  | for (unsigned I = 0; I != NumArgs; ++I) | 
|  | Args[I]->Retain(); | 
|  |  | 
|  | Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, | 
|  | RParenLoc); | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, | 
|  | LParenLoc, | 
|  | Init, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, | 
|  | LParenLoc, | 
|  | MemberInit.get(), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | MemInitResult | 
|  | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | SourceLocation LParenLoc, SourceLocation RParenLoc, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | bool HasDependentArg = false; | 
|  | for (unsigned i = 0; i < NumArgs; i++) | 
|  | HasDependentArg |= Args[i]->isTypeDependent(); | 
|  |  | 
|  | SourceLocation BaseLoc | 
|  | = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  |  | 
|  | if (!BaseType->isDependentType() && !BaseType->isRecordType()) | 
|  | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   [...] Unless the mem-initializer-id names a nonstatic data | 
|  | //   member of the constructor’s class or a direct or virtual base | 
|  | //   of that class, the mem-initializer is ill-formed. A | 
|  | //   mem-initializer-list can initialize a base class using any | 
|  | //   name that denotes that base class type. | 
|  | bool Dependent = BaseType->isDependentType() || HasDependentArg; | 
|  |  | 
|  | // Check for direct and virtual base classes. | 
|  | const CXXBaseSpecifier *DirectBaseSpec = 0; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec = 0; | 
|  | if (!Dependent) { | 
|  | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, | 
|  | VirtualBaseSpec); | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | // Unless the mem-initializer-id names a nonstatic data member of the | 
|  | // constructor's class or a direct or virtual base of that class, the | 
|  | // mem-initializer is ill-formed. | 
|  | if (!DirectBaseSpec && !VirtualBaseSpec) { | 
|  | // If the class has any dependent bases, then it's possible that | 
|  | // one of those types will resolve to the same type as | 
|  | // BaseType. Therefore, just treat this as a dependent base | 
|  | // class initialization.  FIXME: Should we try to check the | 
|  | // initialization anyway? It seems odd. | 
|  | if (ClassDecl->hasAnyDependentBases()) | 
|  | Dependent = true; | 
|  | else | 
|  | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | 
|  | << BaseType << Context.getTypeDeclType(ClassDecl) | 
|  | << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Dependent) { | 
|  | // Can't check initialization for a base of dependent type or when | 
|  | // any of the arguments are type-dependent expressions. | 
|  | ExprResult BaseInit | 
|  | = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, | 
|  | RParenLoc)); | 
|  |  | 
|  | // Erase any temporaries within this evaluation context; we're not | 
|  | // going to track them in the AST, since we'll be rebuilding the | 
|  | // ASTs during template instantiation. | 
|  | ExprTemporaries.erase( | 
|  | ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, | 
|  | ExprTemporaries.end()); | 
|  |  | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, | 
|  | /*IsVirtual=*/false, | 
|  | LParenLoc, | 
|  | BaseInit.takeAs<Expr>(), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | //   If a mem-initializer-id is ambiguous because it designates both | 
|  | //   a direct non-virtual base class and an inherited virtual base | 
|  | //   class, the mem-initializer is ill-formed. | 
|  | if (DirectBaseSpec && VirtualBaseSpec) | 
|  | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | CXXBaseSpecifier *BaseSpec | 
|  | = const_cast<CXXBaseSpecifier *>(DirectBaseSpec); | 
|  | if (!BaseSpec) | 
|  | BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec); | 
|  |  | 
|  | // Initialize the base. | 
|  | InitializedEntity BaseEntity = | 
|  | InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); | 
|  | InitializationKind Kind = | 
|  | InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); | 
|  |  | 
|  | ExprResult BaseInit = | 
|  | InitSeq.Perform(*this, BaseEntity, Kind, | 
|  | MultiExprArg(*this, Args, NumArgs), 0); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // C++0x [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get()); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // If we are in a dependent context, template instantiation will | 
|  | // perform this type-checking again. Just save the arguments that we | 
|  | // received in a ParenListExpr. | 
|  | // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
|  | // of the information that we have about the base | 
|  | // initializer. However, deconstructing the ASTs is a dicey process, | 
|  | // and this approach is far more likely to get the corner cases right. | 
|  | if (CurContext->isDependentContext()) { | 
|  | // Bump the reference count of all of the arguments. | 
|  | for (unsigned I = 0; I != NumArgs; ++I) | 
|  | Args[I]->Retain(); | 
|  |  | 
|  | ExprResult Init | 
|  | = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, | 
|  | RParenLoc)); | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, | 
|  | BaseSpec->isVirtual(), | 
|  | LParenLoc, | 
|  | Init.takeAs<Expr>(), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, | 
|  | BaseSpec->isVirtual(), | 
|  | LParenLoc, | 
|  | BaseInit.takeAs<Expr>(), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | /// ImplicitInitializerKind - How an implicit base or member initializer should | 
|  | /// initialize its base or member. | 
|  | enum ImplicitInitializerKind { | 
|  | IIK_Default, | 
|  | IIK_Copy, | 
|  | IIK_Move | 
|  | }; | 
|  |  | 
|  | static bool | 
|  | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
|  | ImplicitInitializerKind ImplicitInitKind, | 
|  | CXXBaseSpecifier *BaseSpec, | 
|  | bool IsInheritedVirtualBase, | 
|  | CXXBaseOrMemberInitializer *&CXXBaseInit) { | 
|  | InitializedEntity InitEntity | 
|  | = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, | 
|  | IsInheritedVirtualBase); | 
|  |  | 
|  | ExprResult BaseInit; | 
|  |  | 
|  | switch (ImplicitInitKind) { | 
|  | case IIK_Default: { | 
|  | InitializationKind InitKind | 
|  | = InitializationKind::CreateDefault(Constructor->getLocation()); | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); | 
|  | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, | 
|  | MultiExprArg(SemaRef, 0, 0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case IIK_Copy: { | 
|  | ParmVarDecl *Param = Constructor->getParamDecl(0); | 
|  | QualType ParamType = Param->getType().getNonReferenceType(); | 
|  |  | 
|  | Expr *CopyCtorArg = | 
|  | DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, | 
|  | Constructor->getLocation(), ParamType, 0); | 
|  |  | 
|  | // Cast to the base class to avoid ambiguities. | 
|  | QualType ArgTy = | 
|  | SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), | 
|  | ParamType.getQualifiers()); | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BasePath.push_back(BaseSpec); | 
|  | SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, | 
|  | CK_UncheckedDerivedToBase, | 
|  | VK_LValue, &BasePath); | 
|  |  | 
|  | InitializationKind InitKind | 
|  | = InitializationKind::CreateDirect(Constructor->getLocation(), | 
|  | SourceLocation(), SourceLocation()); | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, | 
|  | &CopyCtorArg, 1); | 
|  | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, | 
|  | MultiExprArg(&CopyCtorArg, 1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case IIK_Move: | 
|  | assert(false && "Unhandled initializer kind!"); | 
|  | } | 
|  |  | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get()); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | CXXBaseInit = | 
|  | new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, | 
|  | SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), | 
|  | SourceLocation()), | 
|  | BaseSpec->isVirtual(), | 
|  | SourceLocation(), | 
|  | BaseInit.takeAs<Expr>(), | 
|  | SourceLocation()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
|  | ImplicitInitializerKind ImplicitInitKind, | 
|  | FieldDecl *Field, | 
|  | CXXBaseOrMemberInitializer *&CXXMemberInit) { | 
|  | if (Field->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | SourceLocation Loc = Constructor->getLocation(); | 
|  |  | 
|  | if (ImplicitInitKind == IIK_Copy) { | 
|  | ParmVarDecl *Param = Constructor->getParamDecl(0); | 
|  | QualType ParamType = Param->getType().getNonReferenceType(); | 
|  |  | 
|  | Expr *MemberExprBase = | 
|  | DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, | 
|  | Loc, ParamType, 0); | 
|  |  | 
|  | // Build a reference to this field within the parameter. | 
|  | CXXScopeSpec SS; | 
|  | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, | 
|  | Sema::LookupMemberName); | 
|  | MemberLookup.addDecl(Field, AS_public); | 
|  | MemberLookup.resolveKind(); | 
|  | ExprResult CopyCtorArg | 
|  | = SemaRef.BuildMemberReferenceExpr(MemberExprBase, | 
|  | ParamType, Loc, | 
|  | /*IsArrow=*/false, | 
|  | SS, | 
|  | /*FirstQualifierInScope=*/0, | 
|  | MemberLookup, | 
|  | /*TemplateArgs=*/0); | 
|  | if (CopyCtorArg.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // When the field we are copying is an array, create index variables for | 
|  | // each dimension of the array. We use these index variables to subscript | 
|  | // the source array, and other clients (e.g., CodeGen) will perform the | 
|  | // necessary iteration with these index variables. | 
|  | llvm::SmallVector<VarDecl *, 4> IndexVariables; | 
|  | QualType BaseType = Field->getType(); | 
|  | QualType SizeType = SemaRef.Context.getSizeType(); | 
|  | while (const ConstantArrayType *Array | 
|  | = SemaRef.Context.getAsConstantArrayType(BaseType)) { | 
|  | // Create the iteration variable for this array index. | 
|  | IdentifierInfo *IterationVarName = 0; | 
|  | { | 
|  | llvm::SmallString<8> Str; | 
|  | llvm::raw_svector_ostream OS(Str); | 
|  | OS << "__i" << IndexVariables.size(); | 
|  | IterationVarName = &SemaRef.Context.Idents.get(OS.str()); | 
|  | } | 
|  | VarDecl *IterationVar | 
|  | = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, | 
|  | IterationVarName, SizeType, | 
|  | SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), | 
|  | SC_None, SC_None); | 
|  | IndexVariables.push_back(IterationVar); | 
|  |  | 
|  | // Create a reference to the iteration variable. | 
|  | ExprResult IterationVarRef | 
|  | = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc); | 
|  | assert(!IterationVarRef.isInvalid() && | 
|  | "Reference to invented variable cannot fail!"); | 
|  |  | 
|  | // Subscript the array with this iteration variable. | 
|  | CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(), | 
|  | Loc, | 
|  | IterationVarRef.take(), | 
|  | Loc); | 
|  | if (CopyCtorArg.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | BaseType = Array->getElementType(); | 
|  | } | 
|  |  | 
|  | // Construct the entity that we will be initializing. For an array, this | 
|  | // will be first element in the array, which may require several levels | 
|  | // of array-subscript entities. | 
|  | llvm::SmallVector<InitializedEntity, 4> Entities; | 
|  | Entities.reserve(1 + IndexVariables.size()); | 
|  | Entities.push_back(InitializedEntity::InitializeMember(Field)); | 
|  | for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) | 
|  | Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, | 
|  | 0, | 
|  | Entities.back())); | 
|  |  | 
|  | // Direct-initialize to use the copy constructor. | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); | 
|  |  | 
|  | Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>(); | 
|  | InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, | 
|  | &CopyCtorArgE, 1); | 
|  |  | 
|  | ExprResult MemberInit | 
|  | = InitSeq.Perform(SemaRef, Entities.back(), InitKind, | 
|  | MultiExprArg(&CopyCtorArgE, 1)); | 
|  | MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get()); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | CXXMemberInit | 
|  | = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc, | 
|  | MemberInit.takeAs<Expr>(), Loc, | 
|  | IndexVariables.data(), | 
|  | IndexVariables.size()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); | 
|  |  | 
|  | QualType FieldBaseElementType = | 
|  | SemaRef.Context.getBaseElementType(Field->getType()); | 
|  |  | 
|  | if (FieldBaseElementType->isRecordType()) { | 
|  | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDefault(Loc); | 
|  |  | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg()); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get()); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | CXXMemberInit = | 
|  | new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, | 
|  | Field, Loc, Loc, | 
|  | MemberInit.get(), | 
|  | Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FieldBaseElementType->isReferenceType()) { | 
|  | SemaRef.Diag(Constructor->getLocation(), | 
|  | diag::err_uninitialized_member_in_ctor) | 
|  | << (int)Constructor->isImplicit() | 
|  | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
|  | << 0 << Field->getDeclName(); | 
|  | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FieldBaseElementType.isConstQualified()) { | 
|  | SemaRef.Diag(Constructor->getLocation(), | 
|  | diag::err_uninitialized_member_in_ctor) | 
|  | << (int)Constructor->isImplicit() | 
|  | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
|  | << 1 << Field->getDeclName(); | 
|  | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Nothing to initialize. | 
|  | CXXMemberInit = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct BaseAndFieldInfo { | 
|  | Sema &S; | 
|  | CXXConstructorDecl *Ctor; | 
|  | bool AnyErrorsInInits; | 
|  | ImplicitInitializerKind IIK; | 
|  | llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields; | 
|  | llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit; | 
|  |  | 
|  | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) | 
|  | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { | 
|  | // FIXME: Handle implicit move constructors. | 
|  | if (Ctor->isImplicit() && Ctor->isCopyConstructor()) | 
|  | IIK = IIK_Copy; | 
|  | else | 
|  | IIK = IIK_Default; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static void RecordFieldInitializer(BaseAndFieldInfo &Info, | 
|  | FieldDecl *Top, FieldDecl *Field, | 
|  | CXXBaseOrMemberInitializer *Init) { | 
|  | // If the member doesn't need to be initialized, Init will still be null. | 
|  | if (!Init) | 
|  | return; | 
|  |  | 
|  | Info.AllToInit.push_back(Init); | 
|  | if (Field != Top) { | 
|  | Init->setMember(Top); | 
|  | Init->setAnonUnionMember(Field); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool CollectFieldInitializer(BaseAndFieldInfo &Info, | 
|  | FieldDecl *Top, FieldDecl *Field) { | 
|  |  | 
|  | // Overwhelmingly common case: we have a direct initializer for this field. | 
|  | if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) { | 
|  | RecordFieldInitializer(Info, Top, Field, Init); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) { | 
|  | const RecordType *FieldClassType = Field->getType()->getAs<RecordType>(); | 
|  | assert(FieldClassType && "anonymous struct/union without record type"); | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  |  | 
|  | // Even though union members never have non-trivial default | 
|  | // constructions in C++03, we still build member initializers for aggregate | 
|  | // record types which can be union members, and C++0x allows non-trivial | 
|  | // default constructors for union members, so we ensure that only one | 
|  | // member is initialized for these. | 
|  | if (FieldClassDecl->isUnion()) { | 
|  | // First check for an explicit initializer for one field. | 
|  | for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), | 
|  | EA = FieldClassDecl->field_end(); FA != EA; FA++) { | 
|  | if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) { | 
|  | RecordFieldInitializer(Info, Top, *FA, Init); | 
|  |  | 
|  | // Once we've initialized a field of an anonymous union, the union | 
|  | // field in the class is also initialized, so exit immediately. | 
|  | return false; | 
|  | } else if ((*FA)->isAnonymousStructOrUnion()) { | 
|  | if (CollectFieldInitializer(Info, Top, *FA)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fallthrough and construct a default initializer for the union as | 
|  | // a whole, which can call its default constructor if such a thing exists | 
|  | // (C++0x perhaps). FIXME: It's not clear that this is the correct | 
|  | // behavior going forward with C++0x, when anonymous unions there are | 
|  | // finalized, we should revisit this. | 
|  | } else { | 
|  | // For structs, we simply descend through to initialize all members where | 
|  | // necessary. | 
|  | for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), | 
|  | EA = FieldClassDecl->field_end(); FA != EA; FA++) { | 
|  | if (CollectFieldInitializer(Info, Top, *FA)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't try to build an implicit initializer if there were semantic | 
|  | // errors in any of the initializers (and therefore we might be | 
|  | // missing some that the user actually wrote). | 
|  | if (Info.AnyErrorsInInits) | 
|  | return false; | 
|  |  | 
|  | CXXBaseOrMemberInitializer *Init = 0; | 
|  | if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init)) | 
|  | return true; | 
|  |  | 
|  | RecordFieldInitializer(Info, Top, Field, Init); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, | 
|  | CXXBaseOrMemberInitializer **Initializers, | 
|  | unsigned NumInitializers, | 
|  | bool AnyErrors) { | 
|  | if (Constructor->getDeclContext()->isDependentContext()) { | 
|  | // Just store the initializers as written, they will be checked during | 
|  | // instantiation. | 
|  | if (NumInitializers > 0) { | 
|  | Constructor->setNumBaseOrMemberInitializers(NumInitializers); | 
|  | CXXBaseOrMemberInitializer **baseOrMemberInitializers = | 
|  | new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; | 
|  | memcpy(baseOrMemberInitializers, Initializers, | 
|  | NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); | 
|  | Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); | 
|  |  | 
|  | // We need to build the initializer AST according to order of construction | 
|  | // and not what user specified in the Initializers list. | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); | 
|  | if (!ClassDecl) | 
|  | return true; | 
|  |  | 
|  | bool HadError = false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumInitializers; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = Initializers[i]; | 
|  |  | 
|  | if (Member->isBaseInitializer()) | 
|  | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | 
|  | else | 
|  | Info.AllBaseFields[Member->getMember()] = Member; | 
|  | } | 
|  |  | 
|  | // Keep track of the direct virtual bases. | 
|  | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; | 
|  | for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); I != E; ++I) { | 
|  | if (I->isVirtual()) | 
|  | DirectVBases.insert(I); | 
|  | } | 
|  |  | 
|  | // Push virtual bases before others. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
|  |  | 
|  | if (CXXBaseOrMemberInitializer *Value | 
|  | = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { | 
|  | Info.AllToInit.push_back(Value); | 
|  | } else if (!AnyErrors) { | 
|  | bool IsInheritedVirtualBase = !DirectVBases.count(VBase); | 
|  | CXXBaseOrMemberInitializer *CXXBaseInit; | 
|  | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
|  | VBase, IsInheritedVirtualBase, | 
|  | CXXBaseInit)) { | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info.AllToInit.push_back(CXXBaseInit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Non-virtual bases. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Virtuals are in the virtual base list and already constructed. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  |  | 
|  | if (CXXBaseOrMemberInitializer *Value | 
|  | = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { | 
|  | Info.AllToInit.push_back(Value); | 
|  | } else if (!AnyErrors) { | 
|  | CXXBaseOrMemberInitializer *CXXBaseInit; | 
|  | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
|  | Base, /*IsInheritedVirtualBase=*/false, | 
|  | CXXBaseInit)) { | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info.AllToInit.push_back(CXXBaseInit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fields. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | if ((*Field)->getType()->isIncompleteArrayType()) { | 
|  | assert(ClassDecl->hasFlexibleArrayMember() && | 
|  | "Incomplete array type is not valid"); | 
|  | continue; | 
|  | } | 
|  | if (CollectFieldInitializer(Info, *Field, *Field)) | 
|  | HadError = true; | 
|  | } | 
|  |  | 
|  | NumInitializers = Info.AllToInit.size(); | 
|  | if (NumInitializers > 0) { | 
|  | Constructor->setNumBaseOrMemberInitializers(NumInitializers); | 
|  | CXXBaseOrMemberInitializer **baseOrMemberInitializers = | 
|  | new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; | 
|  | memcpy(baseOrMemberInitializers, Info.AllToInit.data(), | 
|  | NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); | 
|  | Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); | 
|  |  | 
|  | // Constructors implicitly reference the base and member | 
|  | // destructors. | 
|  | MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), | 
|  | Constructor->getParent()); | 
|  | } | 
|  |  | 
|  | return HadError; | 
|  | } | 
|  |  | 
|  | static void *GetKeyForTopLevelField(FieldDecl *Field) { | 
|  | // For anonymous unions, use the class declaration as the key. | 
|  | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | 
|  | if (RT->getDecl()->isAnonymousStructOrUnion()) | 
|  | return static_cast<void *>(RT->getDecl()); | 
|  | } | 
|  | return static_cast<void *>(Field); | 
|  | } | 
|  |  | 
|  | static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { | 
|  | return Context.getCanonicalType(BaseType).getTypePtr(); | 
|  | } | 
|  |  | 
|  | static void *GetKeyForMember(ASTContext &Context, | 
|  | CXXBaseOrMemberInitializer *Member, | 
|  | bool MemberMaybeAnon = false) { | 
|  | if (!Member->isMemberInitializer()) | 
|  | return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); | 
|  |  | 
|  | // For fields injected into the class via declaration of an anonymous union, | 
|  | // use its anonymous union class declaration as the unique key. | 
|  | FieldDecl *Field = Member->getMember(); | 
|  |  | 
|  | // After SetBaseOrMemberInitializers call, Field is the anonymous union | 
|  | // data member of the class. Data member used in the initializer list is | 
|  | // in AnonUnionMember field. | 
|  | if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) | 
|  | Field = Member->getAnonUnionMember(); | 
|  |  | 
|  | // If the field is a member of an anonymous struct or union, our key | 
|  | // is the anonymous record decl that's a direct child of the class. | 
|  | RecordDecl *RD = Field->getParent(); | 
|  | if (RD->isAnonymousStructOrUnion()) { | 
|  | while (true) { | 
|  | RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext()); | 
|  | if (Parent->isAnonymousStructOrUnion()) | 
|  | RD = Parent; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return static_cast<void *>(RD); | 
|  | } | 
|  |  | 
|  | return static_cast<void *>(Field); | 
|  | } | 
|  |  | 
|  | static void | 
|  | DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, | 
|  | const CXXConstructorDecl *Constructor, | 
|  | CXXBaseOrMemberInitializer **Inits, | 
|  | unsigned NumInits) { | 
|  | if (Constructor->getDeclContext()->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order) | 
|  | == Diagnostic::Ignored) | 
|  | return; | 
|  |  | 
|  | // Build the list of bases and members in the order that they'll | 
|  | // actually be initialized.  The explicit initializers should be in | 
|  | // this same order but may be missing things. | 
|  | llvm::SmallVector<const void*, 32> IdealInitKeys; | 
|  |  | 
|  | const CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // 1. Virtual bases. | 
|  | for (CXXRecordDecl::base_class_const_iterator VBase = | 
|  | ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) | 
|  | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); | 
|  |  | 
|  | // 2. Non-virtual bases. | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); | 
|  | } | 
|  |  | 
|  | // 3. Direct fields. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) | 
|  | IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); | 
