| //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Armv6 introduced instructions to perform 32-bit SIMD operations. The |
| /// purpose of this pass is do some IR pattern matching to create ACLE |
| /// DSP intrinsics, which map on these 32-bit SIMD operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/PassSupport.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "ARM.h" |
| #include "ARMSubtarget.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "arm-parallel-dsp" |
| |
| STATISTIC(NumSMLAD , "Number of smlad instructions generated"); |
| |
| namespace { |
| struct ParallelMAC; |
| struct Reduction; |
| |
| using ParallelMACList = SmallVector<ParallelMAC, 8>; |
| using ReductionList = SmallVector<Reduction, 8>; |
| using ValueList = SmallVector<Value*, 8>; |
| using MemInstList = SmallVector<Instruction*, 8>; |
| using PMACPair = std::pair<ParallelMAC*,ParallelMAC*>; |
| using PMACPairList = SmallVector<PMACPair, 8>; |
| using Instructions = SmallVector<Instruction*,16>; |
| using MemLocList = SmallVector<MemoryLocation, 4>; |
| |
| // 'ParallelMAC' and 'Reduction' are just some bookkeeping data structures. |
| // 'Reduction' contains the phi-node and accumulator statement from where we |
| // start pattern matching, and 'ParallelMAC' the multiplication |
| // instructions that are candidates for parallel execution. |
| struct ParallelMAC { |
| Instruction *Mul; |
| ValueList VL; // List of all (narrow) operands of this Mul |
| MemInstList VecLd; // List of all load instructions of this Mul |
| MemLocList MemLocs; // All memory locations read by this Mul |
| |
| ParallelMAC(Instruction *I, ValueList &V) : Mul(I), VL(V) {}; |
| }; |
| |
| struct Reduction { |
| PHINode *Phi; // The Phi-node from where we start |
| // pattern matching. |
| Instruction *AccIntAdd; // The accumulating integer add statement, |
| // i.e, the reduction statement. |
| |
| Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; |
| }; |
| |
| class ARMParallelDSP : public LoopPass { |
| ScalarEvolution *SE; |
| AliasAnalysis *AA; |
| TargetLibraryInfo *TLI; |
| DominatorTree *DT; |
| LoopInfo *LI; |
| Loop *L; |
| const DataLayout *DL; |
| Module *M; |
| |
| bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); |
| bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); |
| PMACPairList CreateParallelMACPairs(ParallelMACList &Candidates); |
| Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, |
| Instruction *Acc, Instruction *InsertAfter); |
| |
| /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate |
| /// Dual performs two signed 16x16-bit multiplications. It adds the |
| /// products to a 32-bit accumulate operand. Optionally, the instruction can |
| /// exchange the halfwords of the second operand before performing the |
| /// arithmetic. |
| bool MatchSMLAD(Function &F); |
| |
| public: |
| static char ID; |
| |
| ARMParallelDSP() : LoopPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| LoopPass::getAnalysisUsage(AU); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| bool runOnLoop(Loop *TheLoop, LPPassManager &) override { |
| L = TheLoop; |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &TPC = getAnalysis<TargetPassConfig>(); |
| |
| BasicBlock *Header = TheLoop->getHeader(); |
| if (!Header) |
| return false; |
| |
| // TODO: We assume the loop header and latch to be the same block. |
| // This is not a fundamental restriction, but lifting this would just |
| // require more work to do the transformation and then patch up the CFG. |
| if (Header != TheLoop->getLoopLatch()) { |
| LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " |
| "running pass ARMParallelDSP\n"); |
| return false; |
| } |
| |
| Function &F = *Header->getParent(); |
| M = F.getParent(); |
| DL = &M->getDataLayout(); |
| |
| auto &TM = TPC.getTM<TargetMachine>(); |
| auto *ST = &TM.getSubtarget<ARMSubtarget>(F); |
| |
| if (!ST->allowsUnalignedMem()) { |
| LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " |
