|  | //===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  | #include "PowerPC.h" | 
|  | #include "PowerPCInstrBuilder.h" | 
|  | #include "PowerPCInstrInfo.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/MRegisterInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "Support/Debug.h" | 
|  | #include <vector> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic | 
|  | /// PPC Representation. | 
|  | /// | 
|  | enum TypeClass { | 
|  | cByte, cShort, cInt, cFP, cLong | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// getClass - Turn a primitive type into a "class" number which is based on the | 
|  | /// size of the type, and whether or not it is floating point. | 
|  | /// | 
|  | static inline TypeClass getClass(const Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::SByteTyID: | 
|  | case Type::UByteTyID:   return cByte;      // Byte operands are class #0 | 
|  | case Type::ShortTyID: | 
|  | case Type::UShortTyID:  return cShort;     // Short operands are class #1 | 
|  | case Type::IntTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::PointerTyID: return cInt;       // Int's and pointers are class #2 | 
|  |  | 
|  | case Type::FloatTyID: | 
|  | case Type::DoubleTyID:  return cFP;        // Floating Point is #3 | 
|  |  | 
|  | case Type::LongTyID: | 
|  | case Type::ULongTyID:   return cLong;      // Longs are class #4 | 
|  | default: | 
|  | assert(0 && "Invalid type to getClass!"); | 
|  | return cByte;  // not reached | 
|  | } | 
|  | } | 
|  |  | 
|  | // getClassB - Just like getClass, but treat boolean values as ints. | 
|  | static inline TypeClass getClassB(const Type *Ty) { | 
|  | if (Ty == Type::BoolTy) return cInt; | 
|  | return getClass(Ty); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct ISel : public FunctionPass, InstVisitor<ISel> { | 
|  | TargetMachine &TM; | 
|  | MachineFunction *F;                 // The function we are compiling into | 
|  | Module *M;                          // Current module | 
|  | MachineBasicBlock *BB;              // The current MBB we are compiling | 
|  | int VarArgsFrameIndex;              // FrameIndex for start of varargs area | 
|  | int ReturnAddressIndex;             // FrameIndex for the return address | 
|  |  | 
|  | std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs | 
|  |  | 
|  | // MBBMap - Mapping between LLVM BB -> Machine BB | 
|  | std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; | 
|  |  | 
|  | // AllocaMap - Mapping from fixed sized alloca instructions to the | 
|  | // FrameIndex for the alloca. | 
|  | std::map<AllocaInst*, unsigned> AllocaMap; | 
|  |  | 
|  | ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} | 
|  |  | 
|  | bool doInitialization(Module &Mod) { | 
|  | M = &Mod; | 
|  | // Add external functions that we may call | 
|  | Type *d = Type::DoubleTy; | 
|  | // double fmod(double, double); | 
|  | Mod.getOrInsertFunction("fmod", d, d, d, 0); | 
|  | // { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// runOnFunction - Top level implementation of instruction selection for | 
|  | /// the entire function. | 
|  | /// | 
|  | bool runOnFunction(Function &Fn) { | 
|  | // First pass over the function, lower any unknown intrinsic functions | 
|  | // with the IntrinsicLowering class. | 
|  | LowerUnknownIntrinsicFunctionCalls(Fn); | 
|  |  | 
|  | F = &MachineFunction::construct(&Fn, TM); | 
|  |  | 
|  | // Create all of the machine basic blocks for the function... | 
|  | for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
|  | F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); | 
|  |  | 
|  | BB = &F->front(); | 
|  |  | 
|  | // Set up a frame object for the return address.  This is used by the | 
|  | // llvm.returnaddress & llvm.frameaddress intrinisics. | 
|  | ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); | 
|  |  | 
|  | // Copy incoming arguments off of the stack... | 
|  | LoadArgumentsToVirtualRegs(Fn); | 
|  |  | 
|  | // Instruction select everything except PHI nodes | 
|  | visit(Fn); | 
|  |  | 
|  | // Select the PHI nodes | 
|  | SelectPHINodes(); | 
|  |  | 
|  | RegMap.clear(); | 
|  | MBBMap.clear(); | 
|  | AllocaMap.clear(); | 
|  | F = 0; | 
|  | // We always build a machine code representation for the function | 
|  | return true; | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "PowerPC Simple Instruction Selection"; | 
|  | } | 
|  |  | 
|  | /// visitBasicBlock - This method is called when we are visiting a new basic | 
|  | /// block.  This simply creates a new MachineBasicBlock to emit code into | 
|  | /// and adds it to the current MachineFunction.  Subsequent visit* for | 
|  | /// instructions will be invoked for all instructions in the basic block. | 
|  | /// | 
|  | void visitBasicBlock(BasicBlock &LLVM_BB) { | 
|  | BB = MBBMap[&LLVM_BB]; | 
|  | } | 
|  |  | 
|  | /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the | 
|  | /// function, lowering any calls to unknown intrinsic functions into the | 
|  | /// equivalent LLVM code. | 
|  | /// | 
|  | void LowerUnknownIntrinsicFunctionCalls(Function &F); | 
|  |  | 
|  | /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function | 
|  | /// from the stack into virtual registers. | 
|  | /// | 
|  | void LoadArgumentsToVirtualRegs(Function &F); | 
|  |  | 
|  | /// SelectPHINodes - Insert machine code to generate phis.  This is tricky | 
|  | /// because we have to generate our sources into the source basic blocks, | 
|  | /// not the current one. | 
|  | /// | 
|  | void SelectPHINodes(); | 
|  |  | 
|  | // Visitation methods for various instructions.  These methods simply emit | 
|  | // fixed PowerPC code for each instruction. | 
|  |  | 
|  | // Control flow operators | 
|  | void visitReturnInst(ReturnInst &RI); | 
|  | void visitBranchInst(BranchInst &BI); | 
|  |  | 
|  | struct ValueRecord { | 
|  | Value *Val; | 
|  | unsigned Reg; | 
|  | const Type *Ty; | 
|  | ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} | 
|  | ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} | 
|  | }; | 
|  | void doCall(const ValueRecord &Ret, MachineInstr *CallMI, | 
|  | const std::vector<ValueRecord> &Args, bool isVarArg); | 
|  | void visitCallInst(CallInst &I); | 
|  | void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); | 
|  |  | 
|  | // Arithmetic operators | 
|  | void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); | 
|  | void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } | 
|  | void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } | 
|  | void visitMul(BinaryOperator &B); | 
|  |  | 
|  | void visitDiv(BinaryOperator &B) { visitDivRem(B); } | 
|  | void visitRem(BinaryOperator &B) { visitDivRem(B); } | 
|  | void visitDivRem(BinaryOperator &B); | 
|  |  | 
|  | // Bitwise operators | 
|  | void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } | 
|  | void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } | 
|  | void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } | 
|  |  | 
|  | // Comparison operators... | 
|  | void visitSetCondInst(SetCondInst &I); | 
|  | unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI); | 
|  | void visitSelectInst(SelectInst &SI); | 
|  |  | 
|  |  | 
|  | // Memory Instructions | 
|  | void visitLoadInst(LoadInst &I); | 
|  | void visitStoreInst(StoreInst &I); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I); | 
|  | void visitAllocaInst(AllocaInst &I); | 
|  | void visitMallocInst(MallocInst &I); | 
|  | void visitFreeInst(FreeInst &I); | 
|  |  | 
|  | // Other operators | 
|  | void visitShiftInst(ShiftInst &I); | 
|  | void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass | 
|  | void visitCastInst(CastInst &I); | 
|  | void visitVANextInst(VANextInst &I); | 
|  | void visitVAArgInst(VAArgInst &I); | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | std::cerr << "Cannot instruction select: " << I; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /// promote32 - Make a value 32-bits wide, and put it somewhere. | 
|  | /// | 
|  | void promote32(unsigned targetReg, const ValueRecord &VR); | 
|  |  | 
|  | /// emitGEPOperation - Common code shared between visitGetElementPtrInst and | 
|  | /// constant expression GEP support. | 
|  | /// | 
|  | void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned TargetReg); | 
|  |  | 
|  | /// emitCastOperation - Common code shared between visitCastInst and | 
|  | /// constant expression cast support. | 
|  | /// | 
|  | void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, | 
|  | Value *Src, const Type *DestTy, unsigned TargetReg); | 
|  |  | 
|  | /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary | 
|  | /// and constant expression support. | 
|  | /// | 
|  | void emitSimpleBinaryOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned TargetReg); | 
|  |  | 
|  | /// emitBinaryFPOperation - This method handles emission of floating point | 
|  | /// Add (0), Sub (1), Mul (2), and Div (3) operations. | 
|  | void emitBinaryFPOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned TargetReg); | 
|  |  | 
|  | void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, unsigned TargetReg); | 
|  |  | 
|  | void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned Op0Reg, unsigned Op1Reg); | 
|  | void doMultiplyConst(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned Op0Reg, unsigned Op1Val); | 
|  |  | 
|  | void emitDivRemOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, bool isDiv, | 
|  | unsigned TargetReg); | 
|  |  | 
|  | /// emitSetCCOperation - Common code shared between visitSetCondInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void emitSetCCOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, unsigned Opcode, | 
|  | unsigned TargetReg); | 
|  |  | 
|  | /// emitShiftOperation - Common code shared between visitShiftInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void emitShiftOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op, Value *ShiftAmount, bool isLeftShift, | 
|  | const Type *ResultTy, unsigned DestReg); | 
|  |  | 
|  | /// emitSelectOperation - Common code shared between visitSelectInst and the | 
|  | /// constant expression support. | 
|  | void emitSelectOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | unsigned DestReg); | 
|  |  | 
|  | /// copyConstantToRegister - Output the instructions required to put the | 
|  | /// specified constant into the specified register. | 
|  | /// | 
|  | void copyConstantToRegister(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | Constant *C, unsigned Reg); | 
|  |  | 
|  | void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, | 
|  | unsigned LHS, unsigned RHS); | 
|  |  | 
|  | /// makeAnotherReg - This method returns the next register number we haven't | 
|  | /// yet used. | 
|  | /// | 
|  | /// Long values are handled somewhat specially.  They are always allocated | 
|  | /// as pairs of 32 bit integer values.  The register number returned is the | 
|  | /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits | 
|  | /// of the long value. | 
|  | /// | 
|  | unsigned makeAnotherReg(const Type *Ty) { | 
|  | assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) && | 
|  | "Current target doesn't have PPC reg info??"); | 
|  | const PowerPCRegisterInfo *MRI = | 
|  | static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()); | 
|  | if (Ty == Type::LongTy || Ty == Type::ULongTy) { | 
|  | const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); | 
|  | // Create the lower part | 
|  | F->getSSARegMap()->createVirtualRegister(RC); | 
|  | // Create the upper part. | 
|  | return F->getSSARegMap()->createVirtualRegister(RC)-1; | 
|  | } | 
|  |  | 
|  | // Add the mapping of regnumber => reg class to MachineFunction | 
|  | const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); | 
|  | return F->getSSARegMap()->createVirtualRegister(RC); | 
|  | } | 
|  |  | 
|  | /// getReg - This method turns an LLVM value into a register number. | 
|  | /// | 
|  | unsigned getReg(Value &V) { return getReg(&V); }  // Allow references | 
|  | unsigned getReg(Value *V) { | 
|  | // Just append to the end of the current bb. | 
