|  | //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// \brief The AMDGPU target machine contains all of the hardware specific | 
|  | /// information  needed to emit code for R600 and SI GPUs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUCallLowering.h" | 
|  | #include "AMDGPUTargetObjectFile.h" | 
|  | #include "AMDGPUTargetTransformInfo.h" | 
|  | #include "GCNSchedStrategy.h" | 
|  | #include "R600ISelLowering.h" | 
|  | #include "R600InstrInfo.h" | 
|  | #include "R600MachineScheduler.h" | 
|  | #include "SIISelLowering.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineScheduler.h" | 
|  | #include "llvm/CodeGen/GlobalISel/IRTranslator.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/IPO/AlwaysInliner.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include "llvm/Transforms/Vectorize.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> EnableR600StructurizeCFG( | 
|  | "r600-ir-structurize", | 
|  | cl::desc("Use StructurizeCFG IR pass"), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> EnableSROA( | 
|  | "amdgpu-sroa", | 
|  | cl::desc("Run SROA after promote alloca pass"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> EnableR600IfConvert( | 
|  | "r600-if-convert", | 
|  | cl::desc("Use if conversion pass"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | // Option to disable vectorizer for tests. | 
|  | static cl::opt<bool> EnableLoadStoreVectorizer( | 
|  | "amdgpu-load-store-vectorizer", | 
|  | cl::desc("Enable load store vectorizer"), | 
|  | cl::init(true), | 
|  | cl::Hidden); | 
|  |  | 
|  | extern "C" void LLVMInitializeAMDGPUTarget() { | 
|  | // Register the target | 
|  | RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); | 
|  | RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); | 
|  |  | 
|  | PassRegistry *PR = PassRegistry::getPassRegistry(); | 
|  | initializeSILowerI1CopiesPass(*PR); | 
|  | initializeSIFixSGPRCopiesPass(*PR); | 
|  | initializeSIFoldOperandsPass(*PR); | 
|  | initializeSIShrinkInstructionsPass(*PR); | 
|  | initializeSIFixControlFlowLiveIntervalsPass(*PR); | 
|  | initializeSILoadStoreOptimizerPass(*PR); | 
|  | initializeAMDGPUAnnotateKernelFeaturesPass(*PR); | 
|  | initializeAMDGPUAnnotateUniformValuesPass(*PR); | 
|  | initializeAMDGPUPromoteAllocaPass(*PR); | 
|  | initializeAMDGPUCodeGenPreparePass(*PR); | 
|  | initializeSIAnnotateControlFlowPass(*PR); | 
|  | initializeSIInsertWaitsPass(*PR); | 
|  | initializeSIWholeQuadModePass(*PR); | 
|  | initializeSILowerControlFlowPass(*PR); | 
|  | initializeSIInsertSkipsPass(*PR); | 
|  | initializeSIDebuggerInsertNopsPass(*PR); | 
|  | initializeSIOptimizeExecMaskingPass(*PR); | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { | 
|  | return make_unique<AMDGPUTargetObjectFile>(); | 
|  | } | 
|  |  | 
|  | static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { | 
|  | return new ScheduleDAGMILive(C, make_unique<R600SchedStrategy>()); | 
|  | } | 
|  |  | 
|  | static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { | 
|  | return new SIScheduleDAGMI(C); | 
|  | } | 
|  |  | 
|  | static ScheduleDAGInstrs * | 
|  | createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { | 
|  | ScheduleDAGMILive *DAG = | 
|  | new ScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); | 
|  | DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); | 
|  | DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); | 
|  | return DAG; | 
|  | } | 
|  |  | 
|  | static MachineSchedRegistry | 
|  | R600SchedRegistry("r600", "Run R600's custom scheduler", | 
|  | createR600MachineScheduler); | 
|  |  | 
|  | static MachineSchedRegistry | 
|  | SISchedRegistry("si", "Run SI's custom scheduler", | 
|  | createSIMachineScheduler); | 
|  |  | 
|  | static MachineSchedRegistry | 
|  | GCNMaxOccupancySchedRegistry("gcn-max-occupancy", | 
|  | "Run GCN scheduler to maximize occupancy", | 
|  | createGCNMaxOccupancyMachineScheduler); | 
|  |  | 
|  | static StringRef computeDataLayout(const Triple &TT) { | 
|  | if (TT.getArch() == Triple::r600) { | 
|  | // 32-bit pointers. | 
|  | return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" | 
|  | "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; | 
|  | } | 
|  |  | 
|  | // 32-bit private, local, and region pointers. 64-bit global, constant and | 
|  | // flat. | 