|  |  | 
|  | unsigned NumIdealInits = IdealInitKeys.size(); | 
|  | unsigned IdealIndex = 0; | 
|  |  | 
|  | CXXBaseOrMemberInitializer *PrevInit = 0; | 
|  | for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { | 
|  | CXXBaseOrMemberInitializer *Init = Inits[InitIndex]; | 
|  | void *InitKey = GetKeyForMember(SemaRef.Context, Init, true); | 
|  |  | 
|  | // Scan forward to try to find this initializer in the idealized | 
|  | // initializers list. | 
|  | for (; IdealIndex != NumIdealInits; ++IdealIndex) | 
|  | if (InitKey == IdealInitKeys[IdealIndex]) | 
|  | break; | 
|  |  | 
|  | // If we didn't find this initializer, it must be because we | 
|  | // scanned past it on a previous iteration.  That can only | 
|  | // happen if we're out of order;  emit a warning. | 
|  | if (IdealIndex == NumIdealInits && PrevInit) { | 
|  | Sema::SemaDiagnosticBuilder D = | 
|  | SemaRef.Diag(PrevInit->getSourceLocation(), | 
|  | diag::warn_initializer_out_of_order); | 
|  |  | 
|  | if (PrevInit->isMemberInitializer()) | 
|  | D << 0 << PrevInit->getMember()->getDeclName(); | 
|  | else | 
|  | D << 1 << PrevInit->getBaseClassInfo()->getType(); | 
|  |  | 
|  | if (Init->isMemberInitializer()) | 
|  | D << 0 << Init->getMember()->getDeclName(); | 
|  | else | 
|  | D << 1 << Init->getBaseClassInfo()->getType(); | 
|  |  | 
|  | // Move back to the initializer's location in the ideal list. | 
|  | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) | 
|  | if (InitKey == IdealInitKeys[IdealIndex]) | 
|  | break; | 
|  |  | 
|  | assert(IdealIndex != NumIdealInits && | 
|  | "initializer not found in initializer list"); | 
|  | } | 
|  |  | 
|  | PrevInit = Init; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | bool CheckRedundantInit(Sema &S, | 
|  | CXXBaseOrMemberInitializer *Init, | 
|  | CXXBaseOrMemberInitializer *&PrevInit) { | 
|  | if (!PrevInit) { | 
|  | PrevInit = Init; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FieldDecl *Field = Init->getMember()) | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_mem_initialization) | 
|  | << Field->getDeclName() | 
|  | << Init->getSourceRange(); | 
|  | else { | 
|  | Type *BaseClass = Init->getBaseClass(); | 
|  | assert(BaseClass && "neither field nor base"); | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_base_initialization) | 
|  | << QualType(BaseClass, 0) | 
|  | << Init->getSourceRange(); | 
|  | } | 
|  | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0 << PrevInit->getSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry; | 
|  | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; | 
|  |  | 
|  | bool CheckRedundantUnionInit(Sema &S, | 
|  | CXXBaseOrMemberInitializer *Init, | 
|  | RedundantUnionMap &Unions) { | 
|  | FieldDecl *Field = Init->getMember(); | 
|  | RecordDecl *Parent = Field->getParent(); | 
|  | if (!Parent->isAnonymousStructOrUnion()) | 
|  | return false; | 
|  |  | 
|  | NamedDecl *Child = Field; | 
|  | do { | 
|  | if (Parent->isUnion()) { | 
|  | UnionEntry &En = Unions[Parent]; | 
|  | if (En.first && En.first != Child) { | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_mem_union_initialization) | 
|  | << Field->getDeclName() | 
|  | << Init->getSourceRange(); | 
|  | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0 << En.second->getSourceRange(); | 
|  | return true; | 
|  | } else if (!En.first) { | 
|  | En.first = Child; | 
|  | En.second = Init; | 
|  | } | 
|  | } | 
|  |  | 
|  | Child = Parent; | 
|  | Parent = cast<RecordDecl>(Parent->getDeclContext()); | 
|  | } while (Parent->isAnonymousStructOrUnion()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializers - Handle the member initializers for a constructor. | 
|  | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, | 
|  | SourceLocation ColonLoc, | 
|  | MemInitTy **meminits, unsigned NumMemInits, | 
|  | bool AnyErrors) { | 
|  | if (!ConstructorDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorDecl); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorDecl); | 
|  |  | 
|  | if (!Constructor) { | 
|  | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
|  | return; | 
|  | } | 
|  |  | 
|  | CXXBaseOrMemberInitializer **MemInits = | 
|  | reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits); | 
|  |  | 
|  | // Mapping for the duplicate initializers check. | 
|  | // For member initializers, this is keyed with a FieldDecl*. | 
|  | // For base initializers, this is keyed with a Type*. | 
|  | llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members; | 
|  |  | 
|  | // Mapping for the inconsistent anonymous-union initializers check. | 
|  | RedundantUnionMap MemberUnions; | 
|  |  | 
|  | bool HadError = false; | 
|  | for (unsigned i = 0; i < NumMemInits; i++) { | 
|  | CXXBaseOrMemberInitializer *Init = MemInits[i]; | 
|  |  | 
|  | // Set the source order index. | 
|  | Init->setSourceOrder(i); | 
|  |  | 
|  | if (Init->isMemberInitializer()) { | 
|  | FieldDecl *Field = Init->getMember(); | 
|  | if (CheckRedundantInit(*this, Init, Members[Field]) || | 
|  | CheckRedundantUnionInit(*this, Init, MemberUnions)) | 
|  | HadError = true; | 
|  | } else { | 
|  | void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); | 
|  | if (CheckRedundantInit(*this, Init, Members[Key])) | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HadError) | 
|  | return; | 
|  |  | 
|  | DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); | 
|  |  | 
|  | SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // Ignore dependent contexts. | 
|  | if (ClassDecl->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | // FIXME: all the access-control diagnostics are positioned on the | 
|  | // field/base declaration.  That's probably good; that said, the | 
|  | // user might reasonably want to know why the destructor is being | 
|  | // emitted, and we currently don't say. | 
|  |  | 
|  | // Non-static data members. | 
|  | for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); I != E; ++I) { | 
|  | FieldDecl *Field = *I; | 
|  | if (Field->isInvalidDecl()) | 
|  | continue; | 
|  | QualType FieldType = Context.getBaseElementType(Field->getType()); | 
|  |  | 
|  | const RecordType* RT = FieldType->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (FieldClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); | 
|  | CheckDestructorAccess(Field->getLocation(), Dtor, | 
|  | PDiag(diag::err_access_dtor_field) | 
|  | << Field->getDeclName() | 
|  | << FieldType); | 
|  |  | 
|  | MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  |  | 
|  | llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; | 
|  |  | 
|  | // Bases. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Bases are always records in a well-formed non-dependent class. | 
|  | const RecordType *RT = Base->getType()->getAs<RecordType>(); | 
|  |  | 
|  | // Remember direct virtual bases. | 
|  | if (Base->isVirtual()) | 
|  | DirectVirtualBases.insert(RT); | 
|  |  | 
|  | // Ignore trivial destructors. | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (BaseClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
|  |  | 
|  | // FIXME: caret should be on the start of the class name | 
|  | CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, | 
|  | PDiag(diag::err_access_dtor_base) | 
|  | << Base->getType() | 
|  | << Base->getSourceRange()); | 
|  |  | 
|  | MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  |  | 
|  | // Virtual bases. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
|  |  | 
|  | // Bases are always records in a well-formed non-dependent class. | 
|  | const RecordType *RT = VBase->getType()->getAs<RecordType>(); | 
|  |  | 
|  | // Ignore direct virtual bases. | 
|  | if (DirectVirtualBases.count(RT)) | 
|  | continue; | 
|  |  | 
|  | // Ignore trivial destructors. | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (BaseClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
|  | CheckDestructorAccess(ClassDecl->getLocation(), Dtor, | 
|  | PDiag(diag::err_access_dtor_vbase) | 
|  | << VBase->getType()); | 
|  |  | 
|  | MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { | 
|  | if (!CDtorDecl) | 
|  | return; | 
|  |  | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(CDtorDecl)) | 
|  | SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false); | 
|  | } | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | unsigned DiagID, AbstractDiagSelID SelID) { | 
|  | if (SelID == -1) | 
|  | return RequireNonAbstractType(Loc, T, PDiag(DiagID)); | 
|  | else | 
|  | return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID); | 
|  | } | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | const PartialDiagnostic &PD) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(T)) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), PD); | 
|  |  | 
|  | if (const PointerType *PT = T->getAs<PointerType>()) { | 
|  | // Find the innermost pointer type. | 
|  | while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) | 
|  | PT = T; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), PD); | 
|  | } | 
|  |  | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  |  | 
|  | // We can't answer whether something is abstract until it has a | 
|  | // definition.  If it's currently being defined, we'll walk back | 
|  | // over all the declarations when we have a full definition. | 
|  | const CXXRecordDecl *Def = RD->getDefinition(); | 
|  | if (!Def || Def->isBeingDefined()) | 
|  | return false; | 
|  |  | 
|  | if (!RD->isAbstract()) | 
|  | return false; | 
|  |  | 
|  | Diag(Loc, PD) << RD->getDeclName(); | 
|  | DiagnoseAbstractType(RD); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { | 
|  | // Check if we've already emitted the list of pure virtual functions | 
|  | // for this class. | 
|  | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
|  | return; | 
|  |  | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | RD->getFinalOverriders(FinalOverriders); | 
|  |  | 
|  | // Keep a set of seen pure methods so we won't diagnose the same method | 
|  | // more than once. | 
|  | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; | 
|  |  | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | 
|  | MEnd = FinalOverriders.end(); | 
|  | M != MEnd; | 
|  | ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd; ++SO) { | 
|  | // C++ [class.abstract]p4: | 
|  | //   A class is abstract if it contains or inherits at least one | 
|  | //   pure virtual function for which the final overrider is pure | 
|  | //   virtual. | 
|  |  | 
|  | // | 
|  | if (SO->second.size() != 1) | 
|  | continue; | 
|  |  | 
|  | if (!SO->second.front().Method->isPure()) | 
|  | continue; | 
|  |  | 
|  | if (!SeenPureMethods.insert(SO->second.front().Method)) | 
|  | continue; | 
|  |  | 
|  | Diag(SO->second.front().Method->getLocation(), | 
|  | diag::note_pure_virtual_function) | 
|  | << SO->second.front().Method->getDeclName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PureVirtualClassDiagSet) | 
|  | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
|  | PureVirtualClassDiagSet->insert(RD); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct AbstractUsageInfo { | 
|  | Sema &S; | 
|  | CXXRecordDecl *Record; | 
|  | CanQualType AbstractType; | 
|  | bool Invalid; | 
|  |  | 
|  | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) | 
|  | : S(S), Record(Record), | 
|  | AbstractType(S.Context.getCanonicalType( | 
|  | S.Context.getTypeDeclType(Record))), | 
|  | Invalid(false) {} | 
|  |  | 
|  | void DiagnoseAbstractType() { | 
|  | if (Invalid) return; | 
|  | S.DiagnoseAbstractType(Record); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); | 
|  | }; | 
|  |  | 
|  | struct CheckAbstractUsage { | 
|  | AbstractUsageInfo &Info; | 
|  | const NamedDecl *Ctx; | 
|  |  | 
|  | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) | 
|  | : Info(Info), Ctx(Ctx) {} | 
|  |  | 
|  | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | switch (TL.getTypeLocClass()) { | 
|  | #define ABSTRACT_TYPELOC(CLASS, PARENT) | 
|  | #define TYPELOC(CLASS, PARENT) \ | 
|  | case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break; | 
|  | #include "clang/AST/TypeLocNodes.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | Visit(TL.getResultLoc(), Sema::AbstractReturnType); | 
|  | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | 
|  | TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo(); | 
|  | if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | Visit(TL.getElementLoc(), Sema::AbstractArrayType); | 
|  | } | 
|  |  | 
|  | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | // Visit the type parameters from a permissive context. | 
|  | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | 
|  | TemplateArgumentLoc TAL = TL.getArgLoc(I); | 
|  | if (TAL.getArgument().getKind() == TemplateArgument::Type) | 
|  | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) | 
|  | Visit(TSI->getTypeLoc(), Sema::AbstractNone); | 
|  | // TODO: other template argument types? | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit pointee types from a permissive context. | 
|  | #define CheckPolymorphic(Type) \ | 
|  | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ | 
|  | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ | 
|  | } | 
|  | CheckPolymorphic(PointerTypeLoc) | 
|  | CheckPolymorphic(ReferenceTypeLoc) | 
|  | CheckPolymorphic(MemberPointerTypeLoc) | 
|  | CheckPolymorphic(BlockPointerTypeLoc) | 
|  |  | 
|  | /// Handle all the types we haven't given a more specific | 
|  | /// implementation for above. | 
|  | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | // Every other kind of type that we haven't called out already | 
|  | // that has an inner type is either (1) sugar or (2) contains that | 
|  | // inner type in some way as a subobject. | 
|  | if (TypeLoc Next = TL.getNextTypeLoc()) | 
|  | return Visit(Next, Sel); | 
|  |  | 
|  | // If there's no inner type and we're in a permissive context, | 
|  | // don't diagnose. | 
|  | if (Sel == Sema::AbstractNone) return; | 
|  |  | 
|  | // Check whether the type matches the abstract type. | 
|  | QualType T = TL.getType(); | 
|  | if (T->isArrayType()) { | 
|  | Sel = Sema::AbstractArrayType; | 
|  | T = Info.S.Context.getBaseElementType(T); | 
|  | } | 
|  | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); | 
|  | if (CT != Info.AbstractType) return; | 
|  |  | 
|  | // It matched; do some magic. | 
|  | if (Sel == Sema::AbstractArrayType) { | 
|  | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) | 
|  | << T << TL.getSourceRange(); | 
|  | } else { | 
|  | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) | 
|  | << Sel << T << TL.getSourceRange(); | 
|  | } | 
|  | Info.DiagnoseAbstractType(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, | 
|  | Sema::AbstractDiagSelID Sel) { | 
|  | CheckAbstractUsage(*this, D).Visit(TL, Sel); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /// Check for invalid uses of an abstract type in a method declaration. | 
|  | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
|  | CXXMethodDecl *MD) { | 
|  | // No need to do the check on definitions, which require that | 
|  | // the return/param types be complete. | 
|  | if (MD->isThisDeclarationADefinition()) | 
|  | return; | 
|  |  | 
|  | // For safety's sake, just ignore it if we don't have type source | 
|  | // information.  This should never happen for non-implicit methods, | 
|  | // but... | 
|  | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | 
|  | Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); | 
|  | } | 
|  |  | 
|  | /// Check for invalid uses of an abstract type within a class definition. | 
|  | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
|  | CXXRecordDecl *RD) { | 
|  | for (CXXRecordDecl::decl_iterator | 
|  | I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) { | 
|  | Decl *D = *I; | 
|  | if (D->isImplicit()) continue; | 
|  |  | 
|  | // Methods and method templates. | 
|  | if (isa<CXXMethodDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); | 
|  | } else if (isa<FunctionTemplateDecl>(D)) { | 
|  | FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); | 
|  | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); | 
|  |  | 
|  | // Fields and static variables. | 
|  | } else if (isa<FieldDecl>(D)) { | 
|  | FieldDecl *FD = cast<FieldDecl>(D); | 
|  | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) | 
|  | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); | 
|  | } else if (isa<VarDecl>(D)) { | 
|  | VarDecl *VD = cast<VarDecl>(D); | 
|  | if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) | 
|  | Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); | 
|  |  | 
|  | // Nested classes and class templates. | 
|  | } else if (isa<CXXRecordDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); | 
|  | } else if (isa<ClassTemplateDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, | 
|  | cast<ClassTemplateDecl>(D)->getTemplatedDecl()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic checks on a class definition that has been | 
|  | /// completing, introducing implicitly-declared members, checking for | 
|  | /// abstract types, etc. | 
|  | void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { | 
|  | if (!Record || Record->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (!Record->isDependentType()) | 
|  | AddImplicitlyDeclaredMembersToClass(Record); | 
|  |  | 
|  | if (Record->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Set access bits correctly on the directly-declared conversions. | 
|  | UnresolvedSetImpl *Convs = Record->getConversionFunctions(); | 
|  | for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I) | 
|  | Convs->setAccess(I, (*I)->getAccess()); | 
|  |  | 
|  | // Determine whether we need to check for final overriders. We do | 
|  | // this either when there are virtual base classes (in which case we | 
|  | // may end up finding multiple final overriders for a given virtual | 
|  | // function) or any of the base classes is abstract (in which case | 
|  | // we might detect that this class is abstract). | 
|  | bool CheckFinalOverriders = false; | 
|  | if (Record->isPolymorphic() && !Record->isInvalidDecl() && | 
|  | !Record->isDependentType()) { | 
|  | if (Record->getNumVBases()) | 
|  | CheckFinalOverriders = true; | 
|  | else if (!Record->isAbstract()) { | 
|  | for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(), | 
|  | BEnd = Record->bases_end(); | 
|  | B != BEnd; ++B) { | 
|  | CXXRecordDecl *BaseDecl | 
|  | = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (BaseDecl->isAbstract()) { | 
|  | CheckFinalOverriders = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckFinalOverriders) { | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | Record->getFinalOverriders(FinalOverriders); | 
|  |  | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | 
|  | MEnd = FinalOverriders.end(); | 
|  | M != MEnd; ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd; ++SO) { | 
|  | assert(SO->second.size() > 0 && | 
|  | "All virtual functions have overridding virtual functions"); | 
|  | if (SO->second.size() == 1) { | 
|  | // C++ [class.abstract]p4: | 
|  | //   A class is abstract if it contains or inherits at least one | 
|  | //   pure virtual function for which the final overrider is pure | 
|  | //   virtual. | 
|  | if (SO->second.front().Method->isPure()) | 
|  | Record->setAbstract(true); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++ [class.virtual]p2: | 
|  | //   In a derived class, if a virtual member function of a base | 
|  | //   class subobject has more than one final overrider the | 
|  | //   program is ill-formed. | 
|  | Diag(Record->getLocation(), diag::err_multiple_final_overriders) | 
|  | << (NamedDecl *)M->first << Record; | 
|  | Diag(M->first->getLocation(), diag::note_overridden_virtual_function); | 
|  | for (OverridingMethods::overriding_iterator OM = SO->second.begin(), | 
|  | OMEnd = SO->second.end(); | 
|  | OM != OMEnd; ++OM) | 
|  | Diag(OM->Method->getLocation(), diag::note_final_overrider) | 
|  | << (NamedDecl *)M->first << OM->Method->getParent(); | 
|  |  | 
|  | Record->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Record->isAbstract() && !Record->isInvalidDecl()) { | 
|  | AbstractUsageInfo Info(*this, Record); | 
|  | CheckAbstractClassUsage(Info, Record); | 
|  | } | 
|  |  | 
|  | // If this is not an aggregate type and has no user-declared constructor, | 
|  | // complain about any non-static data members of reference or const scalar | 
|  | // type, since they will never get initializers. | 
|  | if (!Record->isInvalidDecl() && !Record->isDependentType() && | 
|  | !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) { | 
|  | bool Complained = false; | 
|  | for (RecordDecl::field_iterator F = Record->field_begin(), | 
|  | FEnd = Record->field_end(); | 
|  | F != FEnd; ++F) { | 
|  | if (F->getType()->isReferenceType() || | 
|  | (F->getType().isConstQualified() && F->getType()->isScalarType())) { | 
|  | if (!Complained) { | 
|  | Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) | 
|  | << Record->getTagKind() << Record; | 
|  | Complained = true; | 
|  | } | 
|  |  | 
|  | Diag(F->getLocation(), diag::note_refconst_member_not_initialized) | 
|  | << F->getType()->isReferenceType() | 
|  | << F->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Record->isDynamicClass()) | 
|  | DynamicClasses.push_back(Record); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, | 
|  | Decl *TagDecl, | 
|  | SourceLocation LBrac, | 
|  | SourceLocation RBrac, | 
|  | AttributeList *AttrList) { | 
|  | if (!TagDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(TagDecl); | 
|  |  | 
|  | ActOnFields(S, RLoc, TagDecl, | 
|  | // strict aliasing violation! | 
|  | reinterpret_cast<Decl**>(FieldCollector->getCurFields()), | 
|  | FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList); | 
|  |  | 
|  | CheckCompletedCXXClass( | 
|  | dyn_cast_or_null<CXXRecordDecl>(TagDecl)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Helper class that collects exception specifications for | 
|  | /// implicitly-declared special member functions. | 
|  | class ImplicitExceptionSpecification { | 
|  | ASTContext &Context; | 
|  | bool AllowsAllExceptions; | 
|  | llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen; | 
|  | llvm::SmallVector<QualType, 4> Exceptions; | 
|  |  | 
|  | public: | 
|  | explicit ImplicitExceptionSpecification(ASTContext &Context) | 
|  | : Context(Context), AllowsAllExceptions(false) { } | 
|  |  | 
|  | /// \brief Whether the special member function should have any | 
|  | /// exception specification at all. | 
|  | bool hasExceptionSpecification() const { | 
|  | return !AllowsAllExceptions; | 
|  | } | 
|  |  | 
|  | /// \brief Whether the special member function should have a | 
|  | /// throw(...) exception specification (a Microsoft extension). | 
|  | bool hasAnyExceptionSpecification() const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief The number of exceptions in the exception specification. | 
|  | unsigned size() const { return Exceptions.size(); } | 
|  |  | 
|  | /// \brief The set of exceptions in the exception specification. | 
|  | const QualType *data() const { return Exceptions.data(); } | 
|  |  | 
|  | /// \brief Note that | 
|  | void CalledDecl(CXXMethodDecl *Method) { | 
|  | // If we already know that we allow all exceptions, do nothing. | 
|  | if (AllowsAllExceptions || !Method) | 
|  | return; | 
|  |  | 
|  | const FunctionProtoType *Proto | 
|  | = Method->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // If this function can throw any exceptions, make a note of that. | 
|  | if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) { | 
|  | AllowsAllExceptions = true; | 
|  | ExceptionsSeen.clear(); | 
|  | Exceptions.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Record the exceptions in this function's exception specification. | 
|  | for (FunctionProtoType::exception_iterator E = Proto->exception_begin(), | 
|  | EEnd = Proto->exception_end(); | 
|  | E != EEnd; ++E) | 
|  | if (ExceptionsSeen.insert(Context.getCanonicalType(*E))) | 
|  | Exceptions.push_back(*E); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
|  | /// special functions, such as the default constructor, copy | 
|  | /// constructor, or destructor, to the given C++ class (C++ | 
|  | /// [special]p1).  This routine can only be executed just before the | 
|  | /// definition of the class is complete. | 
|  | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
|  | if (!ClassDecl->hasUserDeclaredConstructor()) | 