|  | MachineBasicBlock::iterator It = BB->end(); | 
|  | return getReg(V, BB, It); | 
|  | } | 
|  | unsigned getReg(Value *V, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IPt); | 
|  |  | 
|  | /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca | 
|  | /// that is to be statically allocated with the initial stack frame | 
|  | /// adjustment. | 
|  | unsigned getFixedSizedAllocaFI(AllocaInst *AI); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// dyn_castFixedAlloca - If the specified value is a fixed size alloca | 
|  | /// instruction in the entry block, return it.  Otherwise, return a null | 
|  | /// pointer. | 
|  | static AllocaInst *dyn_castFixedAlloca(Value *V) { | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | BasicBlock *BB = AI->getParent(); | 
|  | if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) | 
|  | return AI; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getReg - This method turns an LLVM value into a register number. | 
|  | /// | 
|  | unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IPt) { | 
|  | // If this operand is a constant, emit the code to copy the constant into | 
|  | // the register here... | 
|  | // | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | unsigned Reg = makeAnotherReg(V->getType()); | 
|  | copyConstantToRegister(MBB, IPt, C, Reg); | 
|  | return Reg; | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | // GV is located at PC + distance | 
|  | unsigned CurPC = makeAnotherReg(Type::IntTy); | 
|  | unsigned Reg1 = makeAnotherReg(V->getType()); | 
|  | unsigned Reg2 = makeAnotherReg(V->getType()); | 
|  | // Move PC to destination reg | 
|  | BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC); | 
|  | // Move value at PC + distance into return reg | 
|  | BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC) | 
|  | .addGlobalAddress(GV); | 
|  | BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1) | 
|  | .addGlobalAddress(GV); | 
|  | return Reg2; | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
|  | // Do not emit noop casts at all. | 
|  | if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) | 
|  | return getReg(CI->getOperand(0), MBB, IPt); | 
|  | } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { | 
|  | unsigned Reg = makeAnotherReg(V->getType()); | 
|  | unsigned FI = getFixedSizedAllocaFI(AI); | 
|  | addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | unsigned &Reg = RegMap[V]; | 
|  | if (Reg == 0) { | 
|  | Reg = makeAnotherReg(V->getType()); | 
|  | RegMap[V] = Reg; | 
|  | } | 
|  |  | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca | 
|  | /// that is to be statically allocated with the initial stack frame | 
|  | /// adjustment. | 
|  | unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { | 
|  | // Already computed this? | 
|  | std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); | 
|  | if (I != AllocaMap.end() && I->first == AI) return I->second; | 
|  |  | 
|  | const Type *Ty = AI->getAllocatedType(); | 
|  | ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); | 
|  | unsigned TySize = TM.getTargetData().getTypeSize(Ty); | 
|  | TySize *= CUI->getValue();   // Get total allocated size... | 
|  | unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); | 
|  |  | 
|  | // Create a new stack object using the frame manager... | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); | 
|  | AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); | 
|  | return FrameIdx; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// copyConstantToRegister - Output the instructions required to put the | 
|  | /// specified constant into the specified register. | 
|  | /// | 
|  | void ISel::copyConstantToRegister(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Constant *C, unsigned R) { | 
|  | if (C->getType()->isIntegral()) { | 
|  | unsigned Class = getClassB(C->getType()); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | // Copy the value into the register pair. | 
|  | uint64_t Val = cast<ConstantInt>(C)->getRawValue(); | 
|  | unsigned hiTmp = makeAnotherReg(Type::IntTy); | 
|  | unsigned loTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0) | 
|  | .addImm(Val >> 48); | 
|  | BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp) | 
|  | .addImm((Val >> 32) & 0xFFFF); | 
|  | BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0) | 
|  | .addImm((Val >> 16) & 0xFFFF); | 
|  | BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Class <= cInt && "Type not handled yet!"); | 
|  |  | 
|  | if (C->getType() == Type::BoolTy) { | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) | 
|  | .addImm(C == ConstantBool::True); | 
|  | } else if (Class == cByte || Class == cShort) { | 
|  | ConstantInt *CI = cast<ConstantInt>(C); | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) | 
|  | .addImm(CI->getRawValue()); | 
|  | } else { | 
|  | ConstantInt *CI = cast<ConstantInt>(C); | 
|  | int TheVal = CI->getRawValue() & 0xFFFFFFFF; | 
|  | if (TheVal < 32768 && TheVal >= -32768) { | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) | 
|  | .addImm(CI->getRawValue()); | 
|  | } else { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0) | 
|  | .addImm(CI->getRawValue() >> 16); | 
|  | BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg) | 
|  | .addImm(CI->getRawValue() & 0xFFFF); | 
|  | } | 
|  | } | 
|  | } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | // We need to spill the constant to memory... | 
|  | MachineConstantPool *CP = F->getConstantPool(); | 
|  | unsigned CPI = CP->getConstantPoolIndex(CFP); | 
|  | const Type *Ty = CFP->getType(); | 
|  |  | 
|  | assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD; | 
|  | addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI); | 
|  | } else if (isa<ConstantPointerNull>(C)) { | 
|  | // Copy zero (null pointer) to the register. | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0); | 
|  | } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) { | 
|  | BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0) | 
|  | .addGlobalAddress(CPR->getValue()); | 
|  | BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0) | 
|  | .addGlobalAddress(CPR->getValue()); | 
|  | } else { | 
|  | std::cerr << "Offending constant: " << C << "\n"; | 
|  | assert(0 && "Type not handled yet!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from | 
|  | /// the stack into virtual registers. | 
|  | /// | 
|  | /// FIXME: When we can calculate which args are coming in via registers | 
|  | /// source them from there instead. | 
|  | void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  | unsigned GPR_remaining = 8; | 
|  | unsigned FPR_remaining = 13; | 
|  | unsigned GPR_idx = 0, FPR_idx = 0; | 
|  | static const unsigned GPR[] = { | 
|  | PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6, | 
|  | PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10, | 
|  | }; | 
|  | static const unsigned FPR[] = { | 
|  | PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7, | 
|  | PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13 | 
|  | }; | 
|  |  | 
|  | MachineFrameInfo *MFI = F->getFrameInfo(); | 
|  |  | 
|  | for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { | 
|  | bool ArgLive = !I->use_empty(); | 
|  | unsigned Reg = ArgLive ? getReg(*I) : 0; | 
|  | int FI;          // Frame object index | 
|  |  | 
|  | switch (getClassB(I->getType())) { | 
|  | case cByte: | 
|  | if (ArgLive) { | 
|  | FI = MFI->CreateFixedObject(1, ArgOffset); | 
|  | if (GPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx]) | 
|  | .addReg(GPR[GPR_idx]); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case cShort: | 
|  | if (ArgLive) { | 
|  | FI = MFI->CreateFixedObject(2, ArgOffset); | 
|  | if (GPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx]) | 
|  | .addReg(GPR[GPR_idx]); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case cInt: | 
|  | if (ArgLive) { | 
|  | FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | if (GPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx]) | 
|  | .addReg(GPR[GPR_idx]); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case cLong: | 
|  | if (ArgLive) { | 
|  | FI = MFI->CreateFixedObject(8, ArgOffset); | 
|  | if (GPR_remaining > 1) { | 
|  | BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx]) | 
|  | .addReg(GPR[GPR_idx]); | 
|  | BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1]) | 
|  | .addReg(GPR[GPR_idx+1]); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI); | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4); | 
|  | } | 
|  | } | 
|  | ArgOffset += 4;   // longs require 4 additional bytes | 
|  | if (GPR_remaining > 1) { | 
|  | GPR_remaining--;    // uses up 2 GPRs | 
|  | GPR_idx++; | 
|  | } | 
|  | break; | 
|  | case cFP: | 
|  | if (ArgLive) { | 
|  | unsigned Opcode; | 
|  | if (I->getType() == Type::FloatTy) { | 
|  | Opcode = PPC32::LFS; | 
|  | FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | } else { | 
|  | Opcode = PPC32::LFD; | 
|  | FI = MFI->CreateFixedObject(8, ArgOffset); | 
|  | } | 
|  | if (FPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]); | 
|  | FPR_remaining--; | 
|  | FPR_idx++; | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI); | 
|  | } | 
|  | } | 
|  | if (I->getType() == Type::DoubleTy) { | 
|  | ArgOffset += 4;   // doubles require 4 additional bytes | 
|  | if (GPR_remaining > 0) { | 
|  | GPR_remaining--;    // uses up 2 GPRs | 
|  | GPR_idx++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Unhandled argument type!"); | 
|  | } | 
|  | ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack... | 
|  | if (GPR_remaining > 0) { | 
|  | GPR_remaining--;    // uses up 2 GPRs | 
|  | GPR_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, add a frame offset for | 
|  | // the start of the first vararg value... this is used to expand | 
|  | // llvm.va_start. | 
|  | if (Fn.getFunctionType()->isVarArg()) | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectPHINodes - Insert machine code to generate phis.  This is tricky | 
|  | /// because we have to generate our sources into the source basic blocks, not | 
|  | /// the current one. | 
|  | /// | 
|  | void ISel::SelectPHINodes() { | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | const Function &LF = *F->getFunction();  // The LLVM function... | 
|  | for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { | 
|  | const BasicBlock *BB = I; | 
|  | MachineBasicBlock &MBB = *MBBMap[I]; | 
|  |  | 
|  | // Loop over all of the PHI nodes in the LLVM basic block... | 
|  | MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); | 
|  | for (BasicBlock::const_iterator I = BB->begin(); | 
|  | PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { | 
|  |  | 
|  | // Create a new machine instr PHI node, and insert it. | 
|  | unsigned PHIReg = getReg(*PN); | 
|  | MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, | 
|  | PPC32::PHI, PN->getNumOperands(), PHIReg); | 
|  |  | 
|  | MachineInstr *LongPhiMI = 0; | 
|  | if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) | 
|  | LongPhiMI = BuildMI(MBB, PHIInsertPoint, | 
|  | PPC32::PHI, PN->getNumOperands(), PHIReg+1); | 
|  |  | 
|  | // PHIValues - Map of blocks to incoming virtual registers.  We use this | 
|  | // so that we only initialize one incoming value for a particular block, | 
|  | // even if the block has multiple entries in the PHI node. | 
|  | // | 
|  | std::map<MachineBasicBlock*, unsigned> PHIValues; | 
|  |  | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; | 
|  | unsigned ValReg; | 
|  | std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = | 
|  | PHIValues.lower_bound(PredMBB); | 
|  |  | 
|  | if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { | 
|  | // We already inserted an initialization of the register for this | 
|  | // predecessor.  Recycle it. | 
|  | ValReg = EntryIt->second; | 
|  |  | 
|  | } else { | 
|  | // Get the incoming value into a virtual register. | 
|  | // | 
|  | Value *Val = PN->getIncomingValue(i); | 
|  |  | 
|  | // If this is a constant or GlobalValue, we may have to insert code | 