|  | return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" | 
|  | "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" | 
|  | "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; | 
|  | } | 
|  |  | 
|  | LLVM_READNONE | 
|  | static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { | 
|  | if (!GPU.empty()) | 
|  | return GPU; | 
|  |  | 
|  | // HSA only supports CI+, so change the default GPU to a CI for HSA. | 
|  | if (TT.getArch() == Triple::amdgcn) | 
|  | return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; | 
|  |  | 
|  | return "r600"; | 
|  | } | 
|  |  | 
|  | static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { | 
|  | // The AMDGPU toolchain only supports generating shared objects, so we | 
|  | // must always use PIC. | 
|  | return Reloc::PIC_; | 
|  | } | 
|  |  | 
|  | AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, | 
|  | StringRef CPU, StringRef FS, | 
|  | TargetOptions Options, | 
|  | Optional<Reloc::Model> RM, | 
|  | CodeModel::Model CM, | 
|  | CodeGenOpt::Level OptLevel) | 
|  | : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), | 
|  | FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), | 
|  | TLOF(createTLOF(getTargetTriple())), | 
|  | IntrinsicInfo() { | 
|  | initAsmInfo(); | 
|  | } | 
|  |  | 
|  | AMDGPUTargetMachine::~AMDGPUTargetMachine() { } | 
|  |  | 
|  | StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { | 
|  | Attribute GPUAttr = F.getFnAttribute("target-cpu"); | 
|  | return GPUAttr.hasAttribute(Attribute::None) ? | 
|  | getTargetCPU() : GPUAttr.getValueAsString(); | 
|  | } | 
|  |  | 
|  | StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { | 
|  | Attribute FSAttr = F.getFnAttribute("target-features"); | 
|  |  | 
|  | return FSAttr.hasAttribute(Attribute::None) ? | 
|  | getTargetFeatureString() : | 
|  | FSAttr.getValueAsString(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // R600 Target Machine (R600 -> Cayman) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, | 
|  | StringRef CPU, StringRef FS, | 
|  | TargetOptions Options, | 
|  | Optional<Reloc::Model> RM, | 
|  | CodeModel::Model CM, CodeGenOpt::Level OL) | 
|  | : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { | 
|  | setRequiresStructuredCFG(true); | 
|  | } | 
|  |  | 
|  | const R600Subtarget *R600TargetMachine::getSubtargetImpl( | 
|  | const Function &F) const { | 
|  | StringRef GPU = getGPUName(F); | 
|  | StringRef FS = getFeatureString(F); | 
|  |  | 
|  | SmallString<128> SubtargetKey(GPU); | 
|  | SubtargetKey.append(FS); | 
|  |  | 
|  | auto &I = SubtargetMap[SubtargetKey]; | 
|  | if (!I) { | 
|  | // This needs to be done before we create a new subtarget since any | 
|  | // creation will depend on the TM and the code generation flags on the | 
|  | // function that reside in TargetOptions. | 
|  | resetTargetOptions(F); | 
|  | I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); | 
|  | } | 
|  |  | 
|  | return I.get(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // GCN Target Machine (SI+) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | namespace { | 
|  | struct SIGISelActualAccessor : public GISelAccessor { | 
|  | std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; | 
|  | const AMDGPUCallLowering *getCallLowering() const override { | 
|  | return CallLoweringInfo.get(); | 
|  | } | 
|  | }; | 
|  | } // End anonymous namespace. | 
|  | #endif | 
|  |  | 
|  | GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, | 
|  | StringRef CPU, StringRef FS, | 
|  | TargetOptions Options, | 
|  | Optional<Reloc::Model> RM, | 
|  | CodeModel::Model CM, CodeGenOpt::Level OL) | 
|  | : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} | 
|  |  | 
|  | const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { | 
|  | StringRef GPU = getGPUName(F); | 
|  | StringRef FS = getFeatureString(F); | 
|  |  | 
|  | SmallString<128> SubtargetKey(GPU); | 
|  | SubtargetKey.append(FS); | 
|  |  | 
|  | auto &I = SubtargetMap[SubtargetKey]; | 
|  | if (!I) { | 
|  | // This needs to be done before we create a new subtarget since any | 
|  | // creation will depend on the TM and the code generation flags on the | 
|  | // function that reside in TargetOptions. | 
|  | resetTargetOptions(F); | 
|  | I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); | 
|  |  | 
