|  | //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file is a part of MemorySanitizer, a detector of uninitialized | 
|  | /// reads. | 
|  | /// | 
|  | /// The algorithm of the tool is similar to Memcheck | 
|  | /// (http://goo.gl/QKbem). We associate a few shadow bits with every | 
|  | /// byte of the application memory, poison the shadow of the malloc-ed | 
|  | /// or alloca-ed memory, load the shadow bits on every memory read, | 
|  | /// propagate the shadow bits through some of the arithmetic | 
|  | /// instruction (including MOV), store the shadow bits on every memory | 
|  | /// write, report a bug on some other instructions (e.g. JMP) if the | 
|  | /// associated shadow is poisoned. | 
|  | /// | 
|  | /// But there are differences too. The first and the major one: | 
|  | /// compiler instrumentation instead of binary instrumentation. This | 
|  | /// gives us much better register allocation, possible compiler | 
|  | /// optimizations and a fast start-up. But this brings the major issue | 
|  | /// as well: msan needs to see all program events, including system | 
|  | /// calls and reads/writes in system libraries, so we either need to | 
|  | /// compile *everything* with msan or use a binary translation | 
|  | /// component (e.g. DynamoRIO) to instrument pre-built libraries. | 
|  | /// Another difference from Memcheck is that we use 8 shadow bits per | 
|  | /// byte of application memory and use a direct shadow mapping. This | 
|  | /// greatly simplifies the instrumentation code and avoids races on | 
|  | /// shadow updates (Memcheck is single-threaded so races are not a | 
|  | /// concern there. Memcheck uses 2 shadow bits per byte with a slow | 
|  | /// path storage that uses 8 bits per byte). | 
|  | /// | 
|  | /// The default value of shadow is 0, which means "clean" (not poisoned). | 
|  | /// | 
|  | /// Every module initializer should call __msan_init to ensure that the | 
|  | /// shadow memory is ready. On error, __msan_warning is called. Since | 
|  | /// parameters and return values may be passed via registers, we have a | 
|  | /// specialized thread-local shadow for return values | 
|  | /// (__msan_retval_tls) and parameters (__msan_param_tls). | 
|  | /// | 
|  | ///                           Origin tracking. | 
|  | /// | 
|  | /// MemorySanitizer can track origins (allocation points) of all uninitialized | 
|  | /// values. This behavior is controlled with a flag (msan-track-origins) and is | 
|  | /// disabled by default. | 
|  | /// | 
|  | /// Origins are 4-byte values created and interpreted by the runtime library. | 
|  | /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes | 
|  | /// of application memory. Propagation of origins is basically a bunch of | 
|  | /// "select" instructions that pick the origin of a dirty argument, if an | 
|  | /// instruction has one. | 
|  | /// | 
|  | /// Every 4 aligned, consecutive bytes of application memory have one origin | 
|  | /// value associated with them. If these bytes contain uninitialized data | 
|  | /// coming from 2 different allocations, the last store wins. Because of this, | 
|  | /// MemorySanitizer reports can show unrelated origins, but this is unlikely in | 
|  | /// practice. | 
|  | /// | 
|  | /// Origins are meaningless for fully initialized values, so MemorySanitizer | 
|  | /// avoids storing origin to memory when a fully initialized value is stored. | 
|  | /// This way it avoids needless overwritting origin of the 4-byte region on | 
|  | /// a short (i.e. 1 byte) clean store, and it is also good for performance. | 
|  | /// | 
|  | ///                            Atomic handling. | 
|  | /// | 
|  | /// Ideally, every atomic store of application value should update the | 
|  | /// corresponding shadow location in an atomic way. Unfortunately, atomic store | 
|  | /// of two disjoint locations can not be done without severe slowdown. | 
|  | /// | 
|  | /// Therefore, we implement an approximation that may err on the safe side. | 
|  | /// In this implementation, every atomically accessed location in the program | 
|  | /// may only change from (partially) uninitialized to fully initialized, but | 
|  | /// not the other way around. We load the shadow _after_ the application load, | 
|  | /// and we store the shadow _before_ the app store. Also, we always store clean | 
|  | /// shadow (if the application store is atomic). This way, if the store-load | 
|  | /// pair constitutes a happens-before arc, shadow store and load are correctly | 
|  | /// ordered such that the load will get either the value that was stored, or | 
|  | /// some later value (which is always clean). | 
|  | /// | 
|  | /// This does not work very well with Compare-And-Swap (CAS) and | 
|  | /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW | 
|  | /// must store the new shadow before the app operation, and load the shadow | 
|  | /// after the app operation. Computers don't work this way. Current | 
|  | /// implementation ignores the load aspect of CAS/RMW, always returning a clean | 
|  | /// value. It implements the store part as a simple atomic store by storing a | 
|  | /// clean shadow. | 
|  | /// | 
|  | ///                      Instrumenting inline assembly. | 
|  | /// | 
|  | /// For inline assembly code LLVM has little idea about which memory locations | 
|  | /// become initialized depending on the arguments. It can be possible to figure | 
|  | /// out which arguments are meant to point to inputs and outputs, but the | 
|  | /// actual semantics can be only visible at runtime. In the Linux kernel it's | 
|  | /// also possible that the arguments only indicate the offset for a base taken | 
|  | /// from a segment register, so it's dangerous to treat any asm() arguments as | 
|  | /// pointers. We take a conservative approach generating calls to | 
|  | ///   __msan_instrument_asm_store(ptr, size) | 
|  | /// , which defer the memory unpoisoning to the runtime library. | 
|  | /// The latter can perform more complex address checks to figure out whether | 
|  | /// it's safe to touch the shadow memory. | 
|  | /// Like with atomic operations, we call __msan_instrument_asm_store() before | 
|  | /// the assembly call, so that changes to the shadow memory will be seen by | 
|  | /// other threads together with main memory initialization. | 
|  | /// | 
|  | ///                  KernelMemorySanitizer (KMSAN) implementation. | 
|  | /// | 
|  | /// The major differences between KMSAN and MSan instrumentation are: | 
|  | ///  - KMSAN always tracks the origins and implies msan-keep-going=true; | 
|  | ///  - KMSAN allocates shadow and origin memory for each page separately, so | 
|  | ///    there are no explicit accesses to shadow and origin in the | 
|  | ///    instrumentation. | 
|  | ///    Shadow and origin values for a particular X-byte memory location | 
|  | ///    (X=1,2,4,8) are accessed through pointers obtained via the | 
|  | ///      __msan_metadata_ptr_for_load_X(ptr) | 
|  | ///      __msan_metadata_ptr_for_store_X(ptr) | 
|  | ///    functions. The corresponding functions check that the X-byte accesses | 
|  | ///    are possible and returns the pointers to shadow and origin memory. | 
|  | ///    Arbitrary sized accesses are handled with: | 
|  | ///      __msan_metadata_ptr_for_load_n(ptr, size) | 
|  | ///      __msan_metadata_ptr_for_store_n(ptr, size); | 
|  | ///  - TLS variables are stored in a single per-task struct. A call to a | 
|  | ///    function __msan_get_context_state() returning a pointer to that struct | 
|  | ///    is inserted into every instrumented function before the entry block; | 
|  | ///  - __msan_warning() takes a 32-bit origin parameter; | 
|  | ///  - local variables are poisoned with __msan_poison_alloca() upon function | 
|  | ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the | 
|  | ///    function; | 
|  | ///  - the pass doesn't declare any global variables or add global constructors | 
|  | ///    to the translation unit. | 
|  | /// | 
|  | /// Also, KMSAN currently ignores uninitialized memory passed into inline asm | 
|  | /// calls, making sure we're on the safe side wrt. possible false positives. | 
|  | /// | 
|  | ///  KernelMemorySanitizer only supports X86_64 at the moment. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueMap.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/ModuleUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "msan" | 
|  |  | 
|  | static const unsigned kOriginSize = 4; | 
|  | static const unsigned kMinOriginAlignment = 4; | 
|  | static const unsigned kShadowTLSAlignment = 8; | 
|  |  | 
|  | // These constants must be kept in sync with the ones in msan.h. | 
|  | static const unsigned kParamTLSSize = 800; | 
|  | static const unsigned kRetvalTLSSize = 800; | 
|  |  | 
|  | // Accesses sizes are powers of two: 1, 2, 4, 8. | 
|  | static const size_t kNumberOfAccessSizes = 4; | 
|  |  | 
|  | /// Track origins of uninitialized values. | 
|  | /// | 
|  | /// Adds a section to MemorySanitizer report that points to the allocation | 
|  | /// (stack or heap) the uninitialized bits came from originally. | 
|  | static cl::opt<int> ClTrackOrigins("msan-track-origins", | 
|  | cl::desc("Track origins (allocation sites) of poisoned memory"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<bool> ClKeepGoing("msan-keep-going", | 
|  | cl::desc("keep going after reporting a UMR"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClPoisonStack("msan-poison-stack", | 
|  | cl::desc("poison uninitialized stack variables"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", | 
|  | cl::desc("poison uninitialized stack variables with a call"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", | 
|  | cl::desc("poison uninitialized stack variables with the given pattern"), | 
|  | cl::Hidden, cl::init(0xff)); | 
|  |  | 
|  | static cl::opt<bool> ClPoisonUndef("msan-poison-undef", | 
|  | cl::desc("poison undef temps"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClHandleICmp("msan-handle-icmp", | 
|  | cl::desc("propagate shadow through ICmpEQ and ICmpNE"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", | 
|  | cl::desc("exact handling of relational integer ICmp"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClHandleLifetimeIntrinsics( | 
|  | "msan-handle-lifetime-intrinsics", | 
|  | cl::desc( | 
|  | "when possible, poison scoped variables at the beginning of the scope " | 
|  | "(slower, but more precise)"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | // When compiling the Linux kernel, we sometimes see false positives related to | 
|  | // MSan being unable to understand that inline assembly calls may initialize | 
|  | // local variables. | 
|  | // This flag makes the compiler conservatively unpoison every memory location | 
|  | // passed into an assembly call. Note that this may cause false positives. | 
|  | // Because it's impossible to figure out the array sizes, we can only unpoison | 
|  | // the first sizeof(type) bytes for each type* pointer. | 
|  | // The instrumentation is only enabled in KMSAN builds, and only if | 
|  | // -msan-handle-asm-conservative is on. This is done because we may want to | 
|  | // quickly disable assembly instrumentation when it breaks. | 
|  | static cl::opt<bool> ClHandleAsmConservative( | 
|  | "msan-handle-asm-conservative", | 
|  | cl::desc("conservative handling of inline assembly"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | // This flag controls whether we check the shadow of the address | 
|  | // operand of load or store. Such bugs are very rare, since load from | 
|  | // a garbage address typically results in SEGV, but still happen | 
|  | // (e.g. only lower bits of address are garbage, or the access happens | 
|  | // early at program startup where malloc-ed memory is more likely to | 
|  | // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. | 
|  | static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", | 
|  | cl::desc("report accesses through a pointer which has poisoned shadow"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", | 
|  | cl::desc("print out instructions with default strict semantics"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<int> ClInstrumentationWithCallThreshold( | 
|  | "msan-instrumentation-with-call-threshold", | 
|  | cl::desc( | 
|  | "If the function being instrumented requires more than " | 
|  | "this number of checks and origin stores, use callbacks instead of " | 
|  | "inline checks (-1 means never use callbacks)."), | 
|  | cl::Hidden, cl::init(3500)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClEnableKmsan("msan-kernel", | 
|  | cl::desc("Enable KernelMemorySanitizer instrumentation"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This is an experiment to enable handling of cases where shadow is a non-zero | 
|  | // compile-time constant. For some unexplainable reason they were silently | 
|  | // ignored in the instrumentation. | 
|  | static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", | 
|  | cl::desc("Insert checks for constant shadow values"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This is off by default because of a bug in gold: | 
|  | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 | 
|  | static cl::opt<bool> ClWithComdat("msan-with-comdat", | 
|  | cl::desc("Place MSan constructors in comdat sections"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // These options allow to specify custom memory map parameters | 
|  | // See MemoryMapParams for details. | 
|  | static cl::opt<uint64_t> ClAndMask("msan-and-mask", | 
|  | cl::desc("Define custom MSan AndMask"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<uint64_t> ClXorMask("msan-xor-mask", | 
|  | cl::desc("Define custom MSan XorMask"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", | 
|  | cl::desc("Define custom MSan ShadowBase"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<uint64_t> ClOriginBase("msan-origin-base", | 
|  | cl::desc("Define custom MSan OriginBase"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static const char *const kMsanModuleCtorName = "msan.module_ctor"; | 
|  | static const char *const kMsanInitName = "__msan_init"; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Memory map parameters used in application-to-shadow address calculation. | 
|  | // Offset = (Addr & ~AndMask) ^ XorMask | 
|  | // Shadow = ShadowBase + Offset | 
|  | // Origin = OriginBase + Offset | 
|  | struct MemoryMapParams { | 
|  | uint64_t AndMask; | 
|  | uint64_t XorMask; | 
|  | uint64_t ShadowBase; | 
|  | uint64_t OriginBase; | 
|  | }; | 
|  |  | 
|  | struct PlatformMemoryMapParams { | 
|  | const MemoryMapParams *bits32; | 
|  | const MemoryMapParams *bits64; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // i386 Linux | 
|  | static const MemoryMapParams Linux_I386_MemoryMapParams = { | 
|  | 0x000080000000,  // AndMask | 
|  | 0,               // XorMask (not used) | 
|  | 0,               // ShadowBase (not used) | 
|  | 0x000040000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | // x86_64 Linux | 
|  | static const MemoryMapParams Linux_X86_64_MemoryMapParams = { | 
|  | #ifdef MSAN_LINUX_X86_64_OLD_MAPPING | 
|  | 0x400000000000,  // AndMask | 
|  | 0,               // XorMask (not used) | 
|  | 0,               // ShadowBase (not used) | 
|  | 0x200000000000,  // OriginBase | 
|  | #else | 
|  | 0,               // AndMask (not used) | 
|  | 0x500000000000,  // XorMask | 
|  | 0,               // ShadowBase (not used) | 
|  | 0x100000000000,  // OriginBase | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | // mips64 Linux | 
|  | static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { | 
|  | 0,               // AndMask (not used) | 
|  | 0x008000000000,  // XorMask | 
|  | 0,               // ShadowBase (not used) | 
|  | 0x002000000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | // ppc64 Linux | 
|  | static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { | 
|  | 0xE00000000000,  // AndMask | 
|  | 0x100000000000,  // XorMask | 
|  | 0x080000000000,  // ShadowBase | 
|  | 0x1C0000000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | // aarch64 Linux | 
|  | static const MemoryMapParams Linux_AArch64_MemoryMapParams = { | 
|  | 0,               // AndMask (not used) | 
|  | 0x06000000000,   // XorMask | 
|  | 0,               // ShadowBase (not used) | 
|  | 0x01000000000,   // OriginBase | 
|  | }; | 
|  |  | 
|  | // i386 FreeBSD | 
|  | static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { | 
|  | 0x000180000000,  // AndMask | 
|  | 0x000040000000,  // XorMask | 
|  | 0x000020000000,  // ShadowBase | 
|  | 0x000700000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | // x86_64 FreeBSD | 
|  | static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { | 
|  | 0xc00000000000,  // AndMask | 
|  | 0x200000000000,  // XorMask | 
|  | 0x100000000000,  // ShadowBase | 
|  | 0x380000000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | // x86_64 NetBSD | 
|  | static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { | 
|  | 0,               // AndMask | 
|  | 0x500000000000,  // XorMask | 
|  | 0,               // ShadowBase | 
|  | 0x100000000000,  // OriginBase | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { | 
|  | &Linux_I386_MemoryMapParams, | 
|  | &Linux_X86_64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { | 
|  | nullptr, | 
|  | &Linux_MIPS64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { | 
|  | nullptr, | 
|  | &Linux_PowerPC64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { | 
|  | nullptr, | 
|  | &Linux_AArch64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { | 
|  | &FreeBSD_I386_MemoryMapParams, | 
|  | &FreeBSD_X86_64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { | 
|  | nullptr, | 
|  | &NetBSD_X86_64_MemoryMapParams, | 
|  | }; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Instrument functions of a module to detect uninitialized reads. | 
|  | /// | 
|  | /// Instantiating MemorySanitizer inserts the msan runtime library API function | 
|  | /// declarations into the module if they don't exist already. Instantiating | 
|  | /// ensures the __msan_init function is in the list of global constructors for | 
|  | /// the module. | 
|  | class MemorySanitizer { | 
|  | public: | 
|  | MemorySanitizer(Module &M, MemorySanitizerOptions Options) | 
|  | : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), | 
|  | Recover(Options.Recover) { | 
|  | initializeModule(M); | 
|  | } | 
|  |  | 
|  | // MSan cannot be moved or copied because of MapParams. | 
|  | MemorySanitizer(MemorySanitizer &&) = delete; | 
|  | MemorySanitizer &operator=(MemorySanitizer &&) = delete; | 
|  | MemorySanitizer(const MemorySanitizer &) = delete; | 
|  | MemorySanitizer &operator=(const MemorySanitizer &) = delete; | 
|  |  | 
|  | bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); | 
|  |  | 
|  | private: | 
|  | friend struct MemorySanitizerVisitor; | 
|  | friend struct VarArgAMD64Helper; | 
|  | friend struct VarArgMIPS64Helper; | 
|  | friend struct VarArgAArch64Helper; | 
|  | friend struct VarArgPowerPC64Helper; | 
|  |  | 
|  | void initializeModule(Module &M); | 
|  | void initializeCallbacks(Module &M); | 
|  | void createKernelApi(Module &M); | 
|  | void createUserspaceApi(Module &M); | 
|  |  | 
|  | /// True if we're compiling the Linux kernel. | 
|  | bool CompileKernel; | 
|  | /// Track origins (allocation points) of uninitialized values. | 
|  | int TrackOrigins; | 
|  | bool Recover; | 
|  |  | 
|  | LLVMContext *C; | 
|  | Type *IntptrTy; | 
|  | Type *OriginTy; | 
|  |  | 
|  | // XxxTLS variables represent the per-thread state in MSan and per-task state | 
|  | // in KMSAN. | 
|  | // For the userspace these point to thread-local globals. In the kernel land | 
|  | // they point to the members of a per-task struct obtained via a call to | 
|  | // __msan_get_context_state(). | 
|  |  | 
|  | /// Thread-local shadow storage for function parameters. | 
|  | Value *ParamTLS; | 
|  |  | 
|  | /// Thread-local origin storage for function parameters. | 
|  | Value *ParamOriginTLS; | 
|  |  | 
|  | /// Thread-local shadow storage for function return value. | 
|  | Value *RetvalTLS; | 
|  |  | 
|  | /// Thread-local origin storage for function return value. | 
|  | Value *RetvalOriginTLS; | 
|  |  | 
|  | /// Thread-local shadow storage for in-register va_arg function | 
|  | /// parameters (x86_64-specific). | 
|  | Value *VAArgTLS; | 
|  |  | 
|  | /// Thread-local shadow storage for in-register va_arg function | 
|  | /// parameters (x86_64-specific). | 
|  | Value *VAArgOriginTLS; | 
|  |  | 
|  | /// Thread-local shadow storage for va_arg overflow area | 
|  | /// (x86_64-specific). | 
|  | Value *VAArgOverflowSizeTLS; | 
|  |  | 
|  | /// Thread-local space used to pass origin value to the UMR reporting | 
|  | /// function. | 
|  | Value *OriginTLS; | 
|  |  | 
|  | /// Are the instrumentation callbacks set up? | 
|  | bool CallbacksInitialized = false; | 
|  |  | 
|  | /// The run-time callback to print a warning. | 
|  | FunctionCallee WarningFn; | 
|  |  | 
|  | // These arrays are indexed by log2(AccessSize). | 
|  | FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; | 
|  | FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; | 
|  |  | 
|  | /// Run-time helper that generates a new origin value for a stack | 
|  | /// allocation. | 
|  | FunctionCallee MsanSetAllocaOrigin4Fn; | 
|  |  | 
|  | /// Run-time helper that poisons stack on function entry. | 
|  | FunctionCallee MsanPoisonStackFn; | 
|  |  | 