|  | // into the basic block to compute it into a virtual register. | 
|  | if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || | 
|  | isa<GlobalValue>(Val)) { | 
|  | // Simple constants get emitted at the end of the basic block, | 
|  | // before any terminator instructions.  We "know" that the code to | 
|  | // move a constant into a register will never clobber any flags. | 
|  | ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); | 
|  | } else { | 
|  | // Because we don't want to clobber any values which might be in | 
|  | // physical registers with the computation of this constant (which | 
|  | // might be arbitrarily complex if it is a constant expression), | 
|  | // just insert the computation at the top of the basic block. | 
|  | MachineBasicBlock::iterator PI = PredMBB->begin(); | 
|  |  | 
|  | // Skip over any PHI nodes though! | 
|  | while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI) | 
|  | ++PI; | 
|  |  | 
|  | ValReg = getReg(Val, PredMBB, PI); | 
|  | } | 
|  |  | 
|  | // Remember that we inserted a value for this PHI for this predecessor | 
|  | PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); | 
|  | } | 
|  |  | 
|  | PhiMI->addRegOperand(ValReg); | 
|  | PhiMI->addMachineBasicBlockOperand(PredMBB); | 
|  | if (LongPhiMI) { | 
|  | LongPhiMI->addRegOperand(ValReg+1); | 
|  | LongPhiMI->addMachineBasicBlockOperand(PredMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we emitted all of the incoming values for the PHI node, make | 
|  | // sure to reposition the InsertPoint after the PHI that we just added. | 
|  | // This is needed because we might have inserted a constant into this | 
|  | // block, right after the PHI's which is before the old insert point! | 
|  | PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; | 
|  | ++PHIInsertPoint; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold | 
|  | // it into the conditional branch or select instruction which is the only user | 
|  | // of the cc instruction.  This is the case if the conditional branch is the | 
|  | // only user of the setcc, and if the setcc is in the same basic block as the | 
|  | // conditional branch.  We also don't handle long arguments below, so we reject | 
|  | // them here as well. | 
|  | // | 
|  | static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { | 
|  | if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) | 
|  | if (SCI->hasOneUse()) { | 
|  | Instruction *User = cast<Instruction>(SCI->use_back()); | 
|  | if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && | 
|  | SCI->getParent() == User->getParent() && | 
|  | (getClassB(SCI->getOperand(0)->getType()) != cLong || | 
|  | SCI->getOpcode() == Instruction::SetEQ || | 
|  | SCI->getOpcode() == Instruction::SetNE)) | 
|  | return SCI; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return a fixed numbering for setcc instructions which does not depend on the | 
|  | // order of the opcodes. | 
|  | // | 
|  | static unsigned getSetCCNumber(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: assert(0 && "Unknown setcc instruction!"); | 
|  | case Instruction::SetEQ: return 0; | 
|  | case Instruction::SetNE: return 1; | 
|  | case Instruction::SetLT: return 2; | 
|  | case Instruction::SetGE: return 3; | 
|  | case Instruction::SetGT: return 4; | 
|  | case Instruction::SetLE: return 5; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: assert(0 && "Unknown setcc instruction!"); | 
|  | case Instruction::SetEQ: return PPC32::BEQ; | 
|  | case Instruction::SetNE: return PPC32::BNE; | 
|  | case Instruction::SetLT: return PPC32::BLT; | 
|  | case Instruction::SetGE: return PPC32::BGE; | 
|  | case Instruction::SetGT: return PPC32::BGT; | 
|  | case Instruction::SetLE: return PPC32::BLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned invertPPCBranchOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: assert(0 && "Unknown PPC32 branch opcode!"); | 
|  | case PPC32::BEQ: return PPC32::BNE; | 
|  | case PPC32::BNE: return PPC32::BEQ; | 
|  | case PPC32::BLT: return PPC32::BGE; | 
|  | case PPC32::BGE: return PPC32::BLT; | 
|  | case PPC32::BGT: return PPC32::BLE; | 
|  | case PPC32::BLE: return PPC32::BGT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// emitUCOM - emits an unordered FP compare. | 
|  | void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, | 
|  | unsigned LHS, unsigned RHS) { | 
|  | BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS); | 
|  | } | 
|  |  | 
|  | // EmitComparison - This function emits a comparison of the two operands, | 
|  | // returning the extended setcc code to use. | 
|  | unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP) { | 
|  | // The arguments are already supposed to be of the same type. | 
|  | const Type *CompTy = Op0->getType(); | 
|  | unsigned Class = getClassB(CompTy); | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  |  | 
|  | // Special case handling of: cmp R, i | 
|  | if (isa<ConstantPointerNull>(Op1)) { | 
|  | BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0); | 
|  | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (Class == cByte || Class == cShort || Class == cInt) { | 
|  | unsigned Op1v = CI->getRawValue(); | 
|  |  | 
|  | // Mask off any upper bits of the constant, if there are any... | 
|  | Op1v &= (1ULL << (8 << Class)) - 1; | 
|  |  | 
|  | // Compare immediate or promote to reg? | 
|  | if (Op1v <= 32767) { | 
|  | BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, | 
|  | PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v); | 
|  | } else { | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  | BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, | 
|  | PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r); | 
|  | } | 
|  | return OpNum; | 
|  | } else { | 
|  | assert(Class == cLong && "Unknown integer class!"); | 
|  | unsigned LowCst = CI->getRawValue(); | 
|  | unsigned HiCst = CI->getRawValue() >> 32; | 
|  | if (OpNum < 2) {    // seteq, setne | 
|  | unsigned LoTmp = Op0r; | 
|  | if (LowCst != 0) { | 
|  | unsigned LoLow = makeAnotherReg(Type::IntTy); | 
|  | unsigned LoTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst); | 
|  | BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow) | 
|  | .addImm(LowCst >> 16); | 
|  | } | 
|  | unsigned HiTmp = Op0r+1; | 
|  | if (HiCst != 0) { | 
|  | unsigned HiLow = makeAnotherReg(Type::IntTy); | 
|  | unsigned HiTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst); | 
|  | BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow) | 
|  | .addImm(HiCst >> 16); | 
|  | } | 
|  | unsigned FinalTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); | 
|  | //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0); | 
|  | return OpNum; | 
|  | } else { | 
|  | // FIXME: Not Yet Implemented | 
|  | std::cerr << "EmitComparison unimplemented: Opnum >= 2\n"; | 
|  | abort(); | 
|  | return OpNum; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  | switch (Class) { | 
|  | default: assert(0 && "Unknown type class!"); | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: | 
|  | BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, | 
|  | PPC32::CR0).addReg(Op0r).addReg(Op1r); | 
|  | break; | 
|  |  | 
|  | case cFP: | 
|  | emitUCOM(MBB, IP, Op0r, Op1r); | 
|  | break; | 
|  |  | 
|  | case cLong: | 
|  | if (OpNum < 2) {    // seteq, setne | 
|  | unsigned LoTmp = makeAnotherReg(Type::IntTy); | 
|  | unsigned HiTmp = makeAnotherReg(Type::IntTy); | 
|  | unsigned FinalTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r); | 
|  | BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); | 
|  | BuildMI(*MBB, IP, PPC32::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp); | 
|  | //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0); | 
|  | break;  // Allow the sete or setne to be generated from flags set by OR | 
|  | } else { | 
|  | // FIXME: Not Yet Implemented | 
|  | std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n"; | 
|  | abort(); | 
|  | return OpNum; | 
|  | } | 
|  | } | 
|  | return OpNum; | 
|  | } | 
|  |  | 
|  | /// visitSetCondInst - emit code to calculate the condition via | 
|  | /// EmitComparison(), and possibly store a 0 or 1 to a register as a result | 
|  | /// | 
|  | void ISel::visitSetCondInst(SetCondInst &I) { | 
|  | if (canFoldSetCCIntoBranchOrSelect(&I)) | 
|  | return; | 
|  |  | 
|  | unsigned Op0Reg = getReg(I.getOperand(0)); | 
|  | unsigned Op1Reg = getReg(I.getOperand(1)); | 
|  | unsigned DestReg = getReg(I); | 
|  | unsigned OpNum = I.getOpcode(); | 
|  | const Type *Ty = I.getOperand (0)->getType(); | 
|  |  | 
|  | EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end()); | 
|  |  | 
|  | unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum); | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   cmpTY cr0, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   b copy0MBB | 
|  |  | 
|  | // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) | 
|  | // if we could insert other, non-terminator instructions after the | 
|  | // bCC. But MBB->getFirstTerminator() can't understand this. | 
|  | MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB); | 
|  | F->getBasicBlockList().push_back(copy1MBB); | 
|  | BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB); | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | F->getBasicBlockList().push_back(copy0MBB); | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB); | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(copy1MBB); | 
|  | BB->addSuccessor(copy0MBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = li 0 | 
|  | //   b sinkMBB | 
|  | BB = copy0MBB; | 
|  | unsigned FalseValue = makeAnotherReg(I.getType()); | 
|  | BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | F->getBasicBlockList().push_back(sinkMBB); | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB); | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n"); | 
|  | DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n"); | 
|  | DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n"); | 
|  | DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n"); | 
|  |  | 
|  | //  copy1MBB: | 
|  | //   %TrueValue = li 1 | 
|  | //   b sinkMBB | 
|  | BB = copy1MBB; | 
|  | unsigned TrueValue = makeAnotherReg (I.getType ()); | 
|  | BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1); | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB); | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue) | 
|  | .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB); | 
|  | } | 
|  |  | 
|  | void ISel::visitSelectInst(SelectInst &SI) { | 
|  | unsigned DestReg = getReg(SI); | 
|  | MachineBasicBlock::iterator MII = BB->end(); | 
|  | emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), | 
|  | SI.getFalseValue(), DestReg); | 
|  | } | 
|  |  | 
|  | /// emitSelect - Common code shared between visitSelectInst and the constant | 
|  | /// expression support. | 
|  | /// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has | 
|  | /// no select instruction.  FSEL only works for comparisons against zero. | 
|  | void ISel::emitSelectOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | unsigned DestReg) { | 
|  | unsigned SelectClass = getClassB(TrueVal->getType()); | 
|  |  | 
|  | unsigned TrueReg  = getReg(TrueVal, MBB, IP); | 
|  | unsigned FalseReg = getReg(FalseVal, MBB, IP); | 
|  |  | 
|  | if (TrueReg == FalseReg) { | 
|  | if (SelectClass == cFP) { | 
|  | BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg); | 
|  | } | 
|  |  | 
|  | if (SelectClass == cLong) | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1) | 
|  | .addReg(TrueReg+1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned CondReg = getReg(Cond, MBB, IP); | 
|  | unsigned numZeros = makeAnotherReg(Type::IntTy); | 
|  | unsigned falseHi = makeAnotherReg(Type::IntTy); | 
|  | unsigned falseAll = makeAnotherReg(Type::IntTy); | 
|  | unsigned trueAll = makeAnotherReg(Type::IntTy); | 
|  | unsigned Temp1 = makeAnotherReg(Type::IntTy); | 
|  | unsigned Temp2 = makeAnotherReg(Type::IntTy); | 
|  |  | 
|  | BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg); | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26) | 
