| //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Rewrite an existing set of gc.statepoints such that they make potential |
| // relocations performed by the garbage collector explicit in the IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| |
| #define DEBUG_TYPE "rewrite-statepoints-for-gc" |
| |
| using namespace llvm; |
| |
| // Print the liveset found at the insert location |
| static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, |
| cl::init(false)); |
| static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, |
| cl::init(false)); |
| // Print out the base pointers for debugging |
| static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, |
| cl::init(false)); |
| |
| // Cost threshold measuring when it is profitable to rematerialize value instead |
| // of relocating it |
| static cl::opt<unsigned> |
| RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, |
| cl::init(6)); |
| |
| #ifdef XDEBUG |
| static bool ClobberNonLive = true; |
| #else |
| static bool ClobberNonLive = false; |
| #endif |
| static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", |
| cl::location(ClobberNonLive), |
| cl::Hidden); |
| |
| static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, |
| cl::init(false)); |
| static cl::opt<bool> |
| AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", |
| cl::Hidden, cl::init(true)); |
| |
| namespace { |
| struct RewriteStatepointsForGC : public ModulePass { |
| static char ID; // Pass identification, replacement for typeid |
| |
| RewriteStatepointsForGC() : ModulePass(ID) { |
| initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); |
| } |
| bool runOnFunction(Function &F); |
| bool runOnModule(Module &M) override { |
| bool Changed = false; |
| for (Function &F : M) |
| Changed |= runOnFunction(F); |
| |
| if (Changed) { |
| // stripNonValidAttributes asserts that shouldRewriteStatepointsIn |
| // returns true for at least one function in the module. Since at least |
| // one function changed, we know that the precondition is satisfied. |
| stripNonValidAttributes(M); |
| } |
| |
| return Changed; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| // We add and rewrite a bunch of instructions, but don't really do much |
| // else. We could in theory preserve a lot more analyses here. |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| } |
| |
| /// The IR fed into RewriteStatepointsForGC may have had attributes implying |
| /// dereferenceability that are no longer valid/correct after |
| /// RewriteStatepointsForGC has run. This is because semantically, after |
| /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire |
| /// heap. stripNonValidAttributes (conservatively) restores correctness |
| /// by erasing all attributes in the module that externally imply |
| /// dereferenceability. |
| /// Similar reasoning also applies to the noalias attributes. gc.statepoint |
| /// can touch the entire heap including noalias objects. |
| void stripNonValidAttributes(Module &M); |
| |
| // Helpers for stripNonValidAttributes |
| void stripNonValidAttributesFromBody(Function &F); |
| void stripNonValidAttributesFromPrototype(Function &F); |
| }; |
| } // namespace |
| |
| char RewriteStatepointsForGC::ID = 0; |
| |
| ModulePass *llvm::createRewriteStatepointsForGCPass() { |
| return new RewriteStatepointsForGC(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| "Make relocations explicit at statepoints", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| "Make relocations explicit at statepoints", false, false) |
| |
| namespace { |
| struct GCPtrLivenessData { |
| /// Values defined in this block. |
| DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; |
| /// Values used in this block (and thus live); does not included values |
| /// killed within this block. |
| DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; |
| |
| /// Values live into this basic block (i.e. used by any |
| /// instruction in this basic block or ones reachable from here) |
| DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; |
| |
| /// Values live out of this basic block (i.e. live into |
| /// any successor block) |
| DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; |
| }; |
| |
| // The type of the internal cache used inside the findBasePointers family |
| // of functions. From the callers perspective, this is an opaque type and |
| // should not be inspected. |
| // |
| // In the actual implementation this caches two relations: |
| // - The base relation itself (i.e. this pointer is based on that one) |
| // - The base defining value relation (i.e. before base_phi insertion) |
| // Generally, after the execution of a full findBasePointer call, only the |
| // base relation will remain. Internally, we add a mixture of the two |
| // types, then update all the second type to the first type |
| typedef DenseMap<Value *, Value *> DefiningValueMapTy; |
| typedef DenseSet<Value *> StatepointLiveSetTy; |
| typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> |
| RematerializedValueMapTy; |
| |
| struct PartiallyConstructedSafepointRecord { |
| /// The set of values known to be live across this safepoint |
| StatepointLiveSetTy LiveSet; |
| |
| /// Mapping from live pointers to a base-defining-value |
| DenseMap<Value *, Value *> PointerToBase; |
| |
| /// The *new* gc.statepoint instruction itself. This produces the token |
| /// that normal path gc.relocates and the gc.result are tied to. |
| Instruction *StatepointToken; |
| |
| /// Instruction to which exceptional gc relocates are attached |
| /// Makes it easier to iterate through them during relocationViaAlloca. |
| Instruction *UnwindToken; |
| |
| /// Record live values we are rematerialized instead of relocating. |
| /// They are not included into 'LiveSet' field. |
| /// Maps rematerialized copy to it's original value. |
| RematerializedValueMapTy RematerializedValues; |
| }; |
| } |
| |
| static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { |
| assert(UseDeoptBundles && "Should not be called otherwise!"); |
| |
| Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); |
| |
| if (!DeoptBundle.hasValue()) { |
| assert(AllowStatepointWithNoDeoptInfo && |
| "Found non-leaf call without deopt info!"); |
| return None; |
| } |
| |
| return DeoptBundle.getValue().Inputs; |
| } |
| |
| /// Compute the live-in set for every basic block in the function |
| static void computeLiveInValues(DominatorTree &DT, Function &F, |
| GCPtrLivenessData &Data); |
| |
| /// Given results from the dataflow liveness computation, find the set of live |
| /// Values at a particular instruction. |
| static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, |
| StatepointLiveSetTy &out); |
| |
| // TODO: Once we can get to the GCStrategy, this becomes |
| // Optional<bool> isGCManagedPointer(const Value *V) const override { |
| |
| static bool isGCPointerType(Type *T) { |
| if (auto *PT = dyn_cast<PointerType>(T)) |
| // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| // GC managed heap. We know that a pointer into this heap needs to be |
| // updated and that no other pointer does. |
| return (1 == PT->getAddressSpace()); |
| return false; |
| } |
| |
| // Return true if this type is one which a) is a gc pointer or contains a GC |
| // pointer and b) is of a type this code expects to encounter as a live value. |
| // (The insertion code will assert that a type which matches (a) and not (b) |
| // is not encountered.) |
| static bool isHandledGCPointerType(Type *T) { |
| // We fully support gc pointers |
| if (isGCPointerType(T)) |
| return true; |
| // We partially support vectors of gc pointers. The code will assert if it |
| // can't handle something. |
| if (auto VT = dyn_cast<VectorType>(T)) |
| if (isGCPointerType(VT->getElementType())) |
| return true; |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| /// Returns true if this type contains a gc pointer whether we know how to |
| /// handle that type or not. |
| static bool containsGCPtrType(Type *Ty) { |
| if (isGCPointerType(Ty)) |
| return true; |
| if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
| return isGCPointerType(VT->getScalarType()); |
| if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
| return containsGCPtrType(AT->getElementType()); |
| if (StructType *ST = dyn_cast<StructType>(Ty)) |
| return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), |
| containsGCPtrType); |
| return false; |
| } |
| |
| // Returns true if this is a type which a) is a gc pointer or contains a GC |
| // pointer and b) is of a type which the code doesn't expect (i.e. first class |
| // aggregates). Used to trip assertions. |
| static bool isUnhandledGCPointerType(Type *Ty) { |
| return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); |
| } |
| #endif |
| |
| static bool order_by_name(Value *a, Value *b) { |
| if (a->hasName() && b->hasName()) { |
| return -1 == a->getName().compare(b->getName()); |
| } else if (a->hasName() && !b->hasName()) { |
| return true; |
| } else if (!a->hasName() && b->hasName()) { |
| return false; |
| } else { |
| // Better than nothing, but not stable |
| return a < b; |
| } |
| } |
| |
| // Return the name of the value suffixed with the provided value, or if the |
| // value didn't have a name, the default value specified. |
| static std::string suffixed_name_or(Value *V, StringRef Suffix, |
| StringRef DefaultName) { |
| return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); |
| } |
| |
| // Conservatively identifies any definitions which might be live at the |
| // given instruction. The analysis is performed immediately before the |
| // given instruction. Values defined by that instruction are not considered |
| // live. Values used by that instruction are considered live. |
| static void analyzeParsePointLiveness( |
| DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, |
| const CallSite &CS, PartiallyConstructedSafepointRecord &result) { |
| Instruction *inst = CS.getInstruction(); |
| |
| StatepointLiveSetTy LiveSet; |
| findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); |
| |
| if (PrintLiveSet) { |
| // Note: This output is used by several of the test cases |
| // The order of elements in a set is not stable, put them in a vec and sort |
| // by name |
| SmallVector<Value *, 64> Temp; |
| Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); |
| std::sort(Temp.begin(), Temp.end(), order_by_name); |
| errs() << "Live Variables:\n"; |
| for (Value *V : Temp) |
| dbgs() << " " << V->getName() << " " << *V << "\n"; |
| } |
| if (PrintLiveSetSize) { |
| errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; |
| errs() << "Number live values: " << LiveSet.size() << "\n"; |
| } |
| result.LiveSet = LiveSet; |
| } |
| |
| static bool isKnownBaseResult(Value *V); |
| namespace { |
| /// A single base defining value - An immediate base defining value for an |
| /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. |
| /// For instructions which have multiple pointer [vector] inputs or that |
| /// transition between vector and scalar types, there is no immediate base |
| /// defining value. The 'base defining value' for 'Def' is the transitive |
| /// closure of this relation stopping at the first instruction which has no |
| /// immediate base defining value. The b.d.v. might itself be a base pointer, |
| /// but it can also be an arbitrary derived pointer. |
| struct BaseDefiningValueResult { |
| /// Contains the value which is the base defining value. |
| Value * const BDV; |
| /// True if the base defining value is also known to be an actual base |
| /// pointer. |
| const bool IsKnownBase; |
| BaseDefiningValueResult(Value *BDV, bool IsKnownBase) |
| : BDV(BDV), IsKnownBase(IsKnownBase) { |
| #ifndef NDEBUG |
| // Check consistency between new and old means of checking whether a BDV is |
| // a base. |
| bool MustBeBase = isKnownBaseResult(BDV); |
| assert(!MustBeBase || MustBeBase == IsKnownBase); |
| #endif |
| } |
| }; |
| } |
| |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I); |
| |
| /// Return a base defining value for the 'Index' element of the given vector |
| /// instruction 'I'. If Index is null, returns a BDV for the entire vector |
| /// 'I'. As an optimization, this method will try to determine when the |
| /// element is known to already be a base pointer. If this can be established, |
| /// the second value in the returned pair will be true. Note that either a |
| /// vector or a pointer typed value can be returned. For the former, the |
| /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. |
| /// If the later, the return pointer is a BDV (or possibly a base) for the |
| /// particular element in 'I'. |
| static BaseDefiningValueResult |
| findBaseDefiningValueOfVector(Value *I) { |
| assert(I->getType()->isVectorTy() && |
| cast<VectorType>(I->getType())->getElementType()->isPointerTy() && |
| "Illegal to ask for the base pointer of a non-pointer type"); |
| |
| // Each case parallels findBaseDefiningValue below, see that code for |
| // detailed motivation. |
| |
| if (isa<Argument>(I)) |
| // An incoming argument to the function is a base pointer |
| return BaseDefiningValueResult(I, true); |
| |
| // We shouldn't see the address of a global as a vector value? |
| assert(!isa<GlobalVariable>(I) && |
| "unexpected global variable found in base of vector"); |
| |
| // inlining could possibly introduce phi node that contains |
| // undef if callee has multiple returns |
| if (isa<UndefValue>(I)) |
| // utterly meaningless, but useful for dealing with partially optimized |
| // code. |
| return BaseDefiningValueResult(I, true); |
| |
| // Due to inheritance, this must be _after_ the global variable and undef |
| // checks |
| if (Constant *Con = dyn_cast<Constant>(I)) { |
| assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && |
| "order of checks wrong!"); |
