|  | //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements a top-down list scheduler, using standard algorithms. | 
|  | // The basic approach uses a priority queue of available nodes to schedule. | 
|  | // One at a time, nodes are taken from the priority queue (thus in priority | 
|  | // order), checked for legality to schedule, and emitted if legal. | 
|  | // | 
|  | // Nodes may not be legal to schedule either due to structural hazards (e.g. | 
|  | // pipeline or resource constraints) or because an input to the instruction has | 
|  | // not completed execution. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AggressiveAntiDepBreaker.h" | 
|  | #include "AntiDepBreaker.h" | 
|  | #include "CriticalAntiDepBreaker.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/LatencyPriorityQueue.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "post-RA-sched" | 
|  |  | 
|  | STATISTIC(NumNoops, "Number of noops inserted"); | 
|  | STATISTIC(NumStalls, "Number of pipeline stalls"); | 
|  | STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); | 
|  |  | 
|  | // Post-RA scheduling is enabled with | 
|  | // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to | 
|  | // override the target. | 
|  | static cl::opt<bool> | 
|  | EnablePostRAScheduler("post-RA-scheduler", | 
|  | cl::desc("Enable scheduling after register allocation"), | 
|  | cl::init(false), cl::Hidden); | 
|  | static cl::opt<std::string> | 
|  | EnableAntiDepBreaking("break-anti-dependencies", | 
|  | cl::desc("Break post-RA scheduling anti-dependencies: " | 
|  | "\"critical\", \"all\", or \"none\""), | 
|  | cl::init("none"), cl::Hidden); | 
|  |  | 
|  | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod | 
|  | static cl::opt<int> | 
|  | DebugDiv("postra-sched-debugdiv", | 
|  | cl::desc("Debug control MBBs that are scheduled"), | 
|  | cl::init(0), cl::Hidden); | 
|  | static cl::opt<int> | 
|  | DebugMod("postra-sched-debugmod", | 
|  | cl::desc("Debug control MBBs that are scheduled"), | 
|  | cl::init(0), cl::Hidden); | 
|  |  | 
|  | AntiDepBreaker::~AntiDepBreaker() { } | 
|  |  | 
|  | namespace { | 
|  | class PostRAScheduler : public MachineFunctionPass { | 
|  | const TargetInstrInfo *TII; | 
|  | RegisterClassInfo RegClassInfo; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | PostRAScheduler() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &Fn) override; | 
|  |  | 
|  | private: | 
|  | bool enablePostRAScheduler( | 
|  | const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, | 
|  | TargetSubtargetInfo::AntiDepBreakMode &Mode, | 
|  | TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; | 
|  | }; | 
|  | char PostRAScheduler::ID = 0; | 
|  |  | 
|  | class SchedulePostRATDList : public ScheduleDAGInstrs { | 
|  | /// AvailableQueue - The priority queue to use for the available SUnits. | 
|  | /// | 
|  | LatencyPriorityQueue AvailableQueue; | 
|  |  | 
|  | /// PendingQueue - This contains all of the instructions whose operands have | 
|  | /// been issued, but their results are not ready yet (due to the latency of | 
|  | /// the operation).  Once the operands becomes available, the instruction is | 
|  | /// added to the AvailableQueue. | 
|  | std::vector<SUnit*> PendingQueue; | 
|  |  | 
|  | /// HazardRec - The hazard recognizer to use. | 
|  | ScheduleHazardRecognizer *HazardRec; | 
|  |  | 
|  | /// AntiDepBreak - Anti-dependence breaking object, or NULL if none | 
|  | AntiDepBreaker *AntiDepBreak; | 
|  |  | 
|  | /// AA - AliasAnalysis for making memory reference queries. | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | /// The schedule. Null SUnit*'s represent noop instructions. | 
|  | std::vector<SUnit*> Sequence; | 
|  |  | 
|  | /// Ordered list of DAG postprocessing steps. | 
|  | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; | 
|  |  | 
|  | /// The index in BB of RegionEnd. | 
|  | /// | 
|  | /// This is the instruction number from the top of the current block, not | 
|  | /// the SlotIndex. It is only used by the AntiDepBreaker. | 
|  | unsigned EndIndex; | 
|  |  | 
|  | public: | 
|  | SchedulePostRATDList( | 