|  | .addImm(0).addImm(0); | 
|  | BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31); | 
|  | BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll); | 
|  | BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll); | 
|  | BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2); | 
|  |  | 
|  | if (SelectClass == cLong) { | 
|  | unsigned Temp3 = makeAnotherReg(Type::IntTy); | 
|  | unsigned Temp4 = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll); | 
|  | BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide | 
|  | /// operand, in the specified target register. | 
|  | /// | 
|  | void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { | 
|  | bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; | 
|  |  | 
|  | Value *Val = VR.Val; | 
|  | const Type *Ty = VR.Ty; | 
|  | if (Val) { | 
|  | if (Constant *C = dyn_cast<Constant>(Val)) { | 
|  | Val = ConstantExpr::getCast(C, Type::IntTy); | 
|  | Ty = Type::IntTy; | 
|  | } | 
|  |  | 
|  | // If this is a simple constant, just emit a load directly to avoid the copy | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | int TheVal = CI->getRawValue() & 0xFFFFFFFF; | 
|  |  | 
|  | if (TheVal < 32768 && TheVal >= -32768) { | 
|  | BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal); | 
|  | } else { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0) | 
|  | .addImm(TheVal >> 16); | 
|  | BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg) | 
|  | .addImm(TheVal & 0xFFFF); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we have the register number for this value... | 
|  | unsigned Reg = Val ? getReg(Val) : VR.Reg; | 
|  |  | 
|  | switch (getClassB(Ty)) { | 
|  | case cByte: | 
|  | // Extend value into target register (8->32) | 
|  | if (isUnsigned) | 
|  | BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) | 
|  | .addZImm(24).addZImm(31); | 
|  | else | 
|  | BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg); | 
|  | break; | 
|  | case cShort: | 
|  | // Extend value into target register (16->32) | 
|  | if (isUnsigned) | 
|  | BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) | 
|  | .addZImm(16).addZImm(31); | 
|  | else | 
|  | BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg); | 
|  | break; | 
|  | case cInt: | 
|  | // Move value into target register (32->32) | 
|  | BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg); | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Unpromotable operand class in promote32"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitReturnInst - implemented with BLR | 
|  | /// | 
|  | void ISel::visitReturnInst(ReturnInst &I) { | 
|  | // Only do the processing if this is a non-void return | 
|  | if (I.getNumOperands() > 0) { | 
|  | Value *RetVal = I.getOperand(0); | 
|  | switch (getClassB(RetVal->getType())) { | 
|  | case cByte:   // integral return values: extend or move into r3 and return | 
|  | case cShort: | 
|  | case cInt: | 
|  | promote32(PPC32::R3, ValueRecord(RetVal)); | 
|  | break; | 
|  | case cFP: {   // Floats & Doubles: Return in f1 | 
|  | unsigned RetReg = getReg(RetVal); | 
|  | BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg); | 
|  | break; | 
|  | } | 
|  | case cLong: { | 
|  | unsigned RetReg = getReg(RetVal); | 
|  | BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg); | 
|  | BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | visitInstruction(I); | 
|  | } | 
|  | } | 
|  | BuildMI(BB, PPC32::BLR, 1).addImm(0); | 
|  | } | 
|  |  | 
|  | // getBlockAfter - Return the basic block which occurs lexically after the | 
|  | // specified one. | 
|  | static inline BasicBlock *getBlockAfter(BasicBlock *BB) { | 
|  | Function::iterator I = BB; ++I;  // Get iterator to next block | 
|  | return I != BB->getParent()->end() ? &*I : 0; | 
|  | } | 
|  |  | 
|  | /// visitBranchInst - Handle conditional and unconditional branches here.  Note | 
|  | /// that since code layout is frozen at this point, that if we are trying to | 
|  | /// jump to a block that is the immediate successor of the current block, we can | 
|  | /// just make a fall-through (but we don't currently). | 
|  | /// | 
|  | void ISel::visitBranchInst(BranchInst &BI) { | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); | 
|  | if (BI.isConditional()) | 
|  | BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); | 
|  |  | 
|  | BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one | 
|  |  | 
|  | if (!BI.isConditional()) {  // Unconditional branch? | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // See if we can fold the setcc into the branch itself... | 
|  | SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); | 
|  | if (SCI == 0) { | 
|  | // Nope, cannot fold setcc into this branch.  Emit a branch on a condition | 
|  | // computed some other way... | 
|  | unsigned condReg = getReg(BI.getCondition()); | 
|  | BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg) | 
|  | .addImm(0); | 
|  | if (BI.getSuccessor(1) == NextBB) { | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1) | 
|  | .addMBB(MBBMap[BI.getSuccessor(0)]); | 
|  | } else { | 
|  | BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1) | 
|  | .addMBB(MBBMap[BI.getSuccessor(1)]); | 
|  |  | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned OpNum = getSetCCNumber(SCI->getOpcode()); | 
|  | unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); | 
|  | MachineBasicBlock::iterator MII = BB->end(); | 
|  | OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); | 
|  |  | 
|  | if (BI.getSuccessor(0) != NextBB) { | 
|  | BuildMI(BB, Opcode, 2).addReg(PPC32::CR0) | 
|  | .addMBB(MBBMap[BI.getSuccessor(0)]); | 
|  | if (BI.getSuccessor(1) != NextBB) | 
|  | BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); | 
|  | } else { | 
|  | // Change to the inverse condition... | 
|  | if (BI.getSuccessor(1) != NextBB) { | 
|  | Opcode = invertPPCBranchOpcode(Opcode); | 
|  | BuildMI(BB, Opcode, 2).addReg(PPC32::CR0) | 
|  | .addMBB(MBBMap[BI.getSuccessor(1)]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// doCall - This emits an abstract call instruction, setting up the arguments | 
|  | /// and the return value as appropriate.  For the actual function call itself, | 
|  | /// it inserts the specified CallMI instruction into the stream. | 
|  | /// | 
|  | /// FIXME: See Documentation at the following URL for "correct" behavior | 
|  | /// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html> | 
|  | void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, | 
|  | const std::vector<ValueRecord> &Args, bool isVarArg) { | 
|  | // Count how many bytes are to be pushed on the stack... | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | if (!Args.empty()) { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getClassB(Args[i].Ty)) { | 
|  | case cByte: case cShort: case cInt: | 
|  | NumBytes += 4; break; | 
|  | case cLong: | 
|  | NumBytes += 8; break; | 
|  | case cFP: | 
|  | NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; | 
|  | break; | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | int GPR_remaining = 8, FPR_remaining = 13; | 
|  | static const unsigned GPR[] = { | 
|  | PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6, | 
|  | PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10, | 
|  | }; | 
|  | static const unsigned FPR[] = { | 
|  | PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, | 
|  | PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, | 
|  | PPC32::F13 | 
|  | }; | 
|  | unsigned GPR_idx = 0, FPR_idx = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | unsigned ArgReg; | 
|  | switch (getClassB(Args[i].Ty)) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | // Promote arg to 32 bits wide into a temporary register... | 
|  | ArgReg = makeAnotherReg(Type::UIntTy); | 
|  | promote32(ArgReg, Args[i]); | 
|  |  | 
|  | // Reg or stack? | 
|  | if (GPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg) | 
|  | .addReg(ArgReg); | 
|  | } else { | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | } | 
|  | break; | 
|  | case cInt: | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  |  | 
|  | // Reg or stack? | 
|  | if (GPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg) | 
|  | .addReg(ArgReg); | 
|  | } else { | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | } | 
|  | break; | 
|  | case cLong: | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  |  | 
|  | // Reg or stack? | 
|  | if (GPR_remaining > 1) { | 
|  | BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg) | 
|  | .addReg(ArgReg); | 
|  | BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1) | 
|  | .addReg(ArgReg+1); | 
|  | } else { | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4) | 
|  | .addReg(PPC32::R1); | 
|  | } | 
|  |  | 
|  | ArgOffset += 4;        // 8 byte entry, not 4. | 
|  | GPR_remaining -= 1;    // uses up 2 GPRs | 
|  | GPR_idx += 1; | 
|  | break; | 
|  | case cFP: | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  | if (Args[i].Ty == Type::FloatTy) { | 
|  | // Reg or stack? | 
|  | if (FPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); | 
|  | FPR_remaining--; | 
|  | FPR_idx++; | 
|  | } else { | 
|  | BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | } | 
|  | assert(!isVarArg && "Cannot pass floats to vararg functions!"); | 
|  | } else { | 
|  | assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | // Reg or stack? | 
|  | if (FPR_remaining > 0) { | 
|  | BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); | 
|  | FPR_remaining--; | 
|  | FPR_idx++; | 
|  | // For vararg functions, must pass doubles via int regs as well | 
|  | if (isVarArg) { | 
|  | BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | if (GPR_remaining > 1) { | 
|  | BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx + 1]) | 
|  | .addImm(ArgOffset+4).addReg(PPC32::R1); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset) | 
|  | .addReg(PPC32::R1); | 
|  | } | 
|  |  | 
|  | ArgOffset += 4;       // 8 byte entry, not 4. | 
|  | GPR_remaining--;    // uses up 2 GPRs | 
|  | GPR_idx++; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  | ArgOffset += 4; | 
|  | GPR_remaining--; | 
|  | GPR_idx++; | 
|  | } | 
|  | } else { | 
|  | BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0); | 
|  | } | 
|  |  | 
|  | BB->push_back(CallMI); | 
|  | BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes); | 
|  |  | 
|  | // If there is a return value, scavenge the result from the location the call | 
|  | // leaves it in... | 
|  | // | 
|  | if (Ret.Ty != Type::VoidTy) { | 
|  | unsigned DestClass = getClassB(Ret.Ty); | 
|  | switch (DestClass) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: | 
|  | // Integral results are in r3 | 
|  | BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3); | 
|  | break; | 
|  | case cFP:     // Floating-point return values live in f1 | 
|  | BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1); | 
|  | break; | 
|  | case cLong:   // Long values are in r3:r4 | 
|  | BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3); | 
|  | BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4); | 
|  | break; | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCallInst - Push args on stack and do a procedure call instruction. | 
|  | void ISel::visitCallInst(CallInst &CI) { | 
|  | MachineInstr *TheCall; | 
|  | Function *F = CI.getCalledFunction(); | 
|  | if (F) { | 
|  | // Is it an intrinsic function call? | 
|  | if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { | 
|  | visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit a CALL instruction with PC-relative displacement. | 
|  | TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true); | 
|  | } else {  // Emit an indirect call through the CTR | 
|  | unsigned Reg = getReg(CI.getCalledValue()); | 
|  | BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg); | 
|  | TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0); | 
|  | } | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) | 
|  | Args.push_back(ValueRecord(CI.getOperand(i))); | 
|  |  | 