| assert(Con->isNullValue() && "null is the only case which makes sense"); |
| return BaseDefiningValueResult(Con, true); |
| } |
| |
| if (isa<LoadInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| if (isa<InsertElementInst>(I)) |
| // We don't know whether this vector contains entirely base pointers or |
| // not. To be conservatively correct, we treat it as a BDV and will |
| // duplicate code as needed to construct a parallel vector of bases. |
| return BaseDefiningValueResult(I, false); |
| |
| if (isa<ShuffleVectorInst>(I)) |
| // We don't know whether this vector contains entirely base pointers or |
| // not. To be conservatively correct, we treat it as a BDV and will |
| // duplicate code as needed to construct a parallel vector of bases. |
| // TODO: There a number of local optimizations which could be applied here |
| // for particular sufflevector patterns. |
| return BaseDefiningValueResult(I, false); |
| |
| // A PHI or Select is a base defining value. The outer findBasePointer |
| // algorithm is responsible for constructing a base value for this BDV. |
| assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
| "unknown vector instruction - no base found for vector element"); |
| return BaseDefiningValueResult(I, false); |
| } |
| |
| /// Helper function for findBasePointer - Will return a value which either a) |
| /// defines the base pointer for the input, b) blocks the simple search |
| /// (i.e. a PHI or Select of two derived pointers), or c) involves a change |
| /// from pointer to vector type or back. |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I) { |
| if (I->getType()->isVectorTy()) |
| return findBaseDefiningValueOfVector(I); |
| |
| assert(I->getType()->isPointerTy() && |
| "Illegal to ask for the base pointer of a non-pointer type"); |
| |
| if (isa<Argument>(I)) |
| // An incoming argument to the function is a base pointer |
| // We should have never reached here if this argument isn't an gc value |
| return BaseDefiningValueResult(I, true); |
| |
| if (isa<GlobalVariable>(I)) |
| // base case |
| return BaseDefiningValueResult(I, true); |
| |
| // inlining could possibly introduce phi node that contains |
| // undef if callee has multiple returns |
| if (isa<UndefValue>(I)) |
| // utterly meaningless, but useful for dealing with |
| // partially optimized code. |
| return BaseDefiningValueResult(I, true); |
| |
| // Due to inheritance, this must be _after_ the global variable and undef |
| // checks |
| if (isa<Constant>(I)) { |
| assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && |
| "order of checks wrong!"); |
| // Note: Finding a constant base for something marked for relocation |
| // doesn't really make sense. The most likely case is either a) some |
| // screwed up the address space usage or b) your validating against |
| // compiled C++ code w/o the proper separation. The only real exception |
| // is a null pointer. You could have generic code written to index of |
| // off a potentially null value and have proven it null. We also use |
| // null pointers in dead paths of relocation phis (which we might later |
| // want to find a base pointer for). |
| assert(isa<ConstantPointerNull>(I) && |
| "null is the only case which makes sense"); |
| return BaseDefiningValueResult(I, true); |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| Value *Def = CI->stripPointerCasts(); |
| // If we find a cast instruction here, it means we've found a cast which is |
| // not simply a pointer cast (i.e. an inttoptr). We don't know how to |
| // handle int->ptr conversion. |
| assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); |
| return findBaseDefiningValue(Def); |
| } |
| |
| if (isa<LoadInst>(I)) |
| // The value loaded is an gc base itself |
| return BaseDefiningValueResult(I, true); |
| |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) |
| // The base of this GEP is the base |
| return findBaseDefiningValue(GEP->getPointerOperand()); |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::experimental_gc_result_ptr: |
| default: |
| // fall through to general call handling |
| break; |
| case Intrinsic::experimental_gc_statepoint: |
| case Intrinsic::experimental_gc_result_float: |
| case Intrinsic::experimental_gc_result_int: |
| llvm_unreachable("these don't produce pointers"); |
| case Intrinsic::experimental_gc_relocate: { |
| // Rerunning safepoint insertion after safepoints are already |
| // inserted is not supported. It could probably be made to work, |
| // but why are you doing this? There's no good reason. |
| llvm_unreachable("repeat safepoint insertion is not supported"); |
| } |
| case Intrinsic::gcroot: |
| // Currently, this mechanism hasn't been extended to work with gcroot. |
| // There's no reason it couldn't be, but I haven't thought about the |
| // implications much. |
| llvm_unreachable( |
| "interaction with the gcroot mechanism is not supported"); |
| } |
| } |
| // We assume that functions in the source language only return base |
| // pointers. This should probably be generalized via attributes to support |
| // both source language and internal functions. |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| // I have absolutely no idea how to implement this part yet. It's not |
| // necessarily hard, I just haven't really looked at it yet. |
| assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); |
| |
| if (isa<AtomicCmpXchgInst>(I)) |
| // A CAS is effectively a atomic store and load combined under a |
| // predicate. From the perspective of base pointers, we just treat it |
| // like a load. |
| return BaseDefiningValueResult(I, true); |
| |
| assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " |
| "binary ops which don't apply to pointers"); |
| |
| // The aggregate ops. Aggregates can either be in the heap or on the |
| // stack, but in either case, this is simply a field load. As a result, |
| // this is a defining definition of the base just like a load is. |
| if (isa<ExtractValueInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| // We should never see an insert vector since that would require we be |
| // tracing back a struct value not a pointer value. |
| assert(!isa<InsertValueInst>(I) && |
| "Base pointer for a struct is meaningless"); |
| |
| // An extractelement produces a base result exactly when it's input does. |
| // We may need to insert a parallel instruction to extract the appropriate |
| // element out of the base vector corresponding to the input. Given this, |
| // it's analogous to the phi and select case even though it's not a merge. |
| if (isa<ExtractElementInst>(I)) |
| // Note: There a lot of obvious peephole cases here. This are deliberately |
| // handled after the main base pointer inference algorithm to make writing |
| // test cases to exercise that code easier. |
| return BaseDefiningValueResult(I, false); |
| |
| // The last two cases here don't return a base pointer. Instead, they |
| // return a value which dynamically selects from among several base |
| // derived pointers (each with it's own base potentially). It's the job of |
| // the caller to resolve these. |
| assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
| "missing instruction case in findBaseDefiningValing"); |
| return BaseDefiningValueResult(I, false); |
| } |
| |
| /// Returns the base defining value for this value. |
| static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { |
| Value *&Cached = Cache[I]; |
| if (!Cached) { |
| Cached = findBaseDefiningValue(I).BDV; |
| DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " |
| << Cached->getName() << "\n"); |
| } |
| assert(Cache[I] != nullptr); |
| return Cached; |
| } |
| |
| /// Return a base pointer for this value if known. Otherwise, return it's |
| /// base defining value. |
| static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { |
| Value *Def = findBaseDefiningValueCached(I, Cache); |
| auto Found = Cache.find(Def); |
| if (Found != Cache.end()) { |
| // Either a base-of relation, or a self reference. Caller must check. |
| return Found->second; |
| } |
| // Only a BDV available |
| return Def; |
| } |
| |
| /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, |
| /// is it known to be a base pointer? Or do we need to continue searching. |
| static bool isKnownBaseResult(Value *V) { |
| if (!isa<PHINode>(V) && !isa<SelectInst>(V) && |
| !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && |
| !isa<ShuffleVectorInst>(V)) { |
| // no recursion possible |
| return true; |
| } |
| if (isa<Instruction>(V) && |
| cast<Instruction>(V)->getMetadata("is_base_value")) { |
| // This is a previously inserted base phi or select. We know |
| // that this is a base value. |
| return true; |
| } |
| |
| // We need to keep searching |
| return false; |
| } |
| |
| namespace { |
| /// Models the state of a single base defining value in the findBasePointer |
| /// algorithm for determining where a new instruction is needed to propagate |
| /// the base of this BDV. |
| class BDVState { |
| public: |
| enum Status { Unknown, Base, Conflict }; |
| |
| BDVState(Status s, Value *b = nullptr) : status(s), base(b) { |
| assert(status != Base || b); |
| } |
| explicit BDVState(Value *b) : status(Base), base(b) {} |
| BDVState() : status(Unknown), base(nullptr) {} |
| |
| Status getStatus() const { return status; } |
| Value *getBase() const { return base; } |
| |
| bool isBase() const { return getStatus() == Base; } |
| bool isUnknown() const { return getStatus() == Unknown; } |
| bool isConflict() const { return getStatus() == Conflict; } |
| |
| bool operator==(const BDVState &other) const { |
| return base == other.base && status == other.status; |
| } |
| |
| bool operator!=(const BDVState &other) const { return !(*this == other); } |
| |
| LLVM_DUMP_METHOD |
| void dump() const { print(dbgs()); dbgs() << '\n'; } |
| |
| void print(raw_ostream &OS) const { |
| switch (status) { |
| case Unknown: |
| OS << "U"; |
| break; |
| case Base: |
| OS << "B"; |
| break; |
| case Conflict: |
| OS << "C"; |
| break; |
| }; |
| OS << " (" << base << " - " |
| << (base ? base->getName() : "nullptr") << "): "; |
| } |
| |
| private: |
| Status status; |
| Value *base; // non null only if status == base |
| }; |
| } |
| |
| #ifndef NDEBUG |
| static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { |
| State.print(OS); |
| return OS; |
| } |
| #endif |
| |
| namespace { |
| // Values of type BDVState form a lattice, and this is a helper |
| // class that implementes the meet operation. The meat of the meet |
| // operation is implemented in MeetBDVStates::pureMeet |
| class MeetBDVStates { |
| public: |
| /// Initializes the currentResult to the TOP state so that if can be met with |
| /// any other state to produce that state. |
| MeetBDVStates() {} |
| |
| // Destructively meet the current result with the given BDVState |
| void meetWith(BDVState otherState) { |
| currentResult = meet(otherState, currentResult); |
| } |
| |
| BDVState getResult() const { return currentResult; } |
| |
| private: |
| BDVState currentResult; |
| |
| /// Perform a meet operation on two elements of the BDVState lattice. |
| static BDVState meet(BDVState LHS, BDVState RHS) { |
| assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && |
| "math is wrong: meet does not commute!"); |
| BDVState Result = pureMeet(LHS, RHS); |
| DEBUG(dbgs() << "meet of " << LHS << " with " << RHS |
| << " produced " << Result << "\n"); |
| return Result; |
| } |
| |
| static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { |
| switch (stateA.getStatus()) { |
| case BDVState::Unknown: |
| return stateB; |
| |
| case BDVState::Base: |
| assert(stateA.getBase() && "can't be null"); |
| if (stateB.isUnknown()) |
| return stateA; |
| |
| if (stateB.isBase()) { |
| if (stateA.getBase() == stateB.getBase()) { |
| assert(stateA == stateB && "equality broken!"); |
| return stateA; |
| } |
| return BDVState(BDVState::Conflict); |
| } |
| assert(stateB.isConflict() && "only three states!"); |
| return BDVState(BDVState::Conflict); |
| |
| case BDVState::Conflict: |
| return stateA; |
| } |
| llvm_unreachable("only three states!"); |
| } |
| }; |
| } |
| |
| |
| /// For a given value or instruction, figure out what base ptr it's derived |
| /// from. For gc objects, this is simply itself. On success, returns a value |
| /// which is the base pointer. (This is reliable and can be used for |
| /// relocation.) On failure, returns nullptr. |
| static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { |
| Value *def = findBaseOrBDV(I, cache); |
| |
| if (isKnownBaseResult(def)) { |
| return def; |
| } |
| |
| // Here's the rough algorithm: |
| // - For every SSA value, construct a mapping to either an actual base |
| // pointer or a PHI which obscures the base pointer. |
| // - Construct a mapping from PHI to unknown TOP state. Use an |
| // optimistic algorithm to propagate base pointer information. Lattice |
| // looks like: |
| // UNKNOWN |
| // b1 b2 b3 b4 |
| // CONFLICT |
| // When algorithm terminates, all PHIs will either have a single concrete |
| // base or be in a conflict state. |
| // - For every conflict, insert a dummy PHI node without arguments. Add |
| // these to the base[Instruction] = BasePtr mapping. For every |
| // non-conflict, add the actual base. |
| // - For every conflict, add arguments for the base[a] of each input |
| // arguments. |
| // |
| // Note: A simpler form of this would be to add the conflict form of all |
| // PHIs without running the optimistic algorithm. This would be |
| // analogous to pessimistic data flow and would likely lead to an |
| // overall worse solution. |
| |
| #ifndef NDEBUG |
| auto isExpectedBDVType = [](Value *BDV) { |
| return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || |
| isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); |
| }; |
| #endif |
| |