|  | #ifndef LLVM_BUILD_GLOBAL_ISEL | 
|  | GISelAccessor *GISel = new GISelAccessor(); | 
|  | #else | 
|  | SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); | 
|  | GISel->CallLoweringInfo.reset( | 
|  | new AMDGPUCallLowering(*I->getTargetLowering())); | 
|  | #endif | 
|  |  | 
|  | I->setGISelAccessor(*GISel); | 
|  | } | 
|  |  | 
|  | return I.get(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AMDGPU Pass Setup | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AMDGPUPassConfig : public TargetPassConfig { | 
|  | public: | 
|  | AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) | 
|  | : TargetPassConfig(TM, PM) { | 
|  |  | 
|  | // Exceptions and StackMaps are not supported, so these passes will never do | 
|  | // anything. | 
|  | disablePass(&StackMapLivenessID); | 
|  | disablePass(&FuncletLayoutID); | 
|  | } | 
|  |  | 
|  | AMDGPUTargetMachine &getAMDGPUTargetMachine() const { | 
|  | return getTM<AMDGPUTargetMachine>(); | 
|  | } | 
|  |  | 
|  | ScheduleDAGInstrs * | 
|  | createMachineScheduler(MachineSchedContext *C) const override { | 
|  | ScheduleDAGMILive *DAG = createGenericSchedLive(C); | 
|  | DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); | 
|  | DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); | 
|  | return DAG; | 
|  | } | 
|  |  | 
|  | void addEarlyCSEOrGVNPass(); | 
|  | void addStraightLineScalarOptimizationPasses(); | 
|  | void addIRPasses() override; | 
|  | void addCodeGenPrepare() override; | 
|  | bool addPreISel() override; | 
|  | bool addInstSelector() override; | 
|  | bool addGCPasses() override; | 
|  | }; | 
|  |  | 
|  | class R600PassConfig final : public AMDGPUPassConfig { | 
|  | public: | 
|  | R600PassConfig(TargetMachine *TM, PassManagerBase &PM) | 
|  | : AMDGPUPassConfig(TM, PM) { } | 
|  |  | 
|  | ScheduleDAGInstrs *createMachineScheduler( | 
|  | MachineSchedContext *C) const override { | 
|  | return createR600MachineScheduler(C); | 
|  | } | 
|  |  | 
|  | bool addPreISel() override; | 
|  | void addPreRegAlloc() override; | 
|  | void addPreSched2() override; | 
|  | void addPreEmitPass() override; | 
|  | }; | 
|  |  | 
|  | class GCNPassConfig final : public AMDGPUPassConfig { | 
|  | public: | 
|  | GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) | 
|  | : AMDGPUPassConfig(TM, PM) { } | 
|  |  | 
|  | GCNTargetMachine &getGCNTargetMachine() const { | 
|  | return getTM<GCNTargetMachine>(); | 
|  | } | 
|  |  | 
|  | ScheduleDAGInstrs * | 
|  | createMachineScheduler(MachineSchedContext *C) const override; | 
|  |  | 
|  | void addIRPasses() override; | 
|  | bool addPreISel() override; | 
|  | void addMachineSSAOptimization() override; | 
|  | bool addInstSelector() override; | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | bool addIRTranslator() override; | 
|  | bool addLegalizeMachineIR() override; | 
|  | bool addRegBankSelect() override; | 
|  | bool addGlobalInstructionSelect() override; | 
|  | #endif | 
|  | void addFastRegAlloc(FunctionPass *RegAllocPass) override; | 
|  | void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; | 
|  | void addPreRegAlloc() override; | 
|  | void addPostRegAlloc() override; | 
|  | void addPreSched2() override; | 
|  | void addPreEmitPass() override; | 
|  | }; | 
|  |  | 
|  | } // End of anonymous namespace | 
|  |  | 
|  | TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { | 
|  | return TargetIRAnalysis([this](const Function &F) { | 
|  | return TargetTransformInfo(AMDGPUTTIImpl(this, F)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { | 
|  | if (getOptLevel() == CodeGenOpt::Aggressive) | 
|  | addPass(createGVNPass()); | 
|  | else | 
|  | addPass(createEarlyCSEPass()); | 
|  | } | 
|  |  | 
|  | void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { | 
|  | addPass(createSeparateConstOffsetFromGEPPass()); | 
|  | addPass(createSpeculativeExecutionPass()); | 
|  | // ReassociateGEPs exposes more opportunites for SLSR. See | 
|  | // the example in reassociate-geps-and-slsr.ll. | 
|  | addPass(createStraightLineStrengthReducePass()); | 
|  | // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or | 
|  | // EarlyCSE can reuse. | 
|  | addEarlyCSEOrGVNPass(); | 
|  | // Run NaryReassociate after EarlyCSE/GVN to be more effective. | 
|  | addPass(createNaryReassociatePass()); | 