|  | unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; | 
|  | bool isVarArg = F ? F->getFunctionType()->isVarArg() : true; | 
|  | doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. | 
|  | /// | 
|  | static Value *dyncastIsNan(Value *V) { | 
|  | if (CallInst *CI = dyn_cast<CallInst>(V)) | 
|  | if (Function *F = CI->getCalledFunction()) | 
|  | if (F->getIntrinsicID() == Intrinsic::isunordered) | 
|  | return CI->getOperand(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by | 
|  | /// or's whos operands are all calls to the isnan predicate. | 
|  | static bool isOnlyUsedByUnorderedComparisons(Value *V) { | 
|  | assert(dyncastIsNan(V) && "The value isn't an isnan call!"); | 
|  |  | 
|  | // Check all uses, which will be or's of isnans if this predicate is true. | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ | 
|  | Instruction *I = cast<Instruction>(*UI); | 
|  | if (I->getOpcode() != Instruction::Or) return false; | 
|  | if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; | 
|  | if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the | 
|  | /// function, lowering any calls to unknown intrinsic functions into the | 
|  | /// equivalent LLVM code. | 
|  | /// | 
|  | void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I++)) | 
|  | if (Function *F = CI->getCalledFunction()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::not_intrinsic: | 
|  | case Intrinsic::vastart: | 
|  | case Intrinsic::vacopy: | 
|  | case Intrinsic::vaend: | 
|  | case Intrinsic::returnaddress: | 
|  | case Intrinsic::frameaddress: | 
|  | // FIXME: should lower this ourselves | 
|  | // case Intrinsic::isunordered: | 
|  | // We directly implement these intrinsics | 
|  | break; | 
|  | case Intrinsic::readio: { | 
|  | // On PPC, memory operations are in-order.  Lower this intrinsic | 
|  | // into a volatile load. | 
|  | Instruction *Before = CI->getPrev(); | 
|  | LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); | 
|  | CI->replaceAllUsesWith(LI); | 
|  | BB->getInstList().erase(CI); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::writeio: { | 
|  | // On PPC, memory operations are in-order.  Lower this intrinsic | 
|  | // into a volatile store. | 
|  | Instruction *Before = CI->getPrev(); | 
|  | StoreInst *LI = new StoreInst(CI->getOperand(1), | 
|  | CI->getOperand(2), true, CI); | 
|  | CI->replaceAllUsesWith(LI); | 
|  | BB->getInstList().erase(CI); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // All other intrinsic calls we must lower. | 
|  | Instruction *Before = CI->getPrev(); | 
|  | TM.getIntrinsicLowering().LowerIntrinsicCall(CI); | 
|  | if (Before) {        // Move iterator to instruction after call | 
|  | I = Before; ++I; | 
|  | } else { | 
|  | I = BB->begin(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { | 
|  | unsigned TmpReg1, TmpReg2, TmpReg3; | 
|  | switch (ID) { | 
|  | case Intrinsic::vastart: | 
|  | // Get the address of the first vararg value... | 
|  | TmpReg1 = getReg(CI); | 
|  | addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::vacopy: | 
|  | TmpReg1 = getReg(CI); | 
|  | TmpReg2 = getReg(CI.getOperand(1)); | 
|  | BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); | 
|  | return; | 
|  | case Intrinsic::vaend: return; | 
|  |  | 
|  | case Intrinsic::returnaddress: | 
|  | case Intrinsic::frameaddress: | 
|  | TmpReg1 = getReg(CI); | 
|  | if (cast<Constant>(CI.getOperand(1))->isNullValue()) { | 
|  | if (ID == Intrinsic::returnaddress) { | 
|  | // Just load the return address | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1), | 
|  | ReturnAddressIndex); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), | 
|  | ReturnAddressIndex, -4, false); | 
|  | } | 
|  | } else { | 
|  | // Values other than zero are not implemented yet. | 
|  | BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0); | 
|  | } | 
|  | return; | 
|  |  | 
|  | #if 0 | 
|  | // This may be useful for supporting isunordered | 
|  | case Intrinsic::isnan: | 
|  | // If this is only used by 'isunordered' style comparisons, don't emit it. | 
|  | if (isOnlyUsedByUnorderedComparisons(&CI)) return; | 
|  | TmpReg1 = getReg(CI.getOperand(1)); | 
|  | emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); | 
|  | TmpReg2 = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(BB, PPC32::MFCR, TmpReg2); | 
|  | TmpReg3 = getReg(CI); | 
|  | BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | default: assert(0 && "Error: unknown intrinsics should have been lowered!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitSimpleBinary - Implement simple binary operators for integral types... | 
|  | /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for | 
|  | /// Xor. | 
|  | /// | 
|  | void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { | 
|  | unsigned DestReg = getReg(B); | 
|  | MachineBasicBlock::iterator MI = BB->end(); | 
|  | Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); | 
|  | unsigned Class = getClassB(B.getType()); | 
|  |  | 
|  | emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); | 
|  | } | 
|  |  | 
|  | /// emitBinaryFPOperation - This method handles emission of floating point | 
|  | /// Add (0), Sub (1), Mul (2), and Div (3) operations. | 
|  | void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned DestReg) { | 
|  |  | 
|  | // Special case: op Reg, <const fp> | 
|  | if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { | 
|  | // Create a constant pool entry for this constant. | 
|  | MachineConstantPool *CP = F->getConstantPool(); | 
|  | unsigned CPI = CP->getConstantPoolIndex(Op1C); | 
|  | const Type *Ty = Op1->getType(); | 
|  |  | 
|  | static const unsigned OpcodeTab[][4] = { | 
|  | { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },  // Float | 
|  | { PPC32::FADD,  PPC32::FSUB,  PPC32::FMUL,  PPC32::FDIV },   // Double | 
|  | }; | 
|  |  | 
|  | assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | unsigned TempReg = makeAnotherReg(Ty); | 
|  | unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD; | 
|  | addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI); | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; | 
|  | unsigned Op0r = getReg(Op0, BB, IP); | 
|  | BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case: R1 = op <const fp>, R2 | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) | 
|  | if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { | 
|  | // -0.0 - X === -X | 
|  | unsigned op1Reg = getReg(Op1, BB, IP); | 
|  | BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg); | 
|  | return; | 
|  | } else { | 
|  | // R1 = op CST, R2  -->  R1 = opr R2, CST | 
|  |  | 
|  | // Create a constant pool entry for this constant. | 
|  | MachineConstantPool *CP = F->getConstantPool(); | 
|  | unsigned CPI = CP->getConstantPoolIndex(CFP); | 
|  | const Type *Ty = CFP->getType(); | 
|  |  | 
|  | static const unsigned OpcodeTab[][4] = { | 
|  | { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },  // Float | 
|  | { PPC32::FADD,  PPC32::FSUB,  PPC32::FMUL,  PPC32::FDIV },   // Double | 
|  | }; | 
|  |  | 
|  | assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | unsigned TempReg = makeAnotherReg(Ty); | 
|  | unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD; | 
|  | addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI); | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; | 
|  | unsigned Op1r = getReg(Op1, BB, IP); | 
|  | BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // General case. | 
|  | static const unsigned OpcodeTab[] = { | 
|  | PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV | 
|  | }; | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[OperatorClass]; | 
|  | unsigned Op0r = getReg(Op0, BB, IP); | 
|  | unsigned Op1r = getReg(Op1, BB, IP); | 
|  | BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); | 
|  | } | 
|  |  | 
|  | /// emitSimpleBinaryOperation - Implement simple binary operators for integral | 
|  | /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for | 
|  | /// Or, 4 for Xor. | 
|  | /// | 
|  | /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary | 
|  | /// and constant expression support. | 
|  | /// | 
|  | void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned DestReg) { | 
|  | unsigned Class = getClassB(Op0->getType()); | 
|  |  | 
|  | // Arithmetic and Bitwise operators | 
|  | static const unsigned OpcodeTab[] = { | 
|  | PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR | 
|  | }; | 
|  | // Otherwise, code generate the full operation with a constant. | 
|  | static const unsigned BottomTab[] = { | 
|  | PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR | 
|  | }; | 
|  | static const unsigned TopTab[] = { | 
|  | PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR | 
|  | }; | 
|  |  | 
|  | if (Class == cFP) { | 
|  | assert(OperatorClass < 2 && "No logical ops for FP!"); | 
|  | emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Op0->getType() == Type::BoolTy) { | 
|  | if (OperatorClass == 3) | 
|  | // If this is an or of two isnan's, emit an FP comparison directly instead | 
|  | // of or'ing two isnan's together. | 
|  | if (Value *LHS = dyncastIsNan(Op0)) | 
|  | if (Value *RHS = dyncastIsNan(Op1)) { | 
|  | unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | emitUCOM(MBB, IP, Op0Reg, Op1Reg); | 
|  | BuildMI(*MBB, IP, PPC32::MFCR, TmpReg); | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) | 
|  | .addImm(31).addImm(31); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // sub 0, X -> neg X | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) | 
|  | if (OperatorClass == 1 && CI->isNullValue()) { | 
|  | unsigned op1Reg = getReg(Op1, MBB, IP); | 
|  | BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | unsigned zeroes = makeAnotherReg(Type::IntTy); | 
|  | unsigned overflow = makeAnotherReg(Type::IntTy); | 
|  | unsigned T = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg); | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27) | 
|  | .addImm(5).addImm(31); | 
|  | BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow); | 
|  | BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case: op Reg, <const int> | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  |  | 
|  | // xor X, -1 -> not X | 
|  | if (OperatorClass == 4 && Op1C->isAllOnesValue()) { | 
|  | BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r); | 
|  | if (Class == cLong)  // Invert the top part too | 
|  | BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1) | 
|  | .addReg(Op0r+1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[OperatorClass]; | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  |  | 
|  | if (Class != cLong) { | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the constant is zero in the low 32-bits, just copy the low part | 
|  | // across and apply the normal 32-bit operation to the high parts.  There | 
|  | // will be no carry or borrow into the top. | 
|  | if (cast<ConstantInt>(Op1C)->getRawValue() == 0) { | 
|  | if (OperatorClass != 2) // All but and... | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); | 
|  | else | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is a long value and the high or low bits have a special | 
|  | // property, emit some special cases. | 
|  | unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; | 
|  |  | 
|  | // If this is a logical operation and the top 32-bits are zero, just | 
|  | // operate on the lower 32. | 
|  | if (Op1h == 0 && OperatorClass > 1) { | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); | 
|  | if (OperatorClass != 2)  // All but and | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1); | 
|  | else | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: We could handle lots of other special cases here, such as AND'ing | 
|  | // with 0xFFFFFFFF00000000 -> noop, etc. | 
|  |  | 
|  | BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r) | 
|  | .addImm(Op1r); | 
|  | BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) | 
|  | .addImm(Op1r+1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  |  | 
|  | if (Class != cLong) { | 