| // Once populated, will contain a mapping from each potentially non-base BDV |
| // to a lattice value (described above) which corresponds to that BDV. |
| // We use the order of insertion (DFS over the def/use graph) to provide a |
| // stable deterministic ordering for visiting DenseMaps (which are unordered) |
| // below. This is important for deterministic compilation. |
| MapVector<Value *, BDVState> States; |
| |
| // Recursively fill in all base defining values reachable from the initial |
| // one for which we don't already know a definite base value for |
| /* scope */ { |
| SmallVector<Value*, 16> Worklist; |
| Worklist.push_back(def); |
| States.insert(std::make_pair(def, BDVState())); |
| while (!Worklist.empty()) { |
| Value *Current = Worklist.pop_back_val(); |
| assert(!isKnownBaseResult(Current) && "why did it get added?"); |
| |
| auto visitIncomingValue = [&](Value *InVal) { |
| Value *Base = findBaseOrBDV(InVal, cache); |
| if (isKnownBaseResult(Base)) |
| // Known bases won't need new instructions introduced and can be |
| // ignored safely |
| return; |
| assert(isExpectedBDVType(Base) && "the only non-base values " |
| "we see should be base defining values"); |
| if (States.insert(std::make_pair(Base, BDVState())).second) |
| Worklist.push_back(Base); |
| }; |
| if (PHINode *Phi = dyn_cast<PHINode>(Current)) { |
| for (Value *InVal : Phi->incoming_values()) |
| visitIncomingValue(InVal); |
| } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { |
| visitIncomingValue(Sel->getTrueValue()); |
| visitIncomingValue(Sel->getFalseValue()); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { |
| visitIncomingValue(EE->getVectorOperand()); |
| } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { |
| visitIncomingValue(IE->getOperand(0)); // vector operand |
| visitIncomingValue(IE->getOperand(1)); // scalar operand |
| } else { |
| // There is one known class of instructions we know we don't handle. |
| assert(isa<ShuffleVectorInst>(Current)); |
| llvm_unreachable("unimplemented instruction case"); |
| } |
| } |
| } |
| |
| #ifndef NDEBUG |
| DEBUG(dbgs() << "States after initialization:\n"); |
| for (auto Pair : States) { |
| DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); |
| } |
| #endif |
| |
| // Return a phi state for a base defining value. We'll generate a new |
| // base state for known bases and expect to find a cached state otherwise. |
| auto getStateForBDV = [&](Value *baseValue) { |
| if (isKnownBaseResult(baseValue)) |
| return BDVState(baseValue); |
| auto I = States.find(baseValue); |
| assert(I != States.end() && "lookup failed!"); |
| return I->second; |
| }; |
| |
| bool progress = true; |
| while (progress) { |
| #ifndef NDEBUG |
| const size_t oldSize = States.size(); |
| #endif |
| progress = false; |
| // We're only changing values in this loop, thus safe to keep iterators. |
| // Since this is computing a fixed point, the order of visit does not |
| // effect the result. TODO: We could use a worklist here and make this run |
| // much faster. |
| for (auto Pair : States) { |
| Value *BDV = Pair.first; |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| |
| // Given an input value for the current instruction, return a BDVState |
| // instance which represents the BDV of that value. |
| auto getStateForInput = [&](Value *V) mutable { |
| Value *BDV = findBaseOrBDV(V, cache); |
| return getStateForBDV(BDV); |
| }; |
| |
| MeetBDVStates calculateMeet; |
| if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { |
| calculateMeet.meetWith(getStateForInput(select->getTrueValue())); |
| calculateMeet.meetWith(getStateForInput(select->getFalseValue())); |
| } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { |
| for (Value *Val : Phi->incoming_values()) |
| calculateMeet.meetWith(getStateForInput(Val)); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { |
| // The 'meet' for an extractelement is slightly trivial, but it's still |
| // useful in that it drives us to conflict if our input is. |
| calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); |
| } else { |
| // Given there's a inherent type mismatch between the operands, will |
| // *always* produce Conflict. |
| auto *IE = cast<InsertElementInst>(BDV); |
| calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); |
| calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); |
| } |
| |
| BDVState oldState = States[BDV]; |
| BDVState newState = calculateMeet.getResult(); |
| if (oldState != newState) { |
| progress = true; |
| States[BDV] = newState; |
| } |
| } |
| |
| assert(oldSize == States.size() && |
| "fixed point shouldn't be adding any new nodes to state"); |
| } |
| |
| #ifndef NDEBUG |
| DEBUG(dbgs() << "States after meet iteration:\n"); |
| for (auto Pair : States) { |
| DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); |
| } |
| #endif |
| |
| // Insert Phis for all conflicts |
| // TODO: adjust naming patterns to avoid this order of iteration dependency |
| for (auto Pair : States) { |
| Instruction *I = cast<Instruction>(Pair.first); |
| BDVState State = Pair.second; |
| assert(!isKnownBaseResult(I) && "why did it get added?"); |
| assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); |
| |
| // extractelement instructions are a bit special in that we may need to |
| // insert an extract even when we know an exact base for the instruction. |
| // The problem is that we need to convert from a vector base to a scalar |
| // base for the particular indice we're interested in. |
| if (State.isBase() && isa<ExtractElementInst>(I) && |
| isa<VectorType>(State.getBase()->getType())) { |
| auto *EE = cast<ExtractElementInst>(I); |
| // TODO: In many cases, the new instruction is just EE itself. We should |
| // exploit this, but can't do it here since it would break the invariant |
| // about the BDV not being known to be a base. |
| auto *BaseInst = ExtractElementInst::Create(State.getBase(), |
| EE->getIndexOperand(), |
| "base_ee", EE); |
| BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); |
| States[I] = BDVState(BDVState::Base, BaseInst); |
| } |
| |
| // Since we're joining a vector and scalar base, they can never be the |
| // same. As a result, we should always see insert element having reached |
| // the conflict state. |
| if (isa<InsertElementInst>(I)) { |
| assert(State.isConflict()); |
| } |
| |
| if (!State.isConflict()) |
| continue; |
| |
| /// Create and insert a new instruction which will represent the base of |
| /// the given instruction 'I'. |
| auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { |
| if (isa<PHINode>(I)) { |
| BasicBlock *BB = I->getParent(); |
| int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); |
| assert(NumPreds > 0 && "how did we reach here"); |
| std::string Name = suffixed_name_or(I, ".base", "base_phi"); |
| return PHINode::Create(I->getType(), NumPreds, Name, I); |
| } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { |
| // The undef will be replaced later |
| UndefValue *Undef = UndefValue::get(Sel->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_select"); |
| return SelectInst::Create(Sel->getCondition(), Undef, |
| Undef, Name, Sel); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { |
| UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_ee"); |
| return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, |
| EE); |
| } else { |
| auto *IE = cast<InsertElementInst>(I); |
| UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); |
| UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_ie"); |
| return InsertElementInst::Create(VecUndef, ScalarUndef, |
| IE->getOperand(2), Name, IE); |
| } |
| |
| }; |
| Instruction *BaseInst = MakeBaseInstPlaceholder(I); |
| // Add metadata marking this as a base value |
| BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); |
| States[I] = BDVState(BDVState::Conflict, BaseInst); |
| } |
| |
| // Returns a instruction which produces the base pointer for a given |
| // instruction. The instruction is assumed to be an input to one of the BDVs |
| // seen in the inference algorithm above. As such, we must either already |
| // know it's base defining value is a base, or have inserted a new |
| // instruction to propagate the base of it's BDV and have entered that newly |
| // introduced instruction into the state table. In either case, we are |
| // assured to be able to determine an instruction which produces it's base |
| // pointer. |
| auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { |
| Value *BDV = findBaseOrBDV(Input, cache); |
| Value *Base = nullptr; |
| if (isKnownBaseResult(BDV)) { |
| Base = BDV; |
| } else { |
| // Either conflict or base. |
| assert(States.count(BDV)); |
| Base = States[BDV].getBase(); |
| } |
| assert(Base && "can't be null"); |
| // The cast is needed since base traversal may strip away bitcasts |
| if (Base->getType() != Input->getType() && |
| InsertPt) { |
| Base = new BitCastInst(Base, Input->getType(), "cast", |
| InsertPt); |
| } |
| return Base; |
| }; |
| |
| // Fixup all the inputs of the new PHIs. Visit order needs to be |
| // deterministic and predictable because we're naming newly created |
| // instructions. |
| for (auto Pair : States) { |
| Instruction *BDV = cast<Instruction>(Pair.first); |
| BDVState State = Pair.second; |
| |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); |
| if (!State.isConflict()) |
| continue; |
| |
| if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { |
| PHINode *phi = cast<PHINode>(BDV); |
| unsigned NumPHIValues = phi->getNumIncomingValues(); |
| for (unsigned i = 0; i < NumPHIValues; i++) { |
| Value *InVal = phi->getIncomingValue(i); |
| BasicBlock *InBB = phi->getIncomingBlock(i); |
| |
| // If we've already seen InBB, add the same incoming value |
| // we added for it earlier. The IR verifier requires phi |
| // nodes with multiple entries from the same basic block |
| // to have the same incoming value for each of those |
| // entries. If we don't do this check here and basephi |
| // has a different type than base, we'll end up adding two |
| // bitcasts (and hence two distinct values) as incoming |
| // values for the same basic block. |
| |
| int blockIndex = basephi->getBasicBlockIndex(InBB); |
| if (blockIndex != -1) { |
| Value *oldBase = basephi->getIncomingValue(blockIndex); |
| basephi->addIncoming(oldBase, InBB); |
| |
| #ifndef NDEBUG |
| Value *Base = getBaseForInput(InVal, nullptr); |
| // In essence this assert states: the only way two |
| // values incoming from the same basic block may be |
| // different is by being different bitcasts of the same |
| // value. A cleanup that remains TODO is changing |
| // findBaseOrBDV to return an llvm::Value of the correct |
| // type (and still remain pure). This will remove the |
| // need to add bitcasts. |
| assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && |
| "sanity -- findBaseOrBDV should be pure!"); |
| #endif |
| continue; |
| } |
| |
| // Find the instruction which produces the base for each input. We may |
| // need to insert a bitcast in the incoming block. |
| // TODO: Need to split critical edges if insertion is needed |
| Value *Base = getBaseForInput(InVal, InBB->getTerminator()); |
| basephi->addIncoming(Base, InBB); |
| } |
| assert(basephi->getNumIncomingValues() == NumPHIValues); |
| } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { |
| SelectInst *Sel = cast<SelectInst>(BDV); |
| // Operand 1 & 2 are true, false path respectively. TODO: refactor to |
| // something more safe and less hacky. |
| for (int i = 1; i <= 2; i++) { |
| Value *InVal = Sel->getOperand(i); |
| // Find the instruction which produces the base for each input. We may |
| // need to insert a bitcast. |
| Value *Base = getBaseForInput(InVal, BaseSel); |
| BaseSel->setOperand(i, Base); |
| } |
| } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { |
| Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); |
| // Find the instruction which produces the base for each input. We may |
| // need to insert a bitcast. |
| Value *Base = getBaseForInput(InVal, BaseEE); |
| BaseEE->setOperand(0, Base); |
| } else { |
| auto *BaseIE = cast<InsertElementInst>(State.getBase()); |
| auto *BdvIE = cast<InsertElementInst>(BDV); |
| auto UpdateOperand = [&](int OperandIdx) { |
| Value *InVal = BdvIE->getOperand(OperandIdx); |
| Value *Base = getBaseForInput(InVal, BaseIE); |
| BaseIE->setOperand(OperandIdx, Base); |
| }; |
| UpdateOperand(0); // vector operand |
| UpdateOperand(1); // scalar operand |
| } |
| |
| } |
| |
| // Now that we're done with the algorithm, see if we can optimize the |
| // results slightly by reducing the number of new instructions needed. |
| // Arguably, this should be integrated into the algorithm above, but |
| // doing as a post process step is easier to reason about for the moment. |
| DenseMap<Value *, Value *> ReverseMap; |
| SmallPtrSet<Instruction *, 16> NewInsts; |
| SmallSetVector<AssertingVH<Instruction>, 16> Worklist; |
| // Note: We need to visit the states in a deterministic order. We uses the |
| // Keys we sorted above for this purpose. Note that we are papering over a |
| // bigger problem with the algorithm above - it's visit order is not |
| // deterministic. A larger change is needed to fix this. |
| for (auto Pair : States) { |
| auto *BDV = Pair.first; |
| auto State = Pair.second; |
| Value *Base = State.getBase(); |
| assert(BDV && Base); |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| assert(isKnownBaseResult(Base) && |
| "must be something we 'know' is a base pointer"); |
| if (!State.isConflict()) |
| continue; |
| |
| ReverseMap[Base] = BDV; |
| if (auto *BaseI = dyn_cast<Instruction>(Base)) { |
| NewInsts.insert(BaseI); |
| Worklist.insert(BaseI); |
| } |
| } |
| auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, |
| Value *Replacement) { |