|  | // NaryReassociate on GEPs creates redundant common expressions, so run | 
|  | // EarlyCSE after it. | 
|  | addPass(createEarlyCSEPass()); | 
|  | } | 
|  |  | 
|  | void AMDGPUPassConfig::addIRPasses() { | 
|  | // There is no reason to run these. | 
|  | disablePass(&StackMapLivenessID); | 
|  | disablePass(&FuncletLayoutID); | 
|  | disablePass(&PatchableFunctionID); | 
|  |  | 
|  | // Function calls are not supported, so make sure we inline everything. | 
|  | addPass(createAMDGPUAlwaysInlinePass()); | 
|  | addPass(createAlwaysInlinerLegacyPass()); | 
|  | // We need to add the barrier noop pass, otherwise adding the function | 
|  | // inlining pass will cause all of the PassConfigs passes to be run | 
|  | // one function at a time, which means if we have a nodule with two | 
|  | // functions, then we will generate code for the first function | 
|  | // without ever running any passes on the second. | 
|  | addPass(createBarrierNoopPass()); | 
|  |  | 
|  | // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. | 
|  | addPass(createAMDGPUOpenCLImageTypeLoweringPass()); | 
|  |  | 
|  | const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); | 
|  | if (TM.getOptLevel() > CodeGenOpt::None) { | 
|  | addPass(createAMDGPUPromoteAlloca(&TM)); | 
|  |  | 
|  | if (EnableSROA) | 
|  | addPass(createSROAPass()); | 
|  |  | 
|  | addStraightLineScalarOptimizationPasses(); | 
|  | } | 
|  |  | 
|  | TargetPassConfig::addIRPasses(); | 
|  |  | 
|  | // EarlyCSE is not always strong enough to clean up what LSR produces. For | 
|  | // example, GVN can combine | 
|  | // | 
|  | //   %0 = add %a, %b | 
|  | //   %1 = add %b, %a | 
|  | // | 
|  | // and | 
|  | // | 
|  | //   %0 = shl nsw %a, 2 | 
|  | //   %1 = shl %a, 2 | 
|  | // | 
|  | // but EarlyCSE can do neither of them. | 
|  | if (getOptLevel() != CodeGenOpt::None) | 
|  | addEarlyCSEOrGVNPass(); | 
|  | } | 
|  |  | 
|  | void AMDGPUPassConfig::addCodeGenPrepare() { | 
|  | TargetPassConfig::addCodeGenPrepare(); | 
|  |  | 
|  | if (EnableLoadStoreVectorizer) | 
|  | addPass(createLoadStoreVectorizerPass()); | 
|  | } | 
|  |  | 
|  | bool AMDGPUPassConfig::addPreISel() { | 
|  | addPass(createFlattenCFGPass()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUPassConfig::addInstSelector() { | 
|  | addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUPassConfig::addGCPasses() { | 
|  | // Do nothing. GC is not supported. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // R600 Pass Setup | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool R600PassConfig::addPreISel() { | 
|  | AMDGPUPassConfig::addPreISel(); | 
|  |  | 
|  | if (EnableR600StructurizeCFG) | 
|  | addPass(createStructurizeCFGPass()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void R600PassConfig::addPreRegAlloc() { | 
|  | addPass(createR600VectorRegMerger(*TM)); | 
|  | } | 
|  |  | 
|  | void R600PassConfig::addPreSched2() { | 
|  | addPass(createR600EmitClauseMarkers(), false); | 
|  | if (EnableR600IfConvert) | 
|  | addPass(&IfConverterID, false); | 
|  | addPass(createR600ClauseMergePass(*TM), false); | 
|  | } | 
|  |  | 
|  | void R600PassConfig::addPreEmitPass() { | 
|  | addPass(createAMDGPUCFGStructurizerPass(), false); | 
|  | addPass(createR600ExpandSpecialInstrsPass(*TM), false); | 
|  | addPass(&FinalizeMachineBundlesID, false); | 
|  | addPass(createR600Packetizer(*TM), false); | 
|  | addPass(createR600ControlFlowFinalizer(*TM), false); | 
|  | } | 
|  |  | 
|  | TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { | 
|  | return new R600PassConfig(this, PM); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // GCN Pass Setup | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( | 
|  | MachineSchedContext *C) const { | 
|  | const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); | 
|  | if (ST.enableSIScheduler()) | 
|  | return createSIMachineScheduler(C); | 
|  | return createGCNMaxOccupancyMachineScheduler(C); | 
|  | } | 
|  |  | 
|  | bool GCNPassConfig::addPreISel() { | 
|  | AMDGPUPassConfig::addPreISel(); | 
|  |  | 
|  | // FIXME: We need to run a pass to propagate the attributes when calls are | 
|  | // supported. | 
|  | addPass(&AMDGPUAnnotateKernelFeaturesID); | 
|  | addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions | 
|  | addPass(createSinkingPass()); | 
|  | addPass(createSITypeRewriter()); | 