|  | unsigned Opcode = OpcodeTab[OperatorClass]; | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r) | 
|  | .addImm(Op1r); | 
|  | BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) | 
|  | .addImm(Op1r+1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// doMultiply - Emit appropriate instructions to multiply together the | 
|  | /// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the | 
|  | /// result should be given as DestTy. | 
|  | /// | 
|  | void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned op0Reg, unsigned op1Reg) { | 
|  | unsigned Class = getClass(DestTy); | 
|  | switch (Class) { | 
|  | case cLong: | 
|  | BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1) | 
|  | .addReg(op1Reg+1); | 
|  | case cInt: | 
|  | case cShort: | 
|  | case cByte: | 
|  | BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg); | 
|  | return; | 
|  | default: | 
|  | assert(0 && "doMultiply cannot operate on unknown type!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It | 
|  | // returns zero when the input is not exactly a power of two. | 
|  | static unsigned ExactLog2(unsigned Val) { | 
|  | if (Val == 0 || (Val & (Val-1))) return 0; | 
|  | unsigned Count = 0; | 
|  | while (Val != 1) { | 
|  | Val >>= 1; | 
|  | ++Count; | 
|  | } | 
|  | return Count+1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// doMultiplyConst - This function is specialized to efficiently codegen an 8, | 
|  | /// 16, or 32-bit integer multiply by a constant. | 
|  | /// | 
|  | void ISel::doMultiplyConst(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned op0Reg, unsigned ConstRHS) { | 
|  | unsigned Class = getClass(DestTy); | 
|  | // Handle special cases here. | 
|  | switch (ConstRHS) { | 
|  | case 0: | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); | 
|  | return; | 
|  | case 1: | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg); | 
|  | return; | 
|  | case 2: | 
|  | BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the element size is exactly a power of 2, use a shift to get it. | 
|  | if (unsigned Shift = ExactLog2(ConstRHS)) { | 
|  | switch (Class) { | 
|  | default: assert(0 && "Unknown class for this function!"); | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg) | 
|  | .addImm(Shift-1).addImm(0).addImm(31-Shift-1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Most general case, emit a normal multiply... | 
|  | unsigned TmpReg1 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg2 = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0) | 
|  | .addImm(ConstRHS >> 16); | 
|  | BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS); | 
|  |  | 
|  | // Emit a MUL to multiply the register holding the index by | 
|  | // elementSize, putting the result in OffsetReg. | 
|  | doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2); | 
|  | } | 
|  |  | 
|  | void ISel::visitMul(BinaryOperator &I) { | 
|  | unsigned ResultReg = getReg(I); | 
|  |  | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  |  | 
|  | MachineBasicBlock::iterator IP = BB->end(); | 
|  | emitMultiply(BB, IP, Op0, Op1, ResultReg); | 
|  | } | 
|  |  | 
|  | void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, unsigned DestReg) { | 
|  | MachineBasicBlock &BB = *MBB; | 
|  | TypeClass Class = getClass(Op0->getType()); | 
|  |  | 
|  | // Simple scalar multiply? | 
|  | unsigned Op0Reg  = getReg(Op0, &BB, IP); | 
|  | switch (Class) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant | 
|  | doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); | 
|  | } else { | 
|  | unsigned Op1Reg  = getReg(Op1, &BB, IP); | 
|  | doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); | 
|  | } | 
|  | return; | 
|  | case cFP: | 
|  | emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); | 
|  | return; | 
|  | case cLong: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Long value.  We have to do things the hard way... | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | unsigned CLow = CI->getRawValue(); | 
|  | unsigned CHi  = CI->getRawValue() >> 32; | 
|  |  | 
|  | if (CLow == 0) { | 
|  | // If the low part of the constant is all zeros, things are simple. | 
|  | BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); | 
|  | doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Multiply the two low parts | 
|  | unsigned OverflowReg = 0; | 
|  | if (CLow == 1) { | 
|  | BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg); | 
|  | } else { | 
|  | unsigned TmpRegL = makeAnotherReg(Type::UIntTy); | 
|  | unsigned Op1RegL = makeAnotherReg(Type::UIntTy); | 
|  | OverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0) | 
|  | .addImm(CLow >> 16); | 
|  | BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow); | 
|  | BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL); | 
|  | BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg) | 
|  | .addReg(Op1RegL); | 
|  | } | 
|  |  | 
|  | unsigned AHBLReg = makeAnotherReg(Type::UIntTy); | 
|  | doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); | 
|  |  | 
|  | unsigned AHBLplusOverflowReg; | 
|  | if (OverflowReg) { | 
|  | AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, IP, PPC32::ADD, 2, | 
|  | AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); | 
|  | } else { | 
|  | AHBLplusOverflowReg = AHBLReg; | 
|  | } | 
|  |  | 
|  | if (CHi == 0) { | 
|  | BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg) | 
|  | .addReg(AHBLplusOverflowReg); | 
|  | } else { | 
|  | unsigned ALBHReg = makeAnotherReg(Type::UIntTy); | 
|  | doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); | 
|  |  | 
|  | BuildMI(BB, IP, PPC32::ADD, 2, | 
|  | DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // General 64x64 multiply | 
|  |  | 
|  | unsigned Op1Reg  = getReg(Op1, &BB, IP); | 
|  |  | 
|  | // Multiply the two low parts... | 
|  | BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); | 
|  |  | 
|  | unsigned OverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); | 
|  |  | 
|  | unsigned AHBLReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); | 
|  |  | 
|  | unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg) | 
|  | .addReg(OverflowReg); | 
|  |  | 
|  | unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH | 
|  | BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); | 
|  |  | 
|  | BuildMI(BB, IP, PPC32::ADD, 2, | 
|  | DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitDivRem - Handle division and remainder instructions... these | 
|  | /// instruction both require the same instructions to be generated, they just | 
|  | /// select the result from a different register.  Note that both of these | 
|  | /// instructions work differently for signed and unsigned operands. | 
|  | /// | 
|  | void ISel::visitDivRem(BinaryOperator &I) { | 
|  | unsigned ResultReg = getReg(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | MachineBasicBlock::iterator IP = BB->end(); | 
|  | emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, | 
|  | ResultReg); | 
|  | } | 
|  |  | 
|  | void ISel::emitDivRemOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, bool isDiv, | 
|  | unsigned ResultReg) { | 
|  | const Type *Ty = Op0->getType(); | 
|  | unsigned Class = getClass(Ty); | 
|  | switch (Class) { | 
|  | case cFP:              // Floating point divide | 
|  | if (isDiv) { | 
|  | emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); | 
|  | return; | 
|  | } else {               // Floating point remainder... | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | unsigned Op1Reg = getReg(Op1, BB, IP); | 
|  | Function *FmodFn = M->getNamedFunction("fmod"); | 
|  | assert(FmodFn && "fmod() does not exist in the module"); | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(FmodFn, true); | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); | 
|  | Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); | 
|  | doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false); | 
|  | } | 
|  | return; | 
|  | case cLong: { | 
|  | // FIXME: Make sure the module has external function | 
|  | static const char *FnName[] = | 
|  | { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | unsigned Op1Reg = getReg(Op1, BB, IP); | 
|  | unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true); | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); | 
|  | Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); | 
|  | doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false); | 
|  | return; | 
|  | } | 
|  | case cByte: case cShort: case cInt: | 
|  | break;          // Small integrals, handled below... | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  |  | 
|  | // Special case signed division by power of 2. | 
|  | if (isDiv) | 
|  | if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { | 
|  | assert(Class != cLong && "This doesn't handle 64-bit divides!"); | 
|  | int V = CI->getValue(); | 
|  |  | 
|  | if (V == 1) {       // X /s 1 => X | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (V == -1) {      // X /s -1 => -X | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool isNeg = false; | 
|  | if (V < 0) {         // Not a positive power of 2? | 
|  | V = -V; | 
|  | isNeg = true;      // Maybe it's a negative power of 2. | 
|  | } | 
|  | if (unsigned Log = ExactLog2(V)) { | 
|  | --Log; | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | unsigned TmpReg = makeAnotherReg(Op0->getType()); | 
|  | if (Log != 1) | 
|  | BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1); | 
|  | else | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg); | 
|  |  | 
|  | unsigned TmpReg2 = makeAnotherReg(Op0->getType()); | 
|  | BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log) | 
|  | .addImm(32-Log).addImm(31); | 
|  |  | 
|  | unsigned TmpReg3 = makeAnotherReg(Op0->getType()); | 
|  | BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2); | 
|  |  | 
|  | unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; | 
|  | BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log); | 
|  |  | 
|  | if (isNeg) | 
|  | BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Op0Reg = getReg(Op0, BB, IP); | 
|  | unsigned Op1Reg = getReg(Op1, BB, IP); | 
|  |  | 
|  | if (isDiv) { | 
|  | if (Ty->isSigned()) { | 
|  | BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); | 
|  | } else { | 
|  | BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); | 
|  | } | 
|  | } else { // Remainder | 
|  | unsigned TmpReg1 = makeAnotherReg(Op0->getType()); | 
|  | unsigned TmpReg2 = makeAnotherReg(Op0->getType()); | 
|  |  | 
|  | if (Ty->isSigned()) { | 
|  | BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); | 
|  | } else { | 
|  | BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); | 
|  | } | 
|  | BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); | 
|  | BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here | 
|  | /// for constant immediate shift values, and for constant immediate | 
|  | /// shift values equal to 1. Even the general case is sort of special, | 
|  | /// because the shift amount has to be in CL, not just any old register. | 
|  | /// | 
|  | void ISel::visitShiftInst(ShiftInst &I) { | 
|  | MachineBasicBlock::iterator IP = BB->end (); | 
|  | emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1), | 
|  | I.getOpcode () == Instruction::Shl, I.getType (), | 
|  | getReg (I)); | 
|  | } | 
|  |  | 
|  | /// emitShiftOperation - Common code shared between visitShiftInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void ISel::emitShiftOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op, Value *ShiftAmount, bool isLeftShift, | 
|  | const Type *ResultTy, unsigned DestReg) { | 
|  | unsigned SrcReg = getReg (Op, MBB, IP); | 
|  | bool isSigned = ResultTy->isSigned (); | 
|  | unsigned Class = getClass (ResultTy); | 
|  |  | 
|  | // Longs, as usual, are handled specially... | 
|  | if (Class == cLong) { | 
|  | // If we have a constant shift, we can generate much more efficient code | 
|  | // than otherwise... | 
|  | // | 
|  | if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { | 
|  | unsigned Amount = CUI->getValue(); | 
|  | if (Amount < 32) { | 
|  | if (isLeftShift) { | 