|  | MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, | 
|  | const RegisterClassInfo &, | 
|  | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, | 
|  | SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); | 
|  |  | 
|  | ~SchedulePostRATDList() override; | 
|  |  | 
|  | /// startBlock - Initialize register live-range state for scheduling in | 
|  | /// this block. | 
|  | /// | 
|  | void startBlock(MachineBasicBlock *BB) override; | 
|  |  | 
|  | // Set the index of RegionEnd within the current BB. | 
|  | void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } | 
|  |  | 
|  | /// Initialize the scheduler state for the next scheduling region. | 
|  | void enterRegion(MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator begin, | 
|  | MachineBasicBlock::iterator end, | 
|  | unsigned regioninstrs) override; | 
|  |  | 
|  | /// Notify that the scheduler has finished scheduling the current region. | 
|  | void exitRegion() override; | 
|  |  | 
|  | /// Schedule - Schedule the instruction range using list scheduling. | 
|  | /// | 
|  | void schedule() override; | 
|  |  | 
|  | void EmitSchedule(); | 
|  |  | 
|  | /// Observe - Update liveness information to account for the current | 
|  | /// instruction, which will not be scheduled. | 
|  | /// | 
|  | void Observe(MachineInstr &MI, unsigned Count); | 
|  |  | 
|  | /// finishBlock - Clean up register live-range state. | 
|  | /// | 
|  | void finishBlock() override; | 
|  |  | 
|  | private: | 
|  | /// Apply each ScheduleDAGMutation step in order. | 
|  | void postprocessDAG(); | 
|  |  | 
|  | void ReleaseSucc(SUnit *SU, SDep *SuccEdge); | 
|  | void ReleaseSuccessors(SUnit *SU); | 
|  | void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); | 
|  | void ListScheduleTopDown(); | 
|  |  | 
|  | void dumpSchedule() const; | 
|  | void emitNoop(unsigned CurCycle); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char &llvm::PostRASchedulerID = PostRAScheduler::ID; | 
|  |  | 
|  | INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE, | 
|  | "Post RA top-down list latency scheduler", false, false) | 
|  |  | 
|  | SchedulePostRATDList::SchedulePostRATDList( | 
|  | MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, | 
|  | const RegisterClassInfo &RCI, | 
|  | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, | 
|  | SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) | 
|  | : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) { | 
|  |  | 
|  | const InstrItineraryData *InstrItins = | 
|  | MF.getSubtarget().getInstrItineraryData(); | 
|  | HazardRec = | 
|  | MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( | 
|  | InstrItins, this); | 
|  | MF.getSubtarget().getPostRAMutations(Mutations); | 
|  |  | 
|  | assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || | 
|  | MRI.tracksLiveness()) && | 
|  | "Live-ins must be accurate for anti-dependency breaking"); | 
|  | AntiDepBreak = | 
|  | ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? | 
|  | (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : | 
|  | ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? | 
|  | (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr)); | 
|  | } | 
|  |  | 
|  | SchedulePostRATDList::~SchedulePostRATDList() { | 
|  | delete HazardRec; | 
|  | delete AntiDepBreak; | 
|  | } | 
|  |  | 
|  | /// Initialize state associated with the next scheduling region. | 
|  | void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator begin, | 
|  | MachineBasicBlock::iterator end, | 
|  | unsigned regioninstrs) { | 
|  | ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); | 
|  | Sequence.clear(); | 
|  | } | 
|  |  | 
|  | /// Print the schedule before exiting the region. | 
|  | void SchedulePostRATDList::exitRegion() { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "*** Final schedule ***\n"; | 
|  | dumpSchedule(); | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  | ScheduleDAGInstrs::exitRegion(); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// dumpSchedule - dump the scheduled Sequence. | 