| // Add users which are new instructions (excluding self references) |
| for (User *U : BaseI->users()) |
| if (auto *UI = dyn_cast<Instruction>(U)) |
| if (NewInsts.count(UI) && UI != BaseI) |
| Worklist.insert(UI); |
| // Then do the actual replacement |
| NewInsts.erase(BaseI); |
| ReverseMap.erase(BaseI); |
| BaseI->replaceAllUsesWith(Replacement); |
| BaseI->eraseFromParent(); |
| assert(States.count(BDV)); |
| assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); |
| States[BDV] = BDVState(BDVState::Conflict, Replacement); |
| }; |
| const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); |
| while (!Worklist.empty()) { |
| Instruction *BaseI = Worklist.pop_back_val(); |
| assert(NewInsts.count(BaseI)); |
| Value *Bdv = ReverseMap[BaseI]; |
| if (auto *BdvI = dyn_cast<Instruction>(Bdv)) |
| if (BaseI->isIdenticalTo(BdvI)) { |
| DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); |
| ReplaceBaseInstWith(Bdv, BaseI, Bdv); |
| continue; |
| } |
| if (Value *V = SimplifyInstruction(BaseI, DL)) { |
| DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); |
| ReplaceBaseInstWith(Bdv, BaseI, V); |
| continue; |
| } |
| } |
| |
| // Cache all of our results so we can cheaply reuse them |
| // NOTE: This is actually two caches: one of the base defining value |
| // relation and one of the base pointer relation! FIXME |
| for (auto Pair : States) { |
| auto *BDV = Pair.first; |
| Value *base = Pair.second.getBase(); |
| assert(BDV && base); |
| |
| std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; |
| DEBUG(dbgs() << "Updating base value cache" |
| << " for: " << BDV->getName() |
| << " from: " << fromstr |
| << " to: " << base->getName() << "\n"); |
| |
| if (cache.count(BDV)) { |
| // Once we transition from the BDV relation being store in the cache to |
| // the base relation being stored, it must be stable |
| assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && |
| "base relation should be stable"); |
| } |
| cache[BDV] = base; |
| } |
| assert(cache.find(def) != cache.end()); |
| return cache[def]; |
| } |
| |
| // For a set of live pointers (base and/or derived), identify the base |
| // pointer of the object which they are derived from. This routine will |
| // mutate the IR graph as needed to make the 'base' pointer live at the |
| // definition site of 'derived'. This ensures that any use of 'derived' can |
| // also use 'base'. This may involve the insertion of a number of |
| // additional PHI nodes. |
| // |
| // preconditions: live is a set of pointer type Values |
| // |
| // side effects: may insert PHI nodes into the existing CFG, will preserve |
| // CFG, will not remove or mutate any existing nodes |
| // |
| // post condition: PointerToBase contains one (derived, base) pair for every |
| // pointer in live. Note that derived can be equal to base if the original |
| // pointer was a base pointer. |
| static void |
| findBasePointers(const StatepointLiveSetTy &live, |
| DenseMap<Value *, Value *> &PointerToBase, |
| DominatorTree *DT, DefiningValueMapTy &DVCache) { |
| // For the naming of values inserted to be deterministic - which makes for |
| // much cleaner and more stable tests - we need to assign an order to the |
| // live values. DenseSets do not provide a deterministic order across runs. |
| SmallVector<Value *, 64> Temp; |
| Temp.insert(Temp.end(), live.begin(), live.end()); |
| std::sort(Temp.begin(), Temp.end(), order_by_name); |
| for (Value *ptr : Temp) { |
| Value *base = findBasePointer(ptr, DVCache); |
| assert(base && "failed to find base pointer"); |
| PointerToBase[ptr] = base; |
| assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || |
| DT->dominates(cast<Instruction>(base)->getParent(), |
| cast<Instruction>(ptr)->getParent())) && |
| "The base we found better dominate the derived pointer"); |
| |
| // If you see this trip and like to live really dangerously, the code should |
| // be correct, just with idioms the verifier can't handle. You can try |
| // disabling the verifier at your own substantial risk. |
| assert(!isa<ConstantPointerNull>(base) && |
| "the relocation code needs adjustment to handle the relocation of " |
| "a null pointer constant without causing false positives in the " |
| "safepoint ir verifier."); |
| } |
| } |
| |
| /// Find the required based pointers (and adjust the live set) for the given |
| /// parse point. |
| static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, |
| const CallSite &CS, |
| PartiallyConstructedSafepointRecord &result) { |
| DenseMap<Value *, Value *> PointerToBase; |
| findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); |
| |
| if (PrintBasePointers) { |
| // Note: Need to print these in a stable order since this is checked in |
| // some tests. |
| errs() << "Base Pairs (w/o Relocation):\n"; |
| SmallVector<Value *, 64> Temp; |
| Temp.reserve(PointerToBase.size()); |
| for (auto Pair : PointerToBase) { |
| Temp.push_back(Pair.first); |
| } |
| std::sort(Temp.begin(), Temp.end(), order_by_name); |
| for (Value *Ptr : Temp) { |
| Value *Base = PointerToBase[Ptr]; |
| errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() |
| << "\n"; |
| } |
| } |
| |
| result.PointerToBase = PointerToBase; |
| } |
| |
| /// Given an updated version of the dataflow liveness results, update the |
| /// liveset and base pointer maps for the call site CS. |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| const CallSite &CS, |
| PartiallyConstructedSafepointRecord &result); |
| |
| static void recomputeLiveInValues( |
| Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, |
| MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
| // TODO-PERF: reuse the original liveness, then simply run the dataflow |
| // again. The old values are still live and will help it stabilize quickly. |
| GCPtrLivenessData RevisedLivenessData; |
| computeLiveInValues(DT, F, RevisedLivenessData); |
| for (size_t i = 0; i < records.size(); i++) { |
| struct PartiallyConstructedSafepointRecord &info = records[i]; |
| const CallSite &CS = toUpdate[i]; |
| recomputeLiveInValues(RevisedLivenessData, CS, info); |
| } |
| } |
| |
| // When inserting gc.relocate and gc.result calls, we need to ensure there are |
| // no uses of the original value / return value between the gc.statepoint and |
| // the gc.relocate / gc.result call. One case which can arise is a phi node |
| // starting one of the successor blocks. We also need to be able to insert the |
| // gc.relocates only on the path which goes through the statepoint. We might |
| // need to split an edge to make this possible. |
| static BasicBlock * |
| normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, |
| DominatorTree &DT) { |
| BasicBlock *Ret = BB; |
| if (!BB->getUniquePredecessor()) |
| Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); |
| |
| // Now that 'Ret' has unique predecessor we can safely remove all phi nodes |
| // from it |
| FoldSingleEntryPHINodes(Ret); |
| assert(!isa<PHINode>(Ret->begin()) && |
| "All PHI nodes should have been removed!"); |
| |
| // At this point, we can safely insert a gc.relocate or gc.result as the first |
| // instruction in Ret if needed. |
| return Ret; |
| } |
| |
| // Create new attribute set containing only attributes which can be transferred |
| // from original call to the safepoint. |
| static AttributeSet legalizeCallAttributes(AttributeSet AS) { |
| AttributeSet Ret; |
| |
| for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { |
| unsigned Index = AS.getSlotIndex(Slot); |
| |
| if (Index == AttributeSet::ReturnIndex || |
| Index == AttributeSet::FunctionIndex) { |
| |
| for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { |
| |
| // Do not allow certain attributes - just skip them |
| // Safepoint can not be read only or read none. |
| if (Attr.hasAttribute(Attribute::ReadNone) || |
| Attr.hasAttribute(Attribute::ReadOnly)) |
| continue; |
| |
| // These attributes control the generation of the gc.statepoint call / |
| // invoke itself; and once the gc.statepoint is in place, they're of no |
| // use. |
| if (Attr.hasAttribute("statepoint-num-patch-bytes") || |
| Attr.hasAttribute("statepoint-id")) |
| continue; |
| |
| Ret = Ret.addAttributes( |
| AS.getContext(), Index, |
| AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); |
| } |
| } |
| |
| // Just skip parameter attributes for now |
| } |
| |
| return Ret; |
| } |
| |
| /// Helper function to place all gc relocates necessary for the given |
| /// statepoint. |
| /// Inputs: |
| /// liveVariables - list of variables to be relocated. |
| /// liveStart - index of the first live variable. |
| /// basePtrs - base pointers. |
| /// statepointToken - statepoint instruction to which relocates should be |
| /// bound. |
| /// Builder - Llvm IR builder to be used to construct new calls. |
| static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, |
| const int LiveStart, |
| ArrayRef<Value *> BasePtrs, |
| Instruction *StatepointToken, |
| IRBuilder<> Builder) { |
| if (LiveVariables.empty()) |
| return; |
| |
| auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { |
| auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); |
| assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); |
| size_t Index = std::distance(LiveVec.begin(), ValIt); |
| assert(Index < LiveVec.size() && "Bug in std::find?"); |
| return Index; |
| }; |
| |
| // All gc_relocate are set to i8 addrspace(1)* type. We originally generated |
| // unique declarations for each pointer type, but this proved problematic |
| // because the intrinsic mangling code is incomplete and fragile. Since |
| // we're moving towards a single unified pointer type anyways, we can just |
| // cast everything to an i8* of the right address space. A bitcast is added |
| // later to convert gc_relocate to the actual value's type. |
| Module *M = StatepointToken->getModule(); |
| auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); |
| Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; |
| Value *GCRelocateDecl = |
| Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); |
| |
| for (unsigned i = 0; i < LiveVariables.size(); i++) { |
| // Generate the gc.relocate call and save the result |
| Value *BaseIdx = |
| Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); |
| Value *LiveIdx = Builder.getInt32(LiveStart + i); |
| |
| // only specify a debug name if we can give a useful one |
| CallInst *Reloc = Builder.CreateCall( |
| GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, |
| suffixed_name_or(LiveVariables[i], ".relocated", "")); |
| // Trick CodeGen into thinking there are lots of free registers at this |
| // fake call. |
| Reloc->setCallingConv(CallingConv::Cold); |
| } |
| } |
| |
| namespace { |
| |
| /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this |
| /// avoids having to worry about keeping around dangling pointers to Values. |
| class DeferredReplacement { |
| AssertingVH<Instruction> Old; |
| AssertingVH<Instruction> New; |
| |
| public: |
| explicit DeferredReplacement(Instruction *Old, Instruction *New) : |
| Old(Old), New(New) { |
| assert(Old != New && "Not allowed!"); |
| } |
| |
| /// Does the task represented by this instance. |
| void doReplacement() { |
| Instruction *OldI = Old; |
| Instruction *NewI = New; |
| |
| assert(OldI != NewI && "Disallowed at construction?!"); |
| |
| Old = nullptr; |
| New = nullptr; |
| |
| if (NewI) |
| OldI->replaceAllUsesWith(NewI); |
| OldI->eraseFromParent(); |
| } |
| }; |
| } |
| |
| static void |
| makeStatepointExplicitImpl(const CallSite CS, /* to replace */ |
| const SmallVectorImpl<Value *> &BasePtrs, |
| const SmallVectorImpl<Value *> &LiveVariables, |
| PartiallyConstructedSafepointRecord &Result, |
| std::vector<DeferredReplacement> &Replacements) { |
| assert(BasePtrs.size() == LiveVariables.size()); |
| assert((UseDeoptBundles || isStatepoint(CS)) && |
| "This method expects to be rewriting a statepoint"); |
| |
| // Then go ahead and use the builder do actually do the inserts. We insert |
| // immediately before the previous instruction under the assumption that all |
| // arguments will be available here. We can't insert afterwards since we may |
| // be replacing a terminator. |
| Instruction *InsertBefore = CS.getInstruction(); |
| IRBuilder<> Builder(InsertBefore); |
| |
| ArrayRef<Value *> GCArgs(LiveVariables); |
| uint64_t StatepointID = 0xABCDEF00; |
| uint32_t NumPatchBytes = 0; |
| uint32_t Flags = uint32_t(StatepointFlags::None); |
| |
| ArrayRef<Use> CallArgs; |
| ArrayRef<Use> DeoptArgs; |
| ArrayRef<Use> TransitionArgs; |
| |
| Value *CallTarget = nullptr; |
| |
| if (UseDeoptBundles) { |
| CallArgs = {CS.arg_begin(), CS.arg_end()}; |
| DeoptArgs = GetDeoptBundleOperands(CS); |
| // TODO: we don't fill in TransitionArgs or Flags in this branch, but we |
| // could have an operand bundle for that too. |
| AttributeSet OriginalAttrs = CS.getAttributes(); |
| |
| Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, |
| "statepoint-id"); |
| if (AttrID.isStringAttribute()) |
| AttrID.getValueAsString().getAsInteger(10, StatepointID); |
| |
| Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( |
| AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); |
| if (AttrNumPatchBytes.isStringAttribute()) |
| AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); |
| |
| CallTarget = CS.getCalledValue(); |
| } else { |
| // This branch will be gone soon, and we will soon only support the |
| // UseDeoptBundles == true configuration. |
| Statepoint OldSP(CS); |
| StatepointID = OldSP.getID(); |
| NumPatchBytes = OldSP.getNumPatchBytes(); |
| Flags = OldSP.getFlags(); |
| |
| CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; |
| DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; |
| TransitionArgs = {OldSP.gc_transition_args_begin(), |
| OldSP.gc_transition_args_end()}; |
| CallTarget = OldSP.getCalledValue(); |
| } |
| |