|  | /// Run-time helper that records a store (or any event) of an | 
|  | /// uninitialized value and returns an updated origin id encoding this info. | 
|  | FunctionCallee MsanChainOriginFn; | 
|  |  | 
|  | /// MSan runtime replacements for memmove, memcpy and memset. | 
|  | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; | 
|  |  | 
|  | /// KMSAN callback for task-local function argument shadow. | 
|  | StructType *MsanContextStateTy; | 
|  | FunctionCallee MsanGetContextStateFn; | 
|  |  | 
|  | /// Functions for poisoning/unpoisoning local variables | 
|  | FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; | 
|  |  | 
|  | /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin | 
|  | /// pointers. | 
|  | FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; | 
|  | FunctionCallee MsanMetadataPtrForLoad_1_8[4]; | 
|  | FunctionCallee MsanMetadataPtrForStore_1_8[4]; | 
|  | FunctionCallee MsanInstrumentAsmStoreFn; | 
|  |  | 
|  | /// Helper to choose between different MsanMetadataPtrXxx(). | 
|  | FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); | 
|  |  | 
|  | /// Memory map parameters used in application-to-shadow calculation. | 
|  | const MemoryMapParams *MapParams; | 
|  |  | 
|  | /// Custom memory map parameters used when -msan-shadow-base or | 
|  | // -msan-origin-base is provided. | 
|  | MemoryMapParams CustomMapParams; | 
|  |  | 
|  | MDNode *ColdCallWeights; | 
|  |  | 
|  | /// Branch weights for origin store. | 
|  | MDNode *OriginStoreWeights; | 
|  |  | 
|  | /// An empty volatile inline asm that prevents callback merge. | 
|  | InlineAsm *EmptyAsm; | 
|  | }; | 
|  |  | 
|  | void insertModuleCtor(Module &M) { | 
|  | getOrCreateSanitizerCtorAndInitFunctions( | 
|  | M, kMsanModuleCtorName, kMsanInitName, | 
|  | /*InitArgTypes=*/{}, | 
|  | /*InitArgs=*/{}, | 
|  | // This callback is invoked when the functions are created the first | 
|  | // time. Hook them into the global ctors list in that case: | 
|  | [&](Function *Ctor, FunctionCallee) { | 
|  | if (!ClWithComdat) { | 
|  | appendToGlobalCtors(M, Ctor, 0); | 
|  | return; | 
|  | } | 
|  | Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); | 
|  | Ctor->setComdat(MsanCtorComdat); | 
|  | appendToGlobalCtors(M, Ctor, 0, Ctor); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// A legacy function pass for msan instrumentation. | 
|  | /// | 
|  | /// Instruments functions to detect unitialized reads. | 
|  | struct MemorySanitizerLegacyPass : public FunctionPass { | 
|  | // Pass identification, replacement for typeid. | 
|  | static char ID; | 
|  |  | 
|  | MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) | 
|  | : FunctionPass(ID), Options(Options) {} | 
|  | StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | return MSan->sanitizeFunction( | 
|  | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); | 
|  | } | 
|  | bool doInitialization(Module &M) override; | 
|  |  | 
|  | Optional<MemorySanitizer> MSan; | 
|  | MemorySanitizerOptions Options; | 
|  | }; | 
|  |  | 
|  | template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { | 
|  | return (Opt.getNumOccurrences() > 0) ? Opt : Default; | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) | 
|  | : Kernel(getOptOrDefault(ClEnableKmsan, K)), | 
|  | TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), | 
|  | Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} | 
|  |  | 
|  | PreservedAnalyses MemorySanitizerPass::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | MemorySanitizer Msan(*F.getParent(), Options); | 
|  | if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) | 
|  | return PreservedAnalyses::none(); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses MemorySanitizerPass::run(Module &M, | 
|  | ModuleAnalysisManager &AM) { | 
|  | if (Options.Kernel) | 
|  | return PreservedAnalyses::all(); | 
|  | insertModuleCtor(M); | 
|  | return PreservedAnalyses::none(); | 
|  | } | 
|  |  | 
|  | char MemorySanitizerLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", | 
|  | "MemorySanitizer: detects uninitialized reads.", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", | 
|  | "MemorySanitizer: detects uninitialized reads.", false, | 
|  | false) | 
|  |  | 
|  | FunctionPass * | 
|  | llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { | 
|  | return new MemorySanitizerLegacyPass(Options); | 
|  | } | 
|  |  | 
|  | /// Create a non-const global initialized with the given string. | 
|  | /// | 
|  | /// Creates a writable global for Str so that we can pass it to the | 
|  | /// run-time lib. Runtime uses first 4 bytes of the string to store the | 
|  | /// frame ID, so the string needs to be mutable. | 
|  | static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, | 
|  | StringRef Str) { | 
|  | Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); | 
|  | return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, | 
|  | GlobalValue::PrivateLinkage, StrConst, ""); | 
|  | } | 
|  |  | 
|  | /// Create KMSAN API callbacks. | 
|  | void MemorySanitizer::createKernelApi(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  |  | 
|  | // These will be initialized in insertKmsanPrologue(). | 
|  | RetvalTLS = nullptr; | 
|  | RetvalOriginTLS = nullptr; | 
|  | ParamTLS = nullptr; | 
|  | ParamOriginTLS = nullptr; | 
|  | VAArgTLS = nullptr; | 
|  | VAArgOriginTLS = nullptr; | 
|  | VAArgOverflowSizeTLS = nullptr; | 
|  | // OriginTLS is unused in the kernel. | 
|  | OriginTLS = nullptr; | 
|  |  | 
|  | // __msan_warning() in the kernel takes an origin. | 
|  | WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), | 
|  | IRB.getInt32Ty()); | 
|  | // Requests the per-task context state (kmsan_context_state*) from the | 
|  | // runtime library. | 
|  | MsanContextStateTy = StructType::get( | 
|  | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), | 
|  | ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), | 
|  | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), | 
|  | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ | 
|  | IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, | 
|  | OriginTy); | 
|  | MsanGetContextStateFn = M.getOrInsertFunction( | 
|  | "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); | 
|  |  | 
|  | Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), | 
|  | PointerType::get(IRB.getInt32Ty(), 0)); | 
|  |  | 
|  | for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { | 
|  | std::string name_load = | 
|  | "__msan_metadata_ptr_for_load_" + std::to_string(size); | 
|  | std::string name_store = | 
|  | "__msan_metadata_ptr_for_store_" + std::to_string(size); | 
|  | MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( | 
|  | name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); | 
|  | MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( | 
|  | name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); | 
|  | } | 
|  |  | 
|  | MsanMetadataPtrForLoadN = M.getOrInsertFunction( | 
|  | "__msan_metadata_ptr_for_load_n", RetTy, | 
|  | PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); | 
|  | MsanMetadataPtrForStoreN = M.getOrInsertFunction( | 
|  | "__msan_metadata_ptr_for_store_n", RetTy, | 
|  | PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); | 
|  |  | 
|  | // Functions for poisoning and unpoisoning memory. | 
|  | MsanPoisonAllocaFn = | 
|  | M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), | 
|  | IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); | 
|  | MsanUnpoisonAllocaFn = M.getOrInsertFunction( | 
|  | "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); | 
|  | } | 
|  |  | 
|  | static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { | 
|  | return M.getOrInsertGlobal(Name, Ty, [&] { | 
|  | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, | 
|  | nullptr, Name, nullptr, | 
|  | GlobalVariable::InitialExecTLSModel); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Insert declarations for userspace-specific functions and globals. | 
|  | void MemorySanitizer::createUserspaceApi(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | // Create the callback. | 
|  | // FIXME: this function should have "Cold" calling conv, | 
|  | // which is not yet implemented. | 
|  | StringRef WarningFnName = Recover ? "__msan_warning" | 
|  | : "__msan_warning_noreturn"; | 
|  | WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); | 
|  |  | 
|  | // Create the global TLS variables. | 
|  | RetvalTLS = | 
|  | getOrInsertGlobal(M, "__msan_retval_tls", | 
|  | ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); | 
|  |  | 
|  | RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); | 
|  |  | 
|  | ParamTLS = | 
|  | getOrInsertGlobal(M, "__msan_param_tls", | 
|  | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); | 
|  |  | 
|  | ParamOriginTLS = | 
|  | getOrInsertGlobal(M, "__msan_param_origin_tls", | 
|  | ArrayType::get(OriginTy, kParamTLSSize / 4)); | 
|  |  | 
|  | VAArgTLS = | 
|  | getOrInsertGlobal(M, "__msan_va_arg_tls", | 
|  | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); | 
|  |  | 
|  | VAArgOriginTLS = | 
|  | getOrInsertGlobal(M, "__msan_va_arg_origin_tls", | 
|  | ArrayType::get(OriginTy, kParamTLSSize / 4)); | 
|  |  | 
|  | VAArgOverflowSizeTLS = | 
|  | getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); | 
|  | OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); | 
|  |  | 
|  | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | 
|  | AccessSizeIndex++) { | 
|  | unsigned AccessSize = 1 << AccessSizeIndex; | 
|  | std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); | 
|  | MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( | 
|  | FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), | 
|  | IRB.getInt32Ty()); | 
|  |  | 
|  | FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); | 
|  | MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( | 
|  | FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), | 
|  | IRB.getInt8PtrTy(), IRB.getInt32Ty()); | 
|  | } | 
|  |  | 
|  | MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( | 
|  | "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, | 
|  | IRB.getInt8PtrTy(), IntptrTy); | 
|  | MsanPoisonStackFn = | 
|  | M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), | 
|  | IRB.getInt8PtrTy(), IntptrTy); | 
|  | } | 
|  |  | 
|  | /// Insert extern declaration of runtime-provided functions and globals. | 
|  | void MemorySanitizer::initializeCallbacks(Module &M) { | 
|  | // Only do this once. | 
|  | if (CallbacksInitialized) | 
|  | return; | 
|  |  | 
|  | IRBuilder<> IRB(*C); | 
|  | // Initialize callbacks that are common for kernel and userspace | 
|  | // instrumentation. | 
|  | MsanChainOriginFn = M.getOrInsertFunction( | 
|  | "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); | 
|  | MemmoveFn = M.getOrInsertFunction( | 
|  | "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IntptrTy); | 
|  | MemcpyFn = M.getOrInsertFunction( | 
|  | "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | 
|  | IntptrTy); | 
|  | MemsetFn = M.getOrInsertFunction( | 
|  | "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), | 
|  | IntptrTy); | 
|  | // We insert an empty inline asm after __msan_report* to avoid callback merge. | 
|  | EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), | 
|  | StringRef(""), StringRef(""), | 
|  | /*hasSideEffects=*/true); | 
|  |  | 
|  | MsanInstrumentAsmStoreFn = | 
|  | M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), | 
|  | PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); | 
|  |  | 
|  | if (CompileKernel) { | 
|  | createKernelApi(M); | 
|  | } else { | 
|  | createUserspaceApi(M); | 
|  | } | 
|  | CallbacksInitialized = true; | 
|  | } | 
|  |  | 
|  | FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, | 
|  | int size) { | 
|  | FunctionCallee *Fns = | 
|  | isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; | 
|  | switch (size) { | 
|  | case 1: | 
|  | return Fns[0]; | 
|  | case 2: | 
|  | return Fns[1]; | 
|  | case 4: | 
|  | return Fns[2]; | 
|  | case 8: | 
|  | return Fns[3]; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Module-level initialization. | 
|  | /// | 
|  | /// inserts a call to __msan_init to the module's constructor list. | 
|  | void MemorySanitizer::initializeModule(Module &M) { | 
|  | auto &DL = M.getDataLayout(); | 
|  |  | 
|  | bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; | 
|  | bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; | 
|  | // Check the overrides first | 
|  | if (ShadowPassed || OriginPassed) { | 
|  | CustomMapParams.AndMask = ClAndMask; | 
|  | CustomMapParams.XorMask = ClXorMask; | 
|  | CustomMapParams.ShadowBase = ClShadowBase; | 
|  | CustomMapParams.OriginBase = ClOriginBase; | 
|  | MapParams = &CustomMapParams; | 
|  | } else { | 
|  | Triple TargetTriple(M.getTargetTriple()); | 
|  | switch (TargetTriple.getOS()) { | 
|  | case Triple::FreeBSD: | 
|  | switch (TargetTriple.getArch()) { | 
|  | case Triple::x86_64: | 
|  | MapParams = FreeBSD_X86_MemoryMapParams.bits64; | 
|  | break; | 
|  | case Triple::x86: | 
|  | MapParams = FreeBSD_X86_MemoryMapParams.bits32; | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("unsupported architecture"); | 
|  | } | 
|  | break; | 
|  | case Triple::NetBSD: | 
|  | switch (TargetTriple.getArch()) { | 
|  | case Triple::x86_64: | 
|  | MapParams = NetBSD_X86_MemoryMapParams.bits64; | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("unsupported architecture"); | 
|  | } | 
|  | break; | 
|  | case Triple::Linux: | 
|  | switch (TargetTriple.getArch()) { | 
|  | case Triple::x86_64: | 
|  | MapParams = Linux_X86_MemoryMapParams.bits64; | 
|  | break; | 
|  | case Triple::x86: | 
|  | MapParams = Linux_X86_MemoryMapParams.bits32; | 
|  | break; | 
|  | case Triple::mips64: | 
|  | case Triple::mips64el: | 
|  | MapParams = Linux_MIPS_MemoryMapParams.bits64; | 
|  | break; | 
|  | case Triple::ppc64: | 
|  | case Triple::ppc64le: | 
|  | MapParams = Linux_PowerPC_MemoryMapParams.bits64; | 
|  | break; | 
|  | case Triple::aarch64: | 
|  | case Triple::aarch64_be: | 
|  | MapParams = Linux_ARM_MemoryMapParams.bits64; | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("unsupported architecture"); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("unsupported operating system"); | 
|  | } | 
|  | } | 
|  |  | 
|  | C = &(M.getContext()); | 
|  | IRBuilder<> IRB(*C); | 
|  | IntptrTy = IRB.getIntPtrTy(DL); | 
|  | OriginTy = IRB.getInt32Ty(); | 
|  |  | 
|  | ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); | 
|  | OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); | 
|  |  | 
|  | if (!CompileKernel) { | 
|  | if (TrackOrigins) | 
|  | M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { | 
|  | return new GlobalVariable( | 
|  | M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, | 
|  | IRB.getInt32(TrackOrigins), "__msan_track_origins"); | 
|  | }); | 
|  |  | 
|  | if (Recover) | 
|  | M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { | 
|  | return new GlobalVariable(M, IRB.getInt32Ty(), true, | 
|  | GlobalValue::WeakODRLinkage, | 
|  | IRB.getInt32(Recover), "__msan_keep_going"); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MemorySanitizerLegacyPass::doInitialization(Module &M) { | 
|  | if (!Options.Kernel) | 
|  | insertModuleCtor(M); | 
|  | MSan.emplace(M, Options); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A helper class that handles instrumentation of VarArg | 
|  | /// functions on a particular platform. | 
|  | /// | 
|  | /// Implementations are expected to insert the instrumentation | 
|  | /// necessary to propagate argument shadow through VarArg function | 
|  | /// calls. Visit* methods are called during an InstVisitor pass over | 
|  | /// the function, and should avoid creating new basic blocks. A new | 
|  | /// instance of this class is created for each instrumented function. | 
|  | struct VarArgHelper { | 
|  | virtual ~VarArgHelper() = default; | 
|  |  | 
|  | /// Visit a CallSite. | 
|  | virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; | 
|  |  | 
|  | /// Visit a va_start call. | 
|  | virtual void visitVAStartInst(VAStartInst &I) = 0; | 
|  |  | 
|  | /// Visit a va_copy call. | 
|  | virtual void visitVACopyInst(VACopyInst &I) = 0; | 
|  |  | 
|  | /// Finalize function instrumentation. | 
|  | /// | 
|  | /// This method is called after visiting all interesting (see above) | 
|  | /// instructions in a function. | 
|  | virtual void finalizeInstrumentation() = 0; | 
|  | }; | 
|  |  | 
|  | struct MemorySanitizerVisitor; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, | 
|  | MemorySanitizerVisitor &Visitor); | 
|  |  | 
|  | static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { | 
|  | if (TypeSize <= 8) return 0; | 
|  | return Log2_32_Ceil((TypeSize + 7) / 8); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class does all the work for a given function. Store and Load | 
|  | /// instructions store and load corresponding shadow and origin | 
|  | /// values. Most instructions propagate shadow from arguments to their | 
|  | /// return values. Certain instructions (most importantly, BranchInst) | 
|  | /// test their argument shadow and print reports (with a runtime call) if it's | 
|  | /// non-zero. | 
|  | struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { | 
|  | Function &F; | 
|  | MemorySanitizer &MS; | 
|  | SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; | 
|  | ValueMap<Value*, Value*> ShadowMap, OriginMap; | 
|  | std::unique_ptr<VarArgHelper> VAHelper; | 
|  | const TargetLibraryInfo *TLI; | 
|  | BasicBlock *ActualFnStart; | 
|  |  | 
|  | // The following flags disable parts of MSan instrumentation based on | 
|  | // blacklist contents and command-line options. | 
|  | bool InsertChecks; | 
|  | bool PropagateShadow; | 
|  | bool PoisonStack; | 
|  | bool PoisonUndef; | 
|  | bool CheckReturnValue; | 
|  |  | 
|  | struct ShadowOriginAndInsertPoint { | 
|  | Value *Shadow; | 
|  | Value *Origin; | 
|  | Instruction *OrigIns; | 
|  |  | 
|  | ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) | 
|  | : Shadow(S), Origin(O), OrigIns(I) {} | 
|  | }; | 
|  | SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; | 
|  | bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; | 
|  | SmallSet<AllocaInst *, 16> AllocaSet; | 
|  | SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; | 
|  | SmallVector<StoreInst *, 16> StoreList; | 
|  |  | 
|  | MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, | 
|  | const TargetLibraryInfo &TLI) | 
|  | : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { | 
|  | bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); | 
|  | InsertChecks = SanitizeFunction; | 
|  | PropagateShadow = SanitizeFunction; | 
|  | PoisonStack = SanitizeFunction && ClPoisonStack; | 
|  | PoisonUndef = SanitizeFunction && ClPoisonUndef; | 
|  | // FIXME: Consider using SpecialCaseList to specify a list of functions that | 
|  | // must always return fully initialized values. For now, we hardcode "main". | 
|  | CheckReturnValue = SanitizeFunction && (F.getName() == "main"); | 
|  |  | 
|  | MS.initializeCallbacks(*F.getParent()); | 
|  | if (MS.CompileKernel) | 
|  | ActualFnStart = insertKmsanPrologue(F); | 
|  | else | 
|  | ActualFnStart = &F.getEntryBlock(); | 
|  |  | 
|  | LLVM_DEBUG(if (!InsertChecks) dbgs() | 
|  | << "MemorySanitizer is not inserting checks into '" | 
|  | << F.getName() << "'\n"); | 
|  | } | 
|  |  | 
|  | Value *updateOrigin(Value *V, IRBuilder<> &IRB) { | 
|  | if (MS.TrackOrigins <= 1) return V; | 
|  | return IRB.CreateCall(MS.MsanChainOriginFn, V); | 
|  | } | 
|  |  | 
|  | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); | 
|  | if (IntptrSize == kOriginSize) return Origin; | 
|  | assert(IntptrSize == kOriginSize * 2); | 
|  | Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); | 
|  | return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); | 
|  | } | 
|  |  | 
|  | /// Fill memory range with the given origin value. | 
|  | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, | 
|  | unsigned Size, unsigned Alignment) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); | 
|  | unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); | 
|  | assert(IntptrAlignment >= kMinOriginAlignment); | 
|  | assert(IntptrSize >= kOriginSize); | 
|  |  | 
|  | unsigned Ofs = 0; | 
|  | unsigned CurrentAlignment = Alignment; | 
|  | if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { | 
|  | Value *IntptrOrigin = originToIntptr(IRB, Origin); | 
|  | Value *IntptrOriginPtr = | 
|  | IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); | 
|  | for (unsigned i = 0; i < Size / IntptrSize; ++i) { | 
|  | Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) | 
|  | : IntptrOriginPtr; | 
|  | IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); | 
|  | Ofs += IntptrSize / kOriginSize; | 
|  | CurrentAlignment = IntptrAlignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { | 
|  | Value *GEP = | 
|  | i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; | 
|  | IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); | 
|  | CurrentAlignment = kMinOriginAlignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, | 
|  | Value *OriginPtr, unsigned Alignment, bool AsCall) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); | 
|  | unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); | 
|  | if (Shadow->getType()->isAggregateType()) { | 
|  | paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, | 
|  | OriginAlignment); | 
|  | } else { | 
|  | Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); | 