|  | LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const { | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | if (SUnit *SU = Sequence[i]) | 
|  | dumpNode(*SU); | 
|  | else | 
|  | dbgs() << "**** NOOP ****\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool PostRAScheduler::enablePostRAScheduler( | 
|  | const TargetSubtargetInfo &ST, | 
|  | CodeGenOpt::Level OptLevel, | 
|  | TargetSubtargetInfo::AntiDepBreakMode &Mode, | 
|  | TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { | 
|  | Mode = ST.getAntiDepBreakMode(); | 
|  | ST.getCriticalPathRCs(CriticalPathRCs); | 
|  |  | 
|  | // Check for explicit enable/disable of post-ra scheduling. | 
|  | if (EnablePostRAScheduler.getPosition() > 0) | 
|  | return EnablePostRAScheduler; | 
|  |  | 
|  | return ST.enablePostRAScheduler() && | 
|  | OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); | 
|  | } | 
|  |  | 
|  | bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { | 
|  | if (skipFunction(Fn.getFunction())) | 
|  | return false; | 
|  |  | 
|  | TII = Fn.getSubtarget().getInstrInfo(); | 
|  | MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); | 
|  | AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); | 
|  |  | 
|  | RegClassInfo.runOnMachineFunction(Fn); | 
|  |  | 
|  | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = | 
|  | TargetSubtargetInfo::ANTIDEP_NONE; | 
|  | SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; | 
|  |  | 
|  | // Check that post-RA scheduling is enabled for this target. | 
|  | // This may upgrade the AntiDepMode. | 
|  | if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), | 
|  | AntiDepMode, CriticalPathRCs)) | 
|  | return false; | 
|  |  | 
|  | // Check for antidep breaking override... | 
|  | if (EnableAntiDepBreaking.getPosition() > 0) { | 
|  | AntiDepMode = (EnableAntiDepBreaking == "all") | 
|  | ? TargetSubtargetInfo::ANTIDEP_ALL | 
|  | : ((EnableAntiDepBreaking == "critical") | 
|  | ? TargetSubtargetInfo::ANTIDEP_CRITICAL | 
|  | : TargetSubtargetInfo::ANTIDEP_NONE); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "PostRAScheduler\n"); | 
|  |  | 
|  | SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, | 
|  | CriticalPathRCs); | 
|  |  | 
|  | // Loop over all of the basic blocks | 
|  | for (auto &MBB : Fn) { | 
|  | #ifndef NDEBUG | 
|  | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod | 
|  | if (DebugDiv > 0) { | 
|  | static int bbcnt = 0; | 
|  | if (bbcnt++ % DebugDiv != DebugMod) | 
|  | continue; | 
|  | dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":" | 
|  | << printMBBReference(MBB) << " ***\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Initialize register live-range state for scheduling in this block. | 
|  | Scheduler.startBlock(&MBB); | 
|  |  | 
|  | // Schedule each sequence of instructions not interrupted by a label | 
|  | // or anything else that effectively needs to shut down scheduling. | 
|  | MachineBasicBlock::iterator Current = MBB.end(); | 
|  | unsigned Count = MBB.size(), CurrentCount = Count; | 
|  | for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { | 
|  | MachineInstr &MI = *std::prev(I); | 
|  | --Count; | 
|  | // Calls are not scheduling boundaries before register allocation, but | 
|  | // post-ra we don't gain anything by scheduling across calls since we | 
|  | // don't need to worry about register pressure. | 
|  | if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { | 
|  | Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); | 
|  | Scheduler.setEndIndex(CurrentCount); | 
|  | Scheduler.schedule(); | 
|  | Scheduler.exitRegion(); | 
|  | Scheduler.EmitSchedule(); | 
|  | Current = &MI; | 
|  | CurrentCount = Count; | 
|  | Scheduler.Observe(MI, CurrentCount); | 
|  | } | 
|  | I = MI; | 
|  | if (MI.isBundle()) | 
|  | Count -= MI.getBundleSize(); | 
|  | } | 
|  | assert(Count == 0 && "Instruction count mismatch!"); | 
|  | assert((MBB.begin() == Current || CurrentCount != 0) && | 
|  | "Instruction count mismatch!"); | 
|  | Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); | 
|  | Scheduler.setEndIndex(CurrentCount); | 
|  | Scheduler.schedule(); | 
|  | Scheduler.exitRegion(); | 