| // Create the statepoint given all the arguments |
| Instruction *Token = nullptr; |
| AttributeSet ReturnAttrs; |
| if (CS.isCall()) { |
| CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); |
| CallInst *Call = Builder.CreateGCStatepointCall( |
| StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, |
| TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); |
| |
| Call->setTailCall(ToReplace->isTailCall()); |
| Call->setCallingConv(ToReplace->getCallingConv()); |
| |
| // Currently we will fail on parameter attributes and on certain |
| // function attributes. |
| AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); |
| // In case if we can handle this set of attributes - set up function attrs |
| // directly on statepoint and return attrs later for gc_result intrinsic. |
| Call->setAttributes(NewAttrs.getFnAttributes()); |
| ReturnAttrs = NewAttrs.getRetAttributes(); |
| |
| Token = Call; |
| |
| // Put the following gc_result and gc_relocate calls immediately after the |
| // the old call (which we're about to delete) |
| assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); |
| Builder.SetInsertPoint(ToReplace->getNextNode()); |
| Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); |
| } else { |
| InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); |
| |
| // Insert the new invoke into the old block. We'll remove the old one in a |
| // moment at which point this will become the new terminator for the |
| // original block. |
| InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( |
| StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), |
| ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, |
| GCArgs, "statepoint_token"); |
| |
| Invoke->setCallingConv(ToReplace->getCallingConv()); |
| |
| // Currently we will fail on parameter attributes and on certain |
| // function attributes. |
| AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); |
| // In case if we can handle this set of attributes - set up function attrs |
| // directly on statepoint and return attrs later for gc_result intrinsic. |
| Invoke->setAttributes(NewAttrs.getFnAttributes()); |
| ReturnAttrs = NewAttrs.getRetAttributes(); |
| |
| Token = Invoke; |
| |
| // Generate gc relocates in exceptional path |
| BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); |
| assert(!isa<PHINode>(UnwindBlock->begin()) && |
| UnwindBlock->getUniquePredecessor() && |
| "can't safely insert in this block!"); |
| |
| Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); |
| |
| // Extract second element from landingpad return value. We will attach |
| // exceptional gc relocates to it. |
| Instruction *ExceptionalToken = |
| cast<Instruction>(Builder.CreateExtractValue( |
| UnwindBlock->getLandingPadInst(), 1, "relocate_token")); |
| Result.UnwindToken = ExceptionalToken; |
| |
| const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); |
| CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, |
| Builder); |
| |
| // Generate gc relocates and returns for normal block |
| BasicBlock *NormalDest = ToReplace->getNormalDest(); |
| assert(!isa<PHINode>(NormalDest->begin()) && |
| NormalDest->getUniquePredecessor() && |
| "can't safely insert in this block!"); |
| |
| Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); |
| |
| // gc relocates will be generated later as if it were regular call |
| // statepoint |
| } |
| assert(Token && "Should be set in one of the above branches!"); |
| |
| if (UseDeoptBundles) { |
| Token->setName("statepoint_token"); |
| if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { |
| StringRef Name = |
| CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; |
| CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); |
| GCResult->setAttributes(CS.getAttributes().getRetAttributes()); |
| |
| // We cannot RAUW or delete CS.getInstruction() because it could be in the |
| // live set of some other safepoint, in which case that safepoint's |
| // PartiallyConstructedSafepointRecord will hold a raw pointer to this |
| // llvm::Instruction. Instead, we defer the replacement and deletion to |
| // after the live sets have been made explicit in the IR, and we no longer |
| // have raw pointers to worry about. |
| Replacements.emplace_back(CS.getInstruction(), GCResult); |
| } else { |
| Replacements.emplace_back(CS.getInstruction(), nullptr); |
| } |
| } else { |
| assert(!CS.getInstruction()->hasNUsesOrMore(2) && |
| "only valid use before rewrite is gc.result"); |
| assert(!CS.getInstruction()->hasOneUse() || |
| isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); |
| |
| // Take the name of the original statepoint token if there was one. |
| Token->takeName(CS.getInstruction()); |
| |
| // Update the gc.result of the original statepoint (if any) to use the newly |
| // inserted statepoint. This is safe to do here since the token can't be |
| // considered a live reference. |
| CS.getInstruction()->replaceAllUsesWith(Token); |
| CS.getInstruction()->eraseFromParent(); |
| } |
| |
| Result.StatepointToken = Token; |
| |
| // Second, create a gc.relocate for every live variable |
| const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); |
| CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); |
| } |
| |
| namespace { |
| struct NameOrdering { |
| Value *Base; |
| Value *Derived; |
| |
| bool operator()(NameOrdering const &a, NameOrdering const &b) { |
| return -1 == a.Derived->getName().compare(b.Derived->getName()); |
| } |
| }; |
| } |
| |
| static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, |
| SmallVectorImpl<Value *> &LiveVec) { |
| assert(BaseVec.size() == LiveVec.size()); |
| |
| SmallVector<NameOrdering, 64> Temp; |
| for (size_t i = 0; i < BaseVec.size(); i++) { |
| NameOrdering v; |
| v.Base = BaseVec[i]; |
| v.Derived = LiveVec[i]; |
| Temp.push_back(v); |
| } |
| |
| std::sort(Temp.begin(), Temp.end(), NameOrdering()); |
| for (size_t i = 0; i < BaseVec.size(); i++) { |
| BaseVec[i] = Temp[i].Base; |
| LiveVec[i] = Temp[i].Derived; |
| } |
| } |
| |
| // Replace an existing gc.statepoint with a new one and a set of gc.relocates |
| // which make the relocations happening at this safepoint explicit. |
| // |
| // WARNING: Does not do any fixup to adjust users of the original live |
| // values. That's the callers responsibility. |
| static void |
| makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, |
| PartiallyConstructedSafepointRecord &Result, |
| std::vector<DeferredReplacement> &Replacements) { |
| const auto &LiveSet = Result.LiveSet; |
| const auto &PointerToBase = Result.PointerToBase; |
| |
| // Convert to vector for efficient cross referencing. |
| SmallVector<Value *, 64> BaseVec, LiveVec; |
| LiveVec.reserve(LiveSet.size()); |
| BaseVec.reserve(LiveSet.size()); |
| for (Value *L : LiveSet) { |
| LiveVec.push_back(L); |
| assert(PointerToBase.count(L)); |
| Value *Base = PointerToBase.find(L)->second; |
| BaseVec.push_back(Base); |
| } |
| assert(LiveVec.size() == BaseVec.size()); |
| |
| // To make the output IR slightly more stable (for use in diffs), ensure a |
| // fixed order of the values in the safepoint (by sorting the value name). |
| // The order is otherwise meaningless. |
| StabilizeOrder(BaseVec, LiveVec); |
| |
| // Do the actual rewriting and delete the old statepoint |
| makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); |
| } |
| |
| // Helper function for the relocationViaAlloca. |
| // |
| // It receives iterator to the statepoint gc relocates and emits a store to the |
| // assigned location (via allocaMap) for the each one of them. It adds the |
| // visited values into the visitedLiveValues set, which we will later use them |
| // for sanity checking. |
| static void |
| insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, |
| DenseMap<Value *, Value *> &AllocaMap, |
| DenseSet<Value *> &VisitedLiveValues) { |
| |
| for (User *U : GCRelocs) { |
| if (!isa<IntrinsicInst>(U)) |
| continue; |
| |
| IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); |
| |
| // We only care about relocates |
| if (RelocatedValue->getIntrinsicID() != |
| Intrinsic::experimental_gc_relocate) { |
| continue; |
| } |
| |
| GCRelocateOperands RelocateOperands(RelocatedValue); |
| Value *OriginalValue = |
| const_cast<Value *>(RelocateOperands.getDerivedPtr()); |
| assert(AllocaMap.count(OriginalValue)); |
| Value *Alloca = AllocaMap[OriginalValue]; |
| |
| // Emit store into the related alloca |
| // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to |
| // the correct type according to alloca. |
| assert(RelocatedValue->getNextNode() && |
| "Should always have one since it's not a terminator"); |
| IRBuilder<> Builder(RelocatedValue->getNextNode()); |
| Value *CastedRelocatedValue = |
| Builder.CreateBitCast(RelocatedValue, |
| cast<AllocaInst>(Alloca)->getAllocatedType(), |
| suffixed_name_or(RelocatedValue, ".casted", "")); |
| |
| StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); |
| Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); |
| |
| #ifndef NDEBUG |
| VisitedLiveValues.insert(OriginalValue); |
| #endif |
| } |
| } |
| |
| // Helper function for the "relocationViaAlloca". Similar to the |
| // "insertRelocationStores" but works for rematerialized values. |
| static void |
| insertRematerializationStores( |
| RematerializedValueMapTy RematerializedValues, |
| DenseMap<Value *, Value *> &AllocaMap, |
| DenseSet<Value *> &VisitedLiveValues) { |
| |
| for (auto RematerializedValuePair: RematerializedValues) { |
| Instruction *RematerializedValue = RematerializedValuePair.first; |
| Value *OriginalValue = RematerializedValuePair.second; |
| |
| assert(AllocaMap.count(OriginalValue) && |
| "Can not find alloca for rematerialized value"); |
| Value *Alloca = AllocaMap[OriginalValue]; |
| |
| StoreInst *Store = new StoreInst(RematerializedValue, Alloca); |
| Store->insertAfter(RematerializedValue); |
| |
| #ifndef NDEBUG |
| VisitedLiveValues.insert(OriginalValue); |
| #endif |
| } |
| } |
| |
| /// Do all the relocation update via allocas and mem2reg |
| static void relocationViaAlloca( |
| Function &F, DominatorTree &DT, ArrayRef<Value *> Live, |
| ArrayRef<PartiallyConstructedSafepointRecord> Records) { |
| #ifndef NDEBUG |
| // record initial number of (static) allocas; we'll check we have the same |
| // number when we get done. |
| int InitialAllocaNum = 0; |
| for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; |
| I++) |
| if (isa<AllocaInst>(*I)) |
| InitialAllocaNum++; |
| #endif |
| |
| // TODO-PERF: change data structures, reserve |
| DenseMap<Value *, Value *> AllocaMap; |
| SmallVector<AllocaInst *, 200> PromotableAllocas; |
| // Used later to chack that we have enough allocas to store all values |
| std::size_t NumRematerializedValues = 0; |
| PromotableAllocas.reserve(Live.size()); |
| |
| // Emit alloca for "LiveValue" and record it in "allocaMap" and |
| // "PromotableAllocas" |
| auto emitAllocaFor = [&](Value *LiveValue) { |
| AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", |
| F.getEntryBlock().getFirstNonPHI()); |
| AllocaMap[LiveValue] = Alloca; |
| PromotableAllocas.push_back(Alloca); |
| }; |
| |
| // Emit alloca for each live gc pointer |
| for (Value *V : Live) |
| emitAllocaFor(V); |
| |
| // Emit allocas for rematerialized values |
| for (const auto &Info : Records) |
| for (auto RematerializedValuePair : Info.RematerializedValues) { |
| Value *OriginalValue = RematerializedValuePair.second; |
| if (AllocaMap.count(OriginalValue) != 0) |
| continue; |
| |
| emitAllocaFor(OriginalValue); |
| ++NumRematerializedValues; |
| } |
| |
| // The next two loops are part of the same conceptual operation. We need to |
| // insert a store to the alloca after the original def and at each |
| // redefinition. We need to insert a load before each use. These are split |
| // into distinct loops for performance reasons. |
| |
| // Update gc pointer after each statepoint: either store a relocated value or |
| // null (if no relocated value was found for this gc pointer and it is not a |
| // gc_result). This must happen before we update the statepoint with load of |
| // alloca otherwise we lose the link between statepoint and old def. |
| for (const auto &Info : Records) { |
| Value *Statepoint = Info.StatepointToken; |
| |
| // This will be used for consistency check |
| DenseSet<Value *> VisitedLiveValues; |
| |
| // Insert stores for normal statepoint gc relocates |
| insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); |
| |
| // In case if it was invoke statepoint |
| // we will insert stores for exceptional path gc relocates. |
| if (isa<InvokeInst>(Statepoint)) { |
| insertRelocationStores(Info.UnwindToken->users(), AllocaMap, |
| VisitedLiveValues); |
| } |
| |
| // Do similar thing with rematerialized values |
| insertRematerializationStores(Info.RematerializedValues, AllocaMap, |
| VisitedLiveValues); |
| |
| if (ClobberNonLive) { |
| // As a debugging aid, pretend that an unrelocated pointer becomes null at |
| // the gc.statepoint. This will turn some subtle GC problems into |
| // slightly easier to debug SEGVs. Note that on large IR files with |
| // lots of gc.statepoints this is extremely costly both memory and time |
| // wise. |
| SmallVector<AllocaInst *, 64> ToClobber; |
| for (auto Pair : AllocaMap) { |
| Value *Def = Pair.first; |
| AllocaInst *Alloca = cast<AllocaInst>(Pair.second); |
| |
| // This value was relocated |
| if (VisitedLiveValues.count(Def)) { |
| continue; |
| } |
| ToClobber.push_back(Alloca); |
| } |
| |
| auto InsertClobbersAt = [&](Instruction *IP) { |
| for (auto *AI : ToClobber) { |
| auto AIType = cast<PointerType>(AI->getType()); |
| auto PT = cast<PointerType>(AIType->getElementType()); |
| Constant *CPN = ConstantPointerNull::get(PT); |
| StoreInst *Store = new StoreInst(CPN, AI); |
| Store->insertBefore(IP); |
| } |
| }; |
| |
| // Insert the clobbering stores. These may get intermixed with the |