|  | ++ASTContext::NumImplicitDefaultConstructors; | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyConstructor()) | 
|  | ++ASTContext::NumImplicitCopyConstructors; | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyAssignment()) { | 
|  | ++ASTContext::NumImplicitCopyAssignmentOperators; | 
|  |  | 
|  | // If we have a dynamic class, then the copy assignment operator may be | 
|  | // virtual, so we have to declare it immediately. This ensures that, e.g., | 
|  | // it shows up in the right place in the vtable and that we diagnose | 
|  | // problems with the implicit exception specification. | 
|  | if (ClassDecl->isDynamicClass()) | 
|  | DeclareImplicitCopyAssignment(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredDestructor()) { | 
|  | ++ASTContext::NumImplicitDestructors; | 
|  |  | 
|  | // If we have a dynamic class, then the destructor may be virtual, so we | 
|  | // have to declare the destructor immediately. This ensures that, e.g., it | 
|  | // shows up in the right place in the vtable and that we diagnose problems | 
|  | // with the implicit exception specification. | 
|  | if (ClassDecl->isDynamicClass()) | 
|  | DeclareImplicitDestructor(ClassDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | TemplateParameterList *Params = 0; | 
|  | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) | 
|  | Params = Template->getTemplateParameters(); | 
|  | else if (ClassTemplatePartialSpecializationDecl *PartialSpec | 
|  | = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) | 
|  | Params = PartialSpec->getTemplateParameters(); | 
|  | else | 
|  | return; | 
|  |  | 
|  | for (TemplateParameterList::iterator Param = Params->begin(), | 
|  | ParamEnd = Params->end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | NamedDecl *Named = cast<NamedDecl>(*Param); | 
|  | if (Named->getDeclName()) { | 
|  | S->AddDecl(Named); | 
|  | IdResolver.AddDecl(Named); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
|  | if (!RecordD) return; | 
|  | AdjustDeclIfTemplate(RecordD); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); | 
|  | PushDeclContext(S, Record); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
|  | if (!RecordD) return; | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
|  | /// parsing a top-level (non-nested) C++ class, and we are now | 
|  | /// parsing those parts of the given Method declaration that could | 
|  | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
|  | /// arguments. This action should enter the scope of the given | 
|  | /// Method declaration as if we had just parsed the qualified method | 
|  | /// name. However, it should not bring the parameters into scope; | 
|  | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
|  | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
|  | } | 
|  |  | 
|  | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
|  | /// C++ method declaration. We're (re-)introducing the given | 
|  | /// function parameter into scope for use in parsing later parts of | 
|  | /// the method declaration. For example, we could see an | 
|  | /// ActOnParamDefaultArgument event for this parameter. | 
|  | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { | 
|  | if (!ParamD) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); | 
|  |  | 
|  | // If this parameter has an unparsed default argument, clear it out | 
|  | // to make way for the parsed default argument. | 
|  | if (Param->hasUnparsedDefaultArg()) | 
|  | Param->setDefaultArg(0); | 
|  |  | 
|  | S->AddDecl(Param); | 
|  | if (Param->getDeclName()) | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
|  | /// processing the delayed method declaration for Method. The method | 
|  | /// declaration is now considered finished. There may be a separate | 
|  | /// ActOnStartOfFunctionDef action later (not necessarily | 
|  | /// immediately!) for this method, if it was also defined inside the | 
|  | /// class body. | 
|  | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(MethodD); | 
|  |  | 
|  | FunctionDecl *Method = cast<FunctionDecl>(MethodD); | 
|  |  | 
|  | // Now that we have our default arguments, check the constructor | 
|  | // again. It could produce additional diagnostics or affect whether | 
|  | // the class has implicitly-declared destructors, among other | 
|  | // things. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | 
|  | CheckConstructor(Constructor); | 
|  |  | 
|  | // Check the default arguments, which we may have added. | 
|  | if (!Method->isInvalidDecl()) | 
|  | CheckCXXDefaultArguments(Method); | 
|  | } | 
|  |  | 
|  | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formedness of the constructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the invalid bit to true.  In any case, the type | 
|  | /// will be updated to reflect a well-formed type for the constructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | 
|  | StorageClass &SC) { | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A constructor shall not be virtual (10.3) or static (9.4). A | 
|  | //   constructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A constructor shall not be declared const, | 
|  | //   volatile, or const volatile (9.3.2). | 
|  | if (isVirtual) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0) { | 
|  | if (FTI.TypeQuals & Qualifiers::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers (in | 
|  | // case any of the errors above fired) and with "void" as the | 
|  | // return type, since constructors don't have return types. | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  | return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), | 
|  | Proto->getNumArgs(), | 
|  | Proto->isVariadic(), 0, | 
|  | Proto->hasExceptionSpec(), | 
|  | Proto->hasAnyExceptionSpec(), | 
|  | Proto->getNumExceptions(), | 
|  | Proto->exception_begin(), | 
|  | Proto->getExtInfo()); | 
|  | } | 
|  |  | 
|  | /// CheckConstructor - Checks a fully-formed constructor for | 
|  | /// well-formedness, issuing any diagnostics required. Returns true if | 
|  | /// the constructor declarator is invalid. | 
|  | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
|  | CXXRecordDecl *ClassDecl | 
|  | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | if (!ClassDecl) | 
|  | return Constructor->setInvalidDecl(); | 
|  |  | 
|  | // C++ [class.copy]p3: | 
|  | //   A declaration of a constructor for a class X is ill-formed if | 
|  | //   its first parameter is of type (optionally cv-qualified) X and | 
|  | //   either there are no other parameters or else all other | 
|  | //   parameters have default arguments. | 
|  | if (!Constructor->isInvalidDecl() && | 
|  | ((Constructor->getNumParams() == 1) || | 
|  | (Constructor->getNumParams() > 1 && | 
|  | Constructor->getParamDecl(1)->hasDefaultArg())) && | 
|  | Constructor->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation) { | 
|  | QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
|  | QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
|  | if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
|  | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | 
|  | const char *ConstRef | 
|  | = Constructor->getParamDecl(0)->getIdentifier() ? "const &" | 
|  | : " const &"; | 
|  | Diag(ParamLoc, diag::err_constructor_byvalue_arg) | 
|  | << FixItHint::CreateInsertion(ParamLoc, ConstRef); | 
|  |  | 
|  | // FIXME: Rather that making the constructor invalid, we should endeavor | 
|  | // to fix the type. | 
|  | Constructor->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckDestructor - Checks a fully-formed destructor definition for | 
|  | /// well-formedness, issuing any diagnostics required.  Returns true | 
|  | /// on error. | 
|  | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { | 
|  | CXXRecordDecl *RD = Destructor->getParent(); | 
|  |  | 
|  | if (Destructor->isVirtual()) { | 
|  | SourceLocation Loc; | 
|  |  | 
|  | if (!Destructor->isImplicit()) | 
|  | Loc = Destructor->getLocation(); | 
|  | else | 
|  | Loc = RD->getLocation(); | 
|  |  | 
|  | // If we have a virtual destructor, look up the deallocation function | 
|  | FunctionDecl *OperatorDelete = 0; | 
|  | DeclarationName Name = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
|  | if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) | 
|  | return true; | 
|  |  | 
|  | MarkDeclarationReferenced(Loc, OperatorDelete); | 
|  |  | 
|  | Destructor->setOperatorDelete(OperatorDelete); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { | 
|  | return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | FTI.ArgInfo[0].Param && | 
|  | cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()); | 
|  | } | 
|  |  | 
|  | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formednes of the destructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the declarator to invalid.  Even if this happens, | 
|  | /// will be updated to reflect a well-formed type for the destructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, | 
|  | StorageClass& SC) { | 
|  | // C++ [class.dtor]p1: | 
|  | //   [...] A typedef-name that names a class is a class-name | 
|  | //   (7.1.3); however, a typedef-name that names a class shall not | 
|  | //   be used as the identifier in the declarator for a destructor | 
|  | //   declaration. | 
|  | QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); | 
|  | if (isa<TypedefType>(DeclaratorType)) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
|  | << DeclaratorType; | 
|  |  | 
|  | // C++ [class.dtor]p2: | 
|  | //   A destructor is used to destroy objects of its class type. A | 
|  | //   destructor takes no parameters, and no return type can be | 
|  | //   specified for it (not even void). The address of a destructor | 
|  | //   shall not be taken. A destructor shall not be static. A | 
|  | //   destructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A destructor shall not be declared const, | 
|  | //   volatile or const volatile (9.3.2). | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  |  | 
|  | SC = SC_None; | 
|  | } | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Destructors don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float ~X(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be eliminated later. | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0 && !D.isInvalidType()) { | 
|  | if (FTI.TypeQuals & Qualifiers::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | FTI.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the destructor isn't variadic. | 
|  | if (FTI.isVariadic) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers or | 
|  | // parameters (in case any of the errors above fired) and with | 
|  | // "void" as the return type, since destructors don't have return | 
|  | // types. | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  | if (!Proto) | 
|  | return QualType(); | 
|  |  | 
|  | return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0, | 
|  | Proto->hasExceptionSpec(), | 
|  | Proto->hasAnyExceptionSpec(), | 
|  | Proto->getNumExceptions(), | 
|  | Proto->exception_begin(), | 
|  | Proto->getExtInfo()); | 
|  | } | 
|  |  | 
|  | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
|  | /// well-formednes of the conversion function declarator @p D with | 
|  | /// type @p R. If there are any errors in the declarator, this routine | 
|  | /// will emit diagnostics and return true. Otherwise, it will return | 
|  | /// false. Either way, the type @p R will be updated to reflect a | 
|  | /// well-formed type for the conversion operator. | 
|  | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
|  | StorageClass& SC) { | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   Neither parameter types nor return type can be specified. The | 
|  | //   type of a conversion function (8.3.5) is "function taking no | 
|  | //   parameter returning conversion-type-id." | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); | 
|  |  | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Conversion functions don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float operator bool(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be changed later anyway. | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (Proto->getNumArgs() > 0) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | D.getTypeObject(0).Fun.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } else if (Proto->isVariadic()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Diagnose "&operator bool()" and other such nonsense.  This | 
|  | // is actually a gcc extension which we don't support. | 
|  | if (Proto->getResultType() != ConvType) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) | 
|  | << Proto->getResultType(); | 
|  | D.setInvalidType(); | 
|  | ConvType = Proto->getResultType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.conv.fct]p4: | 
|  | //   The conversion-type-id shall not represent a function type nor | 
|  | //   an array type. | 
|  | if (ConvType->isArrayType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } else if (ConvType->isFunctionType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any parameters (in case any | 
|  | // of the errors above fired) and with the conversion type as the | 
|  | // return type. | 
|  | if (D.isInvalidType()) { | 
|  | R = Context.getFunctionType(ConvType, 0, 0, false, | 
|  | Proto->getTypeQuals(), | 
|  | Proto->hasExceptionSpec(), | 
|  | Proto->hasAnyExceptionSpec(), | 
|  | Proto->getNumExceptions(), | 
|  | Proto->exception_begin(), | 
|  | Proto->getExtInfo()); | 
|  | } | 
|  |  | 
|  | // C++0x explicit conversion operators. | 
|  | if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::warn_explicit_conversion_functions) | 
|  | << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); | 
|  | } | 
|  |  | 
|  | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
|  | /// the declaration of the given C++ conversion function. This routine | 
|  | /// is responsible for recording the conversion function in the C++ | 
|  | /// class, if possible. | 
|  | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
|  | assert(Conversion && "Expected to receive a conversion function declaration"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
|  |  | 
|  | // Make sure we aren't redeclaring the conversion function. | 
|  | QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
|  |  | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   [...] A conversion function is never used to convert a | 
|  | //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
|  | //   same object type (or a reference to it), to a (possibly | 
|  | //   cv-qualified) base class of that type (or a reference to it), | 
|  | //   or to (possibly cv-qualified) void. | 
|  | // FIXME: Suppress this warning if the conversion function ends up being a | 
|  | // virtual function that overrides a virtual function in a base class. | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) | 
|  | ConvType = ConvTypeRef->getPointeeType(); | 
|  | if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && | 
|  | Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) | 
|  | /* Suppress diagnostics for instantiations. */; | 
|  | else if (ConvType->isRecordType()) { | 
|  | ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
|  | if (ConvType == ClassType) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
|  | << ClassType; | 
|  | else if (IsDerivedFrom(ClassType, ConvType)) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
|  | <<  ClassType << ConvType; | 
|  | } else if (ConvType->isVoidType()) { | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
|  | << ClassType << ConvType; | 
|  | } | 
|  |  | 
|  | if (Conversion->getPrimaryTemplate()) { | 
|  | // ignore specializations | 
|  | } else if (Conversion->getPreviousDeclaration()) { | 
|  | if (FunctionTemplateDecl *ConversionTemplate | 
|  | = Conversion->getDescribedFunctionTemplate()) { | 
|  | if (ClassDecl->replaceConversion( | 
|  | ConversionTemplate->getPreviousDeclaration(), | 
|  | ConversionTemplate)) | 
|  | return ConversionTemplate; | 
|  | } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(), | 
|  | Conversion)) | 
|  | return Conversion; | 
|  | assert(Conversion->isInvalidDecl() && "Conversion should not get here."); | 
|  | } else if (FunctionTemplateDecl *ConversionTemplate | 
|  | = Conversion->getDescribedFunctionTemplate()) | 
|  | ClassDecl->addConversionFunction(ConversionTemplate); | 
|  | else | 
|  | ClassDecl->addConversionFunction(Conversion); | 
|  |  | 
|  | return Conversion; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Namespace Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  |  | 
|  | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
|  | /// definition. | 
|  | Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, | 
|  | SourceLocation InlineLoc, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *II, | 
|  | SourceLocation LBrace, | 
|  | AttributeList *AttrList) { | 
|  | // anonymous namespace starts at its left brace | 
|  | NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, | 
|  | (II ? IdentLoc : LBrace) , II); | 
|  | Namespc->setLBracLoc(LBrace); | 
|  | Namespc->setInline(InlineLoc.isValid()); | 
|  |  | 
|  | Scope *DeclRegionScope = NamespcScope->getParent(); | 
|  |  | 
|  | ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); | 
|  |  | 
|  | if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>()) | 
|  | PushVisibilityAttr(attr); | 
|  |  | 
|  | if (II) { | 
|  | // C++ [namespace.def]p2: | 
|  | // The identifier in an original-namespace-definition shall not have been | 
|  | // previously defined in the declarative region in which the | 
|  | // original-namespace-definition appears. The identifier in an | 
|  | // original-namespace-definition is the name of the namespace. Subsequently | 
|  | // in that declarative region, it is treated as an original-namespace-name. | 
|  |  | 
|  | NamedDecl *PrevDecl | 
|  | = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  |  | 
|  | if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { | 
|  | // This is an extended namespace definition. | 
|  | if (Namespc->isInline() != OrigNS->isInline()) { | 
|  | // inline-ness must match | 
|  | Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) | 
|  | << Namespc->isInline(); | 
|  | Diag(OrigNS->getLocation(), diag::note_previous_definition); | 
|  | Namespc->setInvalidDecl(); | 
|  | // Recover by ignoring the new namespace's inline status. | 
|  | Namespc->setInline(OrigNS->isInline()); | 
|  | } | 
|  |  | 
|  | // Attach this namespace decl to the chain of extended namespace | 
|  | // definitions. | 
|  | OrigNS->setNextNamespace(Namespc); | 
|  | Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); | 
|  |  | 
|  | // Remove the previous declaration from the scope. | 
|  | if (DeclRegionScope->isDeclScope(OrigNS)) { | 
|  | IdResolver.RemoveDecl(OrigNS); | 
|  | DeclRegionScope->RemoveDecl(OrigNS); | 
|  | } | 
|  | } else if (PrevDecl) { | 
|  | // This is an invalid name redefinition. | 
|  | Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) | 
|  | << Namespc->getDeclName(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Namespc->setInvalidDecl(); | 
|  | // Continue on to push Namespc as current DeclContext and return it. | 
|  | } else if (II->isStr("std") && | 
|  | CurContext->getRedeclContext()->isTranslationUnit()) { | 
|  | // This is the first "real" definition of the namespace "std", so update | 
|  | // our cache of the "std" namespace to point at this definition. | 
|  | if (NamespaceDecl *StdNS = getStdNamespace()) { | 
|  | // We had already defined a dummy namespace "std". Link this new | 
|  | // namespace definition to the dummy namespace "std". | 
|  | StdNS->setNextNamespace(Namespc); | 
|  | StdNS->setLocation(IdentLoc); | 
|  | Namespc->setOriginalNamespace(StdNS->getOriginalNamespace()); | 
|  | } | 
|  |  | 
|  | // Make our StdNamespace cache point at the first real definition of the | 
|  | // "std" namespace. | 
|  | StdNamespace = Namespc; | 
|  | } | 
|  |  | 
|  | PushOnScopeChains(Namespc, DeclRegionScope); | 
|  | } else { | 
|  | // Anonymous namespaces. | 
|  | assert(Namespc->isAnonymousNamespace()); | 
|  |  | 
|  | // Link the anonymous namespace into its parent. | 
|  | NamespaceDecl *PrevDecl; | 
|  | DeclContext *Parent = CurContext->getRedeclContext(); | 
|  | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
|  | PrevDecl = TU->getAnonymousNamespace(); | 
|  | TU->setAnonymousNamespace(Namespc); | 
|  | } else { | 
|  | NamespaceDecl *ND = cast<NamespaceDecl>(Parent); | 
|  | PrevDecl = ND->getAnonymousNamespace(); | 
|  | ND->setAnonymousNamespace(Namespc); | 
|  | } | 
|  |  | 
|  | // Link the anonymous namespace with its previous declaration. | 
|  | if (PrevDecl) { | 
|  | assert(PrevDecl->isAnonymousNamespace()); | 
|  | assert(!PrevDecl->getNextNamespace()); | 
|  | Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); | 
|  | PrevDecl->setNextNamespace(Namespc); | 
|  |  | 
|  | if (Namespc->isInline() != PrevDecl->isInline()) { | 
|  | // inline-ness must match | 
|  | Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) | 
|  | << Namespc->isInline(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Namespc->setInvalidDecl(); | 
|  | // Recover by ignoring the new namespace's inline status. | 
|  | Namespc->setInline(PrevDecl->isInline()); | 
|  | } | 
|  | } | 
|  |  | 
|  | CurContext->addDecl(Namespc); | 
|  |  | 
|  | // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition | 
|  | //   behaves as if it were replaced by | 
|  | //     namespace unique { /* empty body */ } | 
|  | //     using namespace unique; | 
|  | //     namespace unique { namespace-body } | 
|  | //   where all occurrences of 'unique' in a translation unit are | 
|  | //   replaced by the same identifier and this identifier differs | 
|  | //   from all other identifiers in the entire program. | 
|  |  | 
|  | // We just create the namespace with an empty name and then add an | 
|  | // implicit using declaration, just like the standard suggests. | 
|  | // | 
|  | // CodeGen enforces the "universally unique" aspect by giving all | 
|  | // declarations semantically contained within an anonymous | 
|  | // namespace internal linkage. | 
|  |  | 
|  | if (!PrevDecl) { | 
|  | UsingDirectiveDecl* UD | 
|  | = UsingDirectiveDecl::Create(Context, CurContext, | 
|  | /* 'using' */ LBrace, | 
|  | /* 'namespace' */ SourceLocation(), | 
|  | /* qualifier */ SourceRange(), | 
|  | /* NNS */ NULL, | 
|  | /* identifier */ SourceLocation(), | 
|  | Namespc, | 
|  | /* Ancestor */ CurContext); | 
|  | UD->setImplicit(); | 
|  | CurContext->addDecl(UD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Although we could have an invalid decl (i.e. the namespace name is a | 
|  | // redefinition), push it as current DeclContext and try to continue parsing. | 
|  | // FIXME: We should be able to push Namespc here, so that the each DeclContext | 
|  | // for the namespace has the declarations that showed up in that particular | 
|  | // namespace definition. | 
|  | PushDeclContext(NamespcScope, Namespc); | 
|  | return Namespc; | 
|  | } | 
|  |  | 
|  | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | 
|  | /// is a namespace alias, returns the namespace it points to. | 
|  | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | 
|  | return AD->getNamespace(); | 
|  | return dyn_cast_or_null<NamespaceDecl>(D); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
|  | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
|  | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { | 
|  | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
|  | assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
|  | Namespc->setRBracLoc(RBrace); | 
|  | PopDeclContext(); | 
|  | if (Namespc->hasAttr<VisibilityAttr>()) | 
|  | PopPragmaVisibility(); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *Sema::getStdBadAlloc() const { | 
|  | return cast_or_null<CXXRecordDecl>( | 
|  | StdBadAlloc.get(Context.getExternalSource())); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *Sema::getStdNamespace() const { | 
|  | return cast_or_null<NamespaceDecl>( | 
|  | StdNamespace.get(Context.getExternalSource())); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the special "std" namespace, which may require us to | 
|  | /// implicitly define the namespace. | 
|  | NamespaceDecl *Sema::getOrCreateStdNamespace() { | 
|  | if (!StdNamespace) { | 
|  | // The "std" namespace has not yet been defined, so build one implicitly. | 
|  | StdNamespace = NamespaceDecl::Create(Context, | 
|  | Context.getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | &PP.getIdentifierTable().get("std")); | 
