|  | //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for statements. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/Ownership.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/AST/StmtObjC.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { | 
|  | if (FE.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); | 
|  | if (FE.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // C99 6.8.3p2: The expression in an expression statement is evaluated as a | 
|  | // void expression for its side effects.  Conversion to void allows any | 
|  | // operand, even incomplete types. | 
|  |  | 
|  | // Same thing in for stmt first clause (when expr) and third clause. | 
|  | return StmtResult(FE.getAs<Stmt>()); | 
|  | } | 
|  |  | 
|  |  | 
|  | StmtResult Sema::ActOnExprStmtError() { | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, | 
|  | bool HasLeadingEmptyMacro) { | 
|  | return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, | 
|  | SourceLocation EndLoc) { | 
|  | DeclGroupRef DG = dg.get(); | 
|  |  | 
|  | // If we have an invalid decl, just return an error. | 
|  | if (DG.isNull()) return StmtError(); | 
|  |  | 
|  | return new (Context) DeclStmt(DG, StartLoc, EndLoc); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { | 
|  | DeclGroupRef DG = dg.get(); | 
|  |  | 
|  | // If we don't have a declaration, or we have an invalid declaration, | 
|  | // just return. | 
|  | if (DG.isNull() || !DG.isSingleDecl()) | 
|  | return; | 
|  |  | 
|  | Decl *decl = DG.getSingleDecl(); | 
|  | if (!decl || decl->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Only variable declarations are permitted. | 
|  | VarDecl *var = dyn_cast<VarDecl>(decl); | 
|  | if (!var) { | 
|  | Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); | 
|  | decl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // foreach variables are never actually initialized in the way that | 
|  | // the parser came up with. | 
|  | var->setInit(nullptr); | 
|  |  | 
|  | // In ARC, we don't need to retain the iteration variable of a fast | 
|  | // enumeration loop.  Rather than actually trying to catch that | 
|  | // during declaration processing, we remove the consequences here. | 
|  | if (getLangOpts().ObjCAutoRefCount) { | 
|  | QualType type = var->getType(); | 
|  |  | 
|  | // Only do this if we inferred the lifetime.  Inferred lifetime | 
|  | // will show up as a local qualifier because explicit lifetime | 
|  | // should have shown up as an AttributedType instead. | 
|  | if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { | 
|  | // Add 'const' and mark the variable as pseudo-strong. | 
|  | var->setType(type.withConst()); | 
|  | var->setARCPseudoStrong(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnose unused comparisons, both builtin and overloaded operators. | 
|  | /// For '==' and '!=', suggest fixits for '=' or '|='. | 
|  | /// | 
|  | /// Adding a cast to void (or other expression wrappers) will prevent the | 
|  | /// warning from firing. | 
|  | static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { | 
|  | SourceLocation Loc; | 
|  | bool CanAssign; | 
|  | enum { Equality, Inequality, Relational, ThreeWay } Kind; | 
|  |  | 
|  | if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { | 
|  | if (!Op->isComparisonOp()) | 
|  | return false; | 
|  |  | 
|  | if (Op->getOpcode() == BO_EQ) | 
|  | Kind = Equality; | 
|  | else if (Op->getOpcode() == BO_NE) | 
|  | Kind = Inequality; | 
|  | else if (Op->getOpcode() == BO_Cmp) | 
|  | Kind = ThreeWay; | 
|  | else { | 
|  | assert(Op->isRelationalOp()); | 
|  | Kind = Relational; | 
|  | } | 
|  | Loc = Op->getOperatorLoc(); | 
|  | CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); | 
|  | } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { | 
|  | switch (Op->getOperator()) { | 
|  | case OO_EqualEqual: | 
|  | Kind = Equality; | 
|  | break; | 
|  | case OO_ExclaimEqual: | 
|  | Kind = Inequality; | 
|  | break; | 
|  | case OO_Less: | 
|  | case OO_Greater: | 
|  | case OO_GreaterEqual: | 