|  | Scheduler.EmitSchedule(); | 
|  |  | 
|  | // Clean up register live-range state. | 
|  | Scheduler.finishBlock(); | 
|  |  | 
|  | // Update register kills | 
|  | Scheduler.fixupKills(MBB); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// StartBlock - Initialize register live-range state for scheduling in | 
|  | /// this block. | 
|  | /// | 
|  | void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::startBlock(BB); | 
|  |  | 
|  | // Reset the hazard recognizer and anti-dep breaker. | 
|  | HazardRec->Reset(); | 
|  | if (AntiDepBreak) | 
|  | AntiDepBreak->StartBlock(BB); | 
|  | } | 
|  |  | 
|  | /// Schedule - Schedule the instruction range using list scheduling. | 
|  | /// | 
|  | void SchedulePostRATDList::schedule() { | 
|  | // Build the scheduling graph. | 
|  | buildSchedGraph(AA); | 
|  |  | 
|  | if (AntiDepBreak) { | 
|  | unsigned Broken = | 
|  | AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, | 
|  | EndIndex, DbgValues); | 
|  |  | 
|  | if (Broken != 0) { | 
|  | // We made changes. Update the dependency graph. | 
|  | // Theoretically we could update the graph in place: | 
|  | // When a live range is changed to use a different register, remove | 
|  | // the def's anti-dependence *and* output-dependence edges due to | 
|  | // that register, and add new anti-dependence and output-dependence | 
|  | // edges based on the next live range of the register. | 
|  | ScheduleDAG::clearDAG(); | 
|  | buildSchedGraph(AA); | 
|  |  | 
|  | NumFixedAnti += Broken; | 
|  | } | 
|  | } | 
|  |  | 
|  | postprocessDAG(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); | 
|  | LLVM_DEBUG(dump()); | 
|  |  | 
|  | AvailableQueue.initNodes(SUnits); | 
|  | ListScheduleTopDown(); | 
|  | AvailableQueue.releaseState(); | 
|  | } | 
|  |  | 
|  | /// Observe - Update liveness information to account for the current | 
|  | /// instruction, which will not be scheduled. | 
|  | /// | 
|  | void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { | 
|  | if (AntiDepBreak) | 
|  | AntiDepBreak->Observe(MI, Count, EndIndex); | 
|  | } | 
|  |  | 
|  | /// FinishBlock - Clean up register live-range state. | 
|  | /// | 
|  | void SchedulePostRATDList::finishBlock() { | 
|  | if (AntiDepBreak) | 
|  | AntiDepBreak->FinishBlock(); | 
|  |  | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::finishBlock(); | 
|  | } | 
|  |  | 
|  | /// Apply each ScheduleDAGMutation step in order. | 
|  | void SchedulePostRATDList::postprocessDAG() { | 
|  | for (auto &M : Mutations) | 
|  | M->apply(this); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Top-Down Scheduling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to | 
|  | /// the PendingQueue if the count reaches zero. | 
|  | void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { | 
|  | SUnit *SuccSU = SuccEdge->getSUnit(); | 
|  |  | 
|  | if (SuccEdge->isWeak()) { | 
|  | --SuccSU->WeakPredsLeft; | 
|  | return; | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | if (SuccSU->NumPredsLeft == 0) { | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | dumpNode(*SuccSU); | 
|  | dbgs() << " has been released too many times!\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | #endif | 
|  | --SuccSU->NumPredsLeft; | 
|  |  | 
|  | // Standard scheduler algorithms will recompute the depth of the successor | 
|  | // here as such: | 
|  | //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); | 
|  | // | 
|  | // However, we lazily compute node depth instead. Note that | 
|  | // ScheduleNodeTopDown has already updated the depth of this node which causes | 
|  | // all descendents to be marked dirty. Setting the successor depth explicitly | 
|  | // here would cause depth to be recomputed for all its ancestors. If the | 
|  | // successor is not yet ready (because of a transitively redundant edge) then | 
|  | // this causes depth computation to be quadratic in the size of the DAG. | 
|  |  | 
|  | // If all the node's predecessors are scheduled, this node is ready | 
|  | // to be scheduled. Ignore the special ExitSU node. | 
|  | if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) | 