|  | getStdNamespace()->setImplicit(true); | 
|  | } | 
|  |  | 
|  | return getStdNamespace(); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnUsingDirective(Scope *S, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation NamespcLoc, | 
|  | CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *NamespcName, | 
|  | AttributeList *AttrList) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert(NamespcName && "Invalid NamespcName."); | 
|  | assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | UsingDirectiveDecl *UDir = 0; | 
|  | NestedNameSpecifier *Qualifier = 0; | 
|  | if (SS.isSet()) | 
|  | Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); | 
|  |  | 
|  | // Lookup namespace name. | 
|  | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  | if (R.isAmbiguous()) | 
|  | return 0; | 
|  |  | 
|  | if (R.empty()) { | 
|  | // Allow "using namespace std;" or "using namespace ::std;" even if | 
|  | // "std" hasn't been defined yet, for GCC compatibility. | 
|  | if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && | 
|  | NamespcName->isStr("std")) { | 
|  | Diag(IdentLoc, diag::ext_using_undefined_std); | 
|  | R.addDecl(getOrCreateStdNamespace()); | 
|  | R.resolveKind(); | 
|  | } | 
|  | // Otherwise, attempt typo correction. | 
|  | else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, | 
|  | CTC_NoKeywords, 0)) { | 
|  | if (R.getAsSingle<NamespaceDecl>() || | 
|  | R.getAsSingle<NamespaceAliasDecl>()) { | 
|  | if (DeclContext *DC = computeDeclContext(SS, false)) | 
|  | Diag(IdentLoc, diag::err_using_directive_member_suggest) | 
|  | << NamespcName << DC << Corrected << SS.getRange() | 
|  | << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); | 
|  | else | 
|  | Diag(IdentLoc, diag::err_using_directive_suggest) | 
|  | << NamespcName << Corrected | 
|  | << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); | 
|  | Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) | 
|  | << Corrected; | 
|  |  | 
|  | NamespcName = Corrected.getAsIdentifierInfo(); | 
|  | } else { | 
|  | R.clear(); | 
|  | R.setLookupName(NamespcName); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!R.empty()) { | 
|  | NamedDecl *Named = R.getFoundDecl(); | 
|  | assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) | 
|  | && "expected namespace decl"); | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive specifies that the names in the nominated | 
|  | //   namespace can be used in the scope in which the | 
|  | //   using-directive appears after the using-directive. During | 
|  | //   unqualified name lookup (3.4.1), the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which | 
|  | //   contains both the using-directive and the nominated | 
|  | //   namespace. [Note: in this context, "contains" means "contains | 
|  | //   directly or indirectly". ] | 
|  |  | 
|  | // Find enclosing context containing both using-directive and | 
|  | // nominated namespace. | 
|  | NamespaceDecl *NS = getNamespaceDecl(Named); | 
|  | DeclContext *CommonAncestor = cast<DeclContext>(NS); | 
|  | while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
|  | CommonAncestor = CommonAncestor->getParent(); | 
|  |  | 
|  | UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, | 
|  | SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, Named, CommonAncestor); | 
|  | PushUsingDirective(S, UDir); | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | } | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  | return UDir; | 
|  | } | 
|  |  | 
|  | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
|  | // If scope has associated entity, then using directive is at namespace | 
|  | // or translation unit scope. We add UsingDirectiveDecls, into | 
|  | // it's lookup structure. | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
|  | Ctx->addDecl(UDir); | 
|  | else | 
|  | // Otherwise it is block-sope. using-directives will affect lookup | 
|  | // only to the end of scope. | 
|  | S->PushUsingDirective(UDir); | 
|  | } | 
|  |  | 
|  |  | 
|  | Decl *Sema::ActOnUsingDeclaration(Scope *S, | 
|  | AccessSpecifier AS, | 
|  | bool HasUsingKeyword, | 
|  | SourceLocation UsingLoc, | 
|  | CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name, | 
|  | AttributeList *AttrList, | 
|  | bool IsTypeName, | 
|  | SourceLocation TypenameLoc) { | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case UnqualifiedId::IK_Identifier: | 
|  | case UnqualifiedId::IK_OperatorFunctionId: | 
|  | case UnqualifiedId::IK_LiteralOperatorId: | 
|  | case UnqualifiedId::IK_ConversionFunctionId: | 
|  | break; | 
|  |  | 
|  | case UnqualifiedId::IK_ConstructorName: | 
|  | case UnqualifiedId::IK_ConstructorTemplateId: | 
|  | // C++0x inherited constructors. | 
|  | if (getLangOptions().CPlusPlus0x) break; | 
|  |  | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) | 
|  | << SS.getRange(); | 
|  | return 0; | 
|  |  | 
|  | case UnqualifiedId::IK_DestructorName: | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) | 
|  | << SS.getRange(); | 
|  | return 0; | 
|  |  | 
|  | case UnqualifiedId::IK_TemplateId: | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) | 
|  | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | 
|  | DeclarationName TargetName = TargetNameInfo.getName(); | 
|  | if (!TargetName) | 
|  | return 0; | 
|  |  | 
|  | // Warn about using declarations. | 
|  | // TODO: store that the declaration was written without 'using' and | 
|  | // talk about access decls instead of using decls in the | 
|  | // diagnostics. | 
|  | if (!HasUsingKeyword) { | 
|  | UsingLoc = Name.getSourceRange().getBegin(); | 
|  |  | 
|  | Diag(UsingLoc, diag::warn_access_decl_deprecated) | 
|  | << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); | 
|  | } | 
|  |  | 
|  | NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, | 
|  | TargetNameInfo, AttrList, | 
|  | /* IsInstantiation */ false, | 
|  | IsTypeName, TypenameLoc); | 
|  | if (UD) | 
|  | PushOnScopeChains(UD, S, /*AddToContext*/ false); | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether a using declaration considers the given | 
|  | /// declarations as "equivalent", e.g., if they are redeclarations of | 
|  | /// the same entity or are both typedefs of the same type. | 
|  | static bool | 
|  | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2, | 
|  | bool &SuppressRedeclaration) { | 
|  | if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) { | 
|  | SuppressRedeclaration = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1)) | 
|  | if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) { | 
|  | SuppressRedeclaration = true; | 
|  | return Context.hasSameType(TD1->getUnderlyingType(), | 
|  | TD2->getUnderlyingType()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Determines whether to create a using shadow decl for a particular | 
|  | /// decl, given the set of decls existing prior to this using lookup. | 
|  | bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, | 
|  | const LookupResult &Previous) { | 
|  | // Diagnose finding a decl which is not from a base class of the | 
|  | // current class.  We do this now because there are cases where this | 
|  | // function will silently decide not to build a shadow decl, which | 
|  | // will pre-empt further diagnostics. | 
|  | // | 
|  | // We don't need to do this in C++0x because we do the check once on | 
|  | // the qualifier. | 
|  | // | 
|  | // FIXME: diagnose the following if we care enough: | 
|  | //   struct A { int foo; }; | 
|  | //   struct B : A { using A::foo; }; | 
|  | //   template <class T> struct C : A {}; | 
|  | //   template <class T> struct D : C<T> { using B::foo; } // <--- | 
|  | // This is invalid (during instantiation) in C++03 because B::foo | 
|  | // resolves to the using decl in B, which is not a base class of D<T>. | 
|  | // We can't diagnose it immediately because C<T> is an unknown | 
|  | // specialization.  The UsingShadowDecl in D<T> then points directly | 
|  | // to A::foo, which will look well-formed when we instantiate. | 
|  | // The right solution is to not collapse the shadow-decl chain. | 
|  | if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { | 
|  | DeclContext *OrigDC = Orig->getDeclContext(); | 
|  |  | 
|  | // Handle enums and anonymous structs. | 
|  | if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); | 
|  | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); | 
|  | while (OrigRec->isAnonymousStructOrUnion()) | 
|  | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { | 
|  | if (OrigDC == CurContext) { | 
|  | Diag(Using->getLocation(), | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << Using->getNestedNameRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(Using->getNestedNameRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << Using->getTargetNestedNameDecl() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << Using->getNestedNameRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Previous.empty()) return false; | 
|  |  | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  |  | 
|  | // If the target happens to be one of the previous declarations, we | 
|  | // don't have a conflict. | 
|  | // | 
|  | // FIXME: but we might be increasing its access, in which case we | 
|  | // should redeclare it. | 
|  | NamedDecl *NonTag = 0, *Tag = 0; | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | bool Result; | 
|  | if (IsEquivalentForUsingDecl(Context, D, Target, Result)) | 
|  | return Result; | 
|  |  | 
|  | (isa<TagDecl>(D) ? Tag : NonTag) = D; | 
|  | } | 
|  |  | 
|  | if (Target->isFunctionOrFunctionTemplate()) { | 
|  | FunctionDecl *FD; | 
|  | if (isa<FunctionTemplateDecl>(Target)) | 
|  | FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); | 
|  | else | 
|  | FD = cast<FunctionDecl>(Target); | 
|  |  | 
|  | NamedDecl *OldDecl = 0; | 
|  | switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { | 
|  | case Ovl_Overload: | 
|  | return false; | 
|  |  | 
|  | case Ovl_NonFunction: | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  |  | 
|  | // We found a decl with the exact signature. | 
|  | case Ovl_Match: | 
|  | // If we're in a record, we want to hide the target, so we | 
|  | // return true (without a diagnostic) to tell the caller not to | 
|  | // build a shadow decl. | 
|  | if (CurContext->isRecord()) | 
|  | return true; | 
|  |  | 
|  | // If we're not in a record, this is an error. | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Target is not a function. | 
|  |  | 
|  | if (isa<TagDecl>(Target)) { | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!Tag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(Tag->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!NonTag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Builds a shadow declaration corresponding to a 'using' declaration. | 
|  | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, | 
|  | UsingDecl *UD, | 
|  | NamedDecl *Orig) { | 
|  |  | 
|  | // If we resolved to another shadow declaration, just coalesce them. | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) { | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); | 
|  | } | 
|  |  | 
|  | UsingShadowDecl *Shadow | 
|  | = UsingShadowDecl::Create(Context, CurContext, | 
|  | UD->getLocation(), UD, Target); | 
|  | UD->addShadowDecl(Shadow); | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(Shadow, S); | 
|  | else | 
|  | CurContext->addDecl(Shadow); | 
|  | Shadow->setAccess(UD->getAccess()); | 
|  |  | 
|  | // Register it as a conversion if appropriate. | 
|  | if (Shadow->getDeclName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName) | 
|  | cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow); | 
|  |  | 
|  | if (Orig->isInvalidDecl() || UD->isInvalidDecl()) | 
|  | Shadow->setInvalidDecl(); | 
|  |  | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | /// Hides a using shadow declaration.  This is required by the current | 
|  | /// using-decl implementation when a resolvable using declaration in a | 
|  | /// class is followed by a declaration which would hide or override | 
|  | /// one or more of the using decl's targets; for example: | 
|  | /// | 
|  | ///   struct Base { void foo(int); }; | 
|  | ///   struct Derived : Base { | 
|  | ///     using Base::foo; | 
|  | ///     void foo(int); | 
|  | ///   }; | 
|  | /// | 
|  | /// The governing language is C++03 [namespace.udecl]p12: | 
|  | /// | 
|  | ///   When a using-declaration brings names from a base class into a | 
|  | ///   derived class scope, member functions in the derived class | 
|  | ///   override and/or hide member functions with the same name and | 
|  | ///   parameter types in a base class (rather than conflicting). | 
|  | /// | 
|  | /// There are two ways to implement this: | 
|  | ///   (1) optimistically create shadow decls when they're not hidden | 
|  | ///       by existing declarations, or | 
|  | ///   (2) don't create any shadow decls (or at least don't make them | 
|  | ///       visible) until we've fully parsed/instantiated the class. | 
|  | /// The problem with (1) is that we might have to retroactively remove | 
|  | /// a shadow decl, which requires several O(n) operations because the | 
|  | /// decl structures are (very reasonably) not designed for removal. | 
|  | /// (2) avoids this but is very fiddly and phase-dependent. | 
|  | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { | 
|  | if (Shadow->getDeclName().getNameKind() == | 
|  | DeclarationName::CXXConversionFunctionName) | 
|  | cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); | 
|  |  | 
|  | // Remove it from the DeclContext... | 
|  | Shadow->getDeclContext()->removeDecl(Shadow); | 
|  |  | 
|  | // ...and the scope, if applicable... | 
|  | if (S) { | 
|  | S->RemoveDecl(Shadow); | 
|  | IdResolver.RemoveDecl(Shadow); | 
|  | } | 
|  |  | 
|  | // ...and the using decl. | 
|  | Shadow->getUsingDecl()->removeShadowDecl(Shadow); | 
|  |  | 
|  | // TODO: complain somehow if Shadow was used.  It shouldn't | 
|  | // be possible for this to happen, because...? | 
|  | } | 
|  |  | 
|  | /// Builds a using declaration. | 
|  | /// | 
|  | /// \param IsInstantiation - Whether this call arises from an | 
|  | ///   instantiation of an unresolved using declaration.  We treat | 
|  | ///   the lookup differently for these declarations. | 
|  | NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, | 
|  | SourceLocation UsingLoc, | 
|  | CXXScopeSpec &SS, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | AttributeList *AttrList, | 
|  | bool IsInstantiation, | 
|  | bool IsTypeName, | 
|  | SourceLocation TypenameLoc) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | SourceLocation IdentLoc = NameInfo.getLoc(); | 
|  | assert(IdentLoc.isValid() && "Invalid TargetName location."); | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  |  | 
|  | if (SS.isEmpty()) { | 
|  | Diag(IdentLoc, diag::err_using_requires_qualname); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Do the redeclaration lookup in the current scope. | 
|  | LookupResult Previous(*this, NameInfo, LookupUsingDeclName, | 
|  | ForRedeclaration); | 
|  | Previous.setHideTags(false); | 
|  | if (S) { | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | // It is really dumb that we have to do this. | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (!isDeclInScope(D, CurContext, S)) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } else { | 
|  | assert(IsInstantiation && "no scope in non-instantiation"); | 
|  | assert(CurContext->isRecord() && "scope not record in instantiation"); | 
|  | LookupQualifiedName(Previous, CurContext); | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier *NNS = | 
|  | static_cast<NestedNameSpecifier *>(SS.getScopeRep()); | 
|  |  | 
|  | // Check for invalid redeclarations. | 
|  | if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) | 
|  | return 0; | 
|  |  | 
|  | // Check for bad qualifiers. | 
|  | if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) | 
|  | return 0; | 
|  |  | 
|  | DeclContext *LookupContext = computeDeclContext(SS); | 
|  | NamedDecl *D; | 
|  | if (!LookupContext) { | 
|  | if (IsTypeName) { | 
|  | // FIXME: not all declaration name kinds are legal here | 
|  | D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, | 
|  | UsingLoc, TypenameLoc, | 
|  | SS.getRange(), NNS, | 
|  | IdentLoc, NameInfo.getName()); | 
|  | } else { | 
|  | D = UnresolvedUsingValueDecl::Create(Context, CurContext, | 
|  | UsingLoc, SS.getRange(), | 
|  | NNS, NameInfo); | 
|  | } | 
|  | } else { | 
|  | D = UsingDecl::Create(Context, CurContext, | 
|  | SS.getRange(), UsingLoc, NNS, NameInfo, | 
|  | IsTypeName); | 
|  | } | 
|  | D->setAccess(AS); | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | if (!LookupContext) return D; | 
|  | UsingDecl *UD = cast<UsingDecl>(D); | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, LookupContext)) { | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | // Look up the target name. | 
|  |  | 
|  | LookupResult R(*this, NameInfo, LookupOrdinaryName); | 
|  |  | 
|  | // Unlike most lookups, we don't always want to hide tag | 
|  | // declarations: tag names are visible through the using declaration | 
|  | // even if hidden by ordinary names, *except* in a dependent context | 
|  | // where it's important for the sanity of two-phase lookup. | 
|  | if (!IsInstantiation) | 
|  | R.setHideTags(false); | 
|  |  | 
|  | LookupQualifiedName(R, LookupContext); | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diag(IdentLoc, diag::err_no_member) | 
|  | << NameInfo.getName() << LookupContext << SS.getRange(); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) { | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | if (IsTypeName) { | 
|  | // If we asked for a typename and got a non-type decl, error out. | 
|  | if (!R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_typename_non_type); | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | Diag((*I)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  | } else { | 
|  | // If we asked for a non-typename and we got a type, error out, | 
|  | // but only if this is an instantiation of an unresolved using | 
|  | // decl.  Otherwise just silently find the type name. | 
|  | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_dependent_value_is_type); | 
|  | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++0x N2914 [namespace.udecl]p6: | 
|  | // A using-declaration shall not name a namespace. | 
|  | if (R.getAsSingle<NamespaceDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) | 
|  | << SS.getRange(); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | if (!CheckUsingShadowDecl(UD, *I, Previous)) | 
|  | BuildUsingShadowDecl(S, UD, *I); | 
|  | } | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | /// Checks that the given using declaration is not an invalid | 
|  | /// redeclaration.  Note that this is checking only for the using decl | 
|  | /// itself, not for any ill-formedness among the UsingShadowDecls. | 
|  | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | 
|  | bool isTypeName, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc, | 
|  | const LookupResult &Prev) { | 
|  | // C++03 [namespace.udecl]p8: | 
|  | // C++0x [namespace.udecl]p10: | 
|  | //   A using-declaration is a declaration and can therefore be used | 
|  | //   repeatedly where (and only where) multiple declarations are | 
|  | //   allowed. | 
|  | // | 
|  | // That's in non-member contexts. | 
|  | if (!CurContext->getRedeclContext()->isRecord()) | 
|  | return false; | 
|  |  | 
|  | NestedNameSpecifier *Qual | 
|  | = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
|  |  | 
|  | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  |  | 
|  | bool DTypename; | 
|  | NestedNameSpecifier *DQual; | 
|  | if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { | 
|  | DTypename = UD->isTypeName(); | 
|  | DQual = UD->getTargetNestedNameDecl(); | 
|  | } else if (UnresolvedUsingValueDecl *UD | 
|  | = dyn_cast<UnresolvedUsingValueDecl>(D)) { | 
|  | DTypename = false; | 
|  | DQual = UD->getTargetNestedNameSpecifier(); | 
|  | } else if (UnresolvedUsingTypenameDecl *UD | 
|  | = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { | 
|  | DTypename = true; | 
|  | DQual = UD->getTargetNestedNameSpecifier(); | 
|  | } else continue; | 
|  |  | 
|  | // using decls differ if one says 'typename' and the other doesn't. | 
|  | // FIXME: non-dependent using decls? | 
|  | if (isTypeName != DTypename) continue; | 
|  |  | 
|  | // using decls differ if they name different scopes (but note that | 
|  | // template instantiation can cause this check to trigger when it | 
|  | // didn't before instantiation). | 
|  | if (Context.getCanonicalNestedNameSpecifier(Qual) != | 
|  | Context.getCanonicalNestedNameSpecifier(DQual)) | 
|  | continue; | 
|  |  | 
|  | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); | 
|  | Diag(D->getLocation(), diag::note_using_decl) << 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Checks that the given nested-name qualifier used in a using decl | 
|  | /// in the current context is appropriately related to the current | 
|  | /// scope.  If an error is found, diagnoses it and returns true. | 
|  | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc) { | 
|  | DeclContext *NamedContext = computeDeclContext(SS); | 
|  |  | 
|  | if (!CurContext->isRecord()) { | 
|  | // C++03 [namespace.udecl]p3: | 
|  | // C++0x [namespace.udecl]p8: | 
|  | //   A using-declaration for a class member shall be a member-declaration. | 
|  |  | 
|  | // If we weren't able to compute a valid scope, it must be a | 
|  | // dependent class scope. | 
|  | if (!NamedContext || NamedContext->isRecord()) { | 
|  | Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, everything is known to be fine. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The current scope is a record. | 
|  |  | 
|  | // If the named context is dependent, we can't decide much. | 
|  | if (!NamedContext) { | 
|  | // FIXME: in C++0x, we can diagnose if we can prove that the | 
|  | // nested-name-specifier does not refer to a base class, which is | 
|  | // still possible in some cases. | 
|  |  | 
|  | // Otherwise we have to conservatively report that things might be | 
|  | // okay. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!NamedContext->isRecord()) { | 
|  | // Ideally this would point at the last name in the specifier, | 
|  | // but we don't have that level of source info. | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus0x) { | 
|  | // C++0x [namespace.udecl]p3: | 
|  | //   In a using-declaration used as a member-declaration, the | 
|  | //   nested-name-specifier shall name a base class of the class | 
|  | //   being defined. | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( | 
|  | cast<CXXRecordDecl>(NamedContext))) { | 
|  | if (CurContext == NamedContext) { | 
|  | Diag(NameLoc, | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++03 [namespace.udecl]p4: | 
|  | //   A using-declaration used as a member-declaration shall refer | 
|  | //   to a member of a base class of the class being defined [etc.]. | 
|  |  | 
|  | // Salient point: SS doesn't have to name a base class as long as | 
|  | // lookup only finds members from base classes.  Therefore we can | 
|  | // diagnose here only if we can prove that that can't happen, | 
|  | // i.e. if the class hierarchies provably don't intersect. | 
|  |  | 
|  | // TODO: it would be nice if "definitely valid" results were cached | 
|  | // in the UsingDecl and UsingShadowDecl so that these checks didn't | 
|  | // need to be repeated. | 
|  |  | 
|  | struct UserData { | 
|  | llvm::DenseSet<const CXXRecordDecl*> Bases; | 
|  |  | 
|  | static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { | 
|  | UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
|  | Data->Bases.insert(Base); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool hasDependentBases(const CXXRecordDecl *Class) { | 
|  | return !Class->forallBases(collect, this); | 
|  | } | 
|  |  | 
|  | /// Returns true if the base is dependent or is one of the | 
|  | /// accumulated base classes. | 
|  | static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { | 
|  | UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
|  | return !Data->Bases.count(Base); | 
|  | } | 
|  |  | 
|  | bool mightShareBases(const CXXRecordDecl *Class) { | 
|  | return Bases.count(Class) || !Class->forallBases(doesNotContain, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | UserData Data; | 
|  |  | 
