|  | //==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file describes the X86 x87 FPU instruction set, defining the | 
|  | // instructions, and properties of the instructions which are needed for code | 
|  | // generation, machine code emission, and analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FPStack specific DAG Nodes. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, | 
|  | SDTCisVT<1, f80>]>; | 
|  | def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>, | 
|  | SDTCisPtrTy<1>, | 
|  | SDTCisVT<2, OtherVT>]>; | 
|  | def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>, | 
|  | SDTCisPtrTy<1>, | 
|  | SDTCisVT<2, OtherVT>]>; | 
|  | def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, | 
|  | SDTCisVT<2, OtherVT>]>; | 
|  | def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; | 
|  |  | 
|  | def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; | 
|  |  | 
|  | def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld, | 
|  | [SDNPHasChain, SDNPMayLoad]>; | 
|  | def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst, | 
|  | [SDNPHasChain, SDNPInFlag, SDNPMayStore]>; | 
|  | def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild, | 
|  | [SDNPHasChain, SDNPMayLoad]>; | 
|  | def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, | 
|  | [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>; | 
|  | def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, | 
|  | [SDNPHasChain, SDNPMayStore]>; | 
|  | def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, | 
|  | [SDNPHasChain, SDNPMayStore]>; | 
|  | def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, | 
|  | [SDNPHasChain, SDNPMayStore]>; | 
|  | def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore, | 
|  | [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FPStack pattern fragments | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def fpimm0 : PatLeaf<(fpimm), [{ | 
|  | return N->isExactlyValue(+0.0); | 
|  | }]>; | 
|  |  | 
|  | def fpimmneg0 : PatLeaf<(fpimm), [{ | 
|  | return N->isExactlyValue(-0.0); | 
|  | }]>; | 
|  |  | 
|  | def fpimm1 : PatLeaf<(fpimm), [{ | 
|  | return N->isExactlyValue(+1.0); | 
|  | }]>; | 
|  |  | 
|  | def fpimmneg1 : PatLeaf<(fpimm), [{ | 
|  | return N->isExactlyValue(-1.0); | 
|  | }]>; | 
|  |  | 
|  | // Some 'special' instructions | 
|  | let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler. | 
|  | def FP32_TO_INT16_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i16mem:$dst, RFP32:$src), | 
|  | "##FP32_TO_INT16_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; | 
|  | def FP32_TO_INT32_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i32mem:$dst, RFP32:$src), | 
|  | "##FP32_TO_INT32_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; | 
|  | def FP32_TO_INT64_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i64mem:$dst, RFP32:$src), | 
|  | "##FP32_TO_INT64_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; | 
|  | def FP64_TO_INT16_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i16mem:$dst, RFP64:$src), | 
|  | "##FP64_TO_INT16_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; | 
|  | def FP64_TO_INT32_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i32mem:$dst, RFP64:$src), | 
|  | "##FP64_TO_INT32_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; | 
|  | def FP64_TO_INT64_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i64mem:$dst, RFP64:$src), | 
|  | "##FP64_TO_INT64_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; | 
|  | def FP80_TO_INT16_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i16mem:$dst, RFP80:$src), | 
|  | "##FP80_TO_INT16_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; | 
|  | def FP80_TO_INT32_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i32mem:$dst, RFP80:$src), | 
|  | "##FP80_TO_INT32_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; | 
|  | def FP80_TO_INT64_IN_MEM : I<0, Pseudo, | 
|  | (outs), (ins i64mem:$dst, RFP80:$src), | 
|  | "##FP80_TO_INT64_IN_MEM PSEUDO!", | 
|  | [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; | 
|  | } | 
|  |  | 
|  | let isTerminator = 1 in | 
|  | let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in | 
|  | def FP_REG_KILL  : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>; | 
|  |  | 
|  | // All FP Stack operations are represented with four instructions here.  The | 
|  | // first three instructions, generated by the instruction selector, use "RFP32" | 
|  | // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, | 
|  | // 64-bit or 80-bit floating point values.  These sizes apply to the values, | 
|  | // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be | 
|  | // copied to each other without losing information.  These instructions are all | 
|  | // pseudo instructions and use the "_Fp" suffix. | 
|  | // In some cases there are additional variants with a mixture of different | 
|  | // register sizes. | 
|  | // The second instruction is defined with FPI, which is the actual instruction | 
|  | // emitted by the assembler.  These use "RST" registers, although frequently | 
|  | // the actual register(s) used are implicit.  These are always 80 bits. | 
|  | // The FP stackifier pass converts one to the other after register allocation | 
|  | // occurs. | 
|  | // | 
|  | // Note that the FpI instruction should have instruction selection info (e.g. | 
|  | // a pattern) and the FPI instruction should have emission info (e.g. opcode | 