|  | Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); | 
|  | if (ConstantShadow) { | 
|  | if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) | 
|  | paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, | 
|  | OriginAlignment); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned TypeSizeInBits = | 
|  | DL.getTypeSizeInBits(ConvertedShadow->getType()); | 
|  | unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); | 
|  | if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { | 
|  | FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; | 
|  | Value *ConvertedShadow2 = IRB.CreateZExt( | 
|  | ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); | 
|  | IRB.CreateCall(Fn, {ConvertedShadow2, | 
|  | IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), | 
|  | Origin}); | 
|  | } else { | 
|  | Value *Cmp = IRB.CreateICmpNE( | 
|  | ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); | 
|  | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | 
|  | Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); | 
|  | IRBuilder<> IRBNew(CheckTerm); | 
|  | paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, | 
|  | OriginAlignment); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void materializeStores(bool InstrumentWithCalls) { | 
|  | for (StoreInst *SI : StoreList) { | 
|  | IRBuilder<> IRB(SI); | 
|  | Value *Val = SI->getValueOperand(); | 
|  | Value *Addr = SI->getPointerOperand(); | 
|  | Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | Type *ShadowTy = Shadow->getType(); | 
|  | unsigned Alignment = SI->getAlignment(); | 
|  | unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); | 
|  |  | 
|  | StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); | 
|  | LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n"); | 
|  | (void)NewSI; | 
|  |  | 
|  | if (SI->isAtomic()) | 
|  | SI->setOrdering(addReleaseOrdering(SI->getOrdering())); | 
|  |  | 
|  | if (MS.TrackOrigins && !SI->isAtomic()) | 
|  | storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, | 
|  | OriginAlignment, InstrumentWithCalls); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helper function to insert a warning at IRB's current insert point. | 
|  | void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { | 
|  | if (!Origin) | 
|  | Origin = (Value *)IRB.getInt32(0); | 
|  | if (MS.CompileKernel) { | 
|  | IRB.CreateCall(MS.WarningFn, Origin); | 
|  | } else { | 
|  | if (MS.TrackOrigins) { | 
|  | IRB.CreateStore(Origin, MS.OriginTLS); | 
|  | } | 
|  | IRB.CreateCall(MS.WarningFn, {}); | 
|  | } | 
|  | IRB.CreateCall(MS.EmptyAsm, {}); | 
|  | // FIXME: Insert UnreachableInst if !MS.Recover? | 
|  | // This may invalidate some of the following checks and needs to be done | 
|  | // at the very end. | 
|  | } | 
|  |  | 
|  | void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, | 
|  | bool AsCall) { | 
|  | IRBuilder<> IRB(OrigIns); | 
|  | LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n"); | 
|  | Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); | 
|  | LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n"); | 
|  |  | 
|  | Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); | 
|  | if (ConstantShadow) { | 
|  | if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { | 
|  | insertWarningFn(IRB, Origin); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = OrigIns->getModule()->getDataLayout(); | 
|  |  | 
|  | unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); | 
|  | unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); | 
|  | if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { | 
|  | FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; | 
|  | Value *ConvertedShadow2 = | 
|  | IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); | 
|  | IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin | 
|  | ? Origin | 
|  | : (Value *)IRB.getInt32(0)}); | 
|  | } else { | 
|  | Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, | 
|  | getCleanShadow(ConvertedShadow), "_mscmp"); | 
|  | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | 
|  | Cmp, OrigIns, | 
|  | /* Unreachable */ !MS.Recover, MS.ColdCallWeights); | 
|  |  | 
|  | IRB.SetInsertPoint(CheckTerm); | 
|  | insertWarningFn(IRB, Origin); | 
|  | LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void materializeChecks(bool InstrumentWithCalls) { | 
|  | for (const auto &ShadowData : InstrumentationList) { | 
|  | Instruction *OrigIns = ShadowData.OrigIns; | 
|  | Value *Shadow = ShadowData.Shadow; | 
|  | Value *Origin = ShadowData.Origin; | 
|  | materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "DONE:\n" << F); | 
|  | } | 
|  |  | 
|  | BasicBlock *insertKmsanPrologue(Function &F) { | 
|  | BasicBlock *ret = | 
|  | SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); | 
|  | IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); | 
|  | Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); | 
|  | Constant *Zero = IRB.getInt32(0); | 
|  | MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(0)}, "param_shadow"); | 
|  | MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(1)}, "retval_shadow"); | 
|  | MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(2)}, "va_arg_shadow"); | 
|  | MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(3)}, "va_arg_origin"); | 
|  | MS.VAArgOverflowSizeTLS = | 
|  | IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); | 
|  | MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(5)}, "param_origin"); | 
|  | MS.RetvalOriginTLS = | 
|  | IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | 
|  | {Zero, IRB.getInt32(6)}, "retval_origin"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /// Add MemorySanitizer instrumentation to a function. | 
|  | bool runOnFunction() { | 
|  | // In the presence of unreachable blocks, we may see Phi nodes with | 
|  | // incoming nodes from such blocks. Since InstVisitor skips unreachable | 
|  | // blocks, such nodes will not have any shadow value associated with them. | 
|  | // It's easier to remove unreachable blocks than deal with missing shadow. | 
|  | removeUnreachableBlocks(F); | 
|  |  | 
|  | // Iterate all BBs in depth-first order and create shadow instructions | 
|  | // for all instructions (where applicable). | 
|  | // For PHI nodes we create dummy shadow PHIs which will be finalized later. | 
|  | for (BasicBlock *BB : depth_first(ActualFnStart)) | 
|  | visit(*BB); | 
|  |  | 
|  | // Finalize PHI nodes. | 
|  | for (PHINode *PN : ShadowPHINodes) { | 
|  | PHINode *PNS = cast<PHINode>(getShadow(PN)); | 
|  | PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; | 
|  | size_t NumValues = PN->getNumIncomingValues(); | 
|  | for (size_t v = 0; v < NumValues; v++) { | 
|  | PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); | 
|  | if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); | 
|  | } | 
|  | } | 
|  |  | 
|  | VAHelper->finalizeInstrumentation(); | 
|  |  | 
|  | // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to | 
|  | // instrumenting only allocas. | 
|  | if (InstrumentLifetimeStart) { | 
|  | for (auto Item : LifetimeStartList) { | 
|  | instrumentAlloca(*Item.second, Item.first); | 
|  | AllocaSet.erase(Item.second); | 
|  | } | 
|  | } | 
|  | // Poison the allocas for which we didn't instrument the corresponding | 
|  | // lifetime intrinsics. | 
|  | for (AllocaInst *AI : AllocaSet) | 
|  | instrumentAlloca(*AI); | 
|  |  | 
|  | bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && | 
|  | InstrumentationList.size() + StoreList.size() > | 
|  | (unsigned)ClInstrumentationWithCallThreshold; | 
|  |  | 
|  | // Insert shadow value checks. | 
|  | materializeChecks(InstrumentWithCalls); | 
|  |  | 
|  | // Delayed instrumentation of StoreInst. | 
|  | // This may not add new address checks. | 
|  | materializeStores(InstrumentWithCalls); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute the shadow type that corresponds to a given Value. | 
|  | Type *getShadowTy(Value *V) { | 
|  | return getShadowTy(V->getType()); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow type that corresponds to a given Type. | 
|  | Type *getShadowTy(Type *OrigTy) { | 
|  | if (!OrigTy->isSized()) { | 
|  | return nullptr; | 
|  | } | 
|  | // For integer type, shadow is the same as the original type. | 
|  | // This may return weird-sized types like i1. | 
|  | if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) | 
|  | return IT; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { | 
|  | uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); | 
|  | return VectorType::get(IntegerType::get(*MS.C, EltSize), | 
|  | VT->getNumElements()); | 
|  | } | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { | 
|  | return ArrayType::get(getShadowTy(AT->getElementType()), | 
|  | AT->getNumElements()); | 
|  | } | 
|  | if (StructType *ST = dyn_cast<StructType>(OrigTy)) { | 
|  | SmallVector<Type*, 4> Elements; | 
|  | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) | 
|  | Elements.push_back(getShadowTy(ST->getElementType(i))); | 
|  | StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); | 
|  | LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); | 
|  | return Res; | 
|  | } | 
|  | uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); | 
|  | return IntegerType::get(*MS.C, TypeSize); | 
|  | } | 
|  |  | 
|  | /// Flatten a vector type. | 
|  | Type *getShadowTyNoVec(Type *ty) { | 
|  | if (VectorType *vt = dyn_cast<VectorType>(ty)) | 
|  | return IntegerType::get(*MS.C, vt->getBitWidth()); | 
|  | return ty; | 
|  | } | 
|  |  | 
|  | /// Convert a shadow value to it's flattened variant. | 
|  | Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { | 
|  | Type *Ty = V->getType(); | 
|  | Type *NoVecTy = getShadowTyNoVec(Ty); | 
|  | if (Ty == NoVecTy) return V; | 
|  | return IRB.CreateBitCast(V, NoVecTy); | 
|  | } | 
|  |  | 
|  | /// Compute the integer shadow offset that corresponds to a given | 
|  | /// application address. | 
|  | /// | 
|  | /// Offset = (Addr & ~AndMask) ^ XorMask | 
|  | Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { | 
|  | Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); | 
|  |  | 
|  | uint64_t AndMask = MS.MapParams->AndMask; | 
|  | if (AndMask) | 
|  | OffsetLong = | 
|  | IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); | 
|  |  | 
|  | uint64_t XorMask = MS.MapParams->XorMask; | 
|  | if (XorMask) | 
|  | OffsetLong = | 
|  | IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); | 
|  | return OffsetLong; | 
|  | } | 
|  |  | 
|  | /// Compute the shadow and origin addresses corresponding to a given | 
|  | /// application address. | 
|  | /// | 
|  | /// Shadow = ShadowBase + Offset | 
|  | /// Origin = (OriginBase + Offset) & ~3ULL | 
|  | std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, | 
|  | IRBuilder<> &IRB, | 
|  | Type *ShadowTy, | 
|  | unsigned Alignment) { | 
|  | Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); | 
|  | Value *ShadowLong = ShadowOffset; | 
|  | uint64_t ShadowBase = MS.MapParams->ShadowBase; | 
|  | if (ShadowBase != 0) { | 
|  | ShadowLong = | 
|  | IRB.CreateAdd(ShadowLong, | 
|  | ConstantInt::get(MS.IntptrTy, ShadowBase)); | 
|  | } | 
|  | Value *ShadowPtr = | 
|  | IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); | 
|  | Value *OriginPtr = nullptr; | 
|  | if (MS.TrackOrigins) { | 
|  | Value *OriginLong = ShadowOffset; | 
|  | uint64_t OriginBase = MS.MapParams->OriginBase; | 
|  | if (OriginBase != 0) | 
|  | OriginLong = IRB.CreateAdd(OriginLong, | 
|  | ConstantInt::get(MS.IntptrTy, OriginBase)); | 
|  | if (Alignment < kMinOriginAlignment) { | 
|  | uint64_t Mask = kMinOriginAlignment - 1; | 
|  | OriginLong = | 
|  | IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); | 
|  | } | 
|  | OriginPtr = | 
|  | IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); | 
|  | } | 
|  | return std::make_pair(ShadowPtr, OriginPtr); | 
|  | } | 
|  |  | 
|  | std::pair<Value *, Value *> | 
|  | getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, | 
|  | unsigned Alignment, bool isStore) { | 
|  | Value *ShadowOriginPtrs; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | int Size = DL.getTypeStoreSize(ShadowTy); | 
|  |  | 
|  | FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); | 
|  | Value *AddrCast = | 
|  | IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); | 
|  | if (Getter) { | 
|  | ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); | 
|  | } else { | 
|  | Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); | 
|  | ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN | 
|  | : MS.MsanMetadataPtrForLoadN, | 
|  | {AddrCast, SizeVal}); | 
|  | } | 
|  | Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); | 
|  | ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); | 
|  | Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); | 
|  |  | 
|  | return std::make_pair(ShadowPtr, OriginPtr); | 
|  | } | 
|  |  | 
|  | std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, | 
|  | Type *ShadowTy, | 
|  | unsigned Alignment, | 
|  | bool isStore) { | 
|  | std::pair<Value *, Value *> ret; | 
|  | if (MS.CompileKernel) | 
|  | ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); | 
|  | else | 
|  | ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a given function argument. | 
|  | /// | 
|  | /// Shadow = ParamTLS+ArgOffset. | 
|  | Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, | 
|  | int ArgOffset) { | 
|  | Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); | 
|  | if (ArgOffset) | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), | 
|  | "_msarg"); | 
|  | } | 
|  |  | 
|  | /// Compute the origin address for a given function argument. | 
|  | Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, | 
|  | int ArgOffset) { | 
|  | if (!MS.TrackOrigins) | 
|  | return nullptr; | 
|  | Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); | 
|  | if (ArgOffset) | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), | 
|  | "_msarg_o"); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a retval. | 
|  | Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { | 
|  | return IRB.CreatePointerCast(MS.RetvalTLS, | 
|  | PointerType::get(getShadowTy(A), 0), | 
|  | "_msret"); | 
|  | } | 
|  |  | 
|  | /// Compute the origin address for a retval. | 
|  | Value *getOriginPtrForRetval(IRBuilder<> &IRB) { | 
|  | // We keep a single origin for the entire retval. Might be too optimistic. | 
|  | return MS.RetvalOriginTLS; | 
|  | } | 
|  |  | 
|  | /// Set SV to be the shadow value for V. | 
|  | void setShadow(Value *V, Value *SV) { | 
|  | assert(!ShadowMap.count(V) && "Values may only have one shadow"); | 
|  | ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); | 
|  | } | 
|  |  | 
|  | /// Set Origin to be the origin value for V. | 
|  | void setOrigin(Value *V, Value *Origin) { | 
|  | if (!MS.TrackOrigins) return; | 
|  | assert(!OriginMap.count(V) && "Values may only have one origin"); | 
|  | LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n"); | 
|  | OriginMap[V] = Origin; | 
|  | } | 
|  |  | 
|  | Constant *getCleanShadow(Type *OrigTy) { | 
|  | Type *ShadowTy = getShadowTy(OrigTy); | 
|  | if (!ShadowTy) | 
|  | return nullptr; | 
|  | return Constant::getNullValue(ShadowTy); | 
|  | } | 
|  |  | 
|  | /// Create a clean shadow value for a given value. | 
|  | /// | 
|  | /// Clean shadow (all zeroes) means all bits of the value are defined | 
|  | /// (initialized). | 
|  | Constant *getCleanShadow(Value *V) { | 
|  | return getCleanShadow(V->getType()); | 
|  | } | 
|  |  | 
|  | /// Create a dirty shadow of a given shadow type. | 
|  | Constant *getPoisonedShadow(Type *ShadowTy) { | 
|  | assert(ShadowTy); | 
|  | if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) | 
|  | return Constant::getAllOnesValue(ShadowTy); | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { | 
|  | SmallVector<Constant *, 4> Vals(AT->getNumElements(), | 
|  | getPoisonedShadow(AT->getElementType())); | 
|  | return ConstantArray::get(AT, Vals); | 
|  | } | 
|  | if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { | 
|  | SmallVector<Constant *, 4> Vals; | 
|  | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) | 
|  | Vals.push_back(getPoisonedShadow(ST->getElementType(i))); | 
|  | return ConstantStruct::get(ST, Vals); | 
|  | } | 
|  | llvm_unreachable("Unexpected shadow type"); | 
|  | } | 
|  |  | 
|  | /// Create a dirty shadow for a given value. | 
|  | Constant *getPoisonedShadow(Value *V) { | 
|  | Type *ShadowTy = getShadowTy(V); | 
|  | if (!ShadowTy) | 
|  | return nullptr; | 
|  | return getPoisonedShadow(ShadowTy); | 
|  | } | 
|  |  | 
|  | /// Create a clean (zero) origin. | 
|  | Value *getCleanOrigin() { | 
|  | return Constant::getNullValue(MS.OriginTy); | 
|  | } | 
|  |  | 
|  | /// Get the shadow value for a given Value. | 
|  | /// | 
|  | /// This function either returns the value set earlier with setShadow, | 
|  | /// or extracts if from ParamTLS (for function arguments). | 
|  | Value *getShadow(Value *V) { | 
|  | if (!PropagateShadow) return getCleanShadow(V); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (I->getMetadata("nosanitize")) | 
|  | return getCleanShadow(V); | 
|  | // For instructions the shadow is already stored in the map. | 
|  | Value *Shadow = ShadowMap[V]; | 
|  | if (!Shadow) { | 
|  | LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); | 
|  | (void)I; | 
|  | assert(Shadow && "No shadow for a value"); | 
|  | } | 
|  | return Shadow; | 
|  | } | 
|  | if (UndefValue *U = dyn_cast<UndefValue>(V)) { | 
|  | Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); | 
|  | LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); | 
|  | (void)U; | 
|  | return AllOnes; | 
|  | } | 
|  | if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | // For arguments we compute the shadow on demand and store it in the map. | 
|  | Value **ShadowPtr = &ShadowMap[V]; | 
|  | if (*ShadowPtr) | 
|  | return *ShadowPtr; | 
|  | Function *F = A->getParent(); | 
|  | IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); | 
|  | unsigned ArgOffset = 0; | 
|  | const DataLayout &DL = F->getParent()->getDataLayout(); | 
|  | for (auto &FArg : F->args()) { | 
|  | if (!FArg.getType()->isSized()) { | 
|  | LLVM_DEBUG(dbgs() << "Arg is not sized\n"); | 
|  | continue; | 
|  | } | 
|  | unsigned Size = | 
|  | FArg.hasByValAttr() | 
|  | ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) | 
|  | : DL.getTypeAllocSize(FArg.getType()); | 
|  | if (A == &FArg) { | 
|  | bool Overflow = ArgOffset + Size > kParamTLSSize; | 
|  | Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); | 
|  | if (FArg.hasByValAttr()) { | 
|  | // ByVal pointer itself has clean shadow. We copy the actual | 
|  | // argument shadow to the underlying memory. | 
|  | // Figure out maximal valid memcpy alignment. | 
|  | unsigned ArgAlign = FArg.getParamAlignment(); | 
|  | if (ArgAlign == 0) { | 
|  | Type *EltType = A->getType()->getPointerElementType(); | 
|  | ArgAlign = DL.getABITypeAlignment(EltType); | 
|  | } | 
|  | Value *CpShadowPtr = | 
|  | getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, | 
|  | /*isStore*/ true) | 
|  | .first; | 
|  | // TODO(glider): need to copy origins. | 
|  | if (Overflow) { | 
|  | // ParamTLS overflow. | 
|  | EntryIRB.CreateMemSet( | 
|  | CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), | 
|  | Size, ArgAlign); | 
|  | } else { | 
|  | unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); | 
|  | Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, | 
|  | CopyAlign, Size); | 
|  | LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n"); | 
|  | (void)Cpy; | 
|  | } | 
|  | *ShadowPtr = getCleanShadow(V); | 
|  | } else { | 
|  | if (Overflow) { | 
|  | // ParamTLS overflow. | 
|  | *ShadowPtr = getCleanShadow(V); | 
|  | } else { | 
|  | *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, | 
|  | kShadowTLSAlignment); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n"); | 
|  | if (MS.TrackOrigins && !Overflow) { | 
|  | Value *OriginPtr = | 
|  | getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); | 
|  | setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); | 
|  | } else { | 
|  | setOrigin(A, getCleanOrigin()); | 
|  | } | 
|  | } | 
|  | ArgOffset += alignTo(Size, kShadowTLSAlignment); | 
|  | } | 
|  | assert(*ShadowPtr && "Could not find shadow for an argument"); | 
|  | return *ShadowPtr; | 
|  | } | 
|  | // For everything else the shadow is zero. | 
|  | return getCleanShadow(V); | 
|  | } | 
|  |  | 
|  | /// Get the shadow for i-th argument of the instruction I. | 
|  | Value *getShadow(Instruction *I, int i) { | 
|  | return getShadow(I->getOperand(i)); | 
|  | } | 
|  |  | 
|  | /// Get the origin for a value. | 
|  | Value *getOrigin(Value *V) { | 
|  | if (!MS.TrackOrigins) return nullptr; | 
|  | if (!PropagateShadow) return getCleanOrigin(); | 
|  | if (isa<Constant>(V)) return getCleanOrigin(); | 
|  | assert((isa<Instruction>(V) || isa<Argument>(V)) && | 
|  | "Unexpected value type in getOrigin()"); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (I->getMetadata("nosanitize")) | 
|  | return getCleanOrigin(); | 
|  | } | 
|  | Value *Origin = OriginMap[V]; | 
|  | assert(Origin && "Missing origin"); | 
|  | return Origin; | 
|  | } | 
|  |  | 
|  | /// Get the origin for i-th argument of the instruction I. | 
|  | Value *getOrigin(Instruction *I, int i) { | 
|  | return getOrigin(I->getOperand(i)); | 
|  | } | 
|  |  | 
|  | /// Remember the place where a shadow check should be inserted. | 