| "running pass ARMParallelDSP\n"); |
| return false; |
| } |
| |
| if (!ST->hasDSP()) { |
| LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " |
| "ARMParallelDSP\n"); |
| return false; |
| } |
| |
| LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); |
| bool Changes = false; |
| |
| LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n"); |
| Changes = MatchSMLAD(F); |
| return Changes; |
| } |
| }; |
| } |
| |
| // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP |
| // instructions, which is set to 16. So here we should collect all i8 and i16 |
| // narrow operations. |
| // TODO: we currently only collect i16, and will support i8 later, so that's |
| // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. |
| template<unsigned MaxBitWidth> |
| static bool IsNarrowSequence(Value *V, ValueList &VL) { |
| LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); |
| ConstantInt *CInt; |
| |
| if (match(V, m_ConstantInt(CInt))) { |
| // TODO: if a constant is used, it needs to fit within the bit width. |
| return false; |
| } |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| |
| Value *Val, *LHS, *RHS; |
| if (match(V, m_Trunc(m_Value(Val)))) { |
| if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) |
| return IsNarrowSequence<MaxBitWidth>(Val, VL); |
| } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { |
| // TODO: we need to implement sadd16/sadd8 for this, which enables to |
| // also do the rewrite for smlad8.ll, but it is unsupported for now. |
| LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); |
| return false; |
| } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { |
| if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { |
| LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << |
| cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); |
| return false; |
| } |
| |
| if (match(Val, m_Load(m_Value()))) { |
| LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); |
| VL.push_back(Val); |
| VL.push_back(I); |
| return true; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); |
| return false; |
| } |
| |
| // Element-by-element comparison of Value lists returning true if they are |
| // instructions with the same opcode or constants with the same value. |
| static bool AreSymmetrical(const ValueList &VL0, |
| const ValueList &VL1) { |
| if (VL0.size() != VL1.size()) { |
| LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " |
| << VL0.size() << " != " << VL1.size() << "\n"); |
| return false; |
| } |
| |
| const unsigned Pairs = VL0.size(); |
| LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); |
| |
| for (unsigned i = 0; i < Pairs; ++i) { |
| const Value *V0 = VL0[i]; |
| const Value *V1 = VL1[i]; |
| const auto *Inst0 = dyn_cast<Instruction>(V0); |
| const auto *Inst1 = dyn_cast<Instruction>(V1); |
| |
| LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; |
| dbgs() << "mul1: "; V0->dump(); |
| dbgs() << "mul2: "; V1->dump()); |
| |
| if (!Inst0 || !Inst1) |
| return false; |
| |
| if (Inst0->isSameOperationAs(Inst1)) { |
| LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); |
| continue; |
| } |
| |
| const APInt *C0, *C1; |
| if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); |
| return true; |
| } |
| |
| template<typename MemInst> |
| static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, |
| MemInstList &VecMem, const DataLayout &DL, |
| ScalarEvolution &SE) { |
| if (!MemOp0->isSimple() || !MemOp1->isSimple()) { |
| LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); |
| return false; |
| } |
| if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { |
| VecMem.push_back(MemOp0); |
| VecMem.push_back(MemOp1); |
| LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); |
| return true; |
| } |
| LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); |
| return false; |
| } |
| |
| bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, |
| MemInstList &VecMem) { |