|  | // encoding and asm printing info). | 
|  |  | 
|  | // Pseudo Instructions for FP stack return values. | 
|  | def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0) | 
|  | def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0) | 
|  | def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0) | 
|  |  | 
|  | // FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when | 
|  | // there are two values live out on the stack from a call or inlineasm.  This | 
|  | // magic is handled by the stackifier.  It is not valid to emit FpGET_ST1* and | 
|  | // then FpGET_ST0*.  In addition, it is invalid for any FP-using operations to | 
|  | // occur between them. | 
|  | def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1) | 
|  | def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1) | 
|  | def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1) | 
|  |  | 
|  | let Defs = [ST0] in { | 
|  | def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR | 
|  | def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR | 
|  | def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR | 
|  | } | 
|  |  | 
|  | // FpIf32, FpIf64 - Floating Point Psuedo Instruction template. | 
|  | // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. | 
|  | // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. | 
|  | // f80 instructions cannot use SSE and use neither of these. | 
|  | class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : | 
|  | FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; | 
|  | class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : | 
|  | FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; | 
|  |  | 
|  | // Register copies.  Just copies, the shortening ones do not truncate. | 
|  | let neverHasSideEffects = 1 in { | 
|  | def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; | 
|  | def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; | 
|  | def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; | 
|  | def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; | 
|  | def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; | 
|  | def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; | 
|  | def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; | 
|  | def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; | 
|  | def MOV_Fp8080 : FpI_  <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; | 
|  | } | 
|  |  | 
|  | // Factoring for arithmetic. | 
|  | multiclass FPBinary_rr<SDNode OpNode> { | 
|  | // Register op register -> register | 
|  | // These are separated out because they have no reversed form. | 
|  | def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, | 
|  | [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; | 
|  | def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, | 
|  | [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; | 
|  | def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, | 
|  | [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; | 
|  | } | 
|  | // The FopST0 series are not included here because of the irregularities | 
|  | // in where the 'r' goes in assembly output. | 
|  | // These instructions cannot address 80-bit memory. | 
|  | multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> { | 
|  | // ST(0) = ST(0) + [mem] | 
|  | def _Fp32m  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, | 
|  | [(set RFP32:$dst, | 
|  | (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>; | 
|  | def _Fp64m  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, | 
|  | [(set RFP64:$dst, | 
|  | (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>; | 
|  | def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, | 
|  | [(set RFP64:$dst, | 
|  | (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>; | 
|  | def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, | 
|  | [(set RFP80:$dst, | 
|  | (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; | 
|  | def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, | 
|  | [(set RFP80:$dst, | 
|  | (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>; | 
|  | def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), | 
|  | !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } | 
|  | def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), | 
|  | !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } | 
|  | // ST(0) = ST(0) + [memint] | 
|  | def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, | 
|  | [(set RFP32:$dst, (OpNode RFP32:$src1, | 
|  | (X86fild addr:$src2, i16)))]>; | 
|  | def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, | 
|  | [(set RFP32:$dst, (OpNode RFP32:$src1, | 
|  | (X86fild addr:$src2, i32)))]>; | 
|  | def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, | 
|  | [(set RFP64:$dst, (OpNode RFP64:$src1, | 
|  | (X86fild addr:$src2, i16)))]>; | 
|  | def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, | 
|  | [(set RFP64:$dst, (OpNode RFP64:$src1, | 
|  | (X86fild addr:$src2, i32)))]>; | 
|  | def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, | 
|  | [(set RFP80:$dst, (OpNode RFP80:$src1, | 
|  | (X86fild addr:$src2, i16)))]>; | 
|  | def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, | 
|  | [(set RFP80:$dst, (OpNode RFP80:$src1, | 
|  | (X86fild addr:$src2, i32)))]>; | 
|  | def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), | 
|  | !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } | 
|  | def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), | 