|  | PendingQueue.push_back(SuccSU); | 
|  | } | 
|  |  | 
|  | /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. | 
|  | void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { | 
|  | for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | 
|  | I != E; ++I) { | 
|  | ReleaseSucc(SU, &*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending | 
|  | /// count of its successors. If a successor pending count is zero, add it to | 
|  | /// the Available queue. | 
|  | void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { | 
|  | LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); | 
|  | LLVM_DEBUG(dumpNode(*SU)); | 
|  |  | 
|  | Sequence.push_back(SU); | 
|  | assert(CurCycle >= SU->getDepth() && | 
|  | "Node scheduled above its depth!"); | 
|  | SU->setDepthToAtLeast(CurCycle); | 
|  |  | 
|  | ReleaseSuccessors(SU); | 
|  | SU->isScheduled = true; | 
|  | AvailableQueue.scheduledNode(SU); | 
|  | } | 
|  |  | 
|  | /// emitNoop - Add a noop to the current instruction sequence. | 
|  | void SchedulePostRATDList::emitNoop(unsigned CurCycle) { | 
|  | LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); | 
|  | HazardRec->EmitNoop(); | 
|  | Sequence.push_back(nullptr);   // NULL here means noop | 
|  | ++NumNoops; | 
|  | } | 
|  |  | 
|  | /// ListScheduleTopDown - The main loop of list scheduling for top-down | 
|  | /// schedulers. | 
|  | void SchedulePostRATDList::ListScheduleTopDown() { | 
|  | unsigned CurCycle = 0; | 
|  |  | 
|  | // We're scheduling top-down but we're visiting the regions in | 
|  | // bottom-up order, so we don't know the hazards at the start of a | 
|  | // region. So assume no hazards (this should usually be ok as most | 
|  | // blocks are a single region). | 
|  | HazardRec->Reset(); | 
|  |  | 
|  | // Release any successors of the special Entry node. | 
|  | ReleaseSuccessors(&EntrySU); | 
|  |  | 
|  | // Add all leaves to Available queue. | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | // It is available if it has no predecessors. | 
|  | if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) { | 
|  | AvailableQueue.push(&SUnits[i]); | 
|  | SUnits[i].isAvailable = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In any cycle where we can't schedule any instructions, we must | 
|  | // stall or emit a noop, depending on the target. | 
|  | bool CycleHasInsts = false; | 
|  |  | 
|  | // While Available queue is not empty, grab the node with the highest | 
|  | // priority. If it is not ready put it back.  Schedule the node. | 
|  | std::vector<SUnit*> NotReady; | 
|  | Sequence.reserve(SUnits.size()); | 
|  | while (!AvailableQueue.empty() || !PendingQueue.empty()) { | 
|  | // Check to see if any of the pending instructions are ready to issue.  If | 
|  | // so, add them to the available queue. | 
|  | unsigned MinDepth = ~0u; | 
|  | for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { | 
|  | if (PendingQueue[i]->getDepth() <= CurCycle) { | 
|  | AvailableQueue.push(PendingQueue[i]); | 
|  | PendingQueue[i]->isAvailable = true; | 
|  | PendingQueue[i] = PendingQueue.back(); | 
|  | PendingQueue.pop_back(); | 
|  | --i; --e; | 
|  | } else if (PendingQueue[i]->getDepth() < MinDepth) | 
|  | MinDepth = PendingQueue[i]->getDepth(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n*** Examining Available\n"; | 
|  | AvailableQueue.dump(this)); | 
|  |  | 
|  | SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; | 
|  | bool HasNoopHazards = false; | 
|  | while (!AvailableQueue.empty()) { | 
|  | SUnit *CurSUnit = AvailableQueue.pop(); | 
|  |  | 
|  | ScheduleHazardRecognizer::HazardType HT = | 
|  | HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); | 
|  | if (HT == ScheduleHazardRecognizer::NoHazard) { | 
|  | if (HazardRec->ShouldPreferAnother(CurSUnit)) { | 
|  | if (!NotPreferredSUnit) { | 
|  | // If this is the first non-preferred node for this cycle, then | 
|  | // record it and continue searching for a preferred node. If this | 
|  | // is not the first non-preferred node, then treat it as though | 
|  | // there had been a hazard. | 