| // gc.results and gc.relocates, but that's fine. |
| if (auto II = dyn_cast<InvokeInst>(Statepoint)) { |
| InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); |
| InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); |
| } else { |
| InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); |
| } |
| } |
| } |
| |
| // Update use with load allocas and add store for gc_relocated. |
| for (auto Pair : AllocaMap) { |
| Value *Def = Pair.first; |
| Value *Alloca = Pair.second; |
| |
| // We pre-record the uses of allocas so that we dont have to worry about |
| // later update that changes the user information.. |
| |
| SmallVector<Instruction *, 20> Uses; |
| // PERF: trade a linear scan for repeated reallocation |
| Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); |
| for (User *U : Def->users()) { |
| if (!isa<ConstantExpr>(U)) { |
| // If the def has a ConstantExpr use, then the def is either a |
| // ConstantExpr use itself or null. In either case |
| // (recursively in the first, directly in the second), the oop |
| // it is ultimately dependent on is null and this particular |
| // use does not need to be fixed up. |
| Uses.push_back(cast<Instruction>(U)); |
| } |
| } |
| |
| std::sort(Uses.begin(), Uses.end()); |
| auto Last = std::unique(Uses.begin(), Uses.end()); |
| Uses.erase(Last, Uses.end()); |
| |
| for (Instruction *Use : Uses) { |
| if (isa<PHINode>(Use)) { |
| PHINode *Phi = cast<PHINode>(Use); |
| for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { |
| if (Def == Phi->getIncomingValue(i)) { |
| LoadInst *Load = new LoadInst( |
| Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); |
| Phi->setIncomingValue(i, Load); |
| } |
| } |
| } else { |
| LoadInst *Load = new LoadInst(Alloca, "", Use); |
| Use->replaceUsesOfWith(Def, Load); |
| } |
| } |
| |
| // Emit store for the initial gc value. Store must be inserted after load, |
| // otherwise store will be in alloca's use list and an extra load will be |
| // inserted before it. |
| StoreInst *Store = new StoreInst(Def, Alloca); |
| if (Instruction *Inst = dyn_cast<Instruction>(Def)) { |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { |
| // InvokeInst is a TerminatorInst so the store need to be inserted |
| // into its normal destination block. |
| BasicBlock *NormalDest = Invoke->getNormalDest(); |
| Store->insertBefore(NormalDest->getFirstNonPHI()); |
| } else { |
| assert(!Inst->isTerminator() && |
| "The only TerminatorInst that can produce a value is " |
| "InvokeInst which is handled above."); |
| Store->insertAfter(Inst); |
| } |
| } else { |
| assert(isa<Argument>(Def)); |
| Store->insertAfter(cast<Instruction>(Alloca)); |
| } |
| } |
| |
| assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && |
| "we must have the same allocas with lives"); |
| if (!PromotableAllocas.empty()) { |
| // Apply mem2reg to promote alloca to SSA |
| PromoteMemToReg(PromotableAllocas, DT); |
| } |
| |
| #ifndef NDEBUG |
| for (auto &I : F.getEntryBlock()) |
| if (isa<AllocaInst>(I)) |
| InitialAllocaNum--; |
| assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); |
| #endif |
| } |
| |
| /// Implement a unique function which doesn't require we sort the input |
| /// vector. Doing so has the effect of changing the output of a couple of |
| /// tests in ways which make them less useful in testing fused safepoints. |
| template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { |
| SmallSet<T, 8> Seen; |
| Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { |
| return !Seen.insert(V).second; |
| }), Vec.end()); |
| } |
| |
| /// Insert holders so that each Value is obviously live through the entire |
| /// lifetime of the call. |
| static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, |
| SmallVectorImpl<CallInst *> &Holders) { |
| if (Values.empty()) |
| // No values to hold live, might as well not insert the empty holder |
| return; |
| |
| Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); |
| // Use a dummy vararg function to actually hold the values live |
| Function *Func = cast<Function>(M->getOrInsertFunction( |
| "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); |
| if (CS.isCall()) { |
| // For call safepoints insert dummy calls right after safepoint |
| Holders.push_back(CallInst::Create(Func, Values, "", |
| &*++CS.getInstruction()->getIterator())); |
| return; |
| } |
| // For invoke safepooints insert dummy calls both in normal and |
| // exceptional destination blocks |
| auto *II = cast<InvokeInst>(CS.getInstruction()); |
| Holders.push_back(CallInst::Create( |
| Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); |
| Holders.push_back(CallInst::Create( |
| Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); |
| } |
| |
| static void findLiveReferences( |
| Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, |
| MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
| GCPtrLivenessData OriginalLivenessData; |
| computeLiveInValues(DT, F, OriginalLivenessData); |
| for (size_t i = 0; i < records.size(); i++) { |
| struct PartiallyConstructedSafepointRecord &info = records[i]; |
| const CallSite &CS = toUpdate[i]; |
| analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); |
| } |
| } |
| |
| /// Remove any vector of pointers from the live set by scalarizing them over the |
| /// statepoint instruction. Adds the scalarized pieces to the live set. It |
| /// would be preferable to include the vector in the statepoint itself, but |
| /// the lowering code currently does not handle that. Extending it would be |
| /// slightly non-trivial since it requires a format change. Given how rare |
| /// such cases are (for the moment?) scalarizing is an acceptable compromise. |
| static void splitVectorValues(Instruction *StatepointInst, |
| StatepointLiveSetTy &LiveSet, |
| DenseMap<Value *, Value *>& PointerToBase, |
| DominatorTree &DT) { |
| SmallVector<Value *, 16> ToSplit; |
| for (Value *V : LiveSet) |
| if (isa<VectorType>(V->getType())) |
| ToSplit.push_back(V); |
| |
| if (ToSplit.empty()) |
| return; |
| |
| DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; |
| |
| Function &F = *(StatepointInst->getParent()->getParent()); |
| |
| DenseMap<Value *, AllocaInst *> AllocaMap; |
| // First is normal return, second is exceptional return (invoke only) |
| DenseMap<Value *, std::pair<Value *, Value *>> Replacements; |
| for (Value *V : ToSplit) { |
| AllocaInst *Alloca = |
| new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); |
| AllocaMap[V] = Alloca; |
| |
| VectorType *VT = cast<VectorType>(V->getType()); |
| IRBuilder<> Builder(StatepointInst); |
| SmallVector<Value *, 16> Elements; |
| for (unsigned i = 0; i < VT->getNumElements(); i++) |
| Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); |
| ElementMapping[V] = Elements; |
| |
| auto InsertVectorReform = [&](Instruction *IP) { |
| Builder.SetInsertPoint(IP); |
| Builder.SetCurrentDebugLocation(IP->getDebugLoc()); |
| Value *ResultVec = UndefValue::get(VT); |
| for (unsigned i = 0; i < VT->getNumElements(); i++) |
| ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], |
| Builder.getInt32(i)); |
| return ResultVec; |
| }; |
| |
| if (isa<CallInst>(StatepointInst)) { |
| BasicBlock::iterator Next(StatepointInst); |
| Next++; |
| Instruction *IP = &*(Next); |
| Replacements[V].first = InsertVectorReform(IP); |
| Replacements[V].second = nullptr; |
| } else { |
| InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); |
| // We've already normalized - check that we don't have shared destination |
| // blocks |
| BasicBlock *NormalDest = Invoke->getNormalDest(); |
| assert(!isa<PHINode>(NormalDest->begin())); |
| BasicBlock *UnwindDest = Invoke->getUnwindDest(); |
| assert(!isa<PHINode>(UnwindDest->begin())); |
| // Insert insert element sequences in both successors |
| Instruction *IP = &*(NormalDest->getFirstInsertionPt()); |
| Replacements[V].first = InsertVectorReform(IP); |
| IP = &*(UnwindDest->getFirstInsertionPt()); |
| Replacements[V].second = InsertVectorReform(IP); |
| } |
| } |
| |
| for (Value *V : ToSplit) { |
| AllocaInst *Alloca = AllocaMap[V]; |
| |
| // Capture all users before we start mutating use lists |
| SmallVector<Instruction *, 16> Users; |
| for (User *U : V->users()) |
| Users.push_back(cast<Instruction>(U)); |
| |
| for (Instruction *I : Users) { |
| if (auto Phi = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) |
| if (V == Phi->getIncomingValue(i)) { |
| LoadInst *Load = new LoadInst( |
| Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); |
| Phi->setIncomingValue(i, Load); |
| } |
| } else { |
| LoadInst *Load = new LoadInst(Alloca, "", I); |
| I->replaceUsesOfWith(V, Load); |
| } |
| } |
| |
| // Store the original value and the replacement value into the alloca |
| StoreInst *Store = new StoreInst(V, Alloca); |
| if (auto I = dyn_cast<Instruction>(V)) |
| Store->insertAfter(I); |
| else |
| Store->insertAfter(Alloca); |
| |
| // Normal return for invoke, or call return |
| Instruction *Replacement = cast<Instruction>(Replacements[V].first); |
| (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); |
| // Unwind return for invoke only |
| Replacement = cast_or_null<Instruction>(Replacements[V].second); |
| if (Replacement) |
| (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); |
| } |
| |
| // apply mem2reg to promote alloca to SSA |
| SmallVector<AllocaInst *, 16> Allocas; |
| for (Value *V : ToSplit) |
| Allocas.push_back(AllocaMap[V]); |
| PromoteMemToReg(Allocas, DT); |
| |
| // Update our tracking of live pointers and base mappings to account for the |
| // changes we just made. |
| for (Value *V : ToSplit) { |
| auto &Elements = ElementMapping[V]; |
| |
| LiveSet.erase(V); |
| LiveSet.insert(Elements.begin(), Elements.end()); |
| // We need to update the base mapping as well. |
| assert(PointerToBase.count(V)); |
| Value *OldBase = PointerToBase[V]; |
| auto &BaseElements = ElementMapping[OldBase]; |
| PointerToBase.erase(V); |
| assert(Elements.size() == BaseElements.size()); |
| for (unsigned i = 0; i < Elements.size(); i++) { |
| Value *Elem = Elements[i]; |
| PointerToBase[Elem] = BaseElements[i]; |
| } |
| } |
| } |
| |
| // Helper function for the "rematerializeLiveValues". It walks use chain |
| // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" |
| // values are visited (currently it is GEP's and casts). Returns true if it |
| // successfully reached "BaseValue" and false otherwise. |
| // Fills "ChainToBase" array with all visited values. "BaseValue" is not |
| // recorded. |
| static bool findRematerializableChainToBasePointer( |
| SmallVectorImpl<Instruction*> &ChainToBase, |
| Value *CurrentValue, Value *BaseValue) { |
| |
| // We have found a base value |
| if (CurrentValue == BaseValue) { |
| return true; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { |
| ChainToBase.push_back(GEP); |
| return findRematerializableChainToBasePointer(ChainToBase, |
| GEP->getPointerOperand(), |
| BaseValue); |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { |
| Value *Def = CI->stripPointerCasts(); |
| |
| // This two checks are basically similar. First one is here for the |
| // consistency with findBasePointers logic. |
| assert(!isa<CastInst>(Def) && "not a pointer cast found"); |
| if (!CI->isNoopCast(CI->getModule()->getDataLayout())) |
| return false; |
| |
| ChainToBase.push_back(CI); |
| return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); |
| } |
| |
| // Not supported instruction in the chain |
| return false; |
| } |
| |
| // Helper function for the "rematerializeLiveValues". Compute cost of the use |
| // chain we are going to rematerialize. |
| static unsigned |
| chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, |
| TargetTransformInfo &TTI) { |
| unsigned Cost = 0; |
| |
| for (Instruction *Instr : Chain) { |
| if (CastInst *CI = dyn_cast<CastInst>(Instr)) { |
| assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && |
| "non noop cast is found during rematerialization"); |
| |
| Type *SrcTy = CI->getOperand(0)->getType(); |
| Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); |
| |
| } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { |
| // Cost of the address calculation |
| Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); |
| Cost += TTI.getAddressComputationCost(ValTy); |
| |
| // And cost of the GEP itself |
| // TODO: Use TTI->getGEPCost here (it exists, but appears to be not |
| // allowed for the external usage) |
| if (!GEP->hasAllConstantIndices()) |
| Cost += 2; |
| |
| } else { |
| llvm_unreachable("unsupported instruciton type during rematerialization"); |
| } |
| } |
| |
| return Cost; |
| } |
| |
| // From the statepoint live set pick values that are cheaper to recompute then |
| // to relocate. Remove this values from the live set, rematerialize them after |
| // statepoint and record them in "Info" structure. Note that similar to |
| // relocated values we don't do any user adjustments here. |
| static void rematerializeLiveValues(CallSite CS, |
| PartiallyConstructedSafepointRecord &Info, |
| TargetTransformInfo &TTI) { |
| const unsigned int ChainLengthThreshold = 10; |
| |
| // Record values we are going to delete from this statepoint live set. |
| // We can not di this in following loop due to iterator invalidation. |
| SmallVector<Value *, 32> LiveValuesToBeDeleted; |
| |
| for (Value *LiveValue: Info.LiveSet) { |
| // For each live pointer find it's defining chain |
| SmallVector<Instruction *, 3> ChainToBase; |
| assert(Info.PointerToBase.count(LiveValue)); |
| bool FoundChain = |
| findRematerializableChainToBasePointer(ChainToBase, |
| LiveValue, |
| Info.PointerToBase[LiveValue]); |
| // Nothing to do, or chain is too long |
| if (!FoundChain || |
| ChainToBase.size() == 0 || |
| ChainToBase.size() > ChainLengthThreshold) |
| continue; |
| |
| // Compute cost of this chain |
| unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); |
| // TODO: We can also account for cases when we will be able to remove some |
| // of the rematerialized values by later optimization passes. I.e if |
| // we rematerialized several intersecting chains. Or if original values |
| // don't have any uses besides this statepoint. |
| |
| // For invokes we need to rematerialize each chain twice - for normal and |
| // for unwind basic blocks. Model this by multiplying cost by two. |
| if (CS.isInvoke()) { |
| Cost *= 2; |
| } |
| // If it's too expensive - skip it |
| if (Cost >= RematerializationThreshold) |
| continue; |
| |
| // Remove value from the live set |
| LiveValuesToBeDeleted.push_back(LiveValue); |
| |
| // Clone instructions and record them inside "Info" structure |
| |
| // Walk backwards to visit top-most instructions first |
| std::reverse(ChainToBase.begin(), ChainToBase.end()); |
| |
| // Utility function which clones all instructions from "ChainToBase" |
| // and inserts them before "InsertBefore". Returns rematerialized value |
| // which should be used after statepoint. |
| auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { |
| Instruction *LastClonedValue = nullptr; |
| Instruction *LastValue = nullptr; |
| for (Instruction *Instr: ChainToBase) { |
| // Only GEP's and casts are suported as we need to be careful to not |
| // introduce any new uses of pointers not in the liveset. |
| // Note that it's fine to introduce new uses of pointers which were |
| // otherwise not used after this statepoint. |
| assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); |
| |
| Instruction *ClonedValue = Instr->clone(); |
| ClonedValue->insertBefore(InsertBefore); |
| ClonedValue->setName(Instr->getName() + ".remat"); |
| |
| // If it is not first instruction in the chain then it uses previously |
| // cloned value. We should update it to use cloned value. |
| if (LastClonedValue) { |
| assert(LastValue); |
| ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); |
| #ifndef NDEBUG |
| // Assert that cloned instruction does not use any instructions from |
| // this chain other than LastClonedValue |
| for (auto OpValue : ClonedValue->operand_values()) { |
| assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == |
| ChainToBase.end() && |
| "incorrect use in rematerialization chain"); |
| } |
| #endif |
| } |
| |
| LastClonedValue = ClonedValue; |
| LastValue = Instr; |
| } |
| assert(LastClonedValue); |
| return LastClonedValue; |
| }; |
| |
| // Different cases for calls and invokes. For invokes we need to clone |
| // instructions both on normal and unwind path. |
| if (CS.isCall()) { |
| Instruction *InsertBefore = CS.getInstruction()->getNextNode(); |
| assert(InsertBefore); |
| Instruction *RematerializedValue = rematerializeChain(InsertBefore); |
| Info.RematerializedValues[RematerializedValue] = LiveValue; |
| } else { |
| InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); |
| |
| Instruction *NormalInsertBefore = |
| &*Invoke->getNormalDest()->getFirstInsertionPt(); |
| Instruction *UnwindInsertBefore = |
| &*Invoke->getUnwindDest()->getFirstInsertionPt(); |
| |
| Instruction *NormalRematerializedValue = |
| rematerializeChain(NormalInsertBefore); |
| Instruction *UnwindRematerializedValue = |
| rematerializeChain(UnwindInsertBefore); |
| |
| Info.RematerializedValues[NormalRematerializedValue] = LiveValue; |
| Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; |
| } |
| } |
| |
| // Remove rematerializaed values from the live set |
| for (auto LiveValue: LiveValuesToBeDeleted) { |
| Info.LiveSet.erase(LiveValue); |
| } |
| } |
| |
| static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, |
| SmallVectorImpl<CallSite> &ToUpdate) { |
| #ifndef NDEBUG |
| // sanity check the input |
| std::set<CallSite> Uniqued; |
| Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); |
| assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); |
| |
| for (CallSite CS : ToUpdate) { |
| assert(CS.getInstruction()->getParent()->getParent() == &F); |
| assert((UseDeoptBundles || isStatepoint(CS)) && |
| "expected to already be a deopt statepoint"); |
| } |
| #endif |
| |
| // When inserting gc.relocates for invokes, we need to be able to insert at |
| // the top of the successor blocks. See the comment on |
| // normalForInvokeSafepoint on exactly what is needed. Note that this step |
| // may restructure the CFG. |
| for (CallSite CS : ToUpdate) { |
| if (!CS.isInvoke()) |
| continue; |
| auto *II = cast<InvokeInst>(CS.getInstruction()); |
| normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); |
| normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); |
| } |
| |
| // A list of dummy calls added to the IR to keep various values obviously |
| // live in the IR. We'll remove all of these when done. |
| SmallVector<CallInst *, 64> Holders; |
| |
| // Insert a dummy call with all of the arguments to the vm_state we'll need |
| // for the actual safepoint insertion. This ensures reference arguments in |
| // the deopt argument list are considered live through the safepoint (and |
| // thus makes sure they get relocated.) |
| for (CallSite CS : ToUpdate) { |
| SmallVector<Value *, 64> DeoptValues; |
| |
| iterator_range<const Use *> DeoptStateRange = |
| UseDeoptBundles |
| ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) |
| : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); |
| |
| for (Value *Arg : DeoptStateRange) { |
| assert(!isUnhandledGCPointerType(Arg->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(Arg->getType())) |
| DeoptValues.push_back(Arg); |
| } |
| |
| insertUseHolderAfter(CS, DeoptValues, Holders); |
| } |
| |
| SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); |
| |
| // A) Identify all gc pointers which are statically live at the given call |
| // site. |
| findLiveReferences(F, DT, P, ToUpdate, Records); |
| |
| // B) Find the base pointers for each live pointer |
| /* scope for caching */ { |
| // Cache the 'defining value' relation used in the computation and |
| // insertion of base phis and selects. This ensures that we don't insert |
| // large numbers of duplicate base_phis. |
| DefiningValueMapTy DVCache; |
| |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &info = Records[i]; |
| findBasePointers(DT, DVCache, ToUpdate[i], info); |
| } |
| } // end of cache scope |
| |
| // The base phi insertion logic (for any safepoint) may have inserted new |
| // instructions which are now live at some safepoint. The simplest such |
| // example is: |
| // loop: |
| // phi a <-- will be a new base_phi here |
| // safepoint 1 <-- that needs to be live here |
| // gep a + 1 |
| // safepoint 2 |
| // br loop |
| // We insert some dummy calls after each safepoint to definitely hold live |
| // the base pointers which were identified for that safepoint. We'll then |
| // ask liveness for _every_ base inserted to see what is now live. Then we |
| // remove the dummy calls. |
| Holders.reserve(Holders.size() + Records.size()); |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &Info = Records[i]; |
| |
| SmallVector<Value *, 128> Bases; |
| for (auto Pair : Info.PointerToBase) |
| Bases.push_back(Pair.second); |
| |
| insertUseHolderAfter(ToUpdate[i], Bases, Holders); |
| } |
| |
| // By selecting base pointers, we've effectively inserted new uses. Thus, we |
| // need to rerun liveness. We may *also* have inserted new defs, but that's |
| // not the key issue. |
| recomputeLiveInValues(F, DT, P, ToUpdate, Records); |
| |
| if (PrintBasePointers) { |
| for (auto &Info : Records) { |
| errs() << "Base Pairs: (w/Relocation)\n"; |
| for (auto Pair : Info.PointerToBase) |
| errs() << " derived %" << Pair.first->getName() << " base %" |
| << Pair.second->getName() << "\n"; |
| } |
| } |
| |
| for (CallInst *CI : Holders) |
| CI->eraseFromParent(); |
| |
| Holders.clear(); |
| |
| // Do a limited scalarization of any live at safepoint vector values which |
| // contain pointers. This enables this pass to run after vectorization at |
| // the cost of some possible performance loss. TODO: it would be nice to |
| // natively support vectors all the way through the backend so we don't need |
| // to scalarize here. |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &Info = Records[i]; |
| Instruction *Statepoint = ToUpdate[i].getInstruction(); |
| splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, |
| Info.PointerToBase, DT); |
| } |
| |
| // In order to reduce live set of statepoint we might choose to rematerialize |
| // some values instead of relocating them. This is purely an optimization and |
| // does not influence correctness. |
| TargetTransformInfo &TTI = |
| P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| |
| for (size_t i = 0; i < Records.size(); i++) |
| rematerializeLiveValues(ToUpdate[i], Records[i], TTI); |
| |
| // We need this to safely RAUW and delete call or invoke return values that |
| // may themselves be live over a statepoint. For details, please see usage in |
| // makeStatepointExplicitImpl. |
| std::vector<DeferredReplacement> Replacements; |
| |
| // Now run through and replace the existing statepoints with new ones with |
| // the live variables listed. We do not yet update uses of the values being |
| // relocated. We have references to live variables that need to |
| // survive to the last iteration of this loop. (By construction, the |
| // previous statepoint can not be a live variable, thus we can and remove |
| // the old statepoint calls as we go.) |
| for (size_t i = 0; i < Records.size(); i++) |
| makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); |
| |
| ToUpdate.clear(); // prevent accident use of invalid CallSites |
| |
| for (auto &PR : Replacements) |
| PR.doReplacement(); |
| |
| Replacements.clear(); |
| |
| for (auto &Info : Records) { |
| // These live sets may contain state Value pointers, since we replaced calls |
| // with operand bundles with calls wrapped in gc.statepoint, and some of |
| // those calls may have been def'ing live gc pointers. Clear these out to |
| // avoid accidentally using them. |
| // |
| // TODO: We should create a separate data structure that does not contain |
| // these live sets, and migrate to using that data structure from this point |
| // onward. |
| Info.LiveSet.clear(); |
| Info.PointerToBase.clear(); |
| } |
| |
| // Do all the fixups of the original live variables to their relocated selves |
| SmallVector<Value *, 128> Live; |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &Info = Records[i]; |
| |
| // We can't simply save the live set from the original insertion. One of |
| // the live values might be the result of a call which needs a safepoint. |
| // That Value* no longer exists and we need to use the new gc_result. |
| // Thankfully, the live set is embedded in the statepoint (and updated), so |
| // we just grab that. |
| Statepoint Statepoint(Info.StatepointToken); |
| Live.insert(Live.end(), Statepoint.gc_args_begin(), |
| Statepoint.gc_args_end()); |
| #ifndef NDEBUG |
| // Do some basic sanity checks on our liveness results before performing |
| // relocation. Relocation can and will turn mistakes in liveness results |
| // into non-sensical code which is must harder to debug. |
| // TODO: It would be nice to test consistency as well |
| assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && |
| "statepoint must be reachable or liveness is meaningless"); |
| for (Value *V : Statepoint.gc_args()) { |
| if (!isa<Instruction>(V)) |
| // Non-instruction values trivial dominate all possible uses |
| continue; |
| auto *LiveInst = cast<Instruction>(V); |
| assert(DT.isReachableFromEntry(LiveInst->getParent()) && |
| "unreachable values should never be live"); |
| assert(DT.dominates(LiveInst, Info.StatepointToken) && |
| "basic SSA liveness expectation violated by liveness analysis"); |
| } |
| #endif |
| } |
| unique_unsorted(Live); |
| |
| #ifndef NDEBUG |
| // sanity check |
| for (auto *Ptr : Live) |
| assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); |
| #endif |
| |
| relocationViaAlloca(F, DT, Live, Records); |
| return !Records.empty(); |
| } |
| |
| // Handles both return values and arguments for Functions and CallSites. |
| template <typename AttrHolder> |
| static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, |
| unsigned Index) { |
| AttrBuilder R; |
| if (AH.getDereferenceableBytes(Index)) |
| R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, |
| AH.getDereferenceableBytes(Index))); |
| if (AH.getDereferenceableOrNullBytes(Index)) |
| R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, |
| AH.getDereferenceableOrNullBytes(Index))); |
| if (AH.doesNotAlias(Index)) |
| R.addAttribute(Attribute::NoAlias); |
| |
| if (!R.empty()) |
| AH.setAttributes(AH.getAttributes().removeAttributes( |
| Ctx, Index, AttributeSet::get(Ctx, Index, R))); |
| } |
| |
| void |
| RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { |
| LLVMContext &Ctx = F.getContext(); |
| |
| for (Argument &A : F.args()) |
| if (isa<PointerType>(A.getType())) |
| RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); |
| |
| if (isa<PointerType>(F.getReturnType())) |
| RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); |
| } |
| |
| void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { |
| if (F.empty()) |
| return; |
| |
| LLVMContext &Ctx = F.getContext(); |
| MDBuilder Builder(Ctx); |
| |
| for (Instruction &I : instructions(F)) { |
| if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { |
| assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); |
| bool IsImmutableTBAA = |
| MD->getNumOperands() == 4 && |
| mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; |
| |
| if (!IsImmutableTBAA) |
| continue; // no work to do, MD_tbaa is already marked mutable |
| |
| MDNode *Base = cast<MDNode>(MD->getOperand(0)); |