|  | // Returns false if we find a dependent base. | 
|  | if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) | 
|  | return false; | 
|  |  | 
|  | // Returns false if the class has a dependent base or if it or one | 
|  | // of its bases is present in the base set of the current context. | 
|  | if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) | 
|  | return false; | 
|  |  | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, | 
|  | SourceLocation NamespaceLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, | 
|  | CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident) { | 
|  |  | 
|  | // Lookup the namespace name. | 
|  | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | // Check if we have a previous declaration with the same name. | 
|  | NamedDecl *PrevDecl | 
|  | = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  | if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) | 
|  | PrevDecl = 0; | 
|  |  | 
|  | if (PrevDecl) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | 
|  | // We already have an alias with the same name that points to the same | 
|  | // namespace, so don't create a new one. | 
|  | // FIXME: At some point, we'll want to create the (redundant) | 
|  | // declaration to maintain better source information. | 
|  | if (!R.isAmbiguous() && !R.empty() && | 
|  | AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : | 
|  | diag::err_redefinition_different_kind; | 
|  | Diag(AliasLoc, DiagID) << Alias; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return 0; | 
|  |  | 
|  | if (R.empty()) { | 
|  | if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, | 
|  | CTC_NoKeywords, 0)) { | 
|  | if (R.getAsSingle<NamespaceDecl>() || | 
|  | R.getAsSingle<NamespaceAliasDecl>()) { | 
|  | if (DeclContext *DC = computeDeclContext(SS, false)) | 
|  | Diag(IdentLoc, diag::err_using_directive_member_suggest) | 
|  | << Ident << DC << Corrected << SS.getRange() | 
|  | << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); | 
|  | else | 
|  | Diag(IdentLoc, diag::err_using_directive_suggest) | 
|  | << Ident << Corrected | 
|  | << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); | 
|  |  | 
|  | Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) | 
|  | << Corrected; | 
|  |  | 
|  | Ident = Corrected.getAsIdentifierInfo(); | 
|  | } else { | 
|  | R.clear(); | 
|  | R.setLookupName(Ident); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *AliasDecl = | 
|  | NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | 
|  | Alias, SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, R.getFoundDecl()); | 
|  |  | 
|  | PushOnScopeChains(AliasDecl, S); | 
|  | return AliasDecl; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Scoped object used to handle the state changes required in Sema | 
|  | /// to implicitly define the body of a C++ member function; | 
|  | class ImplicitlyDefinedFunctionScope { | 
|  | Sema &S; | 
|  | DeclContext *PreviousContext; | 
|  |  | 
|  | public: | 
|  | ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) | 
|  | : S(S), PreviousContext(S.CurContext) | 
|  | { | 
|  | S.CurContext = Method; | 
|  | S.PushFunctionScope(); | 
|  | S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); | 
|  | } | 
|  |  | 
|  | ~ImplicitlyDefinedFunctionScope() { | 
|  | S.PopExpressionEvaluationContext(); | 
|  | S.PopFunctionOrBlockScope(); | 
|  | S.CurContext = PreviousContext; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self, | 
|  | CXXRecordDecl *D) { | 
|  | ASTContext &Context = Self.Context; | 
|  | QualType ClassType = Context.getTypeDeclType(D); | 
|  | DeclarationName ConstructorName | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType.getUnqualifiedType())); | 
|  |  | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName); | 
|  | Con != ConEnd; ++Con) { | 
|  | // FIXME: In C++0x, a constructor template can be a default constructor. | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  |  | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isDefaultConstructor()) | 
|  | return Constructor; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class X | 
|  | //   that can be called without an argument. If there is no | 
|  | //   user-declared constructor for class X, a default constructor is | 
|  | //   implicitly declared. An implicitly-declared default constructor | 
|  | //   is an inline public member of its class. | 
|  | assert(!ClassDecl->hasUserDeclaredConstructor() && | 
|  | "Should not build implicit default constructor!"); | 
|  |  | 
|  | // C++ [except.spec]p14: | 
|  | //   An implicitly declared special member function (Clause 12) shall have an | 
|  | //   exception-specification. [...] | 
|  | ImplicitExceptionSpecification ExceptSpec(Context); | 
|  |  | 
|  | // Direct base-class destructors. | 
|  | for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), | 
|  | BEnd = ClassDecl->bases_end(); | 
|  | B != BEnd; ++B) { | 
|  | if (B->isVirtual()) // Handled below. | 
|  | continue; | 
|  |  | 
|  | if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredDefaultConstructor()) | 
|  | ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); | 
|  | else if (CXXConstructorDecl *Constructor | 
|  | = getDefaultConstructorUnsafe(*this, BaseClassDecl)) | 
|  | ExceptSpec.CalledDecl(Constructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Virtual base-class destructors. | 
|  | for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), | 
|  | BEnd = ClassDecl->vbases_end(); | 
|  | B != BEnd; ++B) { | 
|  | if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredDefaultConstructor()) | 
|  | ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); | 
|  | else if (CXXConstructorDecl *Constructor | 
|  | = getDefaultConstructorUnsafe(*this, BaseClassDecl)) | 
|  | ExceptSpec.CalledDecl(Constructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Field destructors. | 
|  | for (RecordDecl::field_iterator F = ClassDecl->field_begin(), | 
|  | FEnd = ClassDecl->field_end(); | 
|  | F != FEnd; ++F) { | 
|  | if (const RecordType *RecordTy | 
|  | = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (!FieldClassDecl->hasDeclaredDefaultConstructor()) | 
|  | ExceptSpec.CalledDecl( | 
|  | DeclareImplicitDefaultConstructor(FieldClassDecl)); | 
|  | else if (CXXConstructorDecl *Constructor | 
|  | = getDefaultConstructorUnsafe(*this, FieldClassDecl)) | 
|  | ExceptSpec.CalledDecl(Constructor); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create the actual constructor declaration. | 
|  | CanQualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); | 
|  | CXXConstructorDecl *DefaultCon | 
|  | = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0, | 
|  | ExceptSpec.hasExceptionSpecification(), | 
|  | ExceptSpec.hasAnyExceptionSpecification(), | 
|  | ExceptSpec.size(), | 
|  | ExceptSpec.data(), | 
|  | FunctionType::ExtInfo()), | 
|  | /*TInfo=*/0, | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | DefaultCon->setAccess(AS_public); | 
|  | DefaultCon->setImplicit(); | 
|  | DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); | 
|  |  | 
|  | // Note that we have declared this constructor. | 
|  | ++ASTContext::NumImplicitDefaultConstructorsDeclared; | 
|  |  | 
|  | if (Scope *S = getScopeForContext(ClassDecl)) | 
|  | PushOnScopeChains(DefaultCon, S, false); | 
|  | ClassDecl->addDecl(DefaultCon); | 
|  |  | 
|  | return DefaultCon; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *Constructor) { | 
|  | assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && | 
|  | !Constructor->isUsed(false)) && | 
|  | "DefineImplicitDefaultConstructor - call it for implicit default ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); | 
|  |  | 
|  | ImplicitlyDefinedFunctionScope Scope(*this, Constructor); | 
|  | ErrorTrap Trap(*this); | 
|  | if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || | 
|  | Trap.hasErrorOccurred()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXConstructor << Context.getTagDeclType(ClassDecl); | 
|  | Constructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceLocation Loc = Constructor->getLocation(); | 
|  | Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); | 
|  |  | 
|  | Constructor->setUsed(); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.dtor]p2: | 
|  | //   If a class has no user-declared destructor, a destructor is | 
|  | //   declared implicitly. An implicitly-declared destructor is an | 
|  | //   inline public member of its class. | 
|  |  | 
|  | // C++ [except.spec]p14: | 
|  | //   An implicitly declared special member function (Clause 12) shall have | 
|  | //   an exception-specification. | 
|  | ImplicitExceptionSpecification ExceptSpec(Context); | 
|  |  | 
|  | // Direct base-class destructors. | 
|  | for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), | 
|  | BEnd = ClassDecl->bases_end(); | 
|  | B != BEnd; ++B) { | 
|  | if (B->isVirtual()) // Handled below. | 
|  | continue; | 
|  |  | 
|  | if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) | 
|  | ExceptSpec.CalledDecl( | 
|  | LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); | 
|  | } | 
|  |  | 
|  | // Virtual base-class destructors. | 
|  | for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), | 
|  | BEnd = ClassDecl->vbases_end(); | 
|  | B != BEnd; ++B) { | 
|  | if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) | 
|  | ExceptSpec.CalledDecl( | 
|  | LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); | 
|  | } | 
|  |  | 
|  | // Field destructors. | 
|  | for (RecordDecl::field_iterator F = ClassDecl->field_begin(), | 
|  | FEnd = ClassDecl->field_end(); | 
|  | F != FEnd; ++F) { | 
|  | if (const RecordType *RecordTy | 
|  | = Context.getBaseElementType(F->getType())->getAs<RecordType>()) | 
|  | ExceptSpec.CalledDecl( | 
|  | LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl()))); | 
|  | } | 
|  |  | 
|  | // Create the actual destructor declaration. | 
|  | QualType Ty = Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0, | 
|  | ExceptSpec.hasExceptionSpecification(), | 
|  | ExceptSpec.hasAnyExceptionSpecification(), | 
|  | ExceptSpec.size(), | 
|  | ExceptSpec.data(), | 
|  | FunctionType::ExtInfo()); | 
|  |  | 
|  | CanQualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
|  | DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); | 
|  | CXXDestructorDecl *Destructor | 
|  | = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | Destructor->setAccess(AS_public); | 
|  | Destructor->setImplicit(); | 
|  | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); | 
|  |  | 
|  | // Note that we have declared this destructor. | 
|  | ClassDecl->setDeclaredDestructor(true); | 
|  | ++ASTContext::NumImplicitDestructorsDeclared; | 
|  |  | 
|  | // Introduce this destructor into its scope. | 
|  | if (Scope *S = getScopeForContext(ClassDecl)) | 
|  | PushOnScopeChains(Destructor, S, false); | 
|  | ClassDecl->addDecl(Destructor); | 
|  |  | 
|  | // This could be uniqued if it ever proves significant. | 
|  | Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); | 
|  |  | 
|  | AddOverriddenMethods(ClassDecl, Destructor); | 
|  |  | 
|  | return Destructor; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | 
|  | CXXDestructorDecl *Destructor) { | 
|  | assert((Destructor->isImplicit() && !Destructor->isUsed(false)) && | 
|  | "DefineImplicitDestructor - call it for implicit default dtor"); | 
|  | CXXRecordDecl *ClassDecl = Destructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); | 
|  |  | 
|  | if (Destructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | ImplicitlyDefinedFunctionScope Scope(*this, Destructor); | 
|  |  | 
|  | ErrorTrap Trap(*this); | 
|  | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
|  | Destructor->getParent()); | 
|  |  | 
|  | if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXDestructor << Context.getTagDeclType(ClassDecl); | 
|  |  | 
|  | Destructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceLocation Loc = Destructor->getLocation(); | 
|  | Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); | 
|  |  | 
|  | Destructor->setUsed(); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  | } | 
|  |  | 
|  | /// \brief Builds a statement that copies the given entity from \p From to | 
|  | /// \c To. | 
|  | /// | 
|  | /// This routine is used to copy the members of a class with an | 
|  | /// implicitly-declared copy assignment operator. When the entities being | 
|  | /// copied are arrays, this routine builds for loops to copy them. | 
|  | /// | 
|  | /// \param S The Sema object used for type-checking. | 
|  | /// | 
|  | /// \param Loc The location where the implicit copy is being generated. | 
|  | /// | 
|  | /// \param T The type of the expressions being copied. Both expressions must | 
|  | /// have this type. | 
|  | /// | 
|  | /// \param To The expression we are copying to. | 
|  | /// | 
|  | /// \param From The expression we are copying from. | 
|  | /// | 
|  | /// \param CopyingBaseSubobject Whether we're copying a base subobject. | 
|  | /// Otherwise, it's a non-static member subobject. | 
|  | /// | 
|  | /// \param Depth Internal parameter recording the depth of the recursion. | 
|  | /// | 
|  | /// \returns A statement or a loop that copies the expressions. | 
|  | static StmtResult | 
|  | BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, | 
|  | Expr *To, Expr *From, | 
|  | bool CopyingBaseSubobject, unsigned Depth = 0) { | 
|  | // C++0x [class.copy]p30: | 
|  | //   Each subobject is assigned in the manner appropriate to its type: | 
|  | // | 
|  | //     - if the subobject is of class type, the copy assignment operator | 
|  | //       for the class is used (as if by explicit qualification; that is, | 
|  | //       ignoring any possible virtual overriding functions in more derived | 
|  | //       classes); | 
|  | if (const RecordType *RecordTy = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  |  | 
|  | // Look for operator=. | 
|  | DeclarationName Name | 
|  | = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); | 
|  | S.LookupQualifiedName(OpLookup, ClassDecl, false); | 
|  |  | 
|  | // Filter out any result that isn't a copy-assignment operator. | 
|  | LookupResult::Filter F = OpLookup.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | 
|  | if (Method->isCopyAssignmentOperator()) | 
|  | continue; | 
|  |  | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  |  | 
|  | // Suppress the protected check (C++ [class.protected]) for each of the | 
|  | // assignment operators we found. This strange dance is required when | 
|  | // we're assigning via a base classes's copy-assignment operator. To | 
|  | // ensure that we're getting the right base class subobject (without | 
|  | // ambiguities), we need to cast "this" to that subobject type; to | 
|  | // ensure that we don't go through the virtual call mechanism, we need | 
|  | // to qualify the operator= name with the base class (see below). However, | 
|  | // this means that if the base class has a protected copy assignment | 
|  | // operator, the protected member access check will fail. So, we | 
|  | // rewrite "protected" access to "public" access in this case, since we | 
|  | // know by construction that we're calling from a derived class. | 
|  | if (CopyingBaseSubobject) { | 
|  | for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); | 
|  | L != LEnd; ++L) { | 
|  | if (L.getAccess() == AS_protected) | 
|  | L.setAccess(AS_public); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the nested-name-specifier that will be used to qualify the | 
|  | // reference to operator=; this is required to suppress the virtual | 
|  | // call mechanism. | 
|  | CXXScopeSpec SS; | 
|  | SS.setRange(Loc); | 
|  | SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false, | 
|  | T.getTypePtr())); | 
|  |  | 
|  | // Create the reference to operator=. | 
|  | ExprResult OpEqualRef | 
|  | = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS, | 
|  | /*FirstQualifierInScope=*/0, OpLookup, | 
|  | /*TemplateArgs=*/0, | 
|  | /*SuppressQualifierCheck=*/true); | 
|  | if (OpEqualRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // Build the call to the assignment operator. | 
|  |  | 
|  | ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, | 
|  | OpEqualRef.takeAs<Expr>(), | 
|  | Loc, &From, 1, Loc); | 
|  | if (Call.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | return S.Owned(Call.takeAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | //     - if the subobject is of scalar type, the built-in assignment | 
|  | //       operator is used. | 
|  | const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); | 
|  | if (!ArrayTy) { | 
|  | ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From); | 
|  | if (Assignment.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | return S.Owned(Assignment.takeAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | //     - if the subobject is an array, each element is assigned, in the | 
|  | //       manner appropriate to the element type; | 
|  |  | 
|  | // Construct a loop over the array bounds, e.g., | 
|  | // | 
|  | //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) | 
|  | // | 
|  | // that will copy each of the array elements. | 
|  | QualType SizeType = S.Context.getSizeType(); | 
|  |  | 
|  | // Create the iteration variable. | 
|  | IdentifierInfo *IterationVarName = 0; | 
|  | { | 
|  | llvm::SmallString<8> Str; | 
|  | llvm::raw_svector_ostream OS(Str); | 
|  | OS << "__i" << Depth; | 
|  | IterationVarName = &S.Context.Idents.get(OS.str()); | 
|  | } | 
|  | VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, | 
|  | IterationVarName, SizeType, | 
|  | S.Context.getTrivialTypeSourceInfo(SizeType, Loc), | 
|  | SC_None, SC_None); | 
|  |  | 
|  | // Initialize the iteration variable to zero. | 
|  | llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); | 
|  | IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); | 
|  |  | 
|  | // Create a reference to the iteration variable; we'll use this several | 
|  | // times throughout. | 
|  | Expr *IterationVarRef | 
|  | = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>(); | 
|  | assert(IterationVarRef && "Reference to invented variable cannot fail!"); | 
|  |  | 
|  | // Create the DeclStmt that holds the iteration variable. | 
|  | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); | 
|  |  | 
|  | // Create the comparison against the array bound. | 
|  | llvm::APInt Upper = ArrayTy->getSize(); | 
|  | Upper.zextOrTrunc(S.Context.getTypeSize(SizeType)); | 
|  | Expr *Comparison | 
|  | = new (S.Context) BinaryOperator(IterationVarRef->Retain(), | 
|  | IntegerLiteral::Create(S.Context, | 
|  | Upper, SizeType, Loc), | 
|  | BO_NE, S.Context.BoolTy, Loc); | 
|  |  | 
|  | // Create the pre-increment of the iteration variable. | 
|  | Expr *Increment | 
|  | = new (S.Context) UnaryOperator(IterationVarRef->Retain(), | 
|  | UO_PreInc, | 
|  | SizeType, Loc); | 
|  |  | 
|  | // Subscript the "from" and "to" expressions with the iteration variable. | 
|  | From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc, | 
|  | IterationVarRef, Loc)); | 
|  | To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc, | 
|  | IterationVarRef, Loc)); | 
|  |  | 
|  | // Build the copy for an individual element of the array. | 
|  | StmtResult Copy = BuildSingleCopyAssign(S, Loc, | 
|  | ArrayTy->getElementType(), | 
|  | To, From, | 
|  | CopyingBaseSubobject, Depth+1); | 
|  | if (Copy.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // Construct the loop that copies all elements of this array. | 
|  | return S.ActOnForStmt(Loc, Loc, InitStmt, | 
|  | S.MakeFullExpr(Comparison), | 
|  | 0, S.MakeFullExpr(Increment), | 
|  | Loc, Copy.take()); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given class has a copy assignment operator | 
|  | /// that accepts a const-qualified argument. | 
|  | static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) { | 
|  | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass); | 
|  |  | 
|  | if (!Class->hasDeclaredCopyAssignment()) | 
|  | S.DeclareImplicitCopyAssignment(Class); | 
|  |  | 
|  | QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)); | 
|  | DeclarationName OpName | 
|  | = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  |  | 
|  | DeclContext::lookup_const_iterator Op, OpEnd; | 
|  | for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) { | 
|  | // C++ [class.copy]p9: | 
|  | //   A user-declared copy assignment operator is a non-static non-template | 
|  | //   member function of class X with exactly one parameter of type X, X&, | 
|  | //   const X&, volatile X& or const volatile X&. | 
|  | const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); | 
|  | if (!Method) | 
|  | continue; | 
|  |  | 
|  | if (Method->isStatic()) | 
|  | continue; | 
|  | if (Method->getPrimaryTemplate()) | 
|  | continue; | 
|  | const FunctionProtoType *FnType = | 
|  | Method->getType()->getAs<FunctionProtoType>(); | 
|  | assert(FnType && "Overloaded operator has no prototype."); | 
|  | // Don't assert on this; an invalid decl might have been left in the AST. | 
|  | if (FnType->getNumArgs() != 1 || FnType->isVariadic()) | 
|  | continue; | 
|  | bool AcceptsConst = true; | 
|  | QualType ArgType = FnType->getArgType(0); | 
|  | if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){ | 
|  | ArgType = Ref->getPointeeType(); | 
|  | // Is it a non-const lvalue reference? | 
|  | if (!ArgType.isConstQualified()) | 
|  | AcceptsConst = false; | 
|  | } | 
|  | if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType)) | 
|  | continue; | 
|  |  | 
|  | // We have a single argument of type cv X or cv X&, i.e. we've found the | 
|  | // copy assignment operator. Return whether it accepts const arguments. | 
|  | return AcceptsConst; | 
|  | } | 
|  | assert(Class->isInvalidDecl() && | 
|  | "No copy assignment operator declared in valid code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { | 
|  | // Note: The following rules are largely analoguous to the copy | 
|  | // constructor rules. Note that virtual bases are not taken into account | 
|  | // for determining the argument type of the operator. Note also that | 
|  | // operators taking an object instead of a reference are allowed. | 
|  |  | 
|  |  | 
|  | // C++ [class.copy]p10: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   assignment operator, one is declared implicitly. | 
|  | //   The implicitly-defined copy assignment operator for a class X | 
|  | //   will have the form | 
|  | // | 
|  | //       X& X::operator=(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyAssignment = true; | 
|  |  | 
|  | //       -- each direct base class B of X has a copy assignment operator | 
|  | //          whose parameter is of type const B&, const volatile B& or B, | 
|  | //          and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | BaseEnd = ClassDecl->bases_end(); | 
|  | HasConstCopyAssignment && Base != BaseEnd; ++Base) { | 
|  | assert(!Base->getType()->isDependentType() && | 
|  | "Cannot generate implicit members for class with dependent bases."); | 
|  | const CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl); | 
|  | } | 
|  |  | 
|  | //       -- for all the nonstatic data members of X that are of a class | 
|  | //          type M (or array thereof), each such class type has a copy | 
|  | //          assignment operator whose parameter is of type const M&, | 
|  | //          const volatile M& or M. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | HasConstCopyAssignment && Field != FieldEnd; | 
|  | ++Field) { | 
|  | QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | const CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy assignment operator will | 
|  | //   have the form | 
|  | // | 
|  | //       X& X::operator=(X&) | 
|  | QualType ArgType = Context.getTypeDeclType(ClassDecl); | 
|  | QualType RetType = Context.getLValueReferenceType(ArgType); | 
|  | if (HasConstCopyAssignment) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | // C++ [except.spec]p14: | 
|  | //   An implicitly declared special member function (Clause 12) shall have an | 
|  | //   exception-specification. [...] | 
|  | ImplicitExceptionSpecification ExceptSpec(Context); | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | BaseEnd = ClassDecl->bases_end(); | 
|  | Base != BaseEnd; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | if (!BaseClassDecl->hasDeclaredCopyAssignment()) | 
|  | DeclareImplicitCopyAssignment(BaseClassDecl); | 
|  |  | 
|  | if (CXXMethodDecl *CopyAssign | 
|  | = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) | 