|  | /// | 
|  | /// This location will be later instrumented with a check that will print a | 
|  | /// UMR warning in runtime if the shadow value is not 0. | 
|  | void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { | 
|  | assert(Shadow); | 
|  | if (!InsertChecks) return; | 
|  | #ifndef NDEBUG | 
|  | Type *ShadowTy = Shadow->getType(); | 
|  | assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && | 
|  | "Can only insert checks for integer and vector shadow types"); | 
|  | #endif | 
|  | InstrumentationList.push_back( | 
|  | ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); | 
|  | } | 
|  |  | 
|  | /// Remember the place where a shadow check should be inserted. | 
|  | /// | 
|  | /// This location will be later instrumented with a check that will print a | 
|  | /// UMR warning in runtime if the value is not fully defined. | 
|  | void insertShadowCheck(Value *Val, Instruction *OrigIns) { | 
|  | assert(Val); | 
|  | Value *Shadow, *Origin; | 
|  | if (ClCheckConstantShadow) { | 
|  | Shadow = getShadow(Val); | 
|  | if (!Shadow) return; | 
|  | Origin = getOrigin(Val); | 
|  | } else { | 
|  | Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); | 
|  | if (!Shadow) return; | 
|  | Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); | 
|  | } | 
|  | insertShadowCheck(Shadow, Origin, OrigIns); | 
|  | } | 
|  |  | 
|  | AtomicOrdering addReleaseOrdering(AtomicOrdering a) { | 
|  | switch (a) { | 
|  | case AtomicOrdering::NotAtomic: | 
|  | return AtomicOrdering::NotAtomic; | 
|  | case AtomicOrdering::Unordered: | 
|  | case AtomicOrdering::Monotonic: | 
|  | case AtomicOrdering::Release: | 
|  | return AtomicOrdering::Release; | 
|  | case AtomicOrdering::Acquire: | 
|  | case AtomicOrdering::AcquireRelease: | 
|  | return AtomicOrdering::AcquireRelease; | 
|  | case AtomicOrdering::SequentiallyConsistent: | 
|  | return AtomicOrdering::SequentiallyConsistent; | 
|  | } | 
|  | llvm_unreachable("Unknown ordering"); | 
|  | } | 
|  |  | 
|  | AtomicOrdering addAcquireOrdering(AtomicOrdering a) { | 
|  | switch (a) { | 
|  | case AtomicOrdering::NotAtomic: | 
|  | return AtomicOrdering::NotAtomic; | 
|  | case AtomicOrdering::Unordered: | 
|  | case AtomicOrdering::Monotonic: | 
|  | case AtomicOrdering::Acquire: | 
|  | return AtomicOrdering::Acquire; | 
|  | case AtomicOrdering::Release: | 
|  | case AtomicOrdering::AcquireRelease: | 
|  | return AtomicOrdering::AcquireRelease; | 
|  | case AtomicOrdering::SequentiallyConsistent: | 
|  | return AtomicOrdering::SequentiallyConsistent; | 
|  | } | 
|  | llvm_unreachable("Unknown ordering"); | 
|  | } | 
|  |  | 
|  | // ------------------- Visitors. | 
|  | using InstVisitor<MemorySanitizerVisitor>::visit; | 
|  | void visit(Instruction &I) { | 
|  | if (!I.getMetadata("nosanitize")) | 
|  | InstVisitor<MemorySanitizerVisitor>::visit(I); | 
|  | } | 
|  |  | 
|  | /// Instrument LoadInst | 
|  | /// | 
|  | /// Loads the corresponding shadow and (optionally) origin. | 
|  | /// Optionally, checks that the load address is fully defined. | 
|  | void visitLoadInst(LoadInst &I) { | 
|  | assert(I.getType()->isSized() && "Load type must have size"); | 
|  | assert(!I.getMetadata("nosanitize")); | 
|  | IRBuilder<> IRB(I.getNextNode()); | 
|  | Type *ShadowTy = getShadowTy(&I); | 
|  | Value *Addr = I.getPointerOperand(); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | if (PropagateShadow) { | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); | 
|  | setShadow(&I, | 
|  | IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); | 
|  | } else { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | } | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(I.getPointerOperand(), &I); | 
|  |  | 
|  | if (I.isAtomic()) | 
|  | I.setOrdering(addAcquireOrdering(I.getOrdering())); | 
|  |  | 
|  | if (MS.TrackOrigins) { | 
|  | if (PropagateShadow) { | 
|  | unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); | 
|  | setOrigin( | 
|  | &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); | 
|  | } else { | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Instrument StoreInst | 
|  | /// | 
|  | /// Stores the corresponding shadow and (optionally) origin. | 
|  | /// Optionally, checks that the store address is fully defined. | 
|  | void visitStoreInst(StoreInst &I) { | 
|  | StoreList.push_back(&I); | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(I.getPointerOperand(), &I); | 
|  | } | 
|  |  | 
|  | void handleCASOrRMW(Instruction &I) { | 
|  | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); | 
|  |  | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Addr = I.getOperand(0); | 
|  | Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), | 
|  | /*Alignment*/ 1, /*isStore*/ true) | 
|  | .first; | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(Addr, &I); | 
|  |  | 
|  | // Only test the conditional argument of cmpxchg instruction. | 
|  | // The other argument can potentially be uninitialized, but we can not | 
|  | // detect this situation reliably without possible false positives. | 
|  | if (isa<AtomicCmpXchgInst>(I)) | 
|  | insertShadowCheck(I.getOperand(1), &I); | 
|  |  | 
|  | IRB.CreateStore(getCleanShadow(&I), ShadowPtr); | 
|  |  | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  |  | 
|  | void visitAtomicRMWInst(AtomicRMWInst &I) { | 
|  | handleCASOrRMW(I); | 
|  | I.setOrdering(addReleaseOrdering(I.getOrdering())); | 
|  | } | 
|  |  | 
|  | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { | 
|  | handleCASOrRMW(I); | 
|  | I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); | 
|  | } | 
|  |  | 
|  | // Vector manipulation. | 
|  | void visitExtractElementInst(ExtractElementInst &I) { | 
|  | insertShadowCheck(I.getOperand(1), &I); | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), | 
|  | "_msprop")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitInsertElementInst(InsertElementInst &I) { | 
|  | insertShadowCheck(I.getOperand(2), &I); | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), | 
|  | I.getOperand(2), "_msprop")); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &I) { | 
|  | insertShadowCheck(I.getOperand(2), &I); | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), | 
|  | I.getOperand(2), "_msprop")); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Casts. | 
|  | void visitSExtInst(SExtInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitZExtInst(ZExtInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitTruncInst(TruncInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitBitCastInst(BitCastInst &I) { | 
|  | // Special case: if this is the bitcast (there is exactly 1 allowed) between | 
|  | // a musttail call and a ret, don't instrument. New instructions are not | 
|  | // allowed after a musttail call. | 
|  | if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) | 
|  | if (CI->isMustTailCall()) | 
|  | return; | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitPtrToIntInst(PtrToIntInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, | 
|  | "_msprop_ptrtoint")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitIntToPtrInst(IntToPtrInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, | 
|  | "_msprop_inttoptr")); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } | 
|  | void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } | 
|  | void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } | 
|  | void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } | 
|  | void visitFPExtInst(CastInst& I) { handleShadowOr(I); } | 
|  | void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } | 
|  |  | 
|  | /// Propagate shadow for bitwise AND. | 
|  | /// | 
|  | /// This code is exact, i.e. if, for example, a bit in the left argument | 
|  | /// is defined and 0, then neither the value not definedness of the | 
|  | /// corresponding bit in B don't affect the resulting shadow. | 
|  | void visitAnd(BinaryOperator &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | //  "And" of 0 and a poisoned value results in unpoisoned value. | 
|  | //  1&1 => 1;     0&1 => 0;     p&1 => p; | 
|  | //  1&0 => 0;     0&0 => 0;     p&0 => 0; | 
|  | //  1&p => p;     0&p => 0;     p&p => p; | 
|  | //  S = (S1 & S2) | (V1 & S2) | (S1 & V2) | 
|  | Value *S1 = getShadow(&I, 0); | 
|  | Value *S2 = getShadow(&I, 1); | 
|  | Value *V1 = I.getOperand(0); | 
|  | Value *V2 = I.getOperand(1); | 
|  | if (V1->getType() != S1->getType()) { | 
|  | V1 = IRB.CreateIntCast(V1, S1->getType(), false); | 
|  | V2 = IRB.CreateIntCast(V2, S2->getType(), false); | 
|  | } | 
|  | Value *S1S2 = IRB.CreateAnd(S1, S2); | 
|  | Value *V1S2 = IRB.CreateAnd(V1, S2); | 
|  | Value *S1V2 = IRB.CreateAnd(S1, V2); | 
|  | setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void visitOr(BinaryOperator &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | //  "Or" of 1 and a poisoned value results in unpoisoned value. | 
|  | //  1|1 => 1;     0|1 => 1;     p|1 => 1; | 
|  | //  1|0 => 1;     0|0 => 0;     p|0 => p; | 
|  | //  1|p => 1;     0|p => p;     p|p => p; | 
|  | //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) | 
|  | Value *S1 = getShadow(&I, 0); | 
|  | Value *S2 = getShadow(&I, 1); | 
|  | Value *V1 = IRB.CreateNot(I.getOperand(0)); | 
|  | Value *V2 = IRB.CreateNot(I.getOperand(1)); | 
|  | if (V1->getType() != S1->getType()) { | 
|  | V1 = IRB.CreateIntCast(V1, S1->getType(), false); | 
|  | V2 = IRB.CreateIntCast(V2, S2->getType(), false); | 
|  | } | 
|  | Value *S1S2 = IRB.CreateAnd(S1, S2); | 
|  | Value *V1S2 = IRB.CreateAnd(V1, S2); | 
|  | Value *S1V2 = IRB.CreateAnd(S1, V2); | 
|  | setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | /// Default propagation of shadow and/or origin. | 
|  | /// | 
|  | /// This class implements the general case of shadow propagation, used in all | 
|  | /// cases where we don't know and/or don't care about what the operation | 
|  | /// actually does. It converts all input shadow values to a common type | 
|  | /// (extending or truncating as necessary), and bitwise OR's them. | 
|  | /// | 
|  | /// This is much cheaper than inserting checks (i.e. requiring inputs to be | 
|  | /// fully initialized), and less prone to false positives. | 
|  | /// | 
|  | /// This class also implements the general case of origin propagation. For a | 
|  | /// Nary operation, result origin is set to the origin of an argument that is | 
|  | /// not entirely initialized. If there is more than one such arguments, the | 
|  | /// rightmost of them is picked. It does not matter which one is picked if all | 
|  | /// arguments are initialized. | 
|  | template <bool CombineShadow> | 
|  | class Combiner { | 
|  | Value *Shadow = nullptr; | 
|  | Value *Origin = nullptr; | 
|  | IRBuilder<> &IRB; | 
|  | MemorySanitizerVisitor *MSV; | 
|  |  | 
|  | public: | 
|  | Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) | 
|  | : IRB(IRB), MSV(MSV) {} | 
|  |  | 
|  | /// Add a pair of shadow and origin values to the mix. | 
|  | Combiner &Add(Value *OpShadow, Value *OpOrigin) { | 
|  | if (CombineShadow) { | 
|  | assert(OpShadow); | 
|  | if (!Shadow) | 
|  | Shadow = OpShadow; | 
|  | else { | 
|  | OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); | 
|  | Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MSV->MS.TrackOrigins) { | 
|  | assert(OpOrigin); | 
|  | if (!Origin) { | 
|  | Origin = OpOrigin; | 
|  | } else { | 
|  | Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); | 
|  | // No point in adding something that might result in 0 origin value. | 
|  | if (!ConstOrigin || !ConstOrigin->isNullValue()) { | 
|  | Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); | 
|  | Value *Cond = | 
|  | IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); | 
|  | Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); | 
|  | } | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Add an application value to the mix. | 
|  | Combiner &Add(Value *V) { | 
|  | Value *OpShadow = MSV->getShadow(V); | 
|  | Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; | 
|  | return Add(OpShadow, OpOrigin); | 
|  | } | 
|  |  | 
|  | /// Set the current combined values as the given instruction's shadow | 
|  | /// and origin. | 
|  | void Done(Instruction *I) { | 
|  | if (CombineShadow) { | 
|  | assert(Shadow); | 
|  | Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); | 
|  | MSV->setShadow(I, Shadow); | 
|  | } | 
|  | if (MSV->MS.TrackOrigins) { | 
|  | assert(Origin); | 
|  | MSV->setOrigin(I, Origin); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | using ShadowAndOriginCombiner = Combiner<true>; | 
|  | using OriginCombiner = Combiner<false>; | 
|  |  | 
|  | /// Propagate origin for arbitrary operation. | 
|  | void setOriginForNaryOp(Instruction &I) { | 
|  | if (!MS.TrackOrigins) return; | 
|  | IRBuilder<> IRB(&I); | 
|  | OriginCombiner OC(this, IRB); | 
|  | for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) | 
|  | OC.Add(OI->get()); | 
|  | OC.Done(&I); | 
|  | } | 
|  |  | 
|  | size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { | 
|  | assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && | 
|  | "Vector of pointers is not a valid shadow type"); | 
|  | return Ty->isVectorTy() ? | 
|  | Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : | 
|  | Ty->getPrimitiveSizeInBits(); | 
|  | } | 
|  |  | 
|  | /// Cast between two shadow types, extending or truncating as | 
|  | /// necessary. | 
|  | Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, | 
|  | bool Signed = false) { | 
|  | Type *srcTy = V->getType(); | 
|  | size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); | 
|  | size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); | 
|  | if (srcSizeInBits > 1 && dstSizeInBits == 1) | 
|  | return IRB.CreateICmpNE(V, getCleanShadow(V)); | 
|  |  | 
|  | if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) | 
|  | return IRB.CreateIntCast(V, dstTy, Signed); | 
|  | if (dstTy->isVectorTy() && srcTy->isVectorTy() && | 
|  | dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) | 
|  | return IRB.CreateIntCast(V, dstTy, Signed); | 
|  | Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); | 
|  | Value *V2 = | 
|  | IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); | 
|  | return IRB.CreateBitCast(V2, dstTy); | 
|  | // TODO: handle struct types. | 
|  | } | 
|  |  | 
|  | /// Cast an application value to the type of its own shadow. | 
|  | Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { | 
|  | Type *ShadowTy = getShadowTy(V); | 
|  | if (V->getType() == ShadowTy) | 
|  | return V; | 
|  | if (V->getType()->isPtrOrPtrVectorTy()) | 
|  | return IRB.CreatePtrToInt(V, ShadowTy); | 
|  | else | 
|  | return IRB.CreateBitCast(V, ShadowTy); | 
|  | } | 
|  |  | 
|  | /// Propagate shadow for arbitrary operation. | 
|  | void handleShadowOr(Instruction &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | ShadowAndOriginCombiner SC(this, IRB); | 
|  | for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) | 
|  | SC.Add(OI->get()); | 
|  | SC.Done(&I); | 
|  | } | 
|  |  | 
|  | void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } | 
|  |  | 
|  | // Handle multiplication by constant. | 
|  | // | 
|  | // Handle a special case of multiplication by constant that may have one or | 
|  | // more zeros in the lower bits. This makes corresponding number of lower bits | 
|  | // of the result zero as well. We model it by shifting the other operand | 
|  | // shadow left by the required number of bits. Effectively, we transform | 
|  | // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). | 
|  | // We use multiplication by 2**N instead of shift to cover the case of | 
|  | // multiplication by 0, which may occur in some elements of a vector operand. | 
|  | void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, | 
|  | Value *OtherArg) { | 
|  | Constant *ShadowMul; | 
|  | Type *Ty = ConstArg->getType(); | 
|  | if (Ty->isVectorTy()) { | 
|  | unsigned NumElements = Ty->getVectorNumElements(); | 
|  | Type *EltTy = Ty->getSequentialElementType(); | 
|  | SmallVector<Constant *, 16> Elements; | 
|  | for (unsigned Idx = 0; Idx < NumElements; ++Idx) { | 
|  | if (ConstantInt *Elt = | 
|  | dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { | 
|  | const APInt &V = Elt->getValue(); | 
|  | APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); | 
|  | Elements.push_back(ConstantInt::get(EltTy, V2)); | 
|  | } else { | 
|  | Elements.push_back(ConstantInt::get(EltTy, 1)); | 
|  | } | 
|  | } | 
|  | ShadowMul = ConstantVector::get(Elements); | 
|  | } else { | 
|  | if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { | 
|  | const APInt &V = Elt->getValue(); | 
|  | APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); | 
|  | ShadowMul = ConstantInt::get(Ty, V2); | 
|  | } else { | 
|  | ShadowMul = ConstantInt::get(Ty, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRB(&I); | 
|  | setShadow(&I, | 
|  | IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); | 
|  | setOrigin(&I, getOrigin(OtherArg)); | 
|  | } | 
|  |  | 
|  | void visitMul(BinaryOperator &I) { | 
|  | Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); | 
|  | Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); | 
|  | if (constOp0 && !constOp1) | 
|  | handleMulByConstant(I, constOp0, I.getOperand(1)); | 
|  | else if (constOp1 && !constOp0) | 
|  | handleMulByConstant(I, constOp1, I.getOperand(0)); | 
|  | else | 
|  | handleShadowOr(I); | 
|  | } | 
|  |  | 
|  | void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitFSub(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitFMul(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitAdd(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitSub(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitXor(BinaryOperator &I) { handleShadowOr(I); } | 
|  |  | 
|  | void handleIntegerDiv(Instruction &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | // Strict on the second argument. | 
|  | insertShadowCheck(I.getOperand(1), &I); | 
|  | setShadow(&I, getShadow(&I, 0)); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } | 
|  | void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } | 
|  | void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } | 
|  | void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } | 
|  |  | 
|  | // Floating point division is side-effect free. We can not require that the | 
|  | // divisor is fully initialized and must propagate shadow. See PR37523. | 
|  | void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } | 
|  | void visitFRem(BinaryOperator &I) { handleShadowOr(I); } | 
|  |  | 
|  | /// Instrument == and != comparisons. | 
|  | /// | 
|  | /// Sometimes the comparison result is known even if some of the bits of the | 
|  | /// arguments are not. | 
|  | void handleEqualityComparison(ICmpInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *A = I.getOperand(0); | 
|  | Value *B = I.getOperand(1); | 
|  | Value *Sa = getShadow(A); | 
|  | Value *Sb = getShadow(B); | 
|  |  | 
|  | // Get rid of pointers and vectors of pointers. | 
|  | // For ints (and vectors of ints), types of A and Sa match, | 
|  | // and this is a no-op. | 
|  | A = IRB.CreatePointerCast(A, Sa->getType()); | 
|  | B = IRB.CreatePointerCast(B, Sb->getType()); | 
|  |  | 
|  | // A == B  <==>  (C = A^B) == 0 | 
|  | // A != B  <==>  (C = A^B) != 0 | 
|  | // Sc = Sa | Sb | 
|  | Value *C = IRB.CreateXor(A, B); | 
|  | Value *Sc = IRB.CreateOr(Sa, Sb); | 
|  | // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) | 
|  | // Result is defined if one of the following is true | 
|  | // * there is a defined 1 bit in C | 
|  | // * C is fully defined | 
|  | // Si = !(C & ~Sc) && Sc | 
|  | Value *Zero = Constant::getNullValue(Sc->getType()); | 
|  | Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); | 
|  | Value *Si = | 
|  | IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), | 
|  | IRB.CreateICmpEQ( | 
|  | IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); | 
|  | Si->setName("_msprop_icmp"); | 
|  | setShadow(&I, Si); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | /// Build the lowest possible value of V, taking into account V's | 
|  | ///        uninitialized bits. | 
|  | Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, | 
|  | bool isSigned) { | 
|  | if (isSigned) { | 
|  | // Split shadow into sign bit and other bits. | 
|  | Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); | 
|  | Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); | 
|  | // Maximise the undefined shadow bit, minimize other undefined bits. | 
|  | return | 
|  | IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); | 
|  | } else { | 
|  | // Minimize undefined bits. | 
|  | return IRB.CreateAnd(A, IRB.CreateNot(Sa)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Build the highest possible value of V, taking into account V's | 
|  | ///        uninitialized bits. | 
|  | Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, | 
|  | bool isSigned) { | 
|  | if (isSigned) { | 
|  | // Split shadow into sign bit and other bits. | 
|  | Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); | 
|  | Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); | 
|  | // Minimise the undefined shadow bit, maximise other undefined bits. | 
|  | return | 
|  | IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); | 
|  | } else { | 
|  | // Maximize undefined bits. | 
|  | return IRB.CreateOr(A, Sa); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Instrument relational comparisons. | 
|  | /// | 
|  | /// This function does exact shadow propagation for all relational | 