|  | // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1) | 
|  | .addImm(Amount).addImm(0).addImm(31-Amount); | 
|  | BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg) | 
|  | .addImm(Amount).addImm(32-Amount).addImm(31); | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) | 
|  | .addImm(Amount).addImm(0).addImm(31-Amount); | 
|  | } else { | 
|  | // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) | 
|  | .addImm(32-Amount).addImm(Amount).addImm(31); | 
|  | BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1) | 
|  | .addImm(32-Amount).addImm(0).addImm(Amount-1); | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1) | 
|  | .addImm(32-Amount).addImm(Amount).addImm(31); | 
|  | } | 
|  | } else {                 // Shifting more than 32 bits | 
|  | Amount -= 32; | 
|  | if (isLeftShift) { | 
|  | if (Amount != 0) { | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg) | 
|  | .addImm(Amount).addImm(0).addImm(31-Amount); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg) | 
|  | .addReg(SrcReg); | 
|  | } | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0); | 
|  | } else { | 
|  | if (Amount != 0) { | 
|  | if (isSigned) | 
|  | BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1) | 
|  | .addImm(Amount); | 
|  | else | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1) | 
|  | .addImm(32-Amount).addImm(Amount).addImm(31); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1) | 
|  | .addReg(SrcReg+1); | 
|  | } | 
|  | BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | unsigned TmpReg1 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg2 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg3 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg4 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg5 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg6 = makeAnotherReg(Type::IntTy); | 
|  | unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); | 
|  |  | 
|  | if (isLeftShift) { | 
|  | BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) | 
|  | .addImm(32); | 
|  | BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1) | 
|  | .addReg(ShiftAmountReg); | 
|  | BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3); | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) | 
|  | .addImm(-32); | 
|  | BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4) | 
|  | .addReg(TmpReg6); | 
|  | BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg) | 
|  | .addReg(ShiftAmountReg); | 
|  | } else { | 
|  | if (isSigned) { | 
|  | // FIXME: Unimplemented | 
|  | // Page C-3 of the PowerPC 32bit Programming Environments Manual | 
|  | std::cerr << "Unimplemented: signed right shift\n"; | 
|  | abort(); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) | 
|  | .addImm(32); | 
|  | BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg) | 
|  | .addReg(ShiftAmountReg); | 
|  | BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1) | 
|  | .addReg(TmpReg1); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2) | 
|  | .addReg(TmpReg3); | 
|  | BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) | 
|  | .addImm(-32); | 
|  | BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1) | 
|  | .addReg(TmpReg5); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4) | 
|  | .addReg(TmpReg6); | 
|  | BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1) | 
|  | .addReg(ShiftAmountReg); | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { | 
|  | // The shift amount is constant, guaranteed to be a ubyte. Get its value. | 
|  | assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); | 
|  | unsigned Amount = CUI->getValue(); | 
|  |  | 
|  | if (isLeftShift) { | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) | 
|  | .addImm(Amount).addImm(0).addImm(31-Amount); | 
|  | } else { | 
|  | if (isSigned) { | 
|  | BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) | 
|  | .addImm(32-Amount).addImm(Amount).addImm(31); | 
|  | } | 
|  | } | 
|  | } else {                  // The shift amount is non-constant. | 
|  | unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); | 
|  |  | 
|  | if (isLeftShift) { | 
|  | BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg) | 
|  | .addReg(ShiftAmountReg); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg) | 
|  | .addReg(SrcReg).addReg(ShiftAmountReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitLoadInst - Implement LLVM load instructions | 
|  | /// | 
|  | void ISel::visitLoadInst(LoadInst &I) { | 
|  | static const unsigned Opcodes[] = { | 
|  | PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS | 
|  | }; | 
|  | unsigned Class = getClassB(I.getType()); | 
|  | unsigned Opcode = Opcodes[Class]; | 
|  | if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD; | 
|  |  | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { | 
|  | unsigned FI = getFixedSizedAllocaFI(AI); | 
|  | if (Class == cLong) { | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI); | 
|  | addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI); | 
|  | } | 
|  | } else { | 
|  | unsigned SrcAddrReg = getReg(I.getOperand(0)); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg); | 
|  | BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg); | 
|  | } else { | 
|  | BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitStoreInst - Implement LLVM store instructions | 
|  | /// | 
|  | void ISel::visitStoreInst(StoreInst &I) { | 
|  | unsigned ValReg      = getReg(I.getOperand(0)); | 
|  | unsigned AddressReg  = getReg(I.getOperand(1)); | 
|  |  | 
|  | const Type *ValTy = I.getOperand(0)->getType(); | 
|  | unsigned Class = getClassB(ValTy); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg); | 
|  | BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const unsigned Opcodes[] = { | 
|  | PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS | 
|  | }; | 
|  | unsigned Opcode = Opcodes[Class]; | 
|  | if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD; | 
|  | BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCastInst - Here we have various kinds of copying with or without sign | 
|  | /// extension going on. | 
|  | /// | 
|  | void ISel::visitCastInst(CastInst &CI) { | 
|  | Value *Op = CI.getOperand(0); | 
|  |  | 
|  | unsigned SrcClass = getClassB(Op->getType()); | 
|  | unsigned DestClass = getClassB(CI.getType()); | 
|  | // Noop casts are not emitted: getReg will return the source operand as the | 
|  | // register to use for any uses of the noop cast. | 
|  | if (DestClass == SrcClass) | 
|  | return; | 
|  |  | 
|  | // If this is a cast from a 32-bit integer to a Long type, and the only uses | 
|  | // of the case are GEP instructions, then the cast does not need to be | 
|  | // generated explicitly, it will be folded into the GEP. | 
|  | if (DestClass == cLong && SrcClass == cInt) { | 
|  | bool AllUsesAreGEPs = true; | 
|  | for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) | 
|  | if (!isa<GetElementPtrInst>(*I)) { | 
|  | AllUsesAreGEPs = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No need to codegen this cast if all users are getelementptr instrs... | 
|  | if (AllUsesAreGEPs) return; | 
|  | } | 
|  |  | 
|  | unsigned DestReg = getReg(CI); | 
|  | MachineBasicBlock::iterator MI = BB->end(); | 
|  | emitCastOperation(BB, MI, Op, CI.getType(), DestReg); | 
|  | } | 
|  |  | 
|  | /// emitCastOperation - Common code shared between visitCastInst and constant | 
|  | /// expression cast support. | 
|  | /// | 
|  | void ISel::emitCastOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Src, const Type *DestTy, | 
|  | unsigned DestReg) { | 
|  | const Type *SrcTy = Src->getType(); | 
|  | unsigned SrcClass = getClassB(SrcTy); | 
|  | unsigned DestClass = getClassB(DestTy); | 
|  | unsigned SrcReg = getReg(Src, BB, IP); | 
|  |  | 
|  | // Implement casts to bool by using compare on the operand followed by set if | 
|  | // not zero on the result. | 
|  | if (DestTy == Type::BoolTy) { | 
|  | switch (SrcClass) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1); | 
|  | BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); | 
|  | break; | 
|  | } | 
|  | case cLong: { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | unsigned SrcReg2 = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1); | 
|  | BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1); | 
|  | BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2); | 
|  | break; | 
|  | } | 
|  | case cFP: | 
|  | // FIXME | 
|  | // Load -0.0 | 
|  | // Compare | 
|  | // move to CR1 | 
|  | // Negate -0.0 | 
|  | // Compare | 
|  | // CROR | 
|  | // MFCR | 
|  | // Left-align | 
|  | // SRA ? | 
|  | std::cerr << "Cast fp-to-bool not implemented!"; | 
|  | abort(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Implement casts between values of the same type class (as determined by | 
|  | // getClass) by using a register-to-register move. | 
|  | if (SrcClass == DestClass) { | 
|  | if (SrcClass <= cInt) { | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); | 
|  | } else if (SrcClass == cFP && SrcTy == DestTy) { | 
|  | BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg); | 
|  | } else if (SrcClass == cFP) { | 
|  | if (SrcTy == Type::FloatTy) {  // float -> double | 
|  | assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); | 
|  | BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg); | 
|  | } else {                       // double -> float | 
|  | assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && | 
|  | "Unknown cFP member!"); | 
|  | BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg); | 
|  | } | 
|  | } else if (SrcClass == cLong) { | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1) | 
|  | .addReg(SrcReg+1); | 
|  | } else { | 
|  | assert(0 && "Cannot handle this type of cast instruction!"); | 
|  | abort(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle cast of SMALLER int to LARGER int using a move with sign extension | 
|  | // or zero extension, depending on whether the source type was signed. | 
|  | if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && | 
|  | SrcClass < DestClass) { | 
|  | bool isLong = DestClass == cLong; | 
|  | if (isLong) DestClass = cInt; | 
|  |  | 
|  | bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; | 
|  | if (SrcClass < cInt) { | 
|  | if (isUnsigned) { | 
|  | unsigned shift = (SrcClass == cByte) ? 24 : 16; | 
|  | BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0) | 
|  | .addImm(shift).addImm(31); | 
|  | } else { | 
|  | BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, | 
|  | 1, DestReg).addReg(SrcReg); | 
|  | } | 
|  | } else { | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); | 
|  | } | 
|  |  | 
|  | if (isLong) {  // Handle upper 32 bits as appropriate... | 
|  | if (isUnsigned)     // Zero out top bits... | 
|  | BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0); | 
|  | else                // Sign extend bottom half... | 
|  | BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case long -> int ... | 
|  | if (SrcClass == cLong && DestClass == cInt) { | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle cast of LARGER int to SMALLER int with a clear or sign extend | 
|  | if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt | 
|  | && SrcClass > DestClass) { | 
|  | bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; | 
|  | if (isUnsigned) { | 
|  | unsigned shift = (SrcClass == cByte) ? 24 : 16; | 
|  | BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0) | 
|  | .addImm(shift).addImm(31); | 
|  | } else { | 
|  | BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, | 
|  | DestReg).addReg(SrcReg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle casts from integer to floating point now... | 
|  | if (DestClass == cFP) { | 
|  |  | 
|  | // Emit a library call for long to float conversion | 
|  | if (SrcClass == cLong) { | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(SrcReg, SrcTy)); | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true); | 
|  | doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | switch (SrcTy->getTypeID()) { | 
|  | case Type::BoolTyID: | 