|  | ExceptSpec.CalledDecl(CopyAssign); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | Field != FieldEnd; | 
|  | ++Field) { | 
|  | QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  |  | 
|  | if (!FieldClassDecl->hasDeclaredCopyAssignment()) | 
|  | DeclareImplicitCopyAssignment(FieldClassDecl); | 
|  |  | 
|  | if (CXXMethodDecl *CopyAssign | 
|  | = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) | 
|  | ExceptSpec.CalledDecl(CopyAssign); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   An implicitly-declared copy assignment operator is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); | 
|  | CXXMethodDecl *CopyAssignment | 
|  | = CXXMethodDecl::Create(Context, ClassDecl, NameInfo, | 
|  | Context.getFunctionType(RetType, &ArgType, 1, | 
|  | false, 0, | 
|  | ExceptSpec.hasExceptionSpecification(), | 
|  | ExceptSpec.hasAnyExceptionSpecification(), | 
|  | ExceptSpec.size(), | 
|  | ExceptSpec.data(), | 
|  | FunctionType::ExtInfo()), | 
|  | /*TInfo=*/0, /*isStatic=*/false, | 
|  | /*StorageClassAsWritten=*/SC_None, | 
|  | /*isInline=*/true); | 
|  | CopyAssignment->setAccess(AS_public); | 
|  | CopyAssignment->setImplicit(); | 
|  | CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); | 
|  |  | 
|  | // Add the parameter to the operator. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
|  | ClassDecl->getLocation(), | 
|  | /*Id=*/0, | 
|  | ArgType, /*TInfo=*/0, | 
|  | SC_None, | 
|  | SC_None, 0); | 
|  | CopyAssignment->setParams(&FromParam, 1); | 
|  |  | 
|  | // Note that we have added this copy-assignment operator. | 
|  | ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; | 
|  |  | 
|  | if (Scope *S = getScopeForContext(ClassDecl)) | 
|  | PushOnScopeChains(CopyAssignment, S, false); | 
|  | ClassDecl->addDecl(CopyAssignment); | 
|  |  | 
|  | AddOverriddenMethods(ClassDecl, CopyAssignment); | 
|  | return CopyAssignment; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, | 
|  | CXXMethodDecl *CopyAssignOperator) { | 
|  | assert((CopyAssignOperator->isImplicit() && | 
|  | CopyAssignOperator->isOverloadedOperator() && | 
|  | CopyAssignOperator->getOverloadedOperator() == OO_Equal && | 
|  | !CopyAssignOperator->isUsed(false)) && | 
|  | "DefineImplicitCopyAssignment called for wrong function"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); | 
|  |  | 
|  | if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | CopyAssignOperator->setUsed(); | 
|  |  | 
|  | ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); | 
|  | ErrorTrap Trap(*this); | 
|  |  | 
|  | // C++0x [class.copy]p30: | 
|  | //   The implicitly-defined or explicitly-defaulted copy assignment operator | 
|  | //   for a non-union class X performs memberwise copy assignment of its | 
|  | //   subobjects. The direct base classes of X are assigned first, in the | 
|  | //   order of their declaration in the base-specifier-list, and then the | 
|  | //   immediate non-static data members of X are assigned, in the order in | 
|  | //   which they were declared in the class definition. | 
|  |  | 
|  | // The statements that form the synthesized function body. | 
|  | ASTOwningVector<Stmt*> Statements(*this); | 
|  |  | 
|  | // The parameter for the "other" object, which we are copying from. | 
|  | ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); | 
|  | Qualifiers OtherQuals = Other->getType().getQualifiers(); | 
|  | QualType OtherRefType = Other->getType(); | 
|  | if (const LValueReferenceType *OtherRef | 
|  | = OtherRefType->getAs<LValueReferenceType>()) { | 
|  | OtherRefType = OtherRef->getPointeeType(); | 
|  | OtherQuals = OtherRefType.getQualifiers(); | 
|  | } | 
|  |  | 
|  | // Our location for everything implicitly-generated. | 
|  | SourceLocation Loc = CopyAssignOperator->getLocation(); | 
|  |  | 
|  | // Construct a reference to the "other" object. We'll be using this | 
|  | // throughout the generated ASTs. | 
|  | Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>(); | 
|  | assert(OtherRef && "Reference to parameter cannot fail!"); | 
|  |  | 
|  | // Construct the "this" pointer. We'll be using this throughout the generated | 
|  | // ASTs. | 
|  | Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); | 
|  | assert(This && "Reference to this cannot fail!"); | 
|  |  | 
|  | // Assign base classes. | 
|  | bool Invalid = false; | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Form the assignment: | 
|  | //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); | 
|  | QualType BaseType = Base->getType().getUnqualifiedType(); | 
|  | CXXRecordDecl *BaseClassDecl = 0; | 
|  | if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>()) | 
|  | BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl()); | 
|  | else { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BasePath.push_back(Base); | 
|  |  | 
|  | // Construct the "from" expression, which is an implicit cast to the | 
|  | // appropriately-qualified base type. | 
|  | Expr *From = OtherRef->Retain(); | 
|  | ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), | 
|  | CK_UncheckedDerivedToBase, | 
|  | VK_LValue, &BasePath); | 
|  |  | 
|  | // Dereference "this". | 
|  | ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
|  |  | 
|  | // Implicitly cast "this" to the appropriately-qualified base type. | 
|  | Expr *ToE = To.takeAs<Expr>(); | 
|  | ImpCastExprToType(ToE, | 
|  | Context.getCVRQualifiedType(BaseType, | 
|  | CopyAssignOperator->getTypeQualifiers()), | 
|  | CK_UncheckedDerivedToBase, | 
|  | VK_LValue, &BasePath); | 
|  | To = Owned(ToE); | 
|  |  | 
|  | // Build the copy. | 
|  | StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, | 
|  | To.get(), From, | 
|  | /*CopyingBaseSubobject=*/true); | 
|  | if (Copy.isInvalid()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the copy. | 
|  | Statements.push_back(Copy.takeAs<Expr>()); | 
|  | } | 
|  |  | 
|  | // \brief Reference to the __builtin_memcpy function. | 
|  | Expr *BuiltinMemCpyRef = 0; | 
|  | // \brief Reference to the __builtin_objc_memmove_collectable function. | 
|  | Expr *CollectableMemCpyRef = 0; | 
|  |  | 
|  | // Assign non-static members. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | // Check for members of reference type; we can't copy those. | 
|  | if (Field->getType()->isReferenceType()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for members of const-qualified, non-class type. | 
|  | QualType BaseType = Context.getBaseElementType(Field->getType()); | 
|  | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | QualType FieldType = Field->getType().getNonReferenceType(); | 
|  | if (FieldType->isIncompleteArrayType()) { | 
|  | assert(ClassDecl->hasFlexibleArrayMember() && | 
|  | "Incomplete array type is not valid"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Build references to the field in the object we're copying from and to. | 
|  | CXXScopeSpec SS; // Intentionally empty | 
|  | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | 
|  | LookupMemberName); | 
|  | MemberLookup.addDecl(*Field); | 
|  | MemberLookup.resolveKind(); | 
|  | ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, | 
|  | Loc, /*IsArrow=*/false, | 
|  | SS, 0, MemberLookup, 0); | 
|  | ExprResult To = BuildMemberReferenceExpr(This, This->getType(), | 
|  | Loc, /*IsArrow=*/true, | 
|  | SS, 0, MemberLookup, 0); | 
|  | assert(!From.isInvalid() && "Implicit field reference cannot fail"); | 
|  | assert(!To.isInvalid() && "Implicit field reference cannot fail"); | 
|  |  | 
|  | // If the field should be copied with __builtin_memcpy rather than via | 
|  | // explicit assignments, do so. This optimization only applies for arrays | 
|  | // of scalars and arrays of class type with trivial copy-assignment | 
|  | // operators. | 
|  | if (FieldType->isArrayType() && | 
|  | (!BaseType->isRecordType() || | 
|  | cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()) | 
|  | ->hasTrivialCopyAssignment())) { | 
|  | // Compute the size of the memory buffer to be copied. | 
|  | QualType SizeType = Context.getSizeType(); | 
|  | llvm::APInt Size(Context.getTypeSize(SizeType), | 
|  | Context.getTypeSizeInChars(BaseType).getQuantity()); | 
|  | for (const ConstantArrayType *Array | 
|  | = Context.getAsConstantArrayType(FieldType); | 
|  | Array; | 
|  | Array = Context.getAsConstantArrayType(Array->getElementType())) { | 
|  | llvm::APInt ArraySize = Array->getSize(); | 
|  | ArraySize.zextOrTrunc(Size.getBitWidth()); | 
|  | Size *= ArraySize; | 
|  | } | 
|  |  | 
|  | // Take the address of the field references for "from" and "to". | 
|  | From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get()); | 
|  | To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get()); | 
|  |  | 
|  | bool NeedsCollectableMemCpy = | 
|  | (BaseType->isRecordType() && | 
|  | BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()); | 
|  |  | 
|  | if (NeedsCollectableMemCpy) { | 
|  | if (!CollectableMemCpyRef) { | 
|  | // Create a reference to the __builtin_objc_memmove_collectable function. | 
|  | LookupResult R(*this, | 
|  | &Context.Idents.get("__builtin_objc_memmove_collectable"), | 
|  | Loc, LookupOrdinaryName); | 
|  | LookupName(R, TUScope, true); | 
|  |  | 
|  | FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>(); | 
|  | if (!CollectableMemCpy) { | 
|  | // Something went horribly wrong earlier, and we will have | 
|  | // complained about it. | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy, | 
|  | CollectableMemCpy->getType(), | 
|  | Loc, 0).takeAs<Expr>(); | 
|  | assert(CollectableMemCpyRef && "Builtin reference cannot fail"); | 
|  | } | 
|  | } | 
|  | // Create a reference to the __builtin_memcpy builtin function. | 
|  | else if (!BuiltinMemCpyRef) { | 
|  | LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, | 
|  | LookupOrdinaryName); | 
|  | LookupName(R, TUScope, true); | 
|  |  | 
|  | FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); | 
|  | if (!BuiltinMemCpy) { | 
|  | // Something went horribly wrong earlier, and we will have complained | 
|  | // about it. | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, | 
|  | BuiltinMemCpy->getType(), | 
|  | Loc, 0).takeAs<Expr>(); | 
|  | assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); | 
|  | } | 
|  |  | 
|  | ASTOwningVector<Expr*> CallArgs(*this); | 
|  | CallArgs.push_back(To.takeAs<Expr>()); | 
|  | CallArgs.push_back(From.takeAs<Expr>()); | 
|  | CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); | 
|  | ExprResult Call = ExprError(); | 
|  | if (NeedsCollectableMemCpy) | 
|  | Call = ActOnCallExpr(/*Scope=*/0, | 
|  | CollectableMemCpyRef, | 
|  | Loc, move_arg(CallArgs), | 
|  | Loc); | 
|  | else | 
|  | Call = ActOnCallExpr(/*Scope=*/0, | 
|  | BuiltinMemCpyRef, | 
|  | Loc, move_arg(CallArgs), | 
|  | Loc); | 
|  |  | 
|  | assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); | 
|  | Statements.push_back(Call.takeAs<Expr>()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Build the copy of this field. | 
|  | StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, | 
|  | To.get(), From.get(), | 
|  | /*CopyingBaseSubobject=*/false); | 
|  | if (Copy.isInvalid()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the copy. | 
|  | Statements.push_back(Copy.takeAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | if (!Invalid) { | 
|  | // Add a "return *this;" | 
|  | ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
|  |  | 
|  | StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); | 
|  | if (Return.isInvalid()) | 
|  | Invalid = true; | 
|  | else { | 
|  | Statements.push_back(Return.takeAs<Stmt>()); | 
|  |  | 
|  | if (Trap.hasErrorOccurred()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), | 
|  | /*isStmtExpr=*/false); | 
|  | assert(!Body.isInvalid() && "Compound statement creation cannot fail"); | 
|  | CopyAssignOperator->setBody(Body.takeAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.copy]p4: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   constructor, one is declared implicitly. | 
|  |  | 
|  | // C++ [class.copy]p5: | 
|  | //   The implicitly-declared copy constructor for a class X will | 
|  | //   have the form | 
|  | // | 
|  | //       X::X(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyConstructor = true; | 
|  |  | 
|  | //     -- each direct or virtual base class B of X has a copy | 
|  | //        constructor whose first parameter is of type const B& or | 
|  | //        const volatile B&, and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | BaseEnd = ClassDecl->bases_end(); | 
|  | HasConstCopyConstructor && Base != BaseEnd; | 
|  | ++Base) { | 
|  | // Virtual bases are handled below. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(BaseClassDecl); | 
|  |  | 
|  | HasConstCopyConstructor | 
|  | = BaseClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  |  | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
|  | BaseEnd = ClassDecl->vbases_end(); | 
|  | HasConstCopyConstructor && Base != BaseEnd; | 
|  | ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(BaseClassDecl); | 
|  |  | 
|  | HasConstCopyConstructor | 
|  | = BaseClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  |  | 
|  | //     -- for all the nonstatic data members of X that are of a | 
|  | //        class type M (or array thereof), each such class type | 
|  | //        has a copy constructor whose first parameter is of type | 
|  | //        const M& or const volatile M&. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | HasConstCopyConstructor && Field != FieldEnd; | 
|  | ++Field) { | 
|  | QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (!FieldClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(FieldClassDecl); | 
|  |  | 
|  | HasConstCopyConstructor | 
|  | = FieldClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy constructor will have | 
|  | //   the form | 
|  | // | 
|  | //       X::X(X&) | 
|  | QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
|  | QualType ArgType = ClassType; | 
|  | if (HasConstCopyConstructor) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | // C++ [except.spec]p14: | 
|  | //   An implicitly declared special member function (Clause 12) shall have an | 
|  | //   exception-specification. [...] | 
|  | ImplicitExceptionSpecification ExceptSpec(Context); | 
|  | unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0; | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | BaseEnd = ClassDecl->bases_end(); | 
|  | Base != BaseEnd; | 
|  | ++Base) { | 
|  | // Virtual bases are handled below. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(BaseClassDecl); | 
|  |  | 
|  | if (CXXConstructorDecl *CopyConstructor | 
|  | = BaseClassDecl->getCopyConstructor(Context, Quals)) | 
|  | ExceptSpec.CalledDecl(CopyConstructor); | 
|  | } | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
|  | BaseEnd = ClassDecl->vbases_end(); | 
|  | Base != BaseEnd; | 
|  | ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(BaseClassDecl); | 
|  |  | 
|  | if (CXXConstructorDecl *CopyConstructor | 
|  | = BaseClassDecl->getCopyConstructor(Context, Quals)) | 
|  | ExceptSpec.CalledDecl(CopyConstructor); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | Field != FieldEnd; | 
|  | ++Field) { | 
|  | QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (!FieldClassDecl->hasDeclaredCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(FieldClassDecl); | 
|  |  | 
|  | if (CXXConstructorDecl *CopyConstructor | 
|  | = FieldClassDecl->getCopyConstructor(Context, Quals)) | 
|  | ExceptSpec.CalledDecl(CopyConstructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   An implicitly-declared copy constructor is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); | 
|  | CXXConstructorDecl *CopyConstructor | 
|  | = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | &ArgType, 1, | 
|  | false, 0, | 
|  | ExceptSpec.hasExceptionSpecification(), | 
|  | ExceptSpec.hasAnyExceptionSpecification(), | 
|  | ExceptSpec.size(), | 
|  | ExceptSpec.data(), | 
|  | FunctionType::ExtInfo()), | 
|  | /*TInfo=*/0, | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | CopyConstructor->setAccess(AS_public); | 
|  | CopyConstructor->setImplicit(); | 
|  | CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); | 
|  |  | 
|  | // Note that we have declared this constructor. | 
|  | ++ASTContext::NumImplicitCopyConstructorsDeclared; | 
|  |  | 
|  | // Add the parameter to the constructor. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
|  | ClassDecl->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | ArgType, /*TInfo=*/0, | 
|  | SC_None, | 
|  | SC_None, 0); | 
|  | CopyConstructor->setParams(&FromParam, 1); | 
|  | if (Scope *S = getScopeForContext(ClassDecl)) | 
|  | PushOnScopeChains(CopyConstructor, S, false); | 
|  | ClassDecl->addDecl(CopyConstructor); | 
|  |  | 
|  | return CopyConstructor; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *CopyConstructor, | 
|  | unsigned TypeQuals) { | 
|  | assert((CopyConstructor->isImplicit() && | 
|  | CopyConstructor->isCopyConstructor(TypeQuals) && | 
|  | !CopyConstructor->isUsed(false)) && | 
|  | "DefineImplicitCopyConstructor - call it for implicit copy ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); | 
|  |  | 
|  | ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); | 
|  | ErrorTrap Trap(*this); | 
|  |  | 
|  | if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || | 
|  | Trap.hasErrorOccurred()) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); | 
|  | CopyConstructor->setInvalidDecl(); | 
|  | }  else { | 
|  | CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), | 
|  | CopyConstructor->getLocation(), | 
|  | MultiStmtArg(*this, 0, 0), | 
|  | /*isStmtExpr=*/false) | 
|  | .takeAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | CopyConstructor->setUsed(); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ExprArgs, | 
|  | bool RequiresZeroInit, | 
|  | unsigned ConstructKind) { | 
|  | bool Elidable = false; | 
|  |  | 
|  | // C++0x [class.copy]p34: | 
|  | //   When certain criteria are met, an implementation is allowed to | 
|  | //   omit the copy/move construction of a class object, even if the | 
|  | //   copy/move constructor and/or destructor for the object have | 
|  | //   side effects. [...] | 
|  | //     - when a temporary class object that has not been bound to a | 
|  | //       reference (12.2) would be copied/moved to a class object | 
|  | //       with the same cv-unqualified type, the copy/move operation | 
|  | //       can be omitted by constructing the temporary object | 
|  | //       directly into the target of the omitted copy/move | 
|  | if (ConstructKind == CXXConstructExpr::CK_Complete && | 
|  | Constructor->isCopyConstructor() && ExprArgs.size() >= 1) { | 
|  | Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; | 
|  | Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent()); | 
|  | } | 
|  |  | 
|  | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, | 
|  | Elidable, move(ExprArgs), RequiresZeroInit, | 
|  | ConstructKind); | 
|  | } | 
|  |  | 
|  | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | 
|  | /// including handling of its default argument expressions. | 
|  | ExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | CXXConstructorDecl *Constructor, bool Elidable, | 
|  | MultiExprArg ExprArgs, | 
|  | bool RequiresZeroInit, | 
|  | unsigned ConstructKind) { | 
|  | unsigned NumExprs = ExprArgs.size(); | 
|  | Expr **Exprs = (Expr **)ExprArgs.release(); | 
|  |  | 
|  | MarkDeclarationReferenced(ConstructLoc, Constructor); | 
|  | return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, | 
|  | Constructor, Elidable, Exprs, NumExprs, | 
|  | RequiresZeroInit, | 
|  | static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind))); | 
|  | } | 
|  |  | 
|  | bool Sema::InitializeVarWithConstructor(VarDecl *VD, | 
|  | CXXConstructorDecl *Constructor, | 
|  | MultiExprArg Exprs) { | 
|  | ExprResult TempResult = | 
|  | BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, | 
|  | move(Exprs), false, CXXConstructExpr::CK_Complete); | 
|  | if (TempResult.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Expr *Temp = TempResult.takeAs<Expr>(); | 
|  | MarkDeclarationReferenced(VD->getLocation(), Constructor); | 
|  | Temp = MaybeCreateCXXExprWithTemporaries(Temp); | 
|  | VD->setInit(Temp); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() && | 
|  | !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) { | 
|  | CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); | 
|  | MarkDeclarationReferenced(VD->getLocation(), Destructor); | 
|  | CheckDestructorAccess(VD->getLocation(), Destructor, | 
|  | PDiag(diag::err_access_dtor_var) | 
|  | << VD->getDeclName() | 
|  | << VD->getType()); | 
|  |  | 
|  | // TODO: this should be re-enabled for static locals by !CXAAtExit | 
|  | if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal()) | 
|  | Diag(VD->getLocation(), diag::warn_global_destructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddCXXDirectInitializerToDecl - This action is called immediately after | 
|  | /// ActOnDeclarator, when a C++ direct initializer is present. | 
|  | /// e.g: "int x(1);" | 
|  | void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); | 
|  |  | 
|  | // If there is no declaration, there was an error parsing it.  Just ignore | 
|  | // the initializer. | 
|  | if (RealDecl == 0) | 
|  | return; | 
|  |  | 
|  | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
|  | if (!VDecl) { | 
|  | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We will represent direct-initialization similarly to copy-initialization: | 
|  | //    int x(1);  -as-> int x = 1; | 
|  | //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | 
|  | // | 
|  | // Clients that want to distinguish between the two forms, can check for | 
|  | // direct initializer using VarDecl::hasCXXDirectInitializer(). | 
|  | // A major benefit is that clients that don't particularly care about which | 
|  | // exactly form was it (like the CodeGen) can handle both cases without | 
|  | // special case code. | 
|  |  | 
|  | // C++ 8.5p11: | 
|  | // The form of initialization (using parentheses or '=') is generally | 
|  | // insignificant, but does matter when the entity being initialized has a | 
|  | // class type. | 
|  |  | 
|  | if (!VDecl->getType()->isDependentType() && | 
|  | RequireCompleteType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | const VarDecl *Def; | 
|  | if ((Def = VDecl->getDefinition()) && Def != VDecl) { | 
|  | Diag(VDecl->getLocation(), diag::err_redefinition) | 
|  | << VDecl->getDeclName(); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++ [class.static.data]p4 | 
|  | //   If a static data member is of const integral or const | 
|  | //   enumeration type, its declaration in the class definition can | 
|  | //   specify a constant-initializer which shall be an integral | 
|  | //   constant expression (5.19). In that case, the member can appear | 
|  | //   in integral constant expressions. The member shall still be | 
|  | //   defined in a namespace scope if it is used in the program and the | 
|  | //   namespace scope definition shall not contain an initializer. | 
|  | // | 
|  | // We already performed a redefinition check above, but for static | 
|  | // data members we also need to check whether there was an in-class | 
|  | // declaration with an initializer. | 
|  | const VarDecl* PrevInit = 0; | 
|  | if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { | 
|  | Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); | 
|  | Diag(PrevInit->getLocation(), diag::note_previous_definition); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If either the declaration has a dependent type or if any of the | 
|  | // expressions is type-dependent, we represent the initialization | 
|  | // via a ParenListExpr for later use during template instantiation. | 
|  | if (VDecl->getType()->isDependentType() || | 
|  | Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { | 
|  | // Let clients know that initialization was done with a direct initializer. | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  |  | 
|  | // Store the initialization expressions as a ParenListExpr. | 
|  | unsigned NumExprs = Exprs.size(); | 
|  | VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc, | 
|  | (Expr **)Exprs.release(), | 
|  | NumExprs, RParenLoc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Capture the variable that is being initialized and the style of | 
|  | // initialization. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
|  |  | 