|  | case OO_LessEqual: | 
|  | Kind = Relational; | 
|  | break; | 
|  | case OO_Spaceship: | 
|  | Kind = ThreeWay; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Loc = Op->getOperatorLoc(); | 
|  | CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); | 
|  | } else { | 
|  | // Not a typo-prone comparison. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Suppress warnings when the operator, suspicious as it may be, comes from | 
|  | // a macro expansion. | 
|  | if (S.SourceMgr.isMacroBodyExpansion(Loc)) | 
|  | return false; | 
|  |  | 
|  | S.Diag(Loc, diag::warn_unused_comparison) | 
|  | << (unsigned)Kind << E->getSourceRange(); | 
|  |  | 
|  | // If the LHS is a plausible entity to assign to, provide a fixit hint to | 
|  | // correct common typos. | 
|  | if (CanAssign) { | 
|  | if (Kind == Inequality) | 
|  | S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) | 
|  | << FixItHint::CreateReplacement(Loc, "|="); | 
|  | else if (Kind == Equality) | 
|  | S.Diag(Loc, diag::note_equality_comparison_to_assign) | 
|  | << FixItHint::CreateReplacement(Loc, "="); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A, | 
|  | SourceLocation Loc, SourceRange R1, | 
|  | SourceRange R2, bool IsCtor) { | 
|  | if (!A) | 
|  | return false; | 
|  | StringRef Msg = A->getMessage(); | 
|  |  | 
|  | if (Msg.empty()) { | 
|  | if (IsCtor) | 
|  | return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2; | 
|  | return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2; | 
|  | } | 
|  |  | 
|  | if (IsCtor) | 
|  | return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1 | 
|  | << R2; | 
|  | return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnusedExprResult(const Stmt *S) { | 
|  | if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) | 
|  | return DiagnoseUnusedExprResult(Label->getSubStmt()); | 
|  |  | 
|  | const Expr *E = dyn_cast_or_null<Expr>(S); | 
|  | if (!E) | 
|  | return; | 
|  |  | 
|  | // If we are in an unevaluated expression context, then there can be no unused | 
|  | // results because the results aren't expected to be used in the first place. | 
|  | if (isUnevaluatedContext()) | 
|  | return; | 
|  |  | 
|  | SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); | 
|  | // In most cases, we don't want to warn if the expression is written in a | 
|  | // macro body, or if the macro comes from a system header. If the offending | 
|  | // expression is a call to a function with the warn_unused_result attribute, | 
|  | // we warn no matter the location. Because of the order in which the various | 
|  | // checks need to happen, we factor out the macro-related test here. | 
|  | bool ShouldSuppress = | 
|  | SourceMgr.isMacroBodyExpansion(ExprLoc) || | 
|  | SourceMgr.isInSystemMacro(ExprLoc); | 
|  |  | 
|  | const Expr *WarnExpr; | 
|  | SourceLocation Loc; | 
|  | SourceRange R1, R2; | 
|  | if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) | 
|  | return; | 
|  |  | 
|  | // If this is a GNU statement expression expanded from a macro, it is probably | 
|  | // unused because it is a function-like macro that can be used as either an | 
|  | // expression or statement.  Don't warn, because it is almost certainly a | 
|  | // false positive. | 
|  | if (isa<StmtExpr>(E) && Loc.isMacroID()) | 
|  | return; | 
|  |  | 
|  | // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. | 
|  | // That macro is frequently used to suppress "unused parameter" warnings, | 
|  | // but its implementation makes clang's -Wunused-value fire.  Prevent this. | 
|  | if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { | 
|  | SourceLocation SpellLoc = Loc; | 
|  | if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we have an unused result.  Depending on what the base expression is, | 
|  | // we might want to make a more specific diagnostic.  Check for one of these | 
|  | // cases now. | 
|  | unsigned DiagID = diag::warn_unused_expr; | 
|  | if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) | 
|  | E = Temps->getSubExpr(); | 