| if (!Ld0 || !Ld1) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; |
| dbgs() << "Ld0:"; Ld0->dump(); |
| dbgs() << "Ld1:"; Ld1->dump(); |
| ); |
| |
| if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { |
| LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); |
| return false; |
| } |
| |
| return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE); |
| } |
| |
| PMACPairList |
| ARMParallelDSP::CreateParallelMACPairs(ParallelMACList &Candidates) { |
| const unsigned Elems = Candidates.size(); |
| PMACPairList PMACPairs; |
| |
| if (Elems < 2) |
| return PMACPairs; |
| |
| // TODO: for now we simply try to match consecutive pairs i and i+1. |
| // We can compare all elements, but then we need to compare and evaluate |
| // different solutions. |
| for(unsigned i=0; i<Elems-1; i+=2) { |
| ParallelMAC &PMul0 = Candidates[i]; |
| ParallelMAC &PMul1 = Candidates[i+1]; |
| const Instruction *Mul0 = PMul0.Mul; |
| const Instruction *Mul1 = PMul1.Mul; |
| |
| if (Mul0 == Mul1) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; |
| dbgs() << "- "; Mul0->dump(); |
| dbgs() << "- "; Mul1->dump()); |
| |
| const ValueList &VL0 = PMul0.VL; |
| const ValueList &VL1 = PMul1.VL; |
| |
| if (!AreSymmetrical(VL0, VL1)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); |
| // The first elements of each vector should be loads with sexts. If we find |
| // that its two pairs of consecutive loads, then these can be transformed |
| // into two wider loads and the users can be replaced with DSP |
| // intrinsics. |
| for (unsigned x = 0; x < VL0.size(); x += 4) { |
| auto *Ld0 = dyn_cast<LoadInst>(VL0[x]); |
| auto *Ld1 = dyn_cast<LoadInst>(VL1[x]); |
| auto *Ld2 = dyn_cast<LoadInst>(VL0[x+2]); |
| auto *Ld3 = dyn_cast<LoadInst>(VL1[x+2]); |
| |
| LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"; |
| dbgs() << "\t mul1: "; VL0[x]->dump(); |
| dbgs() << "\t mul2: "; VL1[x]->dump(); |
| dbgs() << "and operands " << x + 2 << ":\n"; |
| dbgs() << "\t mul1: "; VL0[x+2]->dump(); |
| dbgs() << "\t mul2: "; VL1[x+2]->dump()); |
| |
| if (AreSequentialLoads(Ld0, Ld1, Candidates[i].VecLd) && |
| AreSequentialLoads(Ld2, Ld3, Candidates[i+1].VecLd)) { |
| LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); |
| PMACPairs.push_back(std::make_pair(&PMul0, &PMul1)); |
| } |
| } |
| } |
| return PMACPairs; |
| } |
| |
| bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, |
| PMACPairList &PMACPairs) { |
| Instruction *Acc = Reduction.Phi; |
| Instruction *InsertAfter = Reduction.AccIntAdd; |
| |
| for (auto &Pair : PMACPairs) { |
| LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; |
| dbgs() << "- "; Pair.first->Mul->dump(); |
| dbgs() << "- "; Pair.second->Mul->dump()); |
| auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]); |
| auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]); |
| Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter); |
| InsertAfter = Acc; |
| } |
| |
| if (Acc != Reduction.Phi) { |
| LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); |
| Reduction.AccIntAdd->replaceAllUsesWith(Acc); |
| return true; |
| } |
| return false; |
| } |
| |
| static ReductionList MatchReductions(Function &F, Loop *TheLoop, |
| BasicBlock *Header) { |
| ReductionList Reductions; |
| RecurrenceDescriptor RecDesc; |
| const bool HasFnNoNaNAttr = |
| F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; |
| const BasicBlock *Latch = TheLoop->getLoopLatch(); |
| |
| // We need a preheader as getIncomingValueForBlock assumes there is one. |
| if (!TheLoop->getLoopPreheader()) |
| return Reductions; |
| |
| for (PHINode &Phi : Header->phis()) { |
| const auto *Ty = Phi.getType(); |
| if (!Ty->isIntegerTy(32)) |
| continue; |
| |
| const bool IsReduction = |
| RecurrenceDescriptor::AddReductionVar(&Phi, |
| RecurrenceDescriptor::RK_IntegerAdd, |
| TheLoop, HasFnNoNaNAttr, RecDesc); |
| if (!IsReduction) |
| continue; |
| |
| Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); |