|  | case Type::SByteTyID: | 
|  | BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg); | 
|  | break; | 
|  | case Type::UByteTyID: | 
|  | BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0) | 
|  | .addImm(24).addImm(31); | 
|  | break; | 
|  | case Type::ShortTyID: | 
|  | BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg); | 
|  | break; | 
|  | case Type::UShortTyID: | 
|  | BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0) | 
|  | .addImm(16).addImm(31); | 
|  | break; | 
|  | case Type::IntTyID: | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg); | 
|  | break; | 
|  | case Type::UIntTyID: | 
|  | BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg); | 
|  | break; | 
|  | default:  // No promotion needed... | 
|  | break; | 
|  | } | 
|  |  | 
|  | SrcReg = TmpReg; | 
|  |  | 
|  | // Spill the integer to memory and reload it from there. | 
|  | // Also spill room for a special conversion constant | 
|  | int ConstantFrameIndex = | 
|  | F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); | 
|  | int ValueFrameIdx = | 
|  | F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); | 
|  |  | 
|  | unsigned constantHi = makeAnotherReg(Type::IntTy); | 
|  | unsigned constantLo = makeAnotherReg(Type::IntTy); | 
|  | unsigned ConstF = makeAnotherReg(Type::DoubleTy); | 
|  | unsigned TempF = makeAnotherReg(Type::DoubleTy); | 
|  |  | 
|  | if (!SrcTy->isSigned()) { | 
|  | BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0) | 
|  | .addImm(0x4330); | 
|  | BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), | 
|  | ConstantFrameIndex); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), | 
|  | ConstantFrameIndex, 4); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), | 
|  | ValueFrameIdx); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), | 
|  | ValueFrameIdx, 4); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), | 
|  | ConstantFrameIndex); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx); | 
|  | BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); | 
|  | } else { | 
|  | unsigned TempLo = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0) | 
|  | .addImm(0x4330); | 
|  | BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0) | 
|  | .addImm(0x8000); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), | 
|  | ConstantFrameIndex); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), | 
|  | ConstantFrameIndex, 4); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), | 
|  | ValueFrameIdx); | 
|  | BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), | 
|  | ValueFrameIdx, 4); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), | 
|  | ConstantFrameIndex); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx); | 
|  | BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle casts from floating point to integer now... | 
|  | if (SrcClass == cFP) { | 
|  |  | 
|  | // emit library call | 
|  | if (DestClass == cLong) { | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(SrcReg, SrcTy)); | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true); | 
|  | doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int ValueFrameIdx = | 
|  | F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); | 
|  |  | 
|  | // load into 32 bit value, and then truncate as necessary | 
|  | // FIXME: This is wrong for unsigned dest types | 
|  | //if (DestTy->isSigned()) { | 
|  | unsigned TempReg = makeAnotherReg(Type::DoubleTy); | 
|  | BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3) | 
|  | .addReg(TempReg), ValueFrameIdx); | 
|  | addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), | 
|  | ValueFrameIdx+4); | 
|  | //} else { | 
|  | //} | 
|  |  | 
|  | // FIXME: Truncate return value | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Anything we haven't handled already, we can't (yet) handle at all. | 
|  | assert(0 && "Unhandled cast instruction!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /// visitVANextInst - Implement the va_next instruction... | 
|  | /// | 
|  | void ISel::visitVANextInst(VANextInst &I) { | 
|  | unsigned VAList = getReg(I.getOperand(0)); | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | unsigned Size; | 
|  | switch (I.getArgType()->getTypeID()) { | 
|  | default: | 
|  | std::cerr << I; | 
|  | assert(0 && "Error: bad type for va_next instruction!"); | 
|  | return; | 
|  | case Type::PointerTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::IntTyID: | 
|  | Size = 4; | 
|  | break; | 
|  | case Type::ULongTyID: | 
|  | case Type::LongTyID: | 
|  | case Type::DoubleTyID: | 
|  | Size = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Increment the VAList pointer... | 
|  | BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size); | 
|  | } | 
|  |  | 
|  | void ISel::visitVAArgInst(VAArgInst &I) { | 
|  | unsigned VAList = getReg(I.getOperand(0)); | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | switch (I.getType()->getTypeID()) { | 
|  | default: | 
|  | std::cerr << I; | 
|  | assert(0 && "Error: bad type for va_next instruction!"); | 
|  | return; | 
|  | case Type::PointerTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::IntTyID: | 
|  | BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList); | 
|  | break; | 
|  | case Type::ULongTyID: | 
|  | case Type::LongTyID: | 
|  | BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList); | 
|  | BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitGetElementPtrInst - instruction-select GEP instructions | 
|  | /// | 
|  | void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | unsigned outputReg = getReg(I); | 
|  | emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), | 
|  | outputReg); | 
|  | } | 
|  |  | 
|  | void ISel::emitGEPOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned TargetReg) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  | if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) | 
|  | Src = CPR->getValue(); | 
|  |  | 
|  | std::vector<Value*> GEPOps; | 
|  | GEPOps.resize(IdxEnd-IdxBegin+1); | 
|  | GEPOps[0] = Src; | 
|  | std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); | 
|  |  | 
|  | std::vector<const Type*> GEPTypes; | 
|  | GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), | 
|  | gep_type_end(Src->getType(), IdxBegin, IdxEnd)); | 
|  |  | 
|  | // Keep emitting instructions until we consume the entire GEP instruction. | 
|  | while (!GEPOps.empty()) { | 
|  | if (GEPTypes.empty()) { | 
|  | // Load the base pointer into a register. | 
|  | unsigned Reg = getReg(Src, MBB, IP); | 
|  | BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg); | 
|  | break;          // we are now done | 
|  | } | 
|  | // It's an array or pointer access: [ArraySize x ElementType]. | 
|  | const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); | 
|  | Value *idx = GEPOps.back(); | 
|  | GEPOps.pop_back();        // Consume a GEP operand | 
|  | GEPTypes.pop_back(); | 
|  |  | 
|  | // Many GEP instructions use a [cast (int/uint) to LongTy] as their | 
|  | // operand.  Handle this case directly now... | 
|  | if (CastInst *CI = dyn_cast<CastInst>(idx)) | 
|  | if (CI->getOperand(0)->getType() == Type::IntTy || | 
|  | CI->getOperand(0)->getType() == Type::UIntTy) | 
|  | idx = CI->getOperand(0); | 
|  |  | 
|  | // We want to add BaseReg to(idxReg * sizeof ElementType). First, we | 
|  | // must find the size of the pointed-to type (Not coincidentally, the next | 
|  | // type is the type of the elements in the array). | 
|  | const Type *ElTy = SqTy->getElementType(); | 
|  | unsigned elementSize = TD.getTypeSize(ElTy); | 
|  |  | 
|  | if (idx == Constant::getNullValue(idx->getType())) { | 
|  | // GEP with idx 0 is a no-op | 
|  | } else if (elementSize == 1) { | 
|  | // If the element size is 1, we don't have to multiply, just add | 
|  | unsigned idxReg = getReg(idx, MBB, IP); | 
|  | unsigned Reg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg); | 
|  | --IP;            // Insert the next instruction before this one. | 
|  | TargetReg = Reg; // Codegen the rest of the GEP into this | 
|  | } else { | 
|  | unsigned idxReg = getReg(idx, MBB, IP); | 
|  | unsigned OffsetReg = makeAnotherReg(Type::UIntTy); | 
|  |  | 
|  | // Make sure we can back the iterator up to point to the first | 
|  | // instruction emitted. | 
|  | MachineBasicBlock::iterator BeforeIt = IP; | 
|  | if (IP == MBB->begin()) | 
|  | BeforeIt = MBB->end(); | 
|  | else | 
|  | --BeforeIt; | 
|  | doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); | 
|  |  | 
|  | // Emit an ADD to add OffsetReg to the basePtr. | 
|  | unsigned Reg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg); | 
|  |  | 
|  | // Step to the first instruction of the multiply. | 
|  | if (BeforeIt == MBB->end()) | 
|  | IP = MBB->begin(); | 
|  | else | 
|  | IP = ++BeforeIt; | 
|  |  | 
|  | TargetReg = Reg; // Codegen the rest of the GEP into this | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitAllocaInst - If this is a fixed size alloca, allocate space from the | 
|  | /// frame manager, otherwise do it the hard way. | 
|  | /// | 
|  | void ISel::visitAllocaInst(AllocaInst &I) { | 
|  | // If this is a fixed size alloca in the entry block for the function, we | 
|  | // statically stack allocate the space, so we don't need to do anything here. | 
|  | // | 
|  | if (dyn_castFixedAlloca(&I)) return; | 
|  |  | 
|  | // Find the data size of the alloca inst's getAllocatedType. | 
|  | const Type *Ty = I.getAllocatedType(); | 
|  | unsigned TySize = TM.getTargetData().getTypeSize(Ty); | 
|  |  | 
|  | // Create a register to hold the temporary result of multiplying the type size | 
|  | // constant by the variable amount. | 
|  | unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); | 
|  | unsigned SrcReg1 = getReg(I.getArraySize()); | 
|  |  | 
|  | // TotalSizeReg = mul <numelements>, <TypeSize> | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); | 
|  |  | 
|  | // AddedSize = add <TotalSizeReg>, 15 | 
|  | unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); | 
|  |  | 
|  | // AlignedSize = and <AddedSize>, ~15 | 
|  | unsigned AlignedSize = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) | 
|  | .addImm(0).addImm(27); | 
|  |  | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize); | 
|  |  | 
|  | // Put a pointer to the space into the result register, by copying | 
|  | // the stack pointer. | 
|  | BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1); | 
|  |  | 
|  | // Inform the Frame Information that we have just allocated a variable-sized | 
|  | // object. | 
|  | F->getFrameInfo()->CreateVariableSizedObject(); | 
|  | } | 
|  |  | 
|  | /// visitMallocInst - Malloc instructions are code generated into direct calls | 
|  | /// to the library malloc. | 
|  | /// | 
|  | void ISel::visitMallocInst(MallocInst &I) { | 
|  | unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); | 
|  | unsigned Arg; | 
|  |  | 
|  | if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { | 
|  | Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); | 
|  | } else { | 
|  | Arg = makeAnotherReg(Type::UIntTy); | 
|  | unsigned Op0Reg = getReg(I.getOperand(0)); | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); | 
|  | } | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Arg, Type::UIntTy)); | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true); | 
|  | doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitFreeInst - Free instructions are code gen'd to call the free libc | 
|  | /// function. | 
|  | /// | 
|  | void ISel::visitFreeInst(FreeInst &I) { | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(I.getOperand(0))); | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true); | 
|  | doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false); | 
|  | } | 
|  |  | 
|  | /// createPPC32SimpleInstructionSelector - This pass converts an LLVM function | 
|  | /// into a machine code representation is a very simple peep-hole fashion.  The | 
|  | /// generated code sucks but the implementation is nice and simple. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) { | 
|  | return new ISel(TM); | 
|  | } |