| MDNode *Access = cast<MDNode>(MD->getOperand(1)); |
| uint64_t Offset = |
| mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); |
| |
| MDNode *MutableTBAA = |
| Builder.createTBAAStructTagNode(Base, Access, Offset); |
| I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); |
| } |
| |
| if (CallSite CS = CallSite(&I)) { |
| for (int i = 0, e = CS.arg_size(); i != e; i++) |
| if (isa<PointerType>(CS.getArgument(i)->getType())) |
| RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); |
| if (isa<PointerType>(CS.getType())) |
| RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); |
| } |
| } |
| } |
| |
| /// Returns true if this function should be rewritten by this pass. The main |
| /// point of this function is as an extension point for custom logic. |
| static bool shouldRewriteStatepointsIn(Function &F) { |
| // TODO: This should check the GCStrategy |
| if (F.hasGC()) { |
| const char *FunctionGCName = F.getGC(); |
| const StringRef StatepointExampleName("statepoint-example"); |
| const StringRef CoreCLRName("coreclr"); |
| return (StatepointExampleName == FunctionGCName) || |
| (CoreCLRName == FunctionGCName); |
| } else |
| return false; |
| } |
| |
| void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { |
| #ifndef NDEBUG |
| assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && |
| "precondition!"); |
| #endif |
| |
| for (Function &F : M) |
| stripNonValidAttributesFromPrototype(F); |
| |
| for (Function &F : M) |
| stripNonValidAttributesFromBody(F); |
| } |
| |
| bool RewriteStatepointsForGC::runOnFunction(Function &F) { |
| // Nothing to do for declarations. |
| if (F.isDeclaration() || F.empty()) |
| return false; |
| |
| // Policy choice says not to rewrite - the most common reason is that we're |
| // compiling code without a GCStrategy. |
| if (!shouldRewriteStatepointsIn(F)) |
| return false; |
| |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); |
| |
| auto NeedsRewrite = [](Instruction &I) { |
| if (UseDeoptBundles) { |
| if (ImmutableCallSite CS = ImmutableCallSite(&I)) |
| return !callsGCLeafFunction(CS); |
| return false; |
| } |
| |
| return isStatepoint(I); |
| }; |
| |
| // Gather all the statepoints which need rewritten. Be careful to only |
| // consider those in reachable code since we need to ask dominance queries |
| // when rewriting. We'll delete the unreachable ones in a moment. |
| SmallVector<CallSite, 64> ParsePointNeeded; |
| bool HasUnreachableStatepoint = false; |
| for (Instruction &I : instructions(F)) { |
| // TODO: only the ones with the flag set! |
| if (NeedsRewrite(I)) { |
| if (DT.isReachableFromEntry(I.getParent())) |
| ParsePointNeeded.push_back(CallSite(&I)); |
| else |
| HasUnreachableStatepoint = true; |
| } |
| } |
| |
| bool MadeChange = false; |
| |
| // Delete any unreachable statepoints so that we don't have unrewritten |
| // statepoints surviving this pass. This makes testing easier and the |
| // resulting IR less confusing to human readers. Rather than be fancy, we |
| // just reuse a utility function which removes the unreachable blocks. |
| if (HasUnreachableStatepoint) |
| MadeChange |= removeUnreachableBlocks(F); |
| |
| // Return early if no work to do. |
| if (ParsePointNeeded.empty()) |
| return MadeChange; |
| |
| // As a prepass, go ahead and aggressively destroy single entry phi nodes. |
| // These are created by LCSSA. They have the effect of increasing the size |
| // of liveness sets for no good reason. It may be harder to do this post |
| // insertion since relocations and base phis can confuse things. |
| for (BasicBlock &BB : F) |
| if (BB.getUniquePredecessor()) { |
| MadeChange = true; |
| FoldSingleEntryPHINodes(&BB); |
| } |
| |
| // Before we start introducing relocations, we want to tweak the IR a bit to |
| // avoid unfortunate code generation effects. The main example is that we |
| // want to try to make sure the comparison feeding a branch is after any |
| // safepoints. Otherwise, we end up with a comparison of pre-relocation |
| // values feeding a branch after relocation. This is semantically correct, |
| // but results in extra register pressure since both the pre-relocation and |
| // post-relocation copies must be available in registers. For code without |
| // relocations this is handled elsewhere, but teaching the scheduler to |
| // reverse the transform we're about to do would be slightly complex. |
| // Note: This may extend the live range of the inputs to the icmp and thus |
| // increase the liveset of any statepoint we move over. This is profitable |
| // as long as all statepoints are in rare blocks. If we had in-register |
| // lowering for live values this would be a much safer transform. |
| auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { |
| if (auto *BI = dyn_cast<BranchInst>(TI)) |
| if (BI->isConditional()) |
| return dyn_cast<Instruction>(BI->getCondition()); |
| // TODO: Extend this to handle switches |
| return nullptr; |
| }; |
| for (BasicBlock &BB : F) { |
| TerminatorInst *TI = BB.getTerminator(); |
| if (auto *Cond = getConditionInst(TI)) |
| // TODO: Handle more than just ICmps here. We should be able to move |
| // most instructions without side effects or memory access. |
| if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { |
| MadeChange = true; |
| Cond->moveBefore(TI); |
| } |
| } |
| |
| MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); |
| return MadeChange; |
| } |
| |
| // liveness computation via standard dataflow |
| // ------------------------------------------------------------------- |
| |
| // TODO: Consider using bitvectors for liveness, the set of potentially |
| // interesting values should be small and easy to pre-compute. |
| |
| /// Compute the live-in set for the location rbegin starting from |
| /// the live-out set of the basic block |
| static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, |
| BasicBlock::reverse_iterator rend, |
| DenseSet<Value *> &LiveTmp) { |
| |
| for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { |
| Instruction *I = &*ritr; |
| |
| // KILL/Def - Remove this definition from LiveIn |
| LiveTmp.erase(I); |
| |
| // Don't consider *uses* in PHI nodes, we handle their contribution to |
| // predecessor blocks when we seed the LiveOut sets |
| if (isa<PHINode>(I)) |
| continue; |
| |
| // USE - Add to the LiveIn set for this instruction |
| for (Value *V : I->operands()) { |
| assert(!isUnhandledGCPointerType(V->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { |
| // The choice to exclude all things constant here is slightly subtle. |
| // There are two independent reasons: |
| // - We assume that things which are constant (from LLVM's definition) |
| // do not move at runtime. For example, the address of a global |
| // variable is fixed, even though it's contents may not be. |
| // - Second, we can't disallow arbitrary inttoptr constants even |
| // if the language frontend does. Optimization passes are free to |
| // locally exploit facts without respect to global reachability. This |
| // can create sections of code which are dynamically unreachable and |
| // contain just about anything. (see constants.ll in tests) |
| LiveTmp.insert(V); |
| } |
| } |
| } |
| } |
| |
| static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { |
| |
| for (BasicBlock *Succ : successors(BB)) { |
| const BasicBlock::iterator E(Succ->getFirstNonPHI()); |
| for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { |
| PHINode *Phi = cast<PHINode>(&*I); |
| Value *V = Phi->getIncomingValueForBlock(BB); |
| assert(!isUnhandledGCPointerType(V->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { |
| LiveTmp.insert(V); |
| } |
| } |
| } |
| } |
| |
| static DenseSet<Value *> computeKillSet(BasicBlock *BB) { |
| DenseSet<Value *> KillSet; |
| for (Instruction &I : *BB) |
| if (isHandledGCPointerType(I.getType())) |
| KillSet.insert(&I); |
| return KillSet; |
| } |
| |
| #ifndef NDEBUG |
| /// Check that the items in 'Live' dominate 'TI'. This is used as a basic |
| /// sanity check for the liveness computation. |
| static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, |
| TerminatorInst *TI, bool TermOkay = false) { |
| for (Value *V : Live) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| // The terminator can be a member of the LiveOut set. LLVM's definition |
| // of instruction dominance states that V does not dominate itself. As |
| // such, we need to special case this to allow it. |
| if (TermOkay && TI == I) |
| continue; |
| assert(DT.dominates(I, TI) && |
| "basic SSA liveness expectation violated by liveness analysis"); |
| } |
| } |
| } |
| |
| /// Check that all the liveness sets used during the computation of liveness |
| /// obey basic SSA properties. This is useful for finding cases where we miss |
| /// a def. |
| static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, |
| BasicBlock &BB) { |
| checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); |
| checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); |
| checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); |
| } |
| #endif |
| |
| static void computeLiveInValues(DominatorTree &DT, Function &F, |
| GCPtrLivenessData &Data) { |
| |
| SmallSetVector<BasicBlock *, 200> Worklist; |
| auto AddPredsToWorklist = [&](BasicBlock *BB) { |
| // We use a SetVector so that we don't have duplicates in the worklist. |
| Worklist.insert(pred_begin(BB), pred_end(BB)); |
| }; |
| auto NextItem = [&]() { |
| BasicBlock *BB = Worklist.back(); |
| Worklist.pop_back(); |
| return BB; |
| }; |
| |
| // Seed the liveness for each individual block |
| for (BasicBlock &BB : F) { |
| Data.KillSet[&BB] = computeKillSet(&BB); |
| Data.LiveSet[&BB].clear(); |
| computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); |
| |
| #ifndef NDEBUG |
| for (Value *Kill : Data.KillSet[&BB]) |
| assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); |
| #endif |
| |
| Data.LiveOut[&BB] = DenseSet<Value *>(); |
| computeLiveOutSeed(&BB, Data.LiveOut[&BB]); |
| Data.LiveIn[&BB] = Data.LiveSet[&BB]; |
| set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); |
| set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); |
| if (!Data.LiveIn[&BB].empty()) |
| AddPredsToWorklist(&BB); |
| } |
| |
| // Propagate that liveness until stable |
| while (!Worklist.empty()) { |
| BasicBlock *BB = NextItem(); |
| |
| // Compute our new liveout set, then exit early if it hasn't changed |
| // despite the contribution of our successor. |
| DenseSet<Value *> LiveOut = Data.LiveOut[BB]; |
| const auto OldLiveOutSize = LiveOut.size(); |
| for (BasicBlock *Succ : successors(BB)) { |
| assert(Data.LiveIn.count(Succ)); |
| set_union(LiveOut, Data.LiveIn[Succ]); |
| } |
| // assert OutLiveOut is a subset of LiveOut |
| if (OldLiveOutSize == LiveOut.size()) { |
| // If the sets are the same size, then we didn't actually add anything |
| // when unioning our successors LiveIn Thus, the LiveIn of this block |
| // hasn't changed. |
| continue; |
| } |
| Data.LiveOut[BB] = LiveOut; |
| |
| // Apply the effects of this basic block |
| DenseSet<Value *> LiveTmp = LiveOut; |
| set_union(LiveTmp, Data.LiveSet[BB]); |
| set_subtract(LiveTmp, Data.KillSet[BB]); |
| |
| assert(Data.LiveIn.count(BB)); |
| const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; |
| // assert: OldLiveIn is a subset of LiveTmp |
| if (OldLiveIn.size() != LiveTmp.size()) { |
| Data.LiveIn[BB] = LiveTmp; |
| AddPredsToWorklist(BB); |
| } |
| } // while( !worklist.empty() ) |
| |
| #ifndef NDEBUG |
| // Sanity check our output against SSA properties. This helps catch any |
| // missing kills during the above iteration. |
| for (BasicBlock &BB : F) { |
| checkBasicSSA(DT, Data, BB); |
| } |
| #endif |
| } |
| |
| static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, |
| StatepointLiveSetTy &Out) { |
| |
| BasicBlock *BB = Inst->getParent(); |
| |
| // Note: The copy is intentional and required |
| assert(Data.LiveOut.count(BB)); |
| DenseSet<Value *> LiveOut = Data.LiveOut[BB]; |
| |
| // We want to handle the statepoint itself oddly. It's |
| // call result is not live (normal), nor are it's arguments |
| // (unless they're used again later). This adjustment is |
| // specifically what we need to relocate |
| BasicBlock::reverse_iterator rend(Inst->getIterator()); |
| computeLiveInValues(BB->rbegin(), rend, LiveOut); |
| LiveOut.erase(Inst); |
| Out.insert(LiveOut.begin(), LiveOut.end()); |
| } |
| |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| const CallSite &CS, |
| PartiallyConstructedSafepointRecord &Info) { |
| Instruction *Inst = CS.getInstruction(); |
| StatepointLiveSetTy Updated; |
| findLiveSetAtInst(Inst, RevisedLivenessData, Updated); |
| |
| #ifndef NDEBUG |
| DenseSet<Value *> Bases; |
| for (auto KVPair : Info.PointerToBase) { |
| Bases.insert(KVPair.second); |
| } |
| #endif |
| // We may have base pointers which are now live that weren't before. We need |
| // to update the PointerToBase structure to reflect this. |
| for (auto V : Updated) |
| if (!Info.PointerToBase.count(V)) { |
| assert(Bases.count(V) && "can't find base for unexpected live value"); |
| Info.PointerToBase[V] = V; |
| continue; |
| } |
| |
| #ifndef NDEBUG |
| for (auto V : Updated) { |
| assert(Info.PointerToBase.count(V) && |
| "must be able to find base for live value"); |
| } |
| #endif |
| |
| // Remove any stale base mappings - this can happen since our liveness is |
| // more precise then the one inherent in the base pointer analysis |
| DenseSet<Value *> ToErase; |
| for (auto KVPair : Info.PointerToBase) |
| if (!Updated.count(KVPair.first)) |
| ToErase.insert(KVPair.first); |
| for (auto V : ToErase) |
| Info.PointerToBase.erase(V); |
| |
| #ifndef NDEBUG |
| for (auto KVPair : Info.PointerToBase) |
| assert(Updated.count(KVPair.first) && "record for non-live value"); |
| #endif |
| |
| Info.LiveSet = Updated; |
| } |