|  | addPass(createAMDGPUAnnotateUniformValues()); | 
|  | addPass(createSIAnnotateControlFlowPass()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addMachineSSAOptimization() { | 
|  | TargetPassConfig::addMachineSSAOptimization(); | 
|  |  | 
|  | // We want to fold operands after PeepholeOptimizer has run (or as part of | 
|  | // it), because it will eliminate extra copies making it easier to fold the | 
|  | // real source operand. We want to eliminate dead instructions after, so that | 
|  | // we see fewer uses of the copies. We then need to clean up the dead | 
|  | // instructions leftover after the operands are folded as well. | 
|  | // | 
|  | // XXX - Can we get away without running DeadMachineInstructionElim again? | 
|  | addPass(&SIFoldOperandsID); | 
|  | addPass(&DeadMachineInstructionElimID); | 
|  | addPass(&SILoadStoreOptimizerID); | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addIRPasses() { | 
|  | // TODO: May want to move later or split into an early and late one. | 
|  | addPass(createAMDGPUCodeGenPreparePass(&getGCNTargetMachine())); | 
|  |  | 
|  | AMDGPUPassConfig::addIRPasses(); | 
|  | } | 
|  |  | 
|  | bool GCNPassConfig::addInstSelector() { | 
|  | AMDGPUPassConfig::addInstSelector(); | 
|  | addPass(createSILowerI1CopiesPass()); | 
|  | addPass(&SIFixSGPRCopiesID); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef LLVM_BUILD_GLOBAL_ISEL | 
|  | bool GCNPassConfig::addIRTranslator() { | 
|  | addPass(new IRTranslator()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GCNPassConfig::addLegalizeMachineIR() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GCNPassConfig::addRegBankSelect() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GCNPassConfig::addGlobalInstructionSelect() { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void GCNPassConfig::addPreRegAlloc() { | 
|  | addPass(createSIShrinkInstructionsPass()); | 
|  | addPass(createSIWholeQuadModePass()); | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { | 
|  | // FIXME: We have to disable the verifier here because of PHIElimination + | 
|  | // TwoAddressInstructions disabling it. | 
|  |  | 
|  | // This must be run immediately after phi elimination and before | 
|  | // TwoAddressInstructions, otherwise the processing of the tied operand of | 
|  | // SI_ELSE will introduce a copy of the tied operand source after the else. | 
|  | insertPass(&PHIEliminationID, &SILowerControlFlowID, false); | 
|  |  | 
|  | TargetPassConfig::addFastRegAlloc(RegAllocPass); | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { | 
|  | // This needs to be run directly before register allocation because earlier | 
|  | // passes might recompute live intervals. | 
|  | insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); | 
|  |  | 
|  | // This must be run immediately after phi elimination and before | 
|  | // TwoAddressInstructions, otherwise the processing of the tied operand of | 
|  | // SI_ELSE will introduce a copy of the tied operand source after the else. | 
|  | insertPass(&PHIEliminationID, &SILowerControlFlowID, false); | 
|  |  | 
|  | TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addPostRegAlloc() { | 
|  | addPass(&SIOptimizeExecMaskingID); | 
|  | TargetPassConfig::addPostRegAlloc(); | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addPreSched2() { | 
|  | } | 
|  |  | 
|  | void GCNPassConfig::addPreEmitPass() { | 
|  | // The hazard recognizer that runs as part of the post-ra scheduler does not | 
|  | // guarantee to be able handle all hazards correctly. This is because if there | 
|  | // are multiple scheduling regions in a basic block, the regions are scheduled | 
|  | // bottom up, so when we begin to schedule a region we don't know what | 
|  | // instructions were emitted directly before it. | 
|  | // | 
|  | // Here we add a stand-alone hazard recognizer pass which can handle all | 
|  | // cases. | 
|  | addPass(&PostRAHazardRecognizerID); | 
|  |  | 
|  | addPass(createSIInsertWaitsPass()); | 
|  | addPass(createSIShrinkInstructionsPass()); | 
|  | addPass(&SIInsertSkipsPassID); | 
|  | addPass(createSIDebuggerInsertNopsPass()); | 
|  | addPass(&BranchRelaxationPassID); | 
|  | } | 
|  |  | 
|  | TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { | 
|  | return new GCNPassConfig(this, PM); | 
|  | } |