|  | // FIXME: Poor source location information. | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateDirect(VDecl->getLocation(), | 
|  | LParenLoc, RParenLoc); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, | 
|  | Exprs.get(), Exprs.size()); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Result = MaybeCreateCXXExprWithTemporaries(Result.get()); | 
|  | VDecl->setInit(Result.takeAs<Expr>()); | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  |  | 
|  | if (!VDecl->isInvalidDecl() && | 
|  | !VDecl->getDeclContext()->isDependentContext() && | 
|  | VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() && | 
|  | !VDecl->getInit()->isConstantInitializer(Context, | 
|  | VDecl->getType()->isReferenceType())) | 
|  | Diag(VDecl->getLocation(), diag::warn_global_constructor) | 
|  | << VDecl->getInit()->getSourceRange(); | 
|  |  | 
|  | if (const RecordType *Record = VDecl->getType()->getAs<RecordType>()) | 
|  | FinalizeVarWithDestructor(VDecl, Record); | 
|  | } | 
|  |  | 
|  | /// \brief Given a constructor and the set of arguments provided for the | 
|  | /// constructor, convert the arguments and add any required default arguments | 
|  | /// to form a proper call to this constructor. | 
|  | /// | 
|  | /// \returns true if an error occurred, false otherwise. | 
|  | bool | 
|  | Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ArgsPtr, | 
|  | SourceLocation Loc, | 
|  | ASTOwningVector<Expr*> &ConvertedArgs) { | 
|  | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. | 
|  | unsigned NumArgs = ArgsPtr.size(); | 
|  | Expr **Args = (Expr **)ArgsPtr.get(); | 
|  |  | 
|  | const FunctionProtoType *Proto | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | assert(Proto && "Constructor without a prototype?"); | 
|  | unsigned NumArgsInProto = Proto->getNumArgs(); | 
|  |  | 
|  | // If too few arguments are available, we'll fill in the rest with defaults. | 
|  | if (NumArgs < NumArgsInProto) | 
|  | ConvertedArgs.reserve(NumArgsInProto); | 
|  | else | 
|  | ConvertedArgs.reserve(NumArgs); | 
|  |  | 
|  | VariadicCallType CallType = | 
|  | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | 
|  | llvm::SmallVector<Expr *, 8> AllArgs; | 
|  | bool Invalid = GatherArgumentsForCall(Loc, Constructor, | 
|  | Proto, 0, Args, NumArgs, AllArgs, | 
|  | CallType); | 
|  | for (unsigned i =0, size = AllArgs.size(); i < size; i++) | 
|  | ConvertedArgs.push_back(AllArgs[i]); | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, | 
|  | const FunctionDecl *FnDecl) { | 
|  | const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); | 
|  | if (isa<NamespaceDecl>(DC)) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_in_namespace) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | if (isa<TranslationUnitDecl>(DC) && | 
|  | FnDecl->getStorageClass() == SC_Static) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_static) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, | 
|  | CanQualType ExpectedResultType, | 
|  | CanQualType ExpectedFirstParamType, | 
|  | unsigned DependentParamTypeDiag, | 
|  | unsigned InvalidParamTypeDiag) { | 
|  | QualType ResultType = | 
|  | FnDecl->getType()->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | // Check that the result type is not dependent. | 
|  | if (ResultType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_dependent_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // Check that the result type is what we expect. | 
|  | if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_invalid_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // A function template must have at least 2 parameters. | 
|  | if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_template_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // The function decl must have at least 1 parameter. | 
|  | if (FnDecl->getNumParams() == 0) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // Check the the first parameter type is not dependent. | 
|  | QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | 
|  | if (FirstParamType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | // Check that the first parameter type is what we expect. | 
|  | if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != | 
|  | ExpectedFirstParamType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //   A program is ill-formed if an allocation function is declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | CanQualType SizeTy = | 
|  | SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The return type shall be void*. The first parameter shall have type | 
|  | //  std::size_t. | 
|  | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, | 
|  | SizeTy, | 
|  | diag::err_operator_new_dependent_param_type, | 
|  | diag::err_operator_new_param_type)) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The first parameter shall not have an associated default argument. | 
|  | if (FnDecl->getParamDecl(0)->hasDefaultArg()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_default_arg) | 
|  | << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.deallocation]p1: | 
|  | //   A program is ill-formed if deallocation functions are declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   Each deallocation function shall return void and its first parameter | 
|  | //   shall be void*. | 
|  | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, | 
|  | SemaRef.Context.VoidPtrTy, | 
|  | diag::err_operator_delete_dependent_param_type, | 
|  | diag::err_operator_delete_param_type)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
|  | /// of this overloaded operator is well-formed. If so, returns false; | 
|  | /// otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | assert(FnDecl && FnDecl->isOverloadedOperator() && | 
|  | "Expected an overloaded operator declaration"); | 
|  |  | 
|  | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
|  |  | 
|  | // C++ [over.oper]p5: | 
|  | //   The allocation and deallocation functions, operator new, | 
|  | //   operator new[], operator delete and operator delete[], are | 
|  | //   described completely in 3.7.3. The attributes and restrictions | 
|  | //   found in the rest of this subclause do not apply to them unless | 
|  | //   explicitly stated in 3.7.3. | 
|  | if (Op == OO_Delete || Op == OO_Array_Delete) | 
|  | return CheckOperatorDeleteDeclaration(*this, FnDecl); | 
|  |  | 
|  | if (Op == OO_New || Op == OO_Array_New) | 
|  | return CheckOperatorNewDeclaration(*this, FnDecl); | 
|  |  | 
|  | // C++ [over.oper]p6: | 
|  | //   An operator function shall either be a non-static member | 
|  | //   function or be a non-member function and have at least one | 
|  | //   parameter whose type is a class, a reference to a class, an | 
|  | //   enumeration, or a reference to an enumeration. | 
|  | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | if (MethodDecl->isStatic()) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
|  | } else { | 
|  | bool ClassOrEnumParam = false; | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), | 
|  | ParamEnd = FnDecl->param_end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | QualType ParamType = (*Param)->getType().getNonReferenceType(); | 
|  | if (ParamType->isDependentType() || ParamType->isRecordType() || | 
|  | ParamType->isEnumeralType()) { | 
|  | ClassOrEnumParam = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ClassOrEnumParam) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_needs_class_or_enum) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   An operator function cannot have default arguments (8.3.6), | 
|  | //   except where explicitly stated below. | 
|  | // | 
|  | // Only the function-call operator allows default arguments | 
|  | // (C++ [over.call]p1). | 
|  | if (Op != OO_Call) { | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
|  | Param != FnDecl->param_end(); ++Param) { | 
|  | if ((*Param)->hasDefaultArg()) | 
|  | return Diag((*Param)->getLocation(), | 
|  | diag::err_operator_overload_default_arg) | 
|  | << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
|  | { false, false, false } | 
|  | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
|  | , { Unary, Binary, MemberOnly } | 
|  | #include "clang/Basic/OperatorKinds.def" | 
|  | }; | 
|  |  | 
|  | bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
|  | bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
|  | bool MustBeMemberOperator = OperatorUses[Op][2]; | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   [...] Operator functions cannot have more or fewer parameters | 
|  | //   than the number required for the corresponding operator, as | 
|  | //   described in the rest of this subclause. | 
|  | unsigned NumParams = FnDecl->getNumParams() | 
|  | + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
|  | if (Op != OO_Call && | 
|  | ((NumParams == 1 && !CanBeUnaryOperator) || | 
|  | (NumParams == 2 && !CanBeBinaryOperator) || | 
|  | (NumParams < 1) || (NumParams > 2))) { | 
|  | // We have the wrong number of parameters. | 
|  | unsigned ErrorKind; | 
|  | if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
|  | ErrorKind = 2;  // 2 -> unary or binary. | 
|  | } else if (CanBeUnaryOperator) { | 
|  | ErrorKind = 0;  // 0 -> unary | 
|  | } else { | 
|  | assert(CanBeBinaryOperator && | 
|  | "All non-call overloaded operators are unary or binary!"); | 
|  | ErrorKind = 1;  // 1 -> binary | 
|  | } | 
|  |  | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
|  | << FnDecl->getDeclName() << NumParams << ErrorKind; | 
|  | } | 
|  |  | 
|  | // Overloaded operators other than operator() cannot be variadic. | 
|  | if (Op != OO_Call && | 
|  | FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // Some operators must be non-static member functions. | 
|  | if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_must_be_member) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.inc]p1: | 
|  | //   The user-defined function called operator++ implements the | 
|  | //   prefix and postfix ++ operator. If this function is a member | 
|  | //   function with no parameters, or a non-member function with one | 
|  | //   parameter of class or enumeration type, it defines the prefix | 
|  | //   increment operator ++ for objects of that type. If the function | 
|  | //   is a member function with one parameter (which shall be of type | 
|  | //   int) or a non-member function with two parameters (the second | 
|  | //   of which shall be of type int), it defines the postfix | 
|  | //   increment operator ++ for objects of that type. | 
|  | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
|  | ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
|  | bool ParamIsInt = false; | 
|  | if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) | 
|  | ParamIsInt = BT->getKind() == BuiltinType::Int; | 
|  |  | 
|  | if (!ParamIsInt) | 
|  | return Diag(LastParam->getLocation(), | 
|  | diag::err_operator_overload_post_incdec_must_be_int) | 
|  | << LastParam->getType() << (Op == OO_MinusMinus); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckLiteralOperatorDeclaration - Check whether the declaration | 
|  | /// of this literal operator function is well-formed. If so, returns | 
|  | /// false; otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | DeclContext *DC = FnDecl->getDeclContext(); | 
|  | Decl::Kind Kind = DC->getDeclKind(); | 
|  | if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && | 
|  | Kind != Decl::LinkageSpec) { | 
|  | Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) | 
|  | << FnDecl->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Valid = false; | 
|  |  | 
|  | // template <char...> type operator "" name() is the only valid template | 
|  | // signature, and the only valid signature with no parameters. | 
|  | if (FnDecl->param_size() == 0) { | 
|  | if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { | 
|  | // Must have only one template parameter | 
|  | TemplateParameterList *Params = TpDecl->getTemplateParameters(); | 
|  | if (Params->size() == 1) { | 
|  | NonTypeTemplateParmDecl *PmDecl = | 
|  | cast<NonTypeTemplateParmDecl>(Params->getParam(0)); | 
|  |  | 
|  | // The template parameter must be a char parameter pack. | 
|  | // FIXME: This test will always fail because non-type parameter packs | 
|  | //   have not been implemented. | 
|  | if (PmDecl && PmDecl->isTemplateParameterPack() && | 
|  | Context.hasSameType(PmDecl->getType(), Context.CharTy)) | 
|  | Valid = true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Check the first parameter | 
|  | FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
|  |  | 
|  | QualType T = (*Param)->getType(); | 
|  |  | 
|  | // unsigned long long int, long double, and any character type are allowed | 
|  | // as the only parameters. | 
|  | if (Context.hasSameType(T, Context.UnsignedLongLongTy) || | 
|  | Context.hasSameType(T, Context.LongDoubleTy) || | 
|  | Context.hasSameType(T, Context.CharTy) || | 
|  | Context.hasSameType(T, Context.WCharTy) || | 
|  | Context.hasSameType(T, Context.Char16Ty) || | 
|  | Context.hasSameType(T, Context.Char32Ty)) { | 
|  | if (++Param == FnDecl->param_end()) | 
|  | Valid = true; | 
|  | goto FinishedParams; | 
|  | } | 
|  |  | 
|  | // Otherwise it must be a pointer to const; let's strip those qualifiers. | 
|  | const PointerType *PT = T->getAs<PointerType>(); | 
|  | if (!PT) | 
|  | goto FinishedParams; | 
|  | T = PT->getPointeeType(); | 
|  | if (!T.isConstQualified()) | 
|  | goto FinishedParams; | 
|  | T = T.getUnqualifiedType(); | 
|  |  | 
|  | // Move on to the second parameter; | 
|  | ++Param; | 
|  |  | 
|  | // If there is no second parameter, the first must be a const char * | 
|  | if (Param == FnDecl->param_end()) { | 
|  | if (Context.hasSameType(T, Context.CharTy)) | 
|  | Valid = true; | 
|  | goto FinishedParams; | 
|  | } | 
|  |  | 
|  | // const char *, const wchar_t*, const char16_t*, and const char32_t* | 
|  | // are allowed as the first parameter to a two-parameter function | 
|  | if (!(Context.hasSameType(T, Context.CharTy) || | 
|  | Context.hasSameType(T, Context.WCharTy) || | 
|  | Context.hasSameType(T, Context.Char16Ty) || | 
|  | Context.hasSameType(T, Context.Char32Ty))) | 
|  | goto FinishedParams; | 
|  |  | 
|  | // The second and final parameter must be an std::size_t | 
|  | T = (*Param)->getType().getUnqualifiedType(); | 
|  | if (Context.hasSameType(T, Context.getSizeType()) && | 
|  | ++Param == FnDecl->param_end()) | 
|  | Valid = true; | 
|  | } | 
|  |  | 
|  | // FIXME: This diagnostic is absolutely terrible. | 
|  | FinishedParams: | 
|  | if (!Valid) { | 
|  | Diag(FnDecl->getLocation(), diag::err_literal_operator_params) | 
|  | << FnDecl->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
|  | /// linkage specification, including the language and (if present) | 
|  | /// the '{'. ExternLoc is the location of the 'extern', LangLoc is | 
|  | /// the location of the language string literal, which is provided | 
|  | /// by Lang/StrSize. LBraceLoc, if valid, provides the location of | 
|  | /// the '{' brace. Otherwise, this linkage specification does not | 
|  | /// have any braces. | 
|  | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, | 
|  | llvm::StringRef Lang, | 
|  | SourceLocation LBraceLoc) { | 
|  | LinkageSpecDecl::LanguageIDs Language; | 
|  | if (Lang == "\"C\"") | 
|  | Language = LinkageSpecDecl::lang_c; | 
|  | else if (Lang == "\"C++\"") | 
|  | Language = LinkageSpecDecl::lang_cxx; | 
|  | else { | 
|  | Diag(LangLoc, diag::err_bad_language); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // FIXME: Add all the various semantics of linkage specifications | 
|  |  | 
|  | LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, | 
|  | LangLoc, Language, | 
|  | LBraceLoc.isValid()); | 
|  | CurContext->addDecl(D); | 
|  | PushDeclContext(S, D); | 
|  | return D; | 
|  | } | 
|  |  | 
|  | /// ActOnFinishLinkageSpecification - Complete the definition of | 
|  | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
|  | /// valid, it's the position of the closing '}' brace in a linkage | 
|  | /// specification that uses braces. | 
|  | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, | 
|  | Decl *LinkageSpec, | 
|  | SourceLocation RBraceLoc) { | 
|  | if (LinkageSpec) | 
|  | PopDeclContext(); | 
|  | return LinkageSpec; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic analysis for the variable declaration that | 
|  | /// occurs within a C++ catch clause, returning the newly-created | 
|  | /// variable. | 
|  | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, | 
|  | TypeSourceInfo *TInfo, | 
|  | IdentifierInfo *Name, | 
|  | SourceLocation Loc) { | 
|  | bool Invalid = false; | 
|  | QualType ExDeclType = TInfo->getType(); | 
|  |  | 
|  | // Arrays and functions decay. | 
|  | if (ExDeclType->isArrayType()) | 
|  | ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
|  | else if (ExDeclType->isFunctionType()) | 
|  | ExDeclType = Context.getPointerType(ExDeclType); | 
|  |  | 
|  | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
|  | // The exception-declaration shall not denote a pointer or reference to an | 
|  | // incomplete type, other than [cv] void*. | 
|  | // N2844 forbids rvalue references. | 
|  | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | 
|  | Diag(Loc, diag::err_catch_rvalue_ref); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // GCC allows catching pointers and references to incomplete types | 
|  | // as an extension; so do we, but we warn by default. | 
|  |  | 
|  | QualType BaseType = ExDeclType; | 
|  | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
|  | unsigned DK = diag::err_catch_incomplete; | 
|  | bool IncompleteCatchIsInvalid = true; | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
|  | BaseType = Ptr->getPointeeType(); | 
|  | Mode = 1; | 
|  | DK = diag::ext_catch_incomplete_ptr; | 
|  | IncompleteCatchIsInvalid = false; | 
|  | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { | 
|  | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
|  | BaseType = Ref->getPointeeType(); | 
|  | Mode = 2; | 
|  | DK = diag::ext_catch_incomplete_ref; | 
|  | IncompleteCatchIsInvalid = false; | 
|  | } | 
|  | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
|  | !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) && | 
|  | IncompleteCatchIsInvalid) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && !ExDeclType->isDependentType() && | 
|  | RequireNonAbstractType(Loc, ExDeclType, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Invalid = true; | 
|  |  | 
|  | // Only the non-fragile NeXT runtime currently supports C++ catches | 
|  | // of ObjC types, and no runtime supports catching ObjC types by value. | 
|  | if (!Invalid && getLangOptions().ObjC1) { | 
|  | QualType T = ExDeclType; | 
|  | if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
|  | T = RT->getPointeeType(); | 
|  |  | 
|  | if (T->isObjCObjectType()) { | 
|  | Diag(Loc, diag::err_objc_object_catch); | 
|  | Invalid = true; | 
|  | } else if (T->isObjCObjectPointerType()) { | 
|  | if (!getLangOptions().NeXTRuntime) { | 
|  | Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu); | 
|  | Invalid = true; | 
|  | } else if (!getLangOptions().ObjCNonFragileABI) { | 
|  | Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, | 
|  | Name, ExDeclType, TInfo, SC_None, | 
|  | SC_None); | 
|  | ExDecl->setExceptionVariable(true); | 
|  |  | 
|  | if (!Invalid) { | 
|  | if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) { | 
|  | // C++ [except.handle]p16: | 
|  | //   The object declared in an exception-declaration or, if the | 
|  | //   exception-declaration does not specify a name, a temporary (12.2) is | 
|  | //   copy-initialized (8.5) from the exception object. [...] | 
|  | //   The object is destroyed when the handler exits, after the destruction | 
|  | //   of any automatic objects initialized within the handler. | 
|  | // | 
|  | // We just pretend to initialize the object with itself, then make sure | 
|  | // it can be destroyed later. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl); | 
|  | Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl, | 
|  | Loc, ExDeclType, 0); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(Loc, | 
|  | SourceLocation()); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, &ExDeclRef, 1)); | 
|  | if (Result.isInvalid()) | 
|  | Invalid = true; | 
|  | else | 
|  | FinalizeVarWithDestructor(ExDecl, RecordTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
|  | /// handler. | 
|  | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType ExDeclType = TInfo->getType(); | 
|  |  | 
|  | bool Invalid = D.isInvalidType(); | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), | 
|  | LookupOrdinaryName, | 
|  | ForRedeclaration)) { | 
|  | // The scope should be freshly made just for us. There is just no way | 
|  | // it contains any previous declaration. | 
|  | assert(!S->isDeclScope(PrevDecl)); | 
|  | if (PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.getCXXScopeSpec().isSet() && !Invalid) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo, | 
|  | D.getIdentifier(), | 
|  | D.getIdentifierLoc()); | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | // Add the exception declaration into this scope. | 
|  | if (II) | 
|  | PushOnScopeChains(ExDecl, S); | 
|  | else | 
|  | CurContext->addDecl(ExDecl); | 
|  |  | 
|  | ProcessDeclAttributes(S, ExDecl, D); | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, | 
|  | Expr *AssertExpr, | 
|  | Expr *AssertMessageExpr_) { | 
|  | StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_); | 
|  |  | 
|  | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { | 
|  | llvm::APSInt Value(32); | 
|  | if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { | 
|  | Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << | 
|  | AssertExpr->getSourceRange(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (Value == 0) { | 
|  | Diag(AssertLoc, diag::err_static_assert_failed) | 
|  | << AssertMessage->getString() << AssertExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, | 
|  | AssertExpr, AssertMessage); | 
|  |  | 
|  | CurContext->addDecl(Decl); | 
|  | return Decl; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic analysis of the given friend type declaration. | 
|  | /// | 
|  | /// \returns A friend declaration that. | 
|  | FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, | 
|  | TypeSourceInfo *TSInfo) { | 
|  | assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); | 
|  |  | 
|  | QualType T = TSInfo->getType(); | 
|  | SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus0x) { | 
|  | // C++03 [class.friend]p2: | 
|  | //   An elaborated-type-specifier shall be used in a friend declaration | 
|  | //   for a class.* | 
|  | // | 
|  | //   * The class-key of the elaborated-type-specifier is required. | 
|  | if (!ActiveTemplateInstantiations.empty()) { | 
|  | // Do not complain about the form of friend template types during | 
|  | // template instantiation; we will already have complained when the | 
|  | // template was declared. | 
|  | } else if (!T->isElaboratedTypeSpecifier()) { | 
|  | // If we evaluated the type to a record type, suggest putting | 
|  | // a tag in front. | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  |  | 
|  | std::string InsertionText = std::string(" ") + RD->getKindName(); | 
|  |  | 
|  | Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type) | 
|  | << (unsigned) RD->getTagKind() | 
|  | << T | 
|  | << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), | 
|  | InsertionText); | 
|  | } else { | 
|  | Diag(FriendLoc, diag::ext_nonclass_type_friend) | 
|  | << T | 
|  | << SourceRange(FriendLoc, TypeRange.getEnd()); | 
|  | } | 
|  | } else if (T->getAs<EnumType>()) { | 
|  | Diag(FriendLoc, diag::ext_enum_friend) | 
|  | << T | 
|  | << SourceRange(FriendLoc, TypeRange.getEnd()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++0x [class.friend]p3: | 
|  | //   If the type specifier in a friend declaration designates a (possibly | 
|  | //   cv-qualified) class type, that class is declared as a friend; otherwise, | 
|  | //   the friend declaration is ignored. | 
|  |  | 
|  | // FIXME: C++0x has some syntactic restrictions on friend type declarations | 
|  | // in [class.friend]p3 that we do not implement. | 
|  |  | 
|  | return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc); | 
|  | } | 
|  |  | 
|  | /// Handle a friend type declaration.  This works in tandem with | 
|  | /// ActOnTag. | 
|  | /// | 
|  | /// Notes on friend class templates: | 
|  | /// | 
|  | /// We generally treat friend class declarations as if they were | 