|  | !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } | 
|  | } | 
|  |  | 
|  | defm ADD : FPBinary_rr<fadd>; | 
|  | defm SUB : FPBinary_rr<fsub>; | 
|  | defm MUL : FPBinary_rr<fmul>; | 
|  | defm DIV : FPBinary_rr<fdiv>; | 
|  | defm ADD : FPBinary<fadd, MRM0m, "add">; | 
|  | defm SUB : FPBinary<fsub, MRM4m, "sub">; | 
|  | defm SUBR: FPBinary<fsub ,MRM5m, "subr">; | 
|  | defm MUL : FPBinary<fmul, MRM1m, "mul">; | 
|  | defm DIV : FPBinary<fdiv, MRM6m, "div">; | 
|  | defm DIVR: FPBinary<fdiv, MRM7m, "divr">; | 
|  |  | 
|  | class FPST0rInst<bits<8> o, string asm> | 
|  | : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8; | 
|  | class FPrST0Inst<bits<8> o, string asm> | 
|  | : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC; | 
|  | class FPrST0PInst<bits<8> o, string asm> | 
|  | : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE; | 
|  |  | 
|  | // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion | 
|  | // of some of the 'reverse' forms of the fsub and fdiv instructions.  As such, | 
|  | // we have to put some 'r's in and take them out of weird places. | 
|  | def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">; | 
|  | def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">; | 
|  | def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">; | 
|  | def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">; | 
|  | def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">; | 
|  | def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">; | 
|  | def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">; | 
|  | def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">; | 
|  | def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">; | 
|  | def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">; | 
|  | def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">; | 
|  | def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">; | 
|  | def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">; | 
|  |  | 
|  | // Unary operations. | 
|  | multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> { | 
|  | def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, | 
|  | [(set RFP32:$dst, (OpNode RFP32:$src))]>; | 
|  | def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, | 
|  | [(set RFP64:$dst, (OpNode RFP64:$src))]>; | 
|  | def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, | 
|  | [(set RFP80:$dst, (OpNode RFP80:$src))]>; | 
|  | def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9; | 
|  | } | 
|  |  | 
|  | defm CHS : FPUnary<fneg, 0xE0, "fchs">; | 
|  | defm ABS : FPUnary<fabs, 0xE1, "fabs">; | 
|  | defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">; | 
|  | defm SIN : FPUnary<fsin, 0xFE, "fsin">; | 
|  | defm COS : FPUnary<fcos, 0xFF, "fcos">; | 
|  |  | 
|  | let neverHasSideEffects = 1 in { | 
|  | def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; | 
|  | def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; | 
|  | def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; | 
|  | } | 
|  | def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9; | 
|  |  | 
|  | // Floating point cmovs. | 
|  | multiclass FPCMov<PatLeaf cc> { | 
|  | def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), | 
|  | CondMovFP, | 
|  | [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, | 
|  | cc, EFLAGS))]>; | 
|  | def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), | 
|  | CondMovFP, | 
|  | [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, | 
|  | cc, EFLAGS))]>; | 
|  | def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), | 
|  | CondMovFP, | 
|  | [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, | 
|  | cc, EFLAGS))]>; | 
|  | } | 
|  | let Uses = [EFLAGS], isTwoAddress = 1 in { | 
|  | defm CMOVB  : FPCMov<X86_COND_B>; | 
|  | defm CMOVBE : FPCMov<X86_COND_BE>; | 
|  | defm CMOVE  : FPCMov<X86_COND_E>; | 
|  | defm CMOVP  : FPCMov<X86_COND_P>; | 
|  | defm CMOVNB : FPCMov<X86_COND_AE>; | 
|  | defm CMOVNBE: FPCMov<X86_COND_A>; | 
|  | defm CMOVNE : FPCMov<X86_COND_NE>; | 
|  | defm CMOVNP : FPCMov<X86_COND_NP>; | 
|  | } | 
|  |  | 
|  | // These are not factored because there's no clean way to pass DA/DB. | 
|  | def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA; | 
|  | def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA; | 
|  | def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmove\t{$op, %st(0)|%ST(0), $op}">, DA; | 
|  | def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA; | 
|  | def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB; | 
|  | def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB; | 
|  | def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB; | 
|  | def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), | 
|  | "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB; | 
|  |  | 
|  | // Floating point loads & stores. | 
|  | let isSimpleLoad = 1 in { | 
|  | def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, | 
|  | [(set RFP32:$dst, (loadf32 addr:$src))]>; | 
|  | let isReMaterializable = 1, mayHaveSideEffects = 1 in | 
|  | def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, | 
|  | [(set RFP64:$dst, (loadf64 addr:$src))]>; | 
|  | def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (loadf80 addr:$src))]>; | 
|  | } | 
|  | def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, | 
|  | [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; | 