|  | /// comparisons of integers, pointers and vectors of those. | 
|  | /// FIXME: output seems suboptimal when one of the operands is a constant | 
|  | void handleRelationalComparisonExact(ICmpInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *A = I.getOperand(0); | 
|  | Value *B = I.getOperand(1); | 
|  | Value *Sa = getShadow(A); | 
|  | Value *Sb = getShadow(B); | 
|  |  | 
|  | // Get rid of pointers and vectors of pointers. | 
|  | // For ints (and vectors of ints), types of A and Sa match, | 
|  | // and this is a no-op. | 
|  | A = IRB.CreatePointerCast(A, Sa->getType()); | 
|  | B = IRB.CreatePointerCast(B, Sb->getType()); | 
|  |  | 
|  | // Let [a0, a1] be the interval of possible values of A, taking into account | 
|  | // its undefined bits. Let [b0, b1] be the interval of possible values of B. | 
|  | // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). | 
|  | bool IsSigned = I.isSigned(); | 
|  | Value *S1 = IRB.CreateICmp(I.getPredicate(), | 
|  | getLowestPossibleValue(IRB, A, Sa, IsSigned), | 
|  | getHighestPossibleValue(IRB, B, Sb, IsSigned)); | 
|  | Value *S2 = IRB.CreateICmp(I.getPredicate(), | 
|  | getHighestPossibleValue(IRB, A, Sa, IsSigned), | 
|  | getLowestPossibleValue(IRB, B, Sb, IsSigned)); | 
|  | Value *Si = IRB.CreateXor(S1, S2); | 
|  | setShadow(&I, Si); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | /// Instrument signed relational comparisons. | 
|  | /// | 
|  | /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest | 
|  | /// bit of the shadow. Everything else is delegated to handleShadowOr(). | 
|  | void handleSignedRelationalComparison(ICmpInst &I) { | 
|  | Constant *constOp; | 
|  | Value *op = nullptr; | 
|  | CmpInst::Predicate pre; | 
|  | if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { | 
|  | op = I.getOperand(0); | 
|  | pre = I.getPredicate(); | 
|  | } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { | 
|  | op = I.getOperand(1); | 
|  | pre = I.getSwappedPredicate(); | 
|  | } else { | 
|  | handleShadowOr(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((constOp->isNullValue() && | 
|  | (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || | 
|  | (constOp->isAllOnesValue() && | 
|  | (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), | 
|  | "_msprop_icmp_s"); | 
|  | setShadow(&I, Shadow); | 
|  | setOrigin(&I, getOrigin(op)); | 
|  | } else { | 
|  | handleShadowOr(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitICmpInst(ICmpInst &I) { | 
|  | if (!ClHandleICmp) { | 
|  | handleShadowOr(I); | 
|  | return; | 
|  | } | 
|  | if (I.isEquality()) { | 
|  | handleEqualityComparison(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(I.isRelational()); | 
|  | if (ClHandleICmpExact) { | 
|  | handleRelationalComparisonExact(I); | 
|  | return; | 
|  | } | 
|  | if (I.isSigned()) { | 
|  | handleSignedRelationalComparison(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(I.isUnsigned()); | 
|  | if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { | 
|  | handleRelationalComparisonExact(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | handleShadowOr(I); | 
|  | } | 
|  |  | 
|  | void visitFCmpInst(FCmpInst &I) { | 
|  | handleShadowOr(I); | 
|  | } | 
|  |  | 
|  | void handleShift(BinaryOperator &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | // If any of the S2 bits are poisoned, the whole thing is poisoned. | 
|  | // Otherwise perform the same shift on S1. | 
|  | Value *S1 = getShadow(&I, 0); | 
|  | Value *S2 = getShadow(&I, 1); | 
|  | Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), | 
|  | S2->getType()); | 
|  | Value *V2 = I.getOperand(1); | 
|  | Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); | 
|  | setShadow(&I, IRB.CreateOr(Shift, S2Conv)); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void visitShl(BinaryOperator &I) { handleShift(I); } | 
|  | void visitAShr(BinaryOperator &I) { handleShift(I); } | 
|  | void visitLShr(BinaryOperator &I) { handleShift(I); } | 
|  |  | 
|  | /// Instrument llvm.memmove | 
|  | /// | 
|  | /// At this point we don't know if llvm.memmove will be inlined or not. | 
|  | /// If we don't instrument it and it gets inlined, | 
|  | /// our interceptor will not kick in and we will lose the memmove. | 
|  | /// If we instrument the call here, but it does not get inlined, | 
|  | /// we will memove the shadow twice: which is bad in case | 
|  | /// of overlapping regions. So, we simply lower the intrinsic to a call. | 
|  | /// | 
|  | /// Similar situation exists for memcpy and memset. | 
|  | void visitMemMoveInst(MemMoveInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | IRB.CreateCall( | 
|  | MS.MemmoveFn, | 
|  | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Similar to memmove: avoid copying shadow twice. | 
|  | // This is somewhat unfortunate as it may slowdown small constant memcpys. | 
|  | // FIXME: consider doing manual inline for small constant sizes and proper | 
|  | // alignment. | 
|  | void visitMemCpyInst(MemCpyInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | IRB.CreateCall( | 
|  | MS.MemcpyFn, | 
|  | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Same as memcpy. | 
|  | void visitMemSetInst(MemSetInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | IRB.CreateCall( | 
|  | MS.MemsetFn, | 
|  | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), | 
|  | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) { | 
|  | VAHelper->visitVAStartInst(I); | 
|  | } | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) { | 
|  | VAHelper->visitVACopyInst(I); | 
|  | } | 
|  |  | 
|  | /// Handle vector store-like intrinsics. | 
|  | /// | 
|  | /// Instrument intrinsics that look like a simple SIMD store: writes memory, | 
|  | /// has 1 pointer argument and 1 vector argument, returns void. | 
|  | bool handleVectorStoreIntrinsic(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value* Addr = I.getArgOperand(0); | 
|  | Value *Shadow = getShadow(&I, 1); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  |  | 
|  | // We don't know the pointer alignment (could be unaligned SSE store!). | 
|  | // Have to assume to worst case. | 
|  | std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( | 
|  | Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); | 
|  | IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(Addr, &I); | 
|  |  | 
|  | // FIXME: factor out common code from materializeStores | 
|  | if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Handle vector load-like intrinsics. | 
|  | /// | 
|  | /// Instrument intrinsics that look like a simple SIMD load: reads memory, | 
|  | /// has 1 pointer argument, returns a vector. | 
|  | bool handleVectorLoadIntrinsic(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Addr = I.getArgOperand(0); | 
|  |  | 
|  | Type *ShadowTy = getShadowTy(&I); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | if (PropagateShadow) { | 
|  | // We don't know the pointer alignment (could be unaligned SSE load!). | 
|  | // Have to assume to worst case. | 
|  | unsigned Alignment = 1; | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); | 
|  | setShadow(&I, | 
|  | IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); | 
|  | } else { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | } | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(Addr, &I); | 
|  |  | 
|  | if (MS.TrackOrigins) { | 
|  | if (PropagateShadow) | 
|  | setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); | 
|  | else | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Handle (SIMD arithmetic)-like intrinsics. | 
|  | /// | 
|  | /// Instrument intrinsics with any number of arguments of the same type, | 
|  | /// equal to the return type. The type should be simple (no aggregates or | 
|  | /// pointers; vectors are fine). | 
|  | /// Caller guarantees that this intrinsic does not access memory. | 
|  | bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { | 
|  | Type *RetTy = I.getType(); | 
|  | if (!(RetTy->isIntOrIntVectorTy() || | 
|  | RetTy->isFPOrFPVectorTy() || | 
|  | RetTy->isX86_MMXTy())) | 
|  | return false; | 
|  |  | 
|  | unsigned NumArgOperands = I.getNumArgOperands(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumArgOperands; ++i) { | 
|  | Type *Ty = I.getArgOperand(i)->getType(); | 
|  | if (Ty != RetTy) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRB(&I); | 
|  | ShadowAndOriginCombiner SC(this, IRB); | 
|  | for (unsigned i = 0; i < NumArgOperands; ++i) | 
|  | SC.Add(I.getArgOperand(i)); | 
|  | SC.Done(&I); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Heuristically instrument unknown intrinsics. | 
|  | /// | 
|  | /// The main purpose of this code is to do something reasonable with all | 
|  | /// random intrinsics we might encounter, most importantly - SIMD intrinsics. | 
|  | /// We recognize several classes of intrinsics by their argument types and | 
|  | /// ModRefBehaviour and apply special intrumentation when we are reasonably | 
|  | /// sure that we know what the intrinsic does. | 
|  | /// | 
|  | /// We special-case intrinsics where this approach fails. See llvm.bswap | 
|  | /// handling as an example of that. | 
|  | bool handleUnknownIntrinsic(IntrinsicInst &I) { | 
|  | unsigned NumArgOperands = I.getNumArgOperands(); | 
|  | if (NumArgOperands == 0) | 
|  | return false; | 
|  |  | 
|  | if (NumArgOperands == 2 && | 
|  | I.getArgOperand(0)->getType()->isPointerTy() && | 
|  | I.getArgOperand(1)->getType()->isVectorTy() && | 
|  | I.getType()->isVoidTy() && | 
|  | !I.onlyReadsMemory()) { | 
|  | // This looks like a vector store. | 
|  | return handleVectorStoreIntrinsic(I); | 
|  | } | 
|  |  | 
|  | if (NumArgOperands == 1 && | 
|  | I.getArgOperand(0)->getType()->isPointerTy() && | 
|  | I.getType()->isVectorTy() && | 
|  | I.onlyReadsMemory()) { | 
|  | // This looks like a vector load. | 
|  | return handleVectorLoadIntrinsic(I); | 
|  | } | 
|  |  | 
|  | if (I.doesNotAccessMemory()) | 
|  | if (maybeHandleSimpleNomemIntrinsic(I)) | 
|  | return true; | 
|  |  | 
|  | // FIXME: detect and handle SSE maskstore/maskload | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void handleInvariantGroup(IntrinsicInst &I) { | 
|  | setShadow(&I, getShadow(&I, 0)); | 
|  | setOrigin(&I, getOrigin(&I, 0)); | 
|  | } | 
|  |  | 
|  | void handleLifetimeStart(IntrinsicInst &I) { | 
|  | if (!PoisonStack) | 
|  | return; | 
|  | DenseMap<Value *, AllocaInst *> AllocaForValue; | 
|  | AllocaInst *AI = | 
|  | llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); | 
|  | if (!AI) | 
|  | InstrumentLifetimeStart = false; | 
|  | LifetimeStartList.push_back(std::make_pair(&I, AI)); | 
|  | } | 
|  |  | 
|  | void handleBswap(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Op = I.getArgOperand(0); | 
|  | Type *OpType = Op->getType(); | 
|  | Function *BswapFunc = Intrinsic::getDeclaration( | 
|  | F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); | 
|  | setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); | 
|  | setOrigin(&I, getOrigin(Op)); | 
|  | } | 
|  |  | 
|  | // Instrument vector convert instrinsic. | 
|  | // | 
|  | // This function instruments intrinsics like cvtsi2ss: | 
|  | // %Out = int_xxx_cvtyyy(%ConvertOp) | 
|  | // or | 
|  | // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) | 
|  | // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same | 
|  | // number \p Out elements, and (if has 2 arguments) copies the rest of the | 
|  | // elements from \p CopyOp. | 
|  | // In most cases conversion involves floating-point value which may trigger a | 
|  | // hardware exception when not fully initialized. For this reason we require | 
|  | // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. | 
|  | // We copy the shadow of \p CopyOp[NumUsedElements:] to \p | 
|  | // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always | 
|  | // return a fully initialized value. | 
|  | void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *CopyOp, *ConvertOp; | 
|  |  | 
|  | switch (I.getNumArgOperands()) { | 
|  | case 3: | 
|  | assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); | 
|  | LLVM_FALLTHROUGH; | 
|  | case 2: | 
|  | CopyOp = I.getArgOperand(0); | 
|  | ConvertOp = I.getArgOperand(1); | 
|  | break; | 
|  | case 1: | 
|  | ConvertOp = I.getArgOperand(0); | 
|  | CopyOp = nullptr; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); | 
|  | } | 
|  |  | 
|  | // The first *NumUsedElements* elements of ConvertOp are converted to the | 
|  | // same number of output elements. The rest of the output is copied from | 
|  | // CopyOp, or (if not available) filled with zeroes. | 
|  | // Combine shadow for elements of ConvertOp that are used in this operation, | 
|  | // and insert a check. | 
|  | // FIXME: consider propagating shadow of ConvertOp, at least in the case of | 
|  | // int->any conversion. | 
|  | Value *ConvertShadow = getShadow(ConvertOp); | 
|  | Value *AggShadow = nullptr; | 
|  | if (ConvertOp->getType()->isVectorTy()) { | 
|  | AggShadow = IRB.CreateExtractElement( | 
|  | ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); | 
|  | for (int i = 1; i < NumUsedElements; ++i) { | 
|  | Value *MoreShadow = IRB.CreateExtractElement( | 
|  | ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); | 
|  | AggShadow = IRB.CreateOr(AggShadow, MoreShadow); | 
|  | } | 
|  | } else { | 
|  | AggShadow = ConvertShadow; | 
|  | } | 
|  | assert(AggShadow->getType()->isIntegerTy()); | 
|  | insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); | 
|  |  | 
|  | // Build result shadow by zero-filling parts of CopyOp shadow that come from | 
|  | // ConvertOp. | 
|  | if (CopyOp) { | 
|  | assert(CopyOp->getType() == I.getType()); | 
|  | assert(CopyOp->getType()->isVectorTy()); | 
|  | Value *ResultShadow = getShadow(CopyOp); | 
|  | Type *EltTy = ResultShadow->getType()->getVectorElementType(); | 
|  | for (int i = 0; i < NumUsedElements; ++i) { | 
|  | ResultShadow = IRB.CreateInsertElement( | 
|  | ResultShadow, ConstantInt::getNullValue(EltTy), | 
|  | ConstantInt::get(IRB.getInt32Ty(), i)); | 
|  | } | 
|  | setShadow(&I, ResultShadow); | 
|  | setOrigin(&I, getOrigin(CopyOp)); | 
|  | } else { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a scalar or vector, extract lower 64 bits (or less), and return all | 
|  | // zeroes if it is zero, and all ones otherwise. | 
|  | Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { | 
|  | if (S->getType()->isVectorTy()) | 
|  | S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); | 
|  | assert(S->getType()->getPrimitiveSizeInBits() <= 64); | 
|  | Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); | 
|  | return CreateShadowCast(IRB, S2, T, /* Signed */ true); | 
|  | } | 
|  |  | 
|  | // Given a vector, extract its first element, and return all | 
|  | // zeroes if it is zero, and all ones otherwise. | 
|  | Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { | 
|  | Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); | 
|  | Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); | 
|  | return CreateShadowCast(IRB, S2, T, /* Signed */ true); | 
|  | } | 
|  |  | 
|  | Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { | 
|  | Type *T = S->getType(); | 
|  | assert(T->isVectorTy()); | 
|  | Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); | 
|  | return IRB.CreateSExt(S2, T); | 
|  | } | 
|  |  | 
|  | // Instrument vector shift instrinsic. | 
|  | // | 
|  | // This function instruments intrinsics like int_x86_avx2_psll_w. | 
|  | // Intrinsic shifts %In by %ShiftSize bits. | 
|  | // %ShiftSize may be a vector. In that case the lower 64 bits determine shift | 
|  | // size, and the rest is ignored. Behavior is defined even if shift size is | 
|  | // greater than register (or field) width. | 
|  | void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { | 
|  | assert(I.getNumArgOperands() == 2); | 
|  | IRBuilder<> IRB(&I); | 
|  | // If any of the S2 bits are poisoned, the whole thing is poisoned. | 
|  | // Otherwise perform the same shift on S1. | 
|  | Value *S1 = getShadow(&I, 0); | 
|  | Value *S2 = getShadow(&I, 1); | 
|  | Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) | 
|  | : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); | 
|  | Value *V1 = I.getOperand(0); | 
|  | Value *V2 = I.getOperand(1); | 
|  | Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), | 
|  | {IRB.CreateBitCast(S1, V1->getType()), V2}); | 
|  | Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); | 
|  | setShadow(&I, IRB.CreateOr(Shift, S2Conv)); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Get an X86_MMX-sized vector type. | 
|  | Type *getMMXVectorTy(unsigned EltSizeInBits) { | 
|  | const unsigned X86_MMXSizeInBits = 64; | 
|  | assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && | 
|  | "Illegal MMX vector element size"); | 
|  | return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), | 
|  | X86_MMXSizeInBits / EltSizeInBits); | 
|  | } | 
|  |  | 
|  | // Returns a signed counterpart for an (un)signed-saturate-and-pack | 
|  | // intrinsic. | 
|  | Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { | 
|  | switch (id) { | 
|  | case Intrinsic::x86_sse2_packsswb_128: | 
|  | case Intrinsic::x86_sse2_packuswb_128: | 
|  | return Intrinsic::x86_sse2_packsswb_128; | 
|  |  | 
|  | case Intrinsic::x86_sse2_packssdw_128: | 
|  | case Intrinsic::x86_sse41_packusdw: | 
|  | return Intrinsic::x86_sse2_packssdw_128; | 
|  |  | 
|  | case Intrinsic::x86_avx2_packsswb: | 
|  | case Intrinsic::x86_avx2_packuswb: | 
|  | return Intrinsic::x86_avx2_packsswb; | 
|  |  | 
|  | case Intrinsic::x86_avx2_packssdw: | 
|  | case Intrinsic::x86_avx2_packusdw: | 
|  | return Intrinsic::x86_avx2_packssdw; | 
|  |  | 
|  | case Intrinsic::x86_mmx_packsswb: | 
|  | case Intrinsic::x86_mmx_packuswb: | 
|  | return Intrinsic::x86_mmx_packsswb; | 
|  |  | 
|  | case Intrinsic::x86_mmx_packssdw: | 
|  | return Intrinsic::x86_mmx_packssdw; | 
|  | default: | 
|  | llvm_unreachable("unexpected intrinsic id"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instrument vector pack instrinsic. | 
|  | // | 
|  | // This function instruments intrinsics like x86_mmx_packsswb, that | 
|  | // packs elements of 2 input vectors into half as many bits with saturation. | 
|  | // Shadow is propagated with the signed variant of the same intrinsic applied | 
|  | // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). | 
|  | // EltSizeInBits is used only for x86mmx arguments. | 
|  | void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { | 
|  | assert(I.getNumArgOperands() == 2); | 
|  | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *S1 = getShadow(&I, 0); | 
|  | Value *S2 = getShadow(&I, 1); | 
|  | assert(isX86_MMX || S1->getType()->isVectorTy()); | 
|  |  | 
|  | // SExt and ICmpNE below must apply to individual elements of input vectors. | 
|  | // In case of x86mmx arguments, cast them to appropriate vector types and | 
|  | // back. | 
|  | Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); | 
|  | if (isX86_MMX) { | 
|  | S1 = IRB.CreateBitCast(S1, T); | 
|  | S2 = IRB.CreateBitCast(S2, T); | 
|  | } | 
|  | Value *S1_ext = IRB.CreateSExt( | 
|  | IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); | 
|  | Value *S2_ext = IRB.CreateSExt( | 
|  | IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); | 
|  | if (isX86_MMX) { | 
|  | Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); | 
|  | S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); | 
|  | S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); | 
|  | } | 
|  |  | 
|  | Function *ShadowFn = Intrinsic::getDeclaration( | 
|  | F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); | 
|  |  | 
|  | Value *S = | 
|  | IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); | 
|  | if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Instrument sum-of-absolute-differencies intrinsic. | 
|  | void handleVectorSadIntrinsic(IntrinsicInst &I) { | 
|  | const unsigned SignificantBitsPerResultElement = 16; | 
|  | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | 
|  | Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); | 
|  | unsigned ZeroBitsPerResultElement = | 
|  | ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; | 
|  |  | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | 
|  | S = IRB.CreateBitCast(S, ResTy); | 
|  | S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), | 
|  | ResTy); | 
|  | S = IRB.CreateLShr(S, ZeroBitsPerResultElement); | 
|  | S = IRB.CreateBitCast(S, getShadowTy(&I)); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Instrument multiply-add intrinsic. | 
|  | void handleVectorPmaddIntrinsic(IntrinsicInst &I, | 
|  | unsigned EltSizeInBits = 0) { | 
|  | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | 
|  | Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | 
|  | S = IRB.CreateBitCast(S, ResTy); | 
|  | S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), | 
|  | ResTy); | 
|  | S = IRB.CreateBitCast(S, getShadowTy(&I)); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Instrument compare-packed intrinsic. | 
|  | // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or | 
|  | // all-ones shadow. | 
|  | void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Type *ResTy = getShadowTy(&I); | 
|  | Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | 
|  | Value *S = IRB.CreateSExt( | 
|  | IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | // Instrument compare-scalar intrinsic. | 
|  | // This handles both cmp* intrinsics which return the result in the first | 