|  | /// declaring a class.  So, for example, the elaborated type specifier | 
|  | /// in a friend declaration is required to obey the restrictions of a | 
|  | /// class-head (i.e. no typedefs in the scope chain), template | 
|  | /// parameters are required to match up with simple template-ids, &c. | 
|  | /// However, unlike when declaring a template specialization, it's | 
|  | /// okay to refer to a template specialization without an empty | 
|  | /// template parameter declaration, e.g. | 
|  | ///   friend class A<T>::B<unsigned>; | 
|  | /// We permit this as a special case; if there are any template | 
|  | /// parameters present at all, require proper matching, i.e. | 
|  | ///   template <> template <class T> friend class A<int>::B; | 
|  | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | 
|  | MultiTemplateParamsArg TempParams) { | 
|  | SourceLocation Loc = DS.getSourceRange().getBegin(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | // Try to convert the decl specifier to a type.  This works for | 
|  | // friend templates because ActOnTag never produces a ClassTemplateDecl | 
|  | // for a TUK_Friend. | 
|  | Declarator TheDeclarator(DS, Declarator::MemberContext); | 
|  | TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); | 
|  | QualType T = TSI->getType(); | 
|  | if (TheDeclarator.isInvalidType()) | 
|  | return 0; | 
|  |  | 
|  | // This is definitely an error in C++98.  It's probably meant to | 
|  | // be forbidden in C++0x, too, but the specification is just | 
|  | // poorly written. | 
|  | // | 
|  | // The problem is with declarations like the following: | 
|  | //   template <T> friend A<T>::foo; | 
|  | // where deciding whether a class C is a friend or not now hinges | 
|  | // on whether there exists an instantiation of A that causes | 
|  | // 'foo' to equal C.  There are restrictions on class-heads | 
|  | // (which we declare (by fiat) elaborated friend declarations to | 
|  | // be) that makes this tractable. | 
|  | // | 
|  | // FIXME: handle "template <> friend class A<T>;", which | 
|  | // is possibly well-formed?  Who even knows? | 
|  | if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { | 
|  | Diag(Loc, diag::err_tagless_friend_type_template) | 
|  | << DS.getSourceRange(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++98 [class.friend]p1: A friend of a class is a function | 
|  | //   or class that is not a member of the class . . . | 
|  | // This is fixed in DR77, which just barely didn't make the C++03 | 
|  | // deadline.  It's also a very silly restriction that seriously | 
|  | // affects inner classes and which nobody else seems to implement; | 
|  | // thus we never diagnose it, not even in -pedantic. | 
|  | // | 
|  | // But note that we could warn about it: it's always useless to | 
|  | // friend one of your own members (it's not, however, worthless to | 
|  | // friend a member of an arbitrary specialization of your template). | 
|  |  | 
|  | Decl *D; | 
|  | if (unsigned NumTempParamLists = TempParams.size()) | 
|  | D = FriendTemplateDecl::Create(Context, CurContext, Loc, | 
|  | NumTempParamLists, | 
|  | (TemplateParameterList**) TempParams.release(), | 
|  | TSI, | 
|  | DS.getFriendSpecLoc()); | 
|  | else | 
|  | D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI); | 
|  |  | 
|  | if (!D) | 
|  | return 0; | 
|  |  | 
|  | D->setAccess(AS_public); | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFriendFunctionDecl(Scope *S, | 
|  | Declarator &D, | 
|  | bool IsDefinition, | 
|  | MultiTemplateParamsArg TemplateParams) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  |  | 
|  | // C++ [class.friend]p1 | 
|  | //   A friend of a class is a function or class.... | 
|  | // Note that this sees through typedefs, which is intended. | 
|  | // It *doesn't* see through dependent types, which is correct | 
|  | // according to [temp.arg.type]p3: | 
|  | //   If a declaration acquires a function type through a | 
|  | //   type dependent on a template-parameter and this causes | 
|  | //   a declaration that does not use the syntactic form of a | 
|  | //   function declarator to have a function type, the program | 
|  | //   is ill-formed. | 
|  | if (!T->isFunctionType()) { | 
|  | Diag(Loc, diag::err_unexpected_friend); | 
|  |  | 
|  | // It might be worthwhile to try to recover by creating an | 
|  | // appropriate declaration. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [namespace.memdef]p3 | 
|  | //  - If a friend declaration in a non-local class first declares a | 
|  | //    class or function, the friend class or function is a member | 
|  | //    of the innermost enclosing namespace. | 
|  | //  - The name of the friend is not found by simple name lookup | 
|  | //    until a matching declaration is provided in that namespace | 
|  | //    scope (either before or after the class declaration granting | 
|  | //    friendship). | 
|  | //  - If a friend function is called, its name may be found by the | 
|  | //    name lookup that considers functions from namespaces and | 
|  | //    classes associated with the types of the function arguments. | 
|  | //  - When looking for a prior declaration of a class or a function | 
|  | //    declared as a friend, scopes outside the innermost enclosing | 
|  | //    namespace scope are not considered. | 
|  |  | 
|  | CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | assert(Name); | 
|  |  | 
|  | // The context we found the declaration in, or in which we should | 
|  | // create the declaration. | 
|  | DeclContext *DC; | 
|  |  | 
|  | // FIXME: handle local classes | 
|  |  | 
|  | // Recover from invalid scope qualifiers as if they just weren't there. | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  | if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { | 
|  | DC = computeDeclContext(ScopeQual); | 
|  |  | 
|  | // FIXME: handle dependent contexts | 
|  | if (!DC) return 0; | 
|  | if (RequireCompleteDeclContext(ScopeQual, DC)) return 0; | 
|  |  | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // Ignore things found implicitly in the wrong scope. | 
|  | // TODO: better diagnostics for this case.  Suggesting the right | 
|  | // qualified scope would be nice... | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (!DC->InEnclosingNamespaceSetOf( | 
|  | D->getDeclContext()->getRedeclContext())) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  |  | 
|  | if (Previous.empty()) { | 
|  | D.setInvalidType(); | 
|  | Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.friend]p1: A friend of a class is a function or | 
|  | //   class that is not a member of the class . . . | 
|  | if (DC->Equals(CurContext)) | 
|  | Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); | 
|  |  | 
|  | // Otherwise walk out to the nearest namespace scope looking for matches. | 
|  | } else { | 
|  | // TODO: handle local class contexts. | 
|  |  | 
|  | DC = CurContext; | 
|  | while (true) { | 
|  | // Skip class contexts.  If someone can cite chapter and verse | 
|  | // for this behavior, that would be nice --- it's what GCC and | 
|  | // EDG do, and it seems like a reasonable intent, but the spec | 
|  | // really only says that checks for unqualified existing | 
|  | // declarations should stop at the nearest enclosing namespace, | 
|  | // not that they should only consider the nearest enclosing | 
|  | // namespace. | 
|  | while (DC->isRecord()) | 
|  | DC = DC->getParent(); | 
|  |  | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // TODO: decide what we think about using declarations. | 
|  | if (!Previous.empty()) | 
|  | break; | 
|  |  | 
|  | if (DC->isFileContext()) break; | 
|  | DC = DC->getParent(); | 
|  | } | 
|  |  | 
|  | // C++ [class.friend]p1: A friend of a class is a function or | 
|  | //   class that is not a member of the class . . . | 
|  | // C++0x changes this for both friend types and functions. | 
|  | // Most C++ 98 compilers do seem to give an error here, so | 
|  | // we do, too. | 
|  | if (!Previous.empty() && DC->Equals(CurContext) | 
|  | && !getLangOptions().CPlusPlus0x) | 
|  | Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); | 
|  | } | 
|  |  | 
|  | if (DC->isFileContext()) { | 
|  | // This implies that it has to be an operator or function. | 
|  | if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || | 
|  | D.getName().getKind() == UnqualifiedId::IK_DestructorName || | 
|  | D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { | 
|  | Diag(Loc, diag::err_introducing_special_friend) << | 
|  | (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : | 
|  | D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Redeclaration = false; | 
|  | NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, | 
|  | move(TemplateParams), | 
|  | IsDefinition, | 
|  | Redeclaration); | 
|  | if (!ND) return 0; | 
|  |  | 
|  | assert(ND->getDeclContext() == DC); | 
|  | assert(ND->getLexicalDeclContext() == CurContext); | 
|  |  | 
|  | // Add the function declaration to the appropriate lookup tables, | 
|  | // adjusting the redeclarations list as necessary.  We don't | 
|  | // want to do this yet if the friending class is dependent. | 
|  | // | 
|  | // Also update the scope-based lookup if the target context's | 
|  | // lookup context is in lexical scope. | 
|  | if (!CurContext->isDependentContext()) { | 
|  | DC = DC->getRedeclContext(); | 
|  | DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); | 
|  | } | 
|  |  | 
|  | FriendDecl *FrD = FriendDecl::Create(Context, CurContext, | 
|  | D.getIdentifierLoc(), ND, | 
|  | DS.getFriendSpecLoc()); | 
|  | FrD->setAccess(AS_public); | 
|  | CurContext->addDecl(FrD); | 
|  |  | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { | 
|  | AdjustDeclIfTemplate(Dcl); | 
|  |  | 
|  | FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); | 
|  | if (!Fn) { | 
|  | Diag(DelLoc, diag::err_deleted_non_function); | 
|  | return; | 
|  | } | 
|  | if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { | 
|  | Diag(DelLoc, diag::err_deleted_decl_not_first); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration); | 
|  | // If the declaration wasn't the first, we delete the function anyway for | 
|  | // recovery. | 
|  | } | 
|  | Fn->setDeleted(); | 
|  | } | 
|  |  | 
|  | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | 
|  | for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; | 
|  | ++CI) { | 
|  | Stmt *SubStmt = *CI; | 
|  | if (!SubStmt) | 
|  | continue; | 
|  | if (isa<ReturnStmt>(SubStmt)) | 
|  | Self.Diag(SubStmt->getSourceRange().getBegin(), | 
|  | diag::err_return_in_constructor_handler); | 
|  | if (!isa<Expr>(SubStmt)) | 
|  | SearchForReturnInStmt(Self, SubStmt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | 
|  | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | 
|  | CXXCatchStmt *Handler = TryBlock->getHandler(I); | 
|  | SearchForReturnInStmt(*this, Handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); | 
|  | QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | if (Context.hasSameType(NewTy, OldTy) || | 
|  | NewTy->isDependentType() || OldTy->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // Check if the return types are covariant | 
|  | QualType NewClassTy, OldClassTy; | 
|  |  | 
|  | /// Both types must be pointers or references to classes. | 
|  | if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { | 
|  | if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { | 
|  | NewClassTy = NewPT->getPointeeType(); | 
|  | OldClassTy = OldPT->getPointeeType(); | 
|  | } | 
|  | } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { | 
|  | if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { | 
|  | if (NewRT->getTypeClass() == OldRT->getTypeClass()) { | 
|  | NewClassTy = NewRT->getPointeeType(); | 
|  | OldClassTy = OldRT->getPointeeType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return types aren't either both pointers or references to a class type. | 
|  | if (NewClassTy.isNull()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_different_return_type_for_overriding_virtual_function) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [class.virtual]p6: | 
|  | //   If the return type of D::f differs from the return type of B::f, the | 
|  | //   class type in the return type of D::f shall be complete at the point of | 
|  | //   declaration of D::f or shall be the class type D. | 
|  | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { | 
|  | if (!RT->isBeingDefined() && | 
|  | RequireCompleteType(New->getLocation(), NewClassTy, | 
|  | PDiag(diag::err_covariant_return_incomplete) | 
|  | << New->getDeclName())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { | 
|  | // Check if the new class derives from the old class. | 
|  | if (!IsDerivedFrom(NewClassTy, OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_not_derived) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we the conversion from derived to base is valid. | 
|  | if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, | 
|  | diag::err_covariant_return_inaccessible_base, | 
|  | diag::err_covariant_return_ambiguous_derived_to_base_conv, | 
|  | // FIXME: Should this point to the return type? | 
|  | New->getLocation(), SourceRange(), New->getDeclName(), 0)) { | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The qualifiers of the return types must be the same. | 
|  | if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_different_qualifications) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // The new class type must have the same or less qualifiers as the old type. | 
|  | if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_class_type_more_qualified) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) | 
|  | { | 
|  | if (Old->hasAttr<FinalAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_final_function_overridden) | 
|  | << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Mark the given method pure. | 
|  | /// | 
|  | /// \param Method the method to be marked pure. | 
|  | /// | 
|  | /// \param InitRange the source range that covers the "0" initializer. | 
|  | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { | 
|  | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { | 
|  | Method->setPure(); | 
|  |  | 
|  | // A class is abstract if at least one function is pure virtual. | 
|  | Method->getParent()->setAbstract(true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Method->isInvalidDecl()) | 
|  | Diag(Method->getLocation(), diag::err_non_virtual_pure) | 
|  | << Method->getDeclName() << InitRange; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse | 
|  | /// an initializer for the out-of-line declaration 'Dcl'.  The scope | 
|  | /// is a fresh scope pushed for just this purpose. | 
|  | /// | 
|  | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | 
|  | /// static data member of class X, names should be looked up in the scope of | 
|  | /// class X. | 
|  | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (D == 0) return; | 
|  |  | 
|  | // We should only get called for declarations with scope specifiers, like: | 
|  | //   int foo::bar; | 
|  | assert(D->isOutOfLine()); | 
|  | EnterDeclaratorContext(S, D->getDeclContext()); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an | 
|  | /// initializer for the out-of-line declaration 'D'. | 
|  | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (D == 0) return; | 
|  |  | 
|  | assert(D->isOutOfLine()); | 
|  | ExitDeclaratorContext(S); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a | 
|  | /// C++ if/switch/while/for statement. | 
|  | /// e.g: "if (int x = f()) {...}" | 
|  | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { | 
|  | // C++ 6.4p2: | 
|  | // The declarator shall not specify a function or an array. | 
|  | // The type-specifier-seq shall not contain typedef and shall not declare a | 
|  | // new class or enumeration. | 
|  | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class of condition decl."); | 
|  |  | 
|  | TagDecl *OwnedTag = 0; | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag); | 
|  | QualType Ty = TInfo->getType(); | 
|  |  | 
|  | if (Ty->isFunctionType()) { // The declarator shall not specify a function... | 
|  | // We exit without creating a CXXConditionDeclExpr because a FunctionDecl | 
|  | // would be created and CXXConditionDeclExpr wants a VarDecl. | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) | 
|  | << D.getSourceRange(); | 
|  | return DeclResult(); | 
|  | } else if (OwnedTag && OwnedTag->isDefinition()) { | 
|  | // The type-specifier-seq shall not declare a new class or enumeration. | 
|  | Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); | 
|  | } | 
|  |  | 
|  | Decl *Dcl = ActOnDeclarator(S, D); | 
|  | if (!Dcl) | 
|  | return DeclResult(); | 
|  |  | 
|  | return Dcl; | 
|  | } | 
|  |  | 
|  | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, | 
|  | bool DefinitionRequired) { | 
|  | // Ignore any vtable uses in unevaluated operands or for classes that do | 
|  | // not have a vtable. | 
|  | if (!Class->isDynamicClass() || Class->isDependentContext() || | 
|  | CurContext->isDependentContext() || | 
|  | ExprEvalContexts.back().Context == Unevaluated) | 
|  | return; | 
|  |  | 
|  | // Try to insert this class into the map. | 
|  | Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); | 
|  | std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> | 
|  | Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); | 
|  | if (!Pos.second) { | 
|  | // If we already had an entry, check to see if we are promoting this vtable | 
|  | // to required a definition. If so, we need to reappend to the VTableUses | 
|  | // list, since we may have already processed the first entry. | 
|  | if (DefinitionRequired && !Pos.first->second) { | 
|  | Pos.first->second = true; | 
|  | } else { | 
|  | // Otherwise, we can early exit. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Local classes need to have their virtual members marked | 
|  | // immediately. For all other classes, we mark their virtual members | 
|  | // at the end of the translation unit. | 
|  | if (Class->isLocalClass()) | 
|  | MarkVirtualMembersReferenced(Loc, Class); | 
|  | else | 
|  | VTableUses.push_back(std::make_pair(Class, Loc)); | 
|  | } | 
|  |  | 
|  | bool Sema::DefineUsedVTables() { | 
|  | // If any dynamic classes have their key function defined within | 
|  | // this translation unit, then those vtables are considered "used" and must | 
|  | // be emitted. | 
|  | for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) { | 
|  | if (const CXXMethodDecl *KeyFunction | 
|  | = Context.getKeyFunction(DynamicClasses[I])) { | 
|  | const FunctionDecl *Definition = 0; | 
|  | if (KeyFunction->hasBody(Definition)) | 
|  | MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VTableUses.empty()) | 
|  | return false; | 
|  |  | 
|  | // Note: The VTableUses vector could grow as a result of marking | 
|  | // the members of a class as "used", so we check the size each | 
|  | // time through the loop and prefer indices (with are stable) to | 
|  | // iterators (which are not). | 
|  | for (unsigned I = 0; I != VTableUses.size(); ++I) { | 
|  | CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); | 
|  | if (!Class) | 
|  | continue; | 
|  |  | 
|  | SourceLocation Loc = VTableUses[I].second; | 
|  |  | 
|  | // If this class has a key function, but that key function is | 
|  | // defined in another translation unit, we don't need to emit the | 
|  | // vtable even though we're using it. | 
|  | const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); | 
|  | if (KeyFunction && !KeyFunction->hasBody()) { | 
|  | switch (KeyFunction->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | // The key function is in another translation unit. | 
|  | continue; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | case TSK_ImplicitInstantiation: | 
|  | // We will be instantiating the key function. | 
|  | break; | 
|  | } | 
|  | } else if (!KeyFunction) { | 
|  | // If we have a class with no key function that is the subject | 
|  | // of an explicit instantiation declaration, suppress the | 
|  | // vtable; it will live with the explicit instantiation | 
|  | // definition. | 
|  | bool IsExplicitInstantiationDeclaration | 
|  | = Class->getTemplateSpecializationKind() | 
|  | == TSK_ExplicitInstantiationDeclaration; | 
|  | for (TagDecl::redecl_iterator R = Class->redecls_begin(), | 
|  | REnd = Class->redecls_end(); | 
|  | R != REnd; ++R) { | 
|  | TemplateSpecializationKind TSK | 
|  | = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind(); | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration) | 
|  | IsExplicitInstantiationDeclaration = true; | 
|  | else if (TSK == TSK_ExplicitInstantiationDefinition) { | 
|  | IsExplicitInstantiationDeclaration = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsExplicitInstantiationDeclaration) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Mark all of the virtual members of this class as referenced, so | 
|  | // that we can build a vtable. Then, tell the AST consumer that a | 
|  | // vtable for this class is required. | 
|  | MarkVirtualMembersReferenced(Loc, Class); | 
|  | CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); | 
|  | Consumer.HandleVTable(Class, VTablesUsed[Canonical]); | 
|  |  | 
|  | // Optionally warn if we're emitting a weak vtable. | 
|  | if (Class->getLinkage() == ExternalLinkage && | 
|  | Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { | 
|  | if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined())) | 
|  | Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; | 
|  | } | 
|  | } | 
|  | VTableUses.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, | 
|  | const CXXRecordDecl *RD) { | 
|  | for (CXXRecordDecl::method_iterator i = RD->method_begin(), | 
|  | e = RD->method_end(); i != e; ++i) { | 
|  | CXXMethodDecl *MD = *i; | 
|  |  | 
|  | // C++ [basic.def.odr]p2: | 
|  | //   [...] A virtual member function is used if it is not pure. [...] | 
|  | if (MD->isVirtual() && !MD->isPure()) | 
|  | MarkDeclarationReferenced(Loc, MD); | 
|  | } | 
|  |  | 
|  | // Only classes that have virtual bases need a VTT. | 
|  | if (RD->getNumVBases() == 0) | 
|  | return; | 
|  |  | 
|  | for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), | 
|  | e = RD->bases_end(); i != e; ++i) { | 
|  | const CXXRecordDecl *Base = | 
|  | cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (Base->getNumVBases() == 0) | 
|  | continue; | 
|  | MarkVirtualMembersReferenced(Loc, Base); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SetIvarInitializers - This routine builds initialization ASTs for the | 
|  | /// Objective-C implementation whose ivars need be initialized. | 
|  | void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return; | 
|  | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { | 
|  | llvm::SmallVector<ObjCIvarDecl*, 8> ivars; | 
|  | CollectIvarsToConstructOrDestruct(OID, ivars); | 
|  | if (ivars.empty()) | 
|  | return; | 
|  | llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit; | 
|  | for (unsigned i = 0; i < ivars.size(); i++) { | 
|  | FieldDecl *Field = ivars[i]; | 
|  | if (Field->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | CXXBaseOrMemberInitializer *Member; | 
|  | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDefault(ObjCImplementation->getLocation()); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg()); | 
|  | MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get()); | 
|  | // Note, MemberInit could actually come back empty if no initialization | 
|  | // is required (e.g., because it would call a trivial default constructor) | 
|  | if (!MemberInit.get() || MemberInit.isInvalid()) | 
|  | continue; | 
|  |  | 
|  | Member = | 
|  | new (Context) CXXBaseOrMemberInitializer(Context, | 
|  | Field, SourceLocation(), | 
|  | SourceLocation(), | 
|  | MemberInit.takeAs<Expr>(), | 
|  | SourceLocation()); | 
|  | AllToInit.push_back(Member); | 
|  |  | 
|  | // Be sure that the destructor is accessible and is marked as referenced. | 
|  | if (const RecordType *RecordTy | 
|  | = Context.getBaseElementType(Field->getType()) | 
|  | ->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | 
|  | MarkDeclarationReferenced(Field->getLocation(), Destructor); | 
|  | CheckDestructorAccess(Field->getLocation(), Destructor, | 
|  | PDiag(diag::err_access_dtor_ivar) | 
|  | << Context.getBaseElementType(Field->getType())); | 
|  | } | 
|  | } | 
|  | } | 
|  | ObjCImplementation->setIvarInitializers(Context, | 
|  | AllToInit.data(), AllToInit.size()); | 
|  | } | 
|  | } |