|  | def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; | 
|  | def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; | 
|  | def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, | 
|  | [(set RFP32:$dst, (X86fild addr:$src, i16))]>; | 
|  | def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, | 
|  | [(set RFP32:$dst, (X86fild addr:$src, i32))]>; | 
|  | def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, | 
|  | [(set RFP32:$dst, (X86fild addr:$src, i64))]>; | 
|  | def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, | 
|  | [(set RFP64:$dst, (X86fild addr:$src, i16))]>; | 
|  | def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, | 
|  | [(set RFP64:$dst, (X86fild addr:$src, i32))]>; | 
|  | def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, | 
|  | [(set RFP64:$dst, (X86fild addr:$src, i64))]>; | 
|  | def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (X86fild addr:$src, i16))]>; | 
|  | def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (X86fild addr:$src, i32))]>; | 
|  | def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, | 
|  | [(set RFP80:$dst, (X86fild addr:$src, i64))]>; | 
|  |  | 
|  | def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, | 
|  | [(store RFP32:$src, addr:$op)]>; | 
|  | def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, | 
|  | [(truncstoref32 RFP64:$src, addr:$op)]>; | 
|  | def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, | 
|  | [(store RFP64:$src, addr:$op)]>; | 
|  | def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, | 
|  | [(truncstoref32 RFP80:$src, addr:$op)]>; | 
|  | def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, | 
|  | [(truncstoref64 RFP80:$src, addr:$op)]>; | 
|  | // FST does not support 80-bit memory target; FSTP must be used. | 
|  |  | 
|  | let mayStore = 1, neverHasSideEffects = 1 in { | 
|  | def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; | 
|  | def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; | 
|  | def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; | 
|  | def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; | 
|  | def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; | 
|  | } | 
|  | def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, | 
|  | [(store RFP80:$src, addr:$op)]>; | 
|  | let mayStore = 1, neverHasSideEffects = 1 in { | 
|  | def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; | 
|  | def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; | 
|  | def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; | 
|  | def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; | 
|  | def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; | 
|  | def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; | 
|  | def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; | 
|  | def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; | 
|  | def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; | 
|  | } | 
|  |  | 
|  | let mayLoad = 1 in { | 
|  | def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; | 
|  | def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; | 
|  | def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; | 
|  | def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; | 
|  | def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; | 
|  | def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; | 
|  | } | 
|  | let mayStore = 1 in { | 
|  | def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; | 
|  | def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; | 
|  | def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; | 
|  | def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; | 
|  | def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; | 
|  | def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; | 
|  | def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; | 
|  | def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; | 
|  | def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; | 
|  | def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; | 
|  | } | 
|  |  | 
|  | // FISTTP requires SSE3 even though it's a FPStack op. | 
|  | def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, | 
|  | [(X86fp_to_i16mem RFP32:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, | 
|  | [(X86fp_to_i32mem RFP32:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, | 
|  | [(X86fp_to_i64mem RFP32:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, | 
|  | [(X86fp_to_i16mem RFP64:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, | 
|  | [(X86fp_to_i32mem RFP64:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, | 
|  | [(X86fp_to_i64mem RFP64:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, | 
|  | [(X86fp_to_i16mem RFP80:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, | 
|  | [(X86fp_to_i32mem RFP80:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  | def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, | 
|  | [(X86fp_to_i64mem RFP80:$src, addr:$op)]>, | 
|  | Requires<[HasSSE3]>; | 
|  |  | 
|  | let mayStore = 1 in { | 
|  | def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; | 
|  | def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; | 
|  | def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; | 
|  | } | 
|  |  | 
|  | // FP Stack manipulation instructions. | 
|  | def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9; | 
|  | def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD; | 