| if (!Acc) |
| continue; |
| |
| Reductions.push_back(Reduction(&Phi, Acc)); |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "\nAccumulating integer additions (reductions) found:\n"; |
| for (auto R : Reductions) { |
| dbgs() << "- "; R.Phi->dump(); |
| dbgs() << "-> "; R.AccIntAdd->dump(); |
| } |
| ); |
| return Reductions; |
| } |
| |
| static void AddCandidateMAC(ParallelMACList &Candidates, const Instruction *Acc, |
| Value *MulOp0, Value *MulOp1, int MulOpNum) { |
| Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum)); |
| LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); |
| ValueList VL; |
| if (IsNarrowSequence<16>(MulOp0, VL) && |
| IsNarrowSequence<16>(MulOp1, VL)) { |
| LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); |
| Candidates.push_back(ParallelMAC(Mul, VL)); |
| } |
| } |
| |
| static ParallelMACList MatchParallelMACs(Reduction &R) { |
| ParallelMACList Candidates; |
| const Instruction *Acc = R.AccIntAdd; |
| Value *A, *MulOp0, *MulOp1; |
| LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump()); |
| |
| // Pattern 1: the accumulator is the RHS of the mul. |
| while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), |
| m_Value(A)))){ |
| AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0); |
| Acc = dyn_cast<Instruction>(A); |
| } |
| // Pattern 2: the accumulator is the LHS of the mul. |
| while(match(Acc, m_Add(m_Value(A), |
| m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { |
| AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 1); |
| Acc = dyn_cast<Instruction>(A); |
| } |
| |
| // The last mul in the chain has a slightly different pattern: |
| // the mul is the first operand |
| if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A)))) |
| AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0); |
| |
| // Because we start at the bottom of the chain, and we work our way up, |
| // the muls are added in reverse program order to the list. |
| std::reverse(Candidates.begin(), Candidates.end()); |
| return Candidates; |
| } |
| |
| // Collects all instructions that are not part of the MAC chains, which is the |
| // set of instructions that can potentially alias with the MAC operands. |
| static Instructions AliasCandidates(BasicBlock *Header, |
| ParallelMACList &MACCandidates) { |
| Instructions Aliases; |
| auto IsMACCandidate = [] (Instruction *I, ParallelMACList &MACCandidates) { |
| for (auto &MAC : MACCandidates) |
| for (auto *Val : MAC.VL) |
| if (I == MAC.Mul || Val == I) |
| return true; |
| return false; |
| }; |
| |
| std::for_each(Header->begin(), Header->end(), |
| [&Aliases, &MACCandidates, &IsMACCandidate] (Instruction &I) { |
| if (I.mayReadOrWriteMemory() && |
| !IsMACCandidate(&I, MACCandidates)) |
| Aliases.push_back(&I); }); |
| return Aliases; |
| } |
| |
| // This compares all instructions from the "alias candidates" set, i.e., all |
| // instructions that are not part of the MAC-chain, with all instructions in |
| // the MAC candidate set, to see if instructions are aliased. |
| static bool AreAliased(AliasAnalysis *AA, Instructions AliasCandidates, |
| ParallelMACList &MACCandidates) { |
| LLVM_DEBUG(dbgs() << "Alias checks:\n"); |
| for (auto *I : AliasCandidates) { |
| LLVM_DEBUG(dbgs() << "- "; I->dump()); |
| for (auto &MAC : MACCandidates) { |
| LLVM_DEBUG(dbgs() << "mul: "; MAC.Mul->dump()); |
| assert(MAC.MemLocs.size() >= 2 && "expecting at least 2 memlocs"); |
| for (auto &MemLoc : MAC.MemLocs) { |
| if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), |
| ModRefInfo::ModRef))) { |
| LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); |
| return true; |
| } |
| } |
| } |
| } |
| LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); |
| return false; |
| } |
| |
| static bool SetMemoryLocations(ParallelMACList &Candidates) { |
| const auto Size = MemoryLocation::UnknownSize; |
| for (auto &C : Candidates) { |
| // A mul has 2 operands, and a narrow op consist of sext and a load; thus |