|  | // element of a vector, and comi* which return the result as i32. | 
|  | void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | 
|  | Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void handleStmxcsr(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value* Addr = I.getArgOperand(0); | 
|  | Type *Ty = IRB.getInt32Ty(); | 
|  | Value *ShadowPtr = | 
|  | getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) | 
|  | .first; | 
|  |  | 
|  | IRB.CreateStore(getCleanShadow(Ty), | 
|  | IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(Addr, &I); | 
|  | } | 
|  |  | 
|  | void handleLdmxcsr(IntrinsicInst &I) { | 
|  | if (!InsertChecks) return; | 
|  |  | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Addr = I.getArgOperand(0); | 
|  | Type *Ty = IRB.getInt32Ty(); | 
|  | unsigned Alignment = 1; | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); | 
|  |  | 
|  | if (ClCheckAccessAddress) | 
|  | insertShadowCheck(Addr, &I); | 
|  |  | 
|  | Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); | 
|  | Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) | 
|  | : getCleanOrigin(); | 
|  | insertShadowCheck(Shadow, Origin, &I); | 
|  | } | 
|  |  | 
|  | void handleMaskedStore(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *V = I.getArgOperand(0); | 
|  | Value *Addr = I.getArgOperand(1); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); | 
|  | Value *Mask = I.getArgOperand(3); | 
|  | Value *Shadow = getShadow(V); | 
|  |  | 
|  | Value *ShadowPtr; | 
|  | Value *OriginPtr; | 
|  | std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( | 
|  | Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); | 
|  |  | 
|  | if (ClCheckAccessAddress) { | 
|  | insertShadowCheck(Addr, &I); | 
|  | // Uninitialized mask is kind of like uninitialized address, but not as | 
|  | // scary. | 
|  | insertShadowCheck(Mask, &I); | 
|  | } | 
|  |  | 
|  | IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); | 
|  |  | 
|  | if (MS.TrackOrigins) { | 
|  | auto &DL = F.getParent()->getDataLayout(); | 
|  | paintOrigin(IRB, getOrigin(V), OriginPtr, | 
|  | DL.getTypeStoreSize(Shadow->getType()), | 
|  | std::max(Align, kMinOriginAlignment)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool handleMaskedLoad(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Addr = I.getArgOperand(0); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); | 
|  | Value *Mask = I.getArgOperand(2); | 
|  | Value *PassThru = I.getArgOperand(3); | 
|  |  | 
|  | Type *ShadowTy = getShadowTy(&I); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | if (PropagateShadow) { | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); | 
|  | setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, | 
|  | getShadow(PassThru), "_msmaskedld")); | 
|  | } else { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | } | 
|  |  | 
|  | if (ClCheckAccessAddress) { | 
|  | insertShadowCheck(Addr, &I); | 
|  | insertShadowCheck(Mask, &I); | 
|  | } | 
|  |  | 
|  | if (MS.TrackOrigins) { | 
|  | if (PropagateShadow) { | 
|  | // Choose between PassThru's and the loaded value's origins. | 
|  | Value *MaskedPassThruShadow = IRB.CreateAnd( | 
|  | getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); | 
|  |  | 
|  | Value *Acc = IRB.CreateExtractElement( | 
|  | MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); | 
|  | for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; | 
|  | ++i) { | 
|  | Value *More = IRB.CreateExtractElement( | 
|  | MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); | 
|  | Acc = IRB.CreateOr(Acc, More); | 
|  | } | 
|  |  | 
|  | Value *Origin = IRB.CreateSelect( | 
|  | IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), | 
|  | getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); | 
|  |  | 
|  | setOrigin(&I, Origin); | 
|  | } else { | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Instrument BMI / BMI2 intrinsics. | 
|  | // All of these intrinsics are Z = I(X, Y) | 
|  | // where the types of all operands and the result match, and are either i32 or i64. | 
|  | // The following instrumentation happens to work for all of them: | 
|  | //   Sz = I(Sx, Y) | (sext (Sy != 0)) | 
|  | void handleBmiIntrinsic(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Type *ShadowTy = getShadowTy(&I); | 
|  |  | 
|  | // If any bit of the mask operand is poisoned, then the whole thing is. | 
|  | Value *SMask = getShadow(&I, 1); | 
|  | SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), | 
|  | ShadowTy); | 
|  | // Apply the same intrinsic to the shadow of the first operand. | 
|  | Value *S = IRB.CreateCall(I.getCalledFunction(), | 
|  | {getShadow(&I, 0), I.getOperand(1)}); | 
|  | S = IRB.CreateOr(SMask, S); | 
|  | setShadow(&I, S); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void visitIntrinsicInst(IntrinsicInst &I) { | 
|  | switch (I.getIntrinsicID()) { | 
|  | case Intrinsic::lifetime_start: | 
|  | handleLifetimeStart(I); | 
|  | break; | 
|  | case Intrinsic::launder_invariant_group: | 
|  | case Intrinsic::strip_invariant_group: | 
|  | handleInvariantGroup(I); | 
|  | break; | 
|  | case Intrinsic::bswap: | 
|  | handleBswap(I); | 
|  | break; | 
|  | case Intrinsic::masked_store: | 
|  | handleMaskedStore(I); | 
|  | break; | 
|  | case Intrinsic::masked_load: | 
|  | handleMaskedLoad(I); | 
|  | break; | 
|  | case Intrinsic::x86_sse_stmxcsr: | 
|  | handleStmxcsr(I); | 
|  | break; | 
|  | case Intrinsic::x86_sse_ldmxcsr: | 
|  | handleLdmxcsr(I); | 
|  | break; | 
|  | case Intrinsic::x86_avx512_vcvtsd2usi64: | 
|  | case Intrinsic::x86_avx512_vcvtsd2usi32: | 
|  | case Intrinsic::x86_avx512_vcvtss2usi64: | 
|  | case Intrinsic::x86_avx512_vcvtss2usi32: | 
|  | case Intrinsic::x86_avx512_cvttss2usi64: | 
|  | case Intrinsic::x86_avx512_cvttss2usi: | 
|  | case Intrinsic::x86_avx512_cvttsd2usi64: | 
|  | case Intrinsic::x86_avx512_cvttsd2usi: | 
|  | case Intrinsic::x86_avx512_cvtusi2ss: | 
|  | case Intrinsic::x86_avx512_cvtusi642sd: | 
|  | case Intrinsic::x86_avx512_cvtusi642ss: | 
|  | case Intrinsic::x86_sse2_cvtsd2si64: | 
|  | case Intrinsic::x86_sse2_cvtsd2si: | 
|  | case Intrinsic::x86_sse2_cvtsd2ss: | 
|  | case Intrinsic::x86_sse2_cvttsd2si64: | 
|  | case Intrinsic::x86_sse2_cvttsd2si: | 
|  | case Intrinsic::x86_sse_cvtss2si64: | 
|  | case Intrinsic::x86_sse_cvtss2si: | 
|  | case Intrinsic::x86_sse_cvttss2si64: | 
|  | case Intrinsic::x86_sse_cvttss2si: | 
|  | handleVectorConvertIntrinsic(I, 1); | 
|  | break; | 
|  | case Intrinsic::x86_sse_cvtps2pi: | 
|  | case Intrinsic::x86_sse_cvttps2pi: | 
|  | handleVectorConvertIntrinsic(I, 2); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx512_psll_w_512: | 
|  | case Intrinsic::x86_avx512_psll_d_512: | 
|  | case Intrinsic::x86_avx512_psll_q_512: | 
|  | case Intrinsic::x86_avx512_pslli_w_512: | 
|  | case Intrinsic::x86_avx512_pslli_d_512: | 
|  | case Intrinsic::x86_avx512_pslli_q_512: | 
|  | case Intrinsic::x86_avx512_psrl_w_512: | 
|  | case Intrinsic::x86_avx512_psrl_d_512: | 
|  | case Intrinsic::x86_avx512_psrl_q_512: | 
|  | case Intrinsic::x86_avx512_psra_w_512: | 
|  | case Intrinsic::x86_avx512_psra_d_512: | 
|  | case Intrinsic::x86_avx512_psra_q_512: | 
|  | case Intrinsic::x86_avx512_psrli_w_512: | 
|  | case Intrinsic::x86_avx512_psrli_d_512: | 
|  | case Intrinsic::x86_avx512_psrli_q_512: | 
|  | case Intrinsic::x86_avx512_psrai_w_512: | 
|  | case Intrinsic::x86_avx512_psrai_d_512: | 
|  | case Intrinsic::x86_avx512_psrai_q_512: | 
|  | case Intrinsic::x86_avx512_psra_q_256: | 
|  | case Intrinsic::x86_avx512_psra_q_128: | 
|  | case Intrinsic::x86_avx512_psrai_q_256: | 
|  | case Intrinsic::x86_avx512_psrai_q_128: | 
|  | case Intrinsic::x86_avx2_psll_w: | 
|  | case Intrinsic::x86_avx2_psll_d: | 
|  | case Intrinsic::x86_avx2_psll_q: | 
|  | case Intrinsic::x86_avx2_pslli_w: | 
|  | case Intrinsic::x86_avx2_pslli_d: | 
|  | case Intrinsic::x86_avx2_pslli_q: | 
|  | case Intrinsic::x86_avx2_psrl_w: | 
|  | case Intrinsic::x86_avx2_psrl_d: | 
|  | case Intrinsic::x86_avx2_psrl_q: | 
|  | case Intrinsic::x86_avx2_psra_w: | 
|  | case Intrinsic::x86_avx2_psra_d: | 
|  | case Intrinsic::x86_avx2_psrli_w: | 
|  | case Intrinsic::x86_avx2_psrli_d: | 
|  | case Intrinsic::x86_avx2_psrli_q: | 
|  | case Intrinsic::x86_avx2_psrai_w: | 
|  | case Intrinsic::x86_avx2_psrai_d: | 
|  | case Intrinsic::x86_sse2_psll_w: | 
|  | case Intrinsic::x86_sse2_psll_d: | 
|  | case Intrinsic::x86_sse2_psll_q: | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_sse2_psrl_w: | 
|  | case Intrinsic::x86_sse2_psrl_d: | 
|  | case Intrinsic::x86_sse2_psrl_q: | 
|  | case Intrinsic::x86_sse2_psra_w: | 
|  | case Intrinsic::x86_sse2_psra_d: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_mmx_psll_w: | 
|  | case Intrinsic::x86_mmx_psll_d: | 
|  | case Intrinsic::x86_mmx_psll_q: | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | case Intrinsic::x86_mmx_psrl_w: | 
|  | case Intrinsic::x86_mmx_psrl_d: | 
|  | case Intrinsic::x86_mmx_psrl_q: | 
|  | case Intrinsic::x86_mmx_psra_w: | 
|  | case Intrinsic::x86_mmx_psra_d: | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | case Intrinsic::x86_mmx_psrai_d: | 
|  | handleVectorShiftIntrinsic(I, /* Variable */ false); | 
|  | break; | 
|  | case Intrinsic::x86_avx2_psllv_d: | 
|  | case Intrinsic::x86_avx2_psllv_d_256: | 
|  | case Intrinsic::x86_avx512_psllv_d_512: | 
|  | case Intrinsic::x86_avx2_psllv_q: | 
|  | case Intrinsic::x86_avx2_psllv_q_256: | 
|  | case Intrinsic::x86_avx512_psllv_q_512: | 
|  | case Intrinsic::x86_avx2_psrlv_d: | 
|  | case Intrinsic::x86_avx2_psrlv_d_256: | 
|  | case Intrinsic::x86_avx512_psrlv_d_512: | 
|  | case Intrinsic::x86_avx2_psrlv_q: | 
|  | case Intrinsic::x86_avx2_psrlv_q_256: | 
|  | case Intrinsic::x86_avx512_psrlv_q_512: | 
|  | case Intrinsic::x86_avx2_psrav_d: | 
|  | case Intrinsic::x86_avx2_psrav_d_256: | 
|  | case Intrinsic::x86_avx512_psrav_d_512: | 
|  | case Intrinsic::x86_avx512_psrav_q_128: | 
|  | case Intrinsic::x86_avx512_psrav_q_256: | 
|  | case Intrinsic::x86_avx512_psrav_q_512: | 
|  | handleVectorShiftIntrinsic(I, /* Variable */ true); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse2_packsswb_128: | 
|  | case Intrinsic::x86_sse2_packssdw_128: | 
|  | case Intrinsic::x86_sse2_packuswb_128: | 
|  | case Intrinsic::x86_sse41_packusdw: | 
|  | case Intrinsic::x86_avx2_packsswb: | 
|  | case Intrinsic::x86_avx2_packssdw: | 
|  | case Intrinsic::x86_avx2_packuswb: | 
|  | case Intrinsic::x86_avx2_packusdw: | 
|  | handleVectorPackIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_mmx_packsswb: | 
|  | case Intrinsic::x86_mmx_packuswb: | 
|  | handleVectorPackIntrinsic(I, 16); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_mmx_packssdw: | 
|  | handleVectorPackIntrinsic(I, 32); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_mmx_psad_bw: | 
|  | case Intrinsic::x86_sse2_psad_bw: | 
|  | case Intrinsic::x86_avx2_psad_bw: | 
|  | handleVectorSadIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse2_pmadd_wd: | 
|  | case Intrinsic::x86_avx2_pmadd_wd: | 
|  | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: | 
|  | case Intrinsic::x86_avx2_pmadd_ub_sw: | 
|  | handleVectorPmaddIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_ssse3_pmadd_ub_sw: | 
|  | handleVectorPmaddIntrinsic(I, 8); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_mmx_pmadd_wd: | 
|  | handleVectorPmaddIntrinsic(I, 16); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse_cmp_ss: | 
|  | case Intrinsic::x86_sse2_cmp_sd: | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: | 
|  | handleVectorCompareScalarIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse_cmp_ps: | 
|  | case Intrinsic::x86_sse2_cmp_pd: | 
|  | // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function | 
|  | // generates reasonably looking IR that fails in the backend with "Do not | 
|  | // know how to split the result of this operator!". | 
|  | handleVectorComparePackedIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_bmi_bextr_32: | 
|  | case Intrinsic::x86_bmi_bextr_64: | 
|  | case Intrinsic::x86_bmi_bzhi_32: | 
|  | case Intrinsic::x86_bmi_bzhi_64: | 
|  | case Intrinsic::x86_bmi_pdep_32: | 
|  | case Intrinsic::x86_bmi_pdep_64: | 
|  | case Intrinsic::x86_bmi_pext_32: | 
|  | case Intrinsic::x86_bmi_pext_64: | 
|  | handleBmiIntrinsic(I); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::is_constant: | 
|  | // The result of llvm.is.constant() is always defined. | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (!handleUnknownIntrinsic(I)) | 
|  | visitInstruction(I); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitCallSite(CallSite CS) { | 
|  | Instruction &I = *CS.getInstruction(); | 
|  | assert(!I.getMetadata("nosanitize")); | 
|  | assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && | 
|  | "Unknown type of CallSite"); | 
|  | if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { | 
|  | // For inline asm (either a call to asm function, or callbr instruction), | 
|  | // do the usual thing: check argument shadow and mark all outputs as | 
|  | // clean. Note that any side effects of the inline asm that are not | 
|  | // immediately visible in its constraints are not handled. | 
|  | if (ClHandleAsmConservative && MS.CompileKernel) | 
|  | visitAsmInstruction(I); | 
|  | else | 
|  | visitInstruction(I); | 
|  | return; | 
|  | } | 
|  | if (CS.isCall()) { | 
|  | CallInst *Call = cast<CallInst>(&I); | 
|  | assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); | 
|  |  | 
|  | // We are going to insert code that relies on the fact that the callee | 
|  | // will become a non-readonly function after it is instrumented by us. To | 
|  | // prevent this code from being optimized out, mark that function | 
|  | // non-readonly in advance. | 
|  | if (Function *Func = Call->getCalledFunction()) { | 
|  | // Clear out readonly/readnone attributes. | 
|  | AttrBuilder B; | 
|  | B.addAttribute(Attribute::ReadOnly) | 
|  | .addAttribute(Attribute::ReadNone) | 
|  | .addAttribute(Attribute::WriteOnly) | 
|  | .addAttribute(Attribute::ArgMemOnly) | 
|  | .addAttribute(Attribute::Speculatable); | 
|  | Func->removeAttributes(AttributeList::FunctionIndex, B); | 
|  | } | 
|  |  | 
|  | maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); | 
|  | } | 
|  | IRBuilder<> IRB(&I); | 
|  |  | 
|  | unsigned ArgOffset = 0; | 
|  | LLVM_DEBUG(dbgs() << "  CallSite: " << I << "\n"); | 
|  | for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); | 
|  | ArgIt != End; ++ArgIt) { | 
|  | Value *A = *ArgIt; | 
|  | unsigned i = ArgIt - CS.arg_begin(); | 
|  | if (!A->getType()->isSized()) { | 
|  | LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); | 
|  | continue; | 
|  | } | 
|  | unsigned Size = 0; | 
|  | Value *Store = nullptr; | 
|  | // Compute the Shadow for arg even if it is ByVal, because | 
|  | // in that case getShadow() will copy the actual arg shadow to | 
|  | // __msan_param_tls. | 
|  | Value *ArgShadow = getShadow(A); | 
|  | Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); | 
|  | LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A | 
|  | << " Shadow: " << *ArgShadow << "\n"); | 
|  | bool ArgIsInitialized = false; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (CS.paramHasAttr(i, Attribute::ByVal)) { | 
|  | assert(A->getType()->isPointerTy() && | 
|  | "ByVal argument is not a pointer!"); | 
|  | Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); | 
|  | if (ArgOffset + Size > kParamTLSSize) break; | 
|  | unsigned ParamAlignment = CS.getParamAlignment(i); | 
|  | unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); | 
|  | Value *AShadowPtr = | 
|  | getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, | 
|  | /*isStore*/ false) | 
|  | .first; | 
|  |  | 
|  | Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, | 
|  | Alignment, Size); | 
|  | // TODO(glider): need to copy origins. | 
|  | } else { | 
|  | Size = DL.getTypeAllocSize(A->getType()); | 
|  | if (ArgOffset + Size > kParamTLSSize) break; | 
|  | Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, | 
|  | kShadowTLSAlignment); | 
|  | Constant *Cst = dyn_cast<Constant>(ArgShadow); | 
|  | if (Cst && Cst->isNullValue()) ArgIsInitialized = true; | 
|  | } | 
|  | if (MS.TrackOrigins && !ArgIsInitialized) | 
|  | IRB.CreateStore(getOrigin(A), | 
|  | getOriginPtrForArgument(A, IRB, ArgOffset)); | 
|  | (void)Store; | 
|  | assert(Size != 0 && Store != nullptr); | 
|  | LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n"); | 
|  | ArgOffset += alignTo(Size, 8); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "  done with call args\n"); | 
|  |  | 
|  | FunctionType *FT = CS.getFunctionType(); | 
|  | if (FT->isVarArg()) { | 
|  | VAHelper->visitCallSite(CS, IRB); | 
|  | } | 
|  |  | 
|  | // Now, get the shadow for the RetVal. | 
|  | if (!I.getType()->isSized()) return; | 
|  | // Don't emit the epilogue for musttail call returns. | 
|  | if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; | 
|  | IRBuilder<> IRBBefore(&I); | 
|  | // Until we have full dynamic coverage, make sure the retval shadow is 0. | 
|  | Value *Base = getShadowPtrForRetval(&I, IRBBefore); | 
|  | IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); | 
|  | BasicBlock::iterator NextInsn; | 
|  | if (CS.isCall()) { | 
|  | NextInsn = ++I.getIterator(); | 
|  | assert(NextInsn != I.getParent()->end()); | 
|  | } else { | 
|  | BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); | 
|  | if (!NormalDest->getSinglePredecessor()) { | 
|  | // FIXME: this case is tricky, so we are just conservative here. | 
|  | // Perhaps we need to split the edge between this BB and NormalDest, | 
|  | // but a naive attempt to use SplitEdge leads to a crash. | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | return; | 
|  | } | 
|  | // FIXME: NextInsn is likely in a basic block that has not been visited yet. | 
|  | // Anything inserted there will be instrumented by MSan later! | 
|  | NextInsn = NormalDest->getFirstInsertionPt(); | 
|  | assert(NextInsn != NormalDest->end() && | 
|  | "Could not find insertion point for retval shadow load"); | 
|  | } | 
|  | IRBuilder<> IRBAfter(&*NextInsn); | 
|  | Value *RetvalShadow = IRBAfter.CreateAlignedLoad( | 
|  | getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), | 
|  | kShadowTLSAlignment, "_msret"); | 
|  | setShadow(&I, RetvalShadow); | 
|  | if (MS.TrackOrigins) | 
|  | setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, | 
|  | getOriginPtrForRetval(IRBAfter))); | 
|  | } | 
|  |  | 
|  | bool isAMustTailRetVal(Value *RetVal) { | 
|  | if (auto *I = dyn_cast<BitCastInst>(RetVal)) { | 
|  | RetVal = I->getOperand(0); | 
|  | } | 
|  | if (auto *I = dyn_cast<CallInst>(RetVal)) { | 
|  | return I->isMustTailCall(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void visitReturnInst(ReturnInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *RetVal = I.getReturnValue(); | 
|  | if (!RetVal) return; | 
|  | // Don't emit the epilogue for musttail call returns. | 
|  | if (isAMustTailRetVal(RetVal)) return; | 
|  | Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); | 
|  | if (CheckReturnValue) { | 
|  | insertShadowCheck(RetVal, &I); | 
|  | Value *Shadow = getCleanShadow(RetVal); | 
|  | IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); | 
|  | } else { | 
|  | Value *Shadow = getShadow(RetVal); | 
|  | IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); | 
|  | if (MS.TrackOrigins) | 
|  | IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitPHINode(PHINode &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | if (!PropagateShadow) { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ShadowPHINodes.push_back(&I); | 
|  | setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), | 
|  | "_msphi_s")); | 
|  | if (MS.TrackOrigins) | 
|  | setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), | 
|  | "_msphi_o")); | 
|  | } | 
|  |  | 
|  | Value *getLocalVarDescription(AllocaInst &I) { | 
|  | SmallString<2048> StackDescriptionStorage; | 
|  | raw_svector_ostream StackDescription(StackDescriptionStorage); | 
|  | // We create a string with a description of the stack allocation and | 
|  | // pass it into __msan_set_alloca_origin. | 
|  | // It will be printed by the run-time if stack-originated UMR is found. | 
|  | // The first 4 bytes of the string are set to '----' and will be replaced | 
|  | // by __msan_va_arg_overflow_size_tls at the first call. | 
|  | StackDescription << "----" << I.getName() << "@" << F.getName(); | 
|  | return createPrivateNonConstGlobalForString(*F.getParent(), | 
|  | StackDescription.str()); | 
|  | } | 
|  |  | 
|  | void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { | 
|  | if (PoisonStack && ClPoisonStackWithCall) { | 
|  | IRB.CreateCall(MS.MsanPoisonStackFn, | 
|  | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); | 
|  | } else { | 
|  | Value *ShadowBase, *OriginBase; | 
|  | std::tie(ShadowBase, OriginBase) = | 
|  | getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); | 
|  |  | 
|  | Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); | 
|  | IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); | 
|  | } | 
|  |  | 
|  | if (PoisonStack && MS.TrackOrigins) { | 
|  | Value *Descr = getLocalVarDescription(I); | 
|  | IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, | 
|  | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, | 
|  | IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(&F, MS.IntptrTy)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { | 
|  | Value *Descr = getLocalVarDescription(I); | 
|  | if (PoisonStack) { | 