|  | if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = TempExpr->getSubExpr(); | 
|  |  | 
|  | if (DiagnoseUnusedComparison(*this, E)) | 
|  | return; | 
|  |  | 
|  | E = WarnExpr; | 
|  | if (const auto *Cast = dyn_cast<CastExpr>(E)) | 
|  | if (Cast->getCastKind() == CK_NoOp || | 
|  | Cast->getCastKind() == CK_ConstructorConversion) | 
|  | E = Cast->getSubExpr()->IgnoreImpCasts(); | 
|  |  | 
|  | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | 
|  | if (E->getType()->isVoidType()) | 
|  | return; | 
|  |  | 
|  | if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>( | 
|  | CE->getUnusedResultAttr(Context)), | 
|  | Loc, R1, R2, /*isCtor=*/false)) | 
|  | return; | 
|  |  | 
|  | // If the callee has attribute pure, const, or warn_unused_result, warn with | 
|  | // a more specific message to make it clear what is happening. If the call | 
|  | // is written in a macro body, only warn if it has the warn_unused_result | 
|  | // attribute. | 
|  | if (const Decl *FD = CE->getCalleeDecl()) { | 
|  | if (ShouldSuppress) | 
|  | return; | 
|  | if (FD->hasAttr<PureAttr>()) { | 
|  | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; | 
|  | return; | 
|  | } | 
|  | if (FD->hasAttr<ConstAttr>()) { | 
|  | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { | 
|  | if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { | 
|  | const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); | 
|  | A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>(); | 
|  | if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true)) | 
|  | return; | 
|  | } | 
|  | } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { | 
|  | if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { | 
|  |  | 
|  | if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, | 
|  | R2, /*isCtor=*/false)) | 
|  | return; | 
|  | } | 
|  | } else if (ShouldSuppress) | 
|  | return; | 
|  |  | 
|  | E = WarnExpr; | 
|  | if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { | 
|  | if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { | 
|  | Diag(Loc, diag::err_arc_unused_init_message) << R1; | 
|  | return; | 
|  | } | 
|  | const ObjCMethodDecl *MD = ME->getMethodDecl(); | 
|  | if (MD) { | 
|  | if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1, | 
|  | R2, /*isCtor=*/false)) | 
|  | return; | 
|  | } | 
|  | } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { | 
|  | const Expr *Source = POE->getSyntacticForm(); | 
|  | if (isa<ObjCSubscriptRefExpr>(Source)) | 
|  | DiagID = diag::warn_unused_container_subscript_expr; | 
|  | else | 
|  | DiagID = diag::warn_unused_property_expr; | 
|  | } else if (const CXXFunctionalCastExpr *FC | 
|  | = dyn_cast<CXXFunctionalCastExpr>(E)) { | 
|  | const Expr *E = FC->getSubExpr(); | 
|  | if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = TE->getSubExpr(); | 
|  | if (isa<CXXTemporaryObjectExpr>(E)) | 
|  | return; | 
|  | if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) | 
|  | if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) | 
|  | if (!RD->getAttr<WarnUnusedAttr>()) | 
|  | return; | 
|  | } | 
|  | // Diagnose "(void*) blah" as a typo for "(void) blah". | 
|  | else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { | 
|  | TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); | 
|  | QualType T = TI->getType(); | 
|  |  | 
|  | // We really do want to use the non-canonical type here. | 
|  | if (T == Context.VoidPtrTy) { | 
|  | PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); | 
|  |  | 
|  | Diag(Loc, diag::warn_unused_voidptr) | 
|  | << FixItHint::CreateRemoval(TL.getStarLoc()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E->isGLValue() && E->getType().isVolatileQualified()) { | 
|  | Diag(Loc, diag::warn_unused_volatile) << R1 << R2; | 
|  | return; | 
|  | } | 
|  |  | 
|  | DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { | 
|  | PushCompoundScope(IsStmtExpr); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishOfCompoundStmt() { | 
|  | PopCompoundScope(); | 