| // we expect at least 4 items in this operand value list. |
| if (C.VL.size() < 4) { |
| LLVM_DEBUG(dbgs() << "Operand list too short.\n"); |
| return false; |
| } |
| |
| for (unsigned i = 0; i < C.VL.size(); i += 4) { |
| auto *LdOp0 = dyn_cast<LoadInst>(C.VL[i]); |
| auto *LdOp1 = dyn_cast<LoadInst>(C.VL[i+2]); |
| if (!LdOp0 || !LdOp1) |
| return false; |
| |
| C.MemLocs.push_back(MemoryLocation(LdOp0->getPointerOperand(), Size)); |
| C.MemLocs.push_back(MemoryLocation(LdOp1->getPointerOperand(), Size)); |
| } |
| } |
| return true; |
| } |
| |
| // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector |
| // multiplications. |
| // To use SMLAD: |
| // 1) we first need to find integer add reduction PHIs, |
| // 2) then from the PHI, look for this pattern: |
| // |
| // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] |
| // ld0 = load i16 |
| // sext0 = sext i16 %ld0 to i32 |
| // ld1 = load i16 |
| // sext1 = sext i16 %ld1 to i32 |
| // mul0 = mul %sext0, %sext1 |
| // ld2 = load i16 |
| // sext2 = sext i16 %ld2 to i32 |
| // ld3 = load i16 |
| // sext3 = sext i16 %ld3 to i32 |
| // mul1 = mul i32 %sext2, %sext3 |
| // add0 = add i32 %mul0, %acc0 |
| // acc1 = add i32 %add0, %mul1 |
| // |
| // Which can be selected to: |
| // |
| // ldr.h r0 |
| // ldr.h r1 |
| // smlad r2, r0, r1, r2 |
| // |
| // If constants are used instead of loads, these will need to be hoisted |
| // out and into a register. |
| // |
| // If loop invariants are used instead of loads, these need to be packed |
| // before the loop begins. |
| // |
| // Can only be enabled for cores which support unaligned accesses. |
| // |
| bool ARMParallelDSP::MatchSMLAD(Function &F) { |
| BasicBlock *Header = L->getHeader(); |
| LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; |
| dbgs() << "Header block:\n"; Header->dump(); |
| dbgs() << "Loop info:\n\n"; L->dump()); |
| |
| bool Changed = false; |
| ReductionList Reductions = MatchReductions(F, L, Header); |
| |
| for (auto &R : Reductions) { |
| ParallelMACList MACCandidates = MatchParallelMACs(R); |
| if (!SetMemoryLocations(MACCandidates)) |
| continue; |
| Instructions Aliases = AliasCandidates(Header, MACCandidates); |
| if (AreAliased(AA, Aliases, MACCandidates)) |
| continue; |
| PMACPairList PMACPairs = CreateParallelMACPairs(MACCandidates); |
| Changed = InsertParallelMACs(R, PMACPairs) || Changed; |
| } |
| |
| LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); |
| return Changed; |
| } |
| |
| static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc, |
| LoadInst **VecLd) { |
| const Type *AccTy = Acc->getType(); |
| const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace(); |
| |
| Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(), |
| AccTy->getPointerTo(AddrSpace)); |
| *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment()); |
| } |
| |
| Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, |
| Instruction *Acc, |
| Instruction *InsertAfter) { |
| LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"; |
| dbgs() << "- "; VecLd0->dump(); |
| dbgs() << "- "; VecLd1->dump(); |
| dbgs() << "- "; Acc->dump()); |
| |
| IRBuilder<NoFolder> Builder(InsertAfter->getParent(), |
| ++BasicBlock::iterator(InsertAfter)); |
| |
| // Replace the reduction chain with an intrinsic call |
| CreateLoadIns(Builder, Acc, &VecLd0); |
| CreateLoadIns(Builder, Acc, &VecLd1); |
| Value* Args[] = { VecLd0, VecLd1, Acc }; |
| Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad); |
| CallInst *Call = Builder.CreateCall(SMLAD, Args); |
| NumSMLAD++; |
| return Call; |
| } |
| |
| Pass *llvm::createARMParallelDSPPass() { |
| return new ARMParallelDSP(); |
| } |
| |
| char ARMParallelDSP::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", |
| "Transform loops to use DSP intrinsics", false, false) |
| INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", |
| "Transform loops to use DSP intrinsics", false, false) |