|  | IRB.CreateCall(MS.MsanPoisonAllocaFn, | 
|  | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, | 
|  | IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); | 
|  | } else { | 
|  | IRB.CreateCall(MS.MsanUnpoisonAllocaFn, | 
|  | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { | 
|  | if (!InsPoint) | 
|  | InsPoint = &I; | 
|  | IRBuilder<> IRB(InsPoint->getNextNode()); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); | 
|  | Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); | 
|  | if (I.isArrayAllocation()) | 
|  | Len = IRB.CreateMul(Len, I.getArraySize()); | 
|  |  | 
|  | if (MS.CompileKernel) | 
|  | poisonAllocaKmsan(I, IRB, Len); | 
|  | else | 
|  | poisonAllocaUserspace(I, IRB, Len); | 
|  | } | 
|  |  | 
|  | void visitAllocaInst(AllocaInst &I) { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | // We'll get to this alloca later unless it's poisoned at the corresponding | 
|  | // llvm.lifetime.start. | 
|  | AllocaSet.insert(&I); | 
|  | } | 
|  |  | 
|  | void visitSelectInst(SelectInst& I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | // a = select b, c, d | 
|  | Value *B = I.getCondition(); | 
|  | Value *C = I.getTrueValue(); | 
|  | Value *D = I.getFalseValue(); | 
|  | Value *Sb = getShadow(B); | 
|  | Value *Sc = getShadow(C); | 
|  | Value *Sd = getShadow(D); | 
|  |  | 
|  | // Result shadow if condition shadow is 0. | 
|  | Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); | 
|  | Value *Sa1; | 
|  | if (I.getType()->isAggregateType()) { | 
|  | // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do | 
|  | // an extra "select". This results in much more compact IR. | 
|  | // Sa = select Sb, poisoned, (select b, Sc, Sd) | 
|  | Sa1 = getPoisonedShadow(getShadowTy(I.getType())); | 
|  | } else { | 
|  | // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] | 
|  | // If Sb (condition is poisoned), look for bits in c and d that are equal | 
|  | // and both unpoisoned. | 
|  | // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. | 
|  |  | 
|  | // Cast arguments to shadow-compatible type. | 
|  | C = CreateAppToShadowCast(IRB, C); | 
|  | D = CreateAppToShadowCast(IRB, D); | 
|  |  | 
|  | // Result shadow if condition shadow is 1. | 
|  | Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); | 
|  | } | 
|  | Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); | 
|  | setShadow(&I, Sa); | 
|  | if (MS.TrackOrigins) { | 
|  | // Origins are always i32, so any vector conditions must be flattened. | 
|  | // FIXME: consider tracking vector origins for app vectors? | 
|  | if (B->getType()->isVectorTy()) { | 
|  | Type *FlatTy = getShadowTyNoVec(B->getType()); | 
|  | B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), | 
|  | ConstantInt::getNullValue(FlatTy)); | 
|  | Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), | 
|  | ConstantInt::getNullValue(FlatTy)); | 
|  | } | 
|  | // a = select b, c, d | 
|  | // Oa = Sb ? Ob : (b ? Oc : Od) | 
|  | setOrigin( | 
|  | &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), | 
|  | IRB.CreateSelect(B, getOrigin(I.getTrueValue()), | 
|  | getOrigin(I.getFalseValue())))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitLandingPadInst(LandingPadInst &I) { | 
|  | // Do nothing. | 
|  | // See https://github.com/google/sanitizers/issues/504 | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  |  | 
|  | void visitCatchSwitchInst(CatchSwitchInst &I) { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  |  | 
|  | void visitFuncletPadInst(FuncletPadInst &I) { | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  |  | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | handleShadowOr(I); | 
|  | } | 
|  |  | 
|  | void visitExtractValueInst(ExtractValueInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *Agg = I.getAggregateOperand(); | 
|  | LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n"); | 
|  | Value *AggShadow = getShadow(Agg); | 
|  | LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n"); | 
|  | Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); | 
|  | LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n"); | 
|  | setShadow(&I, ResShadow); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void visitInsertValueInst(InsertValueInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n"); | 
|  | Value *AggShadow = getShadow(I.getAggregateOperand()); | 
|  | Value *InsShadow = getShadow(I.getInsertedValueOperand()); | 
|  | LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n"); | 
|  | Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); | 
|  | LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n"); | 
|  | setShadow(&I, Res); | 
|  | setOriginForNaryOp(I); | 
|  | } | 
|  |  | 
|  | void dumpInst(Instruction &I) { | 
|  | if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; | 
|  | } else { | 
|  | errs() << "ZZZ " << I.getOpcodeName() << "\n"; | 
|  | } | 
|  | errs() << "QQQ " << I << "\n"; | 
|  | } | 
|  |  | 
|  | void visitResumeInst(ResumeInst &I) { | 
|  | LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); | 
|  | // Nothing to do here. | 
|  | } | 
|  |  | 
|  | void visitCleanupReturnInst(CleanupReturnInst &CRI) { | 
|  | LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); | 
|  | // Nothing to do here. | 
|  | } | 
|  |  | 
|  | void visitCatchReturnInst(CatchReturnInst &CRI) { | 
|  | LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); | 
|  | // Nothing to do here. | 
|  | } | 
|  |  | 
|  | void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, | 
|  | const DataLayout &DL, bool isOutput) { | 
|  | // For each assembly argument, we check its value for being initialized. | 
|  | // If the argument is a pointer, we assume it points to a single element | 
|  | // of the corresponding type (or to a 8-byte word, if the type is unsized). | 
|  | // Each such pointer is instrumented with a call to the runtime library. | 
|  | Type *OpType = Operand->getType(); | 
|  | // Check the operand value itself. | 
|  | insertShadowCheck(Operand, &I); | 
|  | if (!OpType->isPointerTy() || !isOutput) { | 
|  | assert(!isOutput); | 
|  | return; | 
|  | } | 
|  | Type *ElType = OpType->getPointerElementType(); | 
|  | if (!ElType->isSized()) | 
|  | return; | 
|  | int Size = DL.getTypeStoreSize(ElType); | 
|  | Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); | 
|  | Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); | 
|  | IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); | 
|  | } | 
|  |  | 
|  | /// Get the number of output arguments returned by pointers. | 
|  | int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { | 
|  | int NumRetOutputs = 0; | 
|  | int NumOutputs = 0; | 
|  | Type *RetTy = cast<Value>(CB)->getType(); | 
|  | if (!RetTy->isVoidTy()) { | 
|  | // Register outputs are returned via the CallInst return value. | 
|  | auto *ST = dyn_cast<StructType>(RetTy); | 
|  | if (ST) | 
|  | NumRetOutputs = ST->getNumElements(); | 
|  | else | 
|  | NumRetOutputs = 1; | 
|  | } | 
|  | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); | 
|  | for (size_t i = 0, n = Constraints.size(); i < n; i++) { | 
|  | InlineAsm::ConstraintInfo Info = Constraints[i]; | 
|  | switch (Info.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | NumOutputs++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return NumOutputs - NumRetOutputs; | 
|  | } | 
|  |  | 
|  | void visitAsmInstruction(Instruction &I) { | 
|  | // Conservative inline assembly handling: check for poisoned shadow of | 
|  | // asm() arguments, then unpoison the result and all the memory locations | 
|  | // pointed to by those arguments. | 
|  | // An inline asm() statement in C++ contains lists of input and output | 
|  | // arguments used by the assembly code. These are mapped to operands of the | 
|  | // CallInst as follows: | 
|  | //  - nR register outputs ("=r) are returned by value in a single structure | 
|  | //  (SSA value of the CallInst); | 
|  | //  - nO other outputs ("=m" and others) are returned by pointer as first | 
|  | // nO operands of the CallInst; | 
|  | //  - nI inputs ("r", "m" and others) are passed to CallInst as the | 
|  | // remaining nI operands. | 
|  | // The total number of asm() arguments in the source is nR+nO+nI, and the | 
|  | // corresponding CallInst has nO+nI+1 operands (the last operand is the | 
|  | // function to be called). | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | CallBase *CB = cast<CallBase>(&I); | 
|  | IRBuilder<> IRB(&I); | 
|  | InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); | 
|  | int OutputArgs = getNumOutputArgs(IA, CB); | 
|  | // The last operand of a CallInst is the function itself. | 
|  | int NumOperands = CB->getNumOperands() - 1; | 
|  |  | 
|  | // Check input arguments. Doing so before unpoisoning output arguments, so | 
|  | // that we won't overwrite uninit values before checking them. | 
|  | for (int i = OutputArgs; i < NumOperands; i++) { | 
|  | Value *Operand = CB->getOperand(i); | 
|  | instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); | 
|  | } | 
|  | // Unpoison output arguments. This must happen before the actual InlineAsm | 
|  | // call, so that the shadow for memory published in the asm() statement | 
|  | // remains valid. | 
|  | for (int i = 0; i < OutputArgs; i++) { | 
|  | Value *Operand = CB->getOperand(i); | 
|  | instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); | 
|  | } | 
|  |  | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | // Everything else: stop propagating and check for poisoned shadow. | 
|  | if (ClDumpStrictInstructions) | 
|  | dumpInst(I); | 
|  | LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); | 
|  | for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { | 
|  | Value *Operand = I.getOperand(i); | 
|  | if (Operand->getType()->isSized()) | 
|  | insertShadowCheck(Operand, &I); | 
|  | } | 
|  | setShadow(&I, getCleanShadow(&I)); | 
|  | setOrigin(&I, getCleanOrigin()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// AMD64-specific implementation of VarArgHelper. | 
|  | struct VarArgAMD64Helper : public VarArgHelper { | 
|  | // An unfortunate workaround for asymmetric lowering of va_arg stuff. | 
|  | // See a comment in visitCallSite for more details. | 
|  | static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7 | 
|  | static const unsigned AMD64FpEndOffsetSSE = 176; | 
|  | // If SSE is disabled, fp_offset in va_list is zero. | 
|  | static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; | 
|  |  | 
|  | unsigned AMD64FpEndOffset; | 
|  | Function &F; | 
|  | MemorySanitizer &MS; | 
|  | MemorySanitizerVisitor &MSV; | 
|  | Value *VAArgTLSCopy = nullptr; | 
|  | Value *VAArgTLSOriginCopy = nullptr; | 
|  | Value *VAArgOverflowSize = nullptr; | 
|  |  | 
|  | SmallVector<CallInst*, 16> VAStartInstrumentationList; | 
|  |  | 
|  | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; | 
|  |  | 
|  | VarArgAMD64Helper(Function &F, MemorySanitizer &MS, | 
|  | MemorySanitizerVisitor &MSV) | 
|  | : F(F), MS(MS), MSV(MSV) { | 
|  | AMD64FpEndOffset = AMD64FpEndOffsetSSE; | 
|  | for (const auto &Attr : F.getAttributes().getFnAttributes()) { | 
|  | if (Attr.isStringAttribute() && | 
|  | (Attr.getKindAsString() == "target-features")) { | 
|  | if (Attr.getValueAsString().contains("-sse")) | 
|  | AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ArgKind classifyArgument(Value* arg) { | 
|  | // A very rough approximation of X86_64 argument classification rules. | 
|  | Type *T = arg->getType(); | 
|  | if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) | 
|  | return AK_FloatingPoint; | 
|  | if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) | 
|  | return AK_GeneralPurpose; | 
|  | if (T->isPointerTy()) | 
|  | return AK_GeneralPurpose; | 
|  | return AK_Memory; | 
|  | } | 
|  |  | 
|  | // For VarArg functions, store the argument shadow in an ABI-specific format | 
|  | // that corresponds to va_list layout. | 
|  | // We do this because Clang lowers va_arg in the frontend, and this pass | 
|  | // only sees the low level code that deals with va_list internals. | 
|  | // A much easier alternative (provided that Clang emits va_arg instructions) | 
|  | // would have been to associate each live instance of va_list with a copy of | 
|  | // MSanParamTLS, and extract shadow on va_arg() call in the argument list | 
|  | // order. | 
|  | void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { | 
|  | unsigned GpOffset = 0; | 
|  | unsigned FpOffset = AMD64GpEndOffset; | 
|  | unsigned OverflowOffset = AMD64FpEndOffset; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); | 
|  | ArgIt != End; ++ArgIt) { | 
|  | Value *A = *ArgIt; | 
|  | unsigned ArgNo = CS.getArgumentNo(ArgIt); | 
|  | bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); | 
|  | bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); | 
|  | if (IsByVal) { | 
|  | // ByVal arguments always go to the overflow area. | 
|  | // Fixed arguments passed through the overflow area will be stepped | 
|  | // over by va_start, so don't count them towards the offset. | 
|  | if (IsFixed) | 
|  | continue; | 
|  | assert(A->getType()->isPointerTy()); | 
|  | Type *RealTy = A->getType()->getPointerElementType(); | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(RealTy); | 
|  | Value *ShadowBase = getShadowPtrForVAArgument( | 
|  | RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); | 
|  | Value *OriginBase = nullptr; | 
|  | if (MS.TrackOrigins) | 
|  | OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); | 
|  | OverflowOffset += alignTo(ArgSize, 8); | 
|  | if (!ShadowBase) | 
|  | continue; | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, | 
|  | /*isStore*/ false); | 
|  |  | 
|  | IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, | 
|  | kShadowTLSAlignment, ArgSize); | 
|  | if (MS.TrackOrigins) | 
|  | IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, | 
|  | kShadowTLSAlignment, ArgSize); | 
|  | } else { | 
|  | ArgKind AK = classifyArgument(A); | 
|  | if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) | 
|  | AK = AK_Memory; | 
|  | if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) | 
|  | AK = AK_Memory; | 
|  | Value *ShadowBase, *OriginBase = nullptr; | 
|  | switch (AK) { | 
|  | case AK_GeneralPurpose: | 
|  | ShadowBase = | 
|  | getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); | 
|  | if (MS.TrackOrigins) | 
|  | OriginBase = | 
|  | getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); | 
|  | GpOffset += 8; | 
|  | break; | 
|  | case AK_FloatingPoint: | 
|  | ShadowBase = | 
|  | getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); | 
|  | if (MS.TrackOrigins) | 
|  | OriginBase = | 
|  | getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); | 
|  | FpOffset += 16; | 
|  | break; | 
|  | case AK_Memory: | 
|  | if (IsFixed) | 
|  | continue; | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | 
|  | ShadowBase = | 
|  | getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); | 
|  | if (MS.TrackOrigins) | 
|  | OriginBase = | 
|  | getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); | 
|  | OverflowOffset += alignTo(ArgSize, 8); | 
|  | } | 
|  | // Take fixed arguments into account for GpOffset and FpOffset, | 
|  | // but don't actually store shadows for them. | 
|  | // TODO(glider): don't call get*PtrForVAArgument() for them. | 
|  | if (IsFixed) | 
|  | continue; | 
|  | if (!ShadowBase) | 
|  | continue; | 
|  | Value *Shadow = MSV.getShadow(A); | 
|  | IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); | 
|  | if (MS.TrackOrigins) { | 
|  | Value *Origin = MSV.getOrigin(A); | 
|  | unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); | 
|  | MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, | 
|  | std::max(kShadowTLSAlignment, kMinOriginAlignment)); | 
|  | } | 
|  | } | 
|  | } | 
|  | Constant *OverflowSize = | 
|  | ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); | 
|  | IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a given va_arg. | 
|  | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | 
|  | unsigned ArgOffset, unsigned ArgSize) { | 
|  | // Make sure we don't overflow __msan_va_arg_tls. | 
|  | if (ArgOffset + ArgSize > kParamTLSSize) | 
|  | return nullptr; | 
|  | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | 
|  | "_msarg_va_s"); | 
|  | } | 
|  |  | 
|  | /// Compute the origin address for a given va_arg. | 
|  | Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { | 
|  | Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); | 
|  | // getOriginPtrForVAArgument() is always called after | 
|  | // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never | 
|  | // overflow. | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), | 
|  | "_msarg_va_o"); | 
|  | } | 
|  |  | 
|  | void unpoisonVAListTagForInst(IntrinsicInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = | 
|  | MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, | 
|  | /*isStore*/ true); | 
|  |  | 
|  | // Unpoison the whole __va_list_tag. | 
|  | // FIXME: magic ABI constants. | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 24, Alignment, false); | 
|  | // We shouldn't need to zero out the origins, as they're only checked for | 
|  | // nonzero shadow. | 
|  | } | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) override { | 
|  | if (F.getCallingConv() == CallingConv::Win64) | 
|  | return; | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | unpoisonVAListTagForInst(I); | 
|  | } | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) override { | 
|  | if (F.getCallingConv() == CallingConv::Win64) return; | 
|  | unpoisonVAListTagForInst(I); | 
|  | } | 
|  |  | 
|  | void finalizeInstrumentation() override { | 
|  | assert(!VAArgOverflowSize && !VAArgTLSCopy && | 
|  | "finalizeInstrumentation called twice"); | 
|  | if (!VAStartInstrumentationList.empty()) { | 
|  | // If there is a va_start in this function, make a backup copy of | 
|  | // va_arg_tls somewhere in the function entry block. | 
|  | IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); | 
|  | VAArgOverflowSize = | 
|  | IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | 
|  | Value *CopySize = | 
|  | IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), | 
|  | VAArgOverflowSize); | 
|  | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | 
|  | IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); | 
|  | if (MS.TrackOrigins) { | 
|  | VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | 
|  | IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instrument va_start. | 
|  | // Copy va_list shadow from the backup copy of the TLS contents. | 
|  | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | 
|  | CallInst *OrigInst = VAStartInstrumentationList[i]; | 
|  | IRBuilder<> IRB(OrigInst->getNextNode()); | 
|  | Value *VAListTag = OrigInst->getArgOperand(0); | 
|  |  | 
|  | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | 
|  | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | ConstantInt::get(MS.IntptrTy, 16)), | 
|  | PointerType::get(RegSaveAreaPtrTy, 0)); | 
|  | Value *RegSaveAreaPtr = | 
|  | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | 
|  | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | 
|  | unsigned Alignment = 16; | 
|  | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | 
|  | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | 
|  | AMD64FpEndOffset); | 
|  | if (MS.TrackOrigins) | 
|  | IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, | 
|  | Alignment, AMD64FpEndOffset); | 
|  | Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); | 
|  | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | ConstantInt::get(MS.IntptrTy, 8)), | 
|  | PointerType::get(OverflowArgAreaPtrTy, 0)); | 
|  | Value *OverflowArgAreaPtr = | 
|  | IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); | 
|  | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; | 
|  | std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = | 
|  | MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | Alignment, /*isStore*/ true); | 
|  | Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, | 
|  | AMD64FpEndOffset); | 
|  | IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, | 
|  | VAArgOverflowSize); | 
|  | if (MS.TrackOrigins) { | 
|  | SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, | 
|  | AMD64FpEndOffset); | 
|  | IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, | 
|  | VAArgOverflowSize); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// MIPS64-specific implementation of VarArgHelper. | 
|  | struct VarArgMIPS64Helper : public VarArgHelper { | 
|  | Function &F; | 
|  | MemorySanitizer &MS; | 
|  | MemorySanitizerVisitor &MSV; | 
|  | Value *VAArgTLSCopy = nullptr; | 
|  | Value *VAArgSize = nullptr; | 
|  |  | 
|  | SmallVector<CallInst*, 16> VAStartInstrumentationList; | 
|  |  | 
|  | VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, | 
|  | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | 
|  |  | 
|  | void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { | 
|  | unsigned VAArgOffset = 0; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | for (CallSite::arg_iterator ArgIt = CS.arg_begin() + | 
|  | CS.getFunctionType()->getNumParams(), End = CS.arg_end(); | 
|  | ArgIt != End; ++ArgIt) { | 
|  | Triple TargetTriple(F.getParent()->getTargetTriple()); | 
|  | Value *A = *ArgIt; | 
|  | Value *Base; | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | 
|  | if (TargetTriple.getArch() == Triple::mips64) { | 
|  | // Adjusting the shadow for argument with size < 8 to match the placement | 