|  | NotPreferredSUnit = CurSUnit; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | FoundSUnit = CurSUnit; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember if this is a noop hazard. | 
|  | HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; | 
|  |  | 
|  | NotReady.push_back(CurSUnit); | 
|  | } | 
|  |  | 
|  | // If we have a non-preferred node, push it back onto the available list. | 
|  | // If we did not find a preferred node, then schedule this first | 
|  | // non-preferred node. | 
|  | if (NotPreferredSUnit) { | 
|  | if (!FoundSUnit) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "*** Will schedule a non-preferred instruction...\n"); | 
|  | FoundSUnit = NotPreferredSUnit; | 
|  | } else { | 
|  | AvailableQueue.push(NotPreferredSUnit); | 
|  | } | 
|  |  | 
|  | NotPreferredSUnit = nullptr; | 
|  | } | 
|  |  | 
|  | // Add the nodes that aren't ready back onto the available list. | 
|  | if (!NotReady.empty()) { | 
|  | AvailableQueue.push_all(NotReady); | 
|  | NotReady.clear(); | 
|  | } | 
|  |  | 
|  | // If we found a node to schedule... | 
|  | if (FoundSUnit) { | 
|  | // If we need to emit noops prior to this instruction, then do so. | 
|  | unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); | 
|  | for (unsigned i = 0; i != NumPreNoops; ++i) | 
|  | emitNoop(CurCycle); | 
|  |  | 
|  | // ... schedule the node... | 
|  | ScheduleNodeTopDown(FoundSUnit, CurCycle); | 
|  | HazardRec->EmitInstruction(FoundSUnit); | 
|  | CycleHasInsts = true; | 
|  | if (HazardRec->atIssueLimit()) { | 
|  | LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle | 
|  | << '\n'); | 
|  | HazardRec->AdvanceCycle(); | 
|  | ++CurCycle; | 
|  | CycleHasInsts = false; | 
|  | } | 
|  | } else { | 
|  | if (CycleHasInsts) { | 
|  | LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); | 
|  | HazardRec->AdvanceCycle(); | 
|  | } else if (!HasNoopHazards) { | 
|  | // Otherwise, we have a pipeline stall, but no other problem, | 
|  | // just advance the current cycle and try again. | 
|  | LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); | 
|  | HazardRec->AdvanceCycle(); | 
|  | ++NumStalls; | 
|  | } else { | 
|  | // Otherwise, we have no instructions to issue and we have instructions | 
|  | // that will fault if we don't do this right.  This is the case for | 
|  | // processors without pipeline interlocks and other cases. | 
|  | emitNoop(CurCycle); | 
|  | } | 
|  |  | 
|  | ++CurCycle; | 
|  | CycleHasInsts = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); | 
|  | unsigned Noops = 0; | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; ++i) | 
|  | if (!Sequence[i]) | 
|  | ++Noops; | 
|  | assert(Sequence.size() - Noops == ScheduledNodes && | 
|  | "The number of nodes scheduled doesn't match the expected number!"); | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | // EmitSchedule - Emit the machine code in scheduled order. | 
|  | void SchedulePostRATDList::EmitSchedule() { | 
|  | RegionBegin = RegionEnd; | 
|  |  | 
|  | // If first instruction was a DBG_VALUE then put it back. | 
|  | if (FirstDbgValue) | 
|  | BB->splice(RegionEnd, BB, FirstDbgValue); | 
|  |  | 
|  | // Then re-insert them according to the given schedule. | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | if (SUnit *SU = Sequence[i]) | 
|  | BB->splice(RegionEnd, BB, SU->getInstr()); | 
|  | else | 
|  | // Null SUnit* is a noop. | 
|  | TII->insertNoop(*BB, RegionEnd); | 
|  |  | 
|  | // Update the Begin iterator, as the first instruction in the block | 
|  | // may have been scheduled later. | 
|  | if (i == 0) | 
|  | RegionBegin = std::prev(RegionEnd); | 
|  | } | 
|  |  | 
|  | // Reinsert any remaining debug_values. | 
|  | for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator | 
|  | DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { | 
|  | std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); | 
|  | MachineInstr *DbgValue = P.first; | 
|  | MachineBasicBlock::iterator OrigPrivMI = P.second; | 
|  | BB->splice(++OrigPrivMI, BB, DbgValue); | 
|  | } | 
|  | DbgValues.clear(); | 
|  | FirstDbgValue = nullptr; | 
|  | } |