|  | def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD; | 
|  | def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9; | 
|  |  | 
|  | // Floating point constant loads. | 
|  | let isReMaterializable = 1 in { | 
|  | def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP32:$dst, fpimm0)]>; | 
|  | def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP32:$dst, fpimm1)]>; | 
|  | def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP64:$dst, fpimm0)]>; | 
|  | def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP64:$dst, fpimm1)]>; | 
|  | def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP80:$dst, fpimm0)]>; | 
|  | def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, | 
|  | [(set RFP80:$dst, fpimm1)]>; | 
|  | } | 
|  |  | 
|  | def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9; | 
|  | def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9; | 
|  |  | 
|  |  | 
|  | // Floating point compares. | 
|  | let Defs = [EFLAGS] in { | 
|  | def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, | 
|  | []>;  // FPSW = cmp ST(0) with ST(i) | 
|  | def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, | 
|  | []>;  // FPSW = cmp ST(0) with ST(i) | 
|  | def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, | 
|  | []>;  // FPSW = cmp ST(0) with ST(i) | 
|  |  | 
|  | def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, | 
|  | [(X86cmp RFP32:$lhs, RFP32:$rhs), | 
|  | (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) | 
|  | def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, | 
|  | [(X86cmp RFP64:$lhs, RFP64:$rhs), | 
|  | (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) | 
|  | def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, | 
|  | [(X86cmp RFP80:$lhs, RFP80:$rhs), | 
|  | (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) | 
|  | } | 
|  |  | 
|  | let Defs = [EFLAGS], Uses = [ST0] in { | 
|  | def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i) | 
|  | (outs), (ins RST:$reg), | 
|  | "fucom\t$reg">, DD; | 
|  | def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop | 
|  | (outs), (ins RST:$reg), | 
|  | "fucomp\t$reg">, DD; | 
|  | def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop | 
|  | (outs), (ins), | 
|  | "fucompp">, DA; | 
|  |  | 
|  | def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i) | 
|  | (outs), (ins RST:$reg), | 
|  | "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB; | 
|  | def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop | 
|  | (outs), (ins RST:$reg), | 
|  | "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF; | 
|  | } | 
|  |  | 
|  | // Floating point flag ops. | 
|  | let Defs = [AX] in | 
|  | def FNSTSW8r  : I<0xE0, RawFrm,                  // AX = fp flags | 
|  | (outs), (ins), "fnstsw", []>, DF; | 
|  |  | 
|  | def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world | 
|  | (outs), (ins i16mem:$dst), "fnstcw\t$dst", | 
|  | [(X86fp_cwd_get16 addr:$dst)]>; | 
|  |  | 
|  | let mayLoad = 1 in | 
|  | def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16] | 
|  | (outs), (ins i16mem:$dst), "fldcw\t$dst", []>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Non-Instruction Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Required for RET of f32 / f64 / f80 values. | 
|  | def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; | 
|  | def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; | 
|  | def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; | 
|  |  | 
|  | // Required for CALL which return f32 / f64 / f80 values. | 
|  | def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; | 
|  | def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>; | 
|  | def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; | 
|  | def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>; | 
|  | def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>; | 
|  | def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>; | 
|  |  | 
|  | // Floating point constant -0.0 and -1.0 | 
|  | def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; | 
|  | def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; | 
|  | def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; | 
|  | def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; | 
|  | def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; | 
|  | def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; | 
|  |  | 
|  | // Used to conv. i64 to f64 since there isn't a SSE version. | 
|  | def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; | 
|  |  | 
|  | // FP extensions map onto simple pseudo-value conversions if they are to/from | 
|  | // the FP stack. | 
|  | def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, | 
|  | Requires<[FPStackf32]>; | 
|  | def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, | 
|  | Requires<[FPStackf32]>; | 
|  | def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, | 
|  | Requires<[FPStackf64]>; | 
|  |  | 
|  | // FP truncations map onto simple pseudo-value conversions if they are to/from | 
|  | // the FP stack.  We have validated that only value-preserving truncations make | 
|  | // it through isel. | 
|  | def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>, | 
|  | Requires<[FPStackf32]>; | 
|  | def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>, | 
|  | Requires<[FPStackf32]>; | 
|  | def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>, | 
|  | Requires<[FPStackf64]>; |