|  | // of bits in big endian system | 
|  | if (ArgSize < 8) | 
|  | VAArgOffset += (8 - ArgSize); | 
|  | } | 
|  | Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); | 
|  | VAArgOffset += ArgSize; | 
|  | VAArgOffset = alignTo(VAArgOffset, 8); | 
|  | if (!Base) | 
|  | continue; | 
|  | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | 
|  | } | 
|  |  | 
|  | Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); | 
|  | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of | 
|  | // a new class member i.e. it is the total size of all VarArgs. | 
|  | IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a given va_arg. | 
|  | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | 
|  | unsigned ArgOffset, unsigned ArgSize) { | 
|  | // Make sure we don't overflow __msan_va_arg_tls. | 
|  | if (ArgOffset + ArgSize > kParamTLSSize) | 
|  | return nullptr; | 
|  | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | 
|  | "_msarg"); | 
|  | } | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 8, Alignment, false); | 
|  | } | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 8, Alignment, false); | 
|  | } | 
|  |  | 
|  | void finalizeInstrumentation() override { | 
|  | assert(!VAArgSize && !VAArgTLSCopy && | 
|  | "finalizeInstrumentation called twice"); | 
|  | IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); | 
|  | VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | 
|  | Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), | 
|  | VAArgSize); | 
|  |  | 
|  | if (!VAStartInstrumentationList.empty()) { | 
|  | // If there is a va_start in this function, make a backup copy of | 
|  | // va_arg_tls somewhere in the function entry block. | 
|  | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | 
|  | IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); | 
|  | } | 
|  |  | 
|  | // Instrument va_start. | 
|  | // Copy va_list shadow from the backup copy of the TLS contents. | 
|  | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | 
|  | CallInst *OrigInst = VAStartInstrumentationList[i]; | 
|  | IRBuilder<> IRB(OrigInst->getNextNode()); | 
|  | Value *VAListTag = OrigInst->getArgOperand(0); | 
|  | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | 
|  | Value *RegSaveAreaPtrPtr = | 
|  | IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | PointerType::get(RegSaveAreaPtrTy, 0)); | 
|  | Value *RegSaveAreaPtr = | 
|  | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | 
|  | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | 
|  | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | 
|  | CopySize); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// AArch64-specific implementation of VarArgHelper. | 
|  | struct VarArgAArch64Helper : public VarArgHelper { | 
|  | static const unsigned kAArch64GrArgSize = 64; | 
|  | static const unsigned kAArch64VrArgSize = 128; | 
|  |  | 
|  | static const unsigned AArch64GrBegOffset = 0; | 
|  | static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; | 
|  | // Make VR space aligned to 16 bytes. | 
|  | static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; | 
|  | static const unsigned AArch64VrEndOffset = AArch64VrBegOffset | 
|  | + kAArch64VrArgSize; | 
|  | static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; | 
|  |  | 
|  | Function &F; | 
|  | MemorySanitizer &MS; | 
|  | MemorySanitizerVisitor &MSV; | 
|  | Value *VAArgTLSCopy = nullptr; | 
|  | Value *VAArgOverflowSize = nullptr; | 
|  |  | 
|  | SmallVector<CallInst*, 16> VAStartInstrumentationList; | 
|  |  | 
|  | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; | 
|  |  | 
|  | VarArgAArch64Helper(Function &F, MemorySanitizer &MS, | 
|  | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | 
|  |  | 
|  | ArgKind classifyArgument(Value* arg) { | 
|  | Type *T = arg->getType(); | 
|  | if (T->isFPOrFPVectorTy()) | 
|  | return AK_FloatingPoint; | 
|  | if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) | 
|  | || (T->isPointerTy())) | 
|  | return AK_GeneralPurpose; | 
|  | return AK_Memory; | 
|  | } | 
|  |  | 
|  | // The instrumentation stores the argument shadow in a non ABI-specific | 
|  | // format because it does not know which argument is named (since Clang, | 
|  | // like x86_64 case, lowers the va_args in the frontend and this pass only | 
|  | // sees the low level code that deals with va_list internals). | 
|  | // The first seven GR registers are saved in the first 56 bytes of the | 
|  | // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then | 
|  | // the remaining arguments. | 
|  | // Using constant offset within the va_arg TLS array allows fast copy | 
|  | // in the finalize instrumentation. | 
|  | void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { | 
|  | unsigned GrOffset = AArch64GrBegOffset; | 
|  | unsigned VrOffset = AArch64VrBegOffset; | 
|  | unsigned OverflowOffset = AArch64VAEndOffset; | 
|  |  | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); | 
|  | ArgIt != End; ++ArgIt) { | 
|  | Value *A = *ArgIt; | 
|  | unsigned ArgNo = CS.getArgumentNo(ArgIt); | 
|  | bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); | 
|  | ArgKind AK = classifyArgument(A); | 
|  | if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) | 
|  | AK = AK_Memory; | 
|  | if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) | 
|  | AK = AK_Memory; | 
|  | Value *Base; | 
|  | switch (AK) { | 
|  | case AK_GeneralPurpose: | 
|  | Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); | 
|  | GrOffset += 8; | 
|  | break; | 
|  | case AK_FloatingPoint: | 
|  | Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); | 
|  | VrOffset += 16; | 
|  | break; | 
|  | case AK_Memory: | 
|  | // Don't count fixed arguments in the overflow area - va_start will | 
|  | // skip right over them. | 
|  | if (IsFixed) | 
|  | continue; | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | 
|  | Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, | 
|  | alignTo(ArgSize, 8)); | 
|  | OverflowOffset += alignTo(ArgSize, 8); | 
|  | break; | 
|  | } | 
|  | // Count Gp/Vr fixed arguments to their respective offsets, but don't | 
|  | // bother to actually store a shadow. | 
|  | if (IsFixed) | 
|  | continue; | 
|  | if (!Base) | 
|  | continue; | 
|  | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | 
|  | } | 
|  | Constant *OverflowSize = | 
|  | ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); | 
|  | IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a given va_arg. | 
|  | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | 
|  | unsigned ArgOffset, unsigned ArgSize) { | 
|  | // Make sure we don't overflow __msan_va_arg_tls. | 
|  | if (ArgOffset + ArgSize > kParamTLSSize) | 
|  | return nullptr; | 
|  | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | 
|  | "_msarg"); | 
|  | } | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 32, Alignment, false); | 
|  | } | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 32, Alignment, false); | 
|  | } | 
|  |  | 
|  | // Retrieve a va_list field of 'void*' size. | 
|  | Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { | 
|  | Value *SaveAreaPtrPtr = | 
|  | IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | ConstantInt::get(MS.IntptrTy, offset)), | 
|  | Type::getInt64PtrTy(*MS.C)); | 
|  | return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); | 
|  | } | 
|  |  | 
|  | // Retrieve a va_list field of 'int' size. | 
|  | Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { | 
|  | Value *SaveAreaPtr = | 
|  | IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | ConstantInt::get(MS.IntptrTy, offset)), | 
|  | Type::getInt32PtrTy(*MS.C)); | 
|  | Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); | 
|  | return IRB.CreateSExt(SaveArea32, MS.IntptrTy); | 
|  | } | 
|  |  | 
|  | void finalizeInstrumentation() override { | 
|  | assert(!VAArgOverflowSize && !VAArgTLSCopy && | 
|  | "finalizeInstrumentation called twice"); | 
|  | if (!VAStartInstrumentationList.empty()) { | 
|  | // If there is a va_start in this function, make a backup copy of | 
|  | // va_arg_tls somewhere in the function entry block. | 
|  | IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); | 
|  | VAArgOverflowSize = | 
|  | IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | 
|  | Value *CopySize = | 
|  | IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), | 
|  | VAArgOverflowSize); | 
|  | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | 
|  | IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); | 
|  | } | 
|  |  | 
|  | Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); | 
|  | Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); | 
|  |  | 
|  | // Instrument va_start, copy va_list shadow from the backup copy of | 
|  | // the TLS contents. | 
|  | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | 
|  | CallInst *OrigInst = VAStartInstrumentationList[i]; | 
|  | IRBuilder<> IRB(OrigInst->getNextNode()); | 
|  |  | 
|  | Value *VAListTag = OrigInst->getArgOperand(0); | 
|  |  | 
|  | // The variadic ABI for AArch64 creates two areas to save the incoming | 
|  | // argument registers (one for 64-bit general register xn-x7 and another | 
|  | // for 128-bit FP/SIMD vn-v7). | 
|  | // We need then to propagate the shadow arguments on both regions | 
|  | // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. | 
|  | // The remaning arguments are saved on shadow for 'va::stack'. | 
|  | // One caveat is it requires only to propagate the non-named arguments, | 
|  | // however on the call site instrumentation 'all' the arguments are | 
|  | // saved. So to copy the shadow values from the va_arg TLS array | 
|  | // we need to adjust the offset for both GR and VR fields based on | 
|  | // the __{gr,vr}_offs value (since they are stores based on incoming | 
|  | // named arguments). | 
|  |  | 
|  | // Read the stack pointer from the va_list. | 
|  | Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); | 
|  |  | 
|  | // Read both the __gr_top and __gr_off and add them up. | 
|  | Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); | 
|  | Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); | 
|  |  | 
|  | Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); | 
|  |  | 
|  | // Read both the __vr_top and __vr_off and add them up. | 
|  | Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); | 
|  | Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); | 
|  |  | 
|  | Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); | 
|  |  | 
|  | // It does not know how many named arguments is being used and, on the | 
|  | // callsite all the arguments were saved.  Since __gr_off is defined as | 
|  | // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic | 
|  | // argument by ignoring the bytes of shadow from named arguments. | 
|  | Value *GrRegSaveAreaShadowPtrOff = | 
|  | IRB.CreateAdd(GrArgSize, GrOffSaveArea); | 
|  |  | 
|  | Value *GrRegSaveAreaShadowPtr = | 
|  | MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | /*Alignment*/ 8, /*isStore*/ true) | 
|  | .first; | 
|  |  | 
|  | Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | 
|  | GrRegSaveAreaShadowPtrOff); | 
|  | Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); | 
|  |  | 
|  | IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); | 
|  |  | 
|  | // Again, but for FP/SIMD values. | 
|  | Value *VrRegSaveAreaShadowPtrOff = | 
|  | IRB.CreateAdd(VrArgSize, VrOffSaveArea); | 
|  |  | 
|  | Value *VrRegSaveAreaShadowPtr = | 
|  | MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | /*Alignment*/ 8, /*isStore*/ true) | 
|  | .first; | 
|  |  | 
|  | Value *VrSrcPtr = IRB.CreateInBoundsGEP( | 
|  | IRB.getInt8Ty(), | 
|  | IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | 
|  | IRB.getInt32(AArch64VrBegOffset)), | 
|  | VrRegSaveAreaShadowPtrOff); | 
|  | Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); | 
|  |  | 
|  | IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); | 
|  |  | 
|  | // And finally for remaining arguments. | 
|  | Value *StackSaveAreaShadowPtr = | 
|  | MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | /*Alignment*/ 16, /*isStore*/ true) | 
|  | .first; | 
|  |  | 
|  | Value *StackSrcPtr = | 
|  | IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | 
|  | IRB.getInt32(AArch64VAEndOffset)); | 
|  |  | 
|  | IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, | 
|  | VAArgOverflowSize); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// PowerPC64-specific implementation of VarArgHelper. | 
|  | struct VarArgPowerPC64Helper : public VarArgHelper { | 
|  | Function &F; | 
|  | MemorySanitizer &MS; | 
|  | MemorySanitizerVisitor &MSV; | 
|  | Value *VAArgTLSCopy = nullptr; | 
|  | Value *VAArgSize = nullptr; | 
|  |  | 
|  | SmallVector<CallInst*, 16> VAStartInstrumentationList; | 
|  |  | 
|  | VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, | 
|  | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | 
|  |  | 
|  | void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { | 
|  | // For PowerPC, we need to deal with alignment of stack arguments - | 
|  | // they are mostly aligned to 8 bytes, but vectors and i128 arrays | 
|  | // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, | 
|  | // and QPX vectors are aligned to 32 bytes.  For that reason, we | 
|  | // compute current offset from stack pointer (which is always properly | 
|  | // aligned), and offset for the first vararg, then subtract them. | 
|  | unsigned VAArgBase; | 
|  | Triple TargetTriple(F.getParent()->getTargetTriple()); | 
|  | // Parameter save area starts at 48 bytes from frame pointer for ABIv1, | 
|  | // and 32 bytes for ABIv2.  This is usually determined by target | 
|  | // endianness, but in theory could be overriden by function attribute. | 
|  | // For simplicity, we ignore it here (it'd only matter for QPX vectors). | 
|  | if (TargetTriple.getArch() == Triple::ppc64) | 
|  | VAArgBase = 48; | 
|  | else | 
|  | VAArgBase = 32; | 
|  | unsigned VAArgOffset = VAArgBase; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); | 
|  | ArgIt != End; ++ArgIt) { | 
|  | Value *A = *ArgIt; | 
|  | unsigned ArgNo = CS.getArgumentNo(ArgIt); | 
|  | bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); | 
|  | bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); | 
|  | if (IsByVal) { | 
|  | assert(A->getType()->isPointerTy()); | 
|  | Type *RealTy = A->getType()->getPointerElementType(); | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(RealTy); | 
|  | uint64_t ArgAlign = CS.getParamAlignment(ArgNo); | 
|  | if (ArgAlign < 8) | 
|  | ArgAlign = 8; | 
|  | VAArgOffset = alignTo(VAArgOffset, ArgAlign); | 
|  | if (!IsFixed) { | 
|  | Value *Base = getShadowPtrForVAArgument( | 
|  | RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); | 
|  | if (Base) { | 
|  | Value *AShadowPtr, *AOriginPtr; | 
|  | std::tie(AShadowPtr, AOriginPtr) = | 
|  | MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), | 
|  | kShadowTLSAlignment, /*isStore*/ false); | 
|  |  | 
|  | IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, | 
|  | kShadowTLSAlignment, ArgSize); | 
|  | } | 
|  | } | 
|  | VAArgOffset += alignTo(ArgSize, 8); | 
|  | } else { | 
|  | Value *Base; | 
|  | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | 
|  | uint64_t ArgAlign = 8; | 
|  | if (A->getType()->isArrayTy()) { | 
|  | // Arrays are aligned to element size, except for long double | 
|  | // arrays, which are aligned to 8 bytes. | 
|  | Type *ElementTy = A->getType()->getArrayElementType(); | 
|  | if (!ElementTy->isPPC_FP128Ty()) | 
|  | ArgAlign = DL.getTypeAllocSize(ElementTy); | 
|  | } else if (A->getType()->isVectorTy()) { | 
|  | // Vectors are naturally aligned. | 
|  | ArgAlign = DL.getTypeAllocSize(A->getType()); | 
|  | } | 
|  | if (ArgAlign < 8) | 
|  | ArgAlign = 8; | 
|  | VAArgOffset = alignTo(VAArgOffset, ArgAlign); | 
|  | if (DL.isBigEndian()) { | 
|  | // Adjusting the shadow for argument with size < 8 to match the placement | 
|  | // of bits in big endian system | 
|  | if (ArgSize < 8) | 
|  | VAArgOffset += (8 - ArgSize); | 
|  | } | 
|  | if (!IsFixed) { | 
|  | Base = getShadowPtrForVAArgument(A->getType(), IRB, | 
|  | VAArgOffset - VAArgBase, ArgSize); | 
|  | if (Base) | 
|  | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | 
|  | } | 
|  | VAArgOffset += ArgSize; | 
|  | VAArgOffset = alignTo(VAArgOffset, 8); | 
|  | } | 
|  | if (IsFixed) | 
|  | VAArgBase = VAArgOffset; | 
|  | } | 
|  |  | 
|  | Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), | 
|  | VAArgOffset - VAArgBase); | 
|  | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of | 
|  | // a new class member i.e. it is the total size of all VarArgs. | 
|  | IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); | 
|  | } | 
|  |  | 
|  | /// Compute the shadow address for a given va_arg. | 
|  | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | 
|  | unsigned ArgOffset, unsigned ArgSize) { | 
|  | // Make sure we don't overflow __msan_va_arg_tls. | 
|  | if (ArgOffset + ArgSize > kParamTLSSize) | 
|  | return nullptr; | 
|  | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | 
|  | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | 
|  | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | 
|  | "_msarg"); | 
|  | } | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | VAStartInstrumentationList.push_back(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 8, Alignment, false); | 
|  | } | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) override { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *VAListTag = I.getArgOperand(0); | 
|  | Value *ShadowPtr, *OriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | 
|  | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | 
|  | // Unpoison the whole __va_list_tag. | 
|  | // FIXME: magic ABI constants. | 
|  | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | 
|  | /* size */ 8, Alignment, false); | 
|  | } | 
|  |  | 
|  | void finalizeInstrumentation() override { | 
|  | assert(!VAArgSize && !VAArgTLSCopy && | 
|  | "finalizeInstrumentation called twice"); | 
|  | IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); | 
|  | VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | 
|  | Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), | 
|  | VAArgSize); | 
|  |  | 
|  | if (!VAStartInstrumentationList.empty()) { | 
|  | // If there is a va_start in this function, make a backup copy of | 
|  | // va_arg_tls somewhere in the function entry block. | 
|  | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | 
|  | IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); | 
|  | } | 
|  |  | 
|  | // Instrument va_start. | 
|  | // Copy va_list shadow from the backup copy of the TLS contents. | 
|  | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | 
|  | CallInst *OrigInst = VAStartInstrumentationList[i]; | 
|  | IRBuilder<> IRB(OrigInst->getNextNode()); | 
|  | Value *VAListTag = OrigInst->getArgOperand(0); | 
|  | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | 
|  | Value *RegSaveAreaPtrPtr = | 
|  | IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | 
|  | PointerType::get(RegSaveAreaPtrTy, 0)); | 
|  | Value *RegSaveAreaPtr = | 
|  | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | 
|  | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | 
|  | unsigned Alignment = 8; | 
|  | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | 
|  | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | 
|  | Alignment, /*isStore*/ true); | 
|  | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | 
|  | CopySize); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A no-op implementation of VarArgHelper. | 
|  | struct VarArgNoOpHelper : public VarArgHelper { | 
|  | VarArgNoOpHelper(Function &F, MemorySanitizer &MS, | 
|  | MemorySanitizerVisitor &MSV) {} | 
|  |  | 
|  | void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} | 
|  |  | 
|  | void visitVAStartInst(VAStartInst &I) override {} | 
|  |  | 
|  | void visitVACopyInst(VACopyInst &I) override {} | 
|  |  | 
|  | void finalizeInstrumentation() override {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, | 
|  | MemorySanitizerVisitor &Visitor) { | 
|  | // VarArg handling is only implemented on AMD64. False positives are possible | 
|  | // on other platforms. | 
|  | Triple TargetTriple(Func.getParent()->getTargetTriple()); | 
|  | if (TargetTriple.getArch() == Triple::x86_64) | 
|  | return new VarArgAMD64Helper(Func, Msan, Visitor); | 
|  | else if (TargetTriple.isMIPS64()) | 
|  | return new VarArgMIPS64Helper(Func, Msan, Visitor); | 
|  | else if (TargetTriple.getArch() == Triple::aarch64) | 
|  | return new VarArgAArch64Helper(Func, Msan, Visitor); | 
|  | else if (TargetTriple.getArch() == Triple::ppc64 || | 
|  | TargetTriple.getArch() == Triple::ppc64le) | 
|  | return new VarArgPowerPC64Helper(Func, Msan, Visitor); | 
|  | else | 
|  | return new VarArgNoOpHelper(Func, Msan, Visitor); | 
|  | } | 
|  |  | 
|  | bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { | 
|  | if (!CompileKernel && F.getName() == kMsanModuleCtorName) | 
|  | return false; | 
|  |  | 
|  | MemorySanitizerVisitor Visitor(F, *this, TLI); | 
|  |  | 
|  | // Clear out readonly/readnone attributes. | 
|  | AttrBuilder B; | 
|  | B.addAttribute(Attribute::ReadOnly) | 
|  | .addAttribute(Attribute::ReadNone) | 
|  | .addAttribute(Attribute::WriteOnly) | 
|  | .addAttribute(Attribute::ArgMemOnly) | 
|  | .addAttribute(Attribute::Speculatable); | 
|  | F.removeAttributes(AttributeList::FunctionIndex, B); | 
|  |  | 
|  | return Visitor.runOnFunction(); | 
|  | } |