|  | } | 
|  |  | 
|  | sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { | 
|  | return getCurFunction()->CompoundScopes.back(); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, | 
|  | ArrayRef<Stmt *> Elts, bool isStmtExpr) { | 
|  | const unsigned NumElts = Elts.size(); | 
|  |  | 
|  | // If we're in C89 mode, check that we don't have any decls after stmts.  If | 
|  | // so, emit an extension diagnostic. | 
|  | if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { | 
|  | // Note that __extension__ can be around a decl. | 
|  | unsigned i = 0; | 
|  | // Skip over all declarations. | 
|  | for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) | 
|  | /*empty*/; | 
|  |  | 
|  | // We found the end of the list or a statement.  Scan for another declstmt. | 
|  | for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) | 
|  | /*empty*/; | 
|  |  | 
|  | if (i != NumElts) { | 
|  | Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); | 
|  | Diag(D->getLocation(), diag::ext_mixed_decls_code); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for suspicious empty body (null statement) in `for' and `while' | 
|  | // statements.  Don't do anything for template instantiations, this just adds | 
|  | // noise. | 
|  | if (NumElts != 0 && !CurrentInstantiationScope && | 
|  | getCurCompoundScope().HasEmptyLoopBodies) { | 
|  | for (unsigned i = 0; i != NumElts - 1; ++i) | 
|  | DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); | 
|  | } | 
|  |  | 
|  | return CompoundStmt::Create(Context, Elts, L, R); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { | 
|  | if (!Val.get()) | 
|  | return Val; | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Val.get())) | 
|  | return ExprError(); | 
|  |  | 
|  | // If we're not inside a switch, let the 'case' statement handling diagnose | 
|  | // this. Just clean up after the expression as best we can. | 
|  | if (getCurFunction()->SwitchStack.empty()) | 
|  | return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, | 
|  | getLangOpts().CPlusPlus11); | 
|  |  | 
|  | Expr *CondExpr = | 
|  | getCurFunction()->SwitchStack.back().getPointer()->getCond(); | 
|  | if (!CondExpr) | 
|  | return ExprError(); | 
|  | QualType CondType = CondExpr->getType(); | 
|  |  | 
|  | auto CheckAndFinish = [&](Expr *E) { | 
|  | if (CondType->isDependentType() || E->isTypeDependent()) | 
|  | return ExprResult(E); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // C++11 [stmt.switch]p2: the constant-expression shall be a converted | 
|  | // constant expression of the promoted type of the switch condition. | 
|  | llvm::APSInt TempVal; | 
|  | return CheckConvertedConstantExpression(E, CondType, TempVal, | 
|  | CCEK_CaseValue); | 
|  | } | 
|  |  | 
|  | ExprResult ER = E; | 
|  | if (!E->isValueDependent()) | 
|  | ER = VerifyIntegerConstantExpression(E); | 
|  | if (!ER.isInvalid()) | 
|  | ER = DefaultLvalueConversion(ER.get()); | 
|  | if (!ER.isInvalid()) | 
|  | ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); | 
|  | if (!ER.isInvalid()) | 
|  | ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); | 
|  | return ER; | 
|  | }; | 
|  |  | 
|  | ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish); | 
|  | if (Converted.get() == Val.get()) | 
|  | Converted = CheckAndFinish(Val.get()); | 
|  | return Converted; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, | 
|  | SourceLocation DotDotDotLoc, ExprResult RHSVal, | 
|  | SourceLocation ColonLoc) { | 
|  | assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); | 
|  | assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() | 
|  | : RHSVal.isInvalid() || RHSVal.get()) && | 
|  | "missing RHS value"); | 
|  |  | 
|  | if (getCurFunction()->SwitchStack.empty()) { | 
|  | Diag(CaseLoc, diag::err_case_not_in_switch); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | if (LHSVal.isInvalid() || RHSVal.isInvalid()) { | 
|  | getCurFunction()->SwitchStack.back().setInt(true); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), | 
|  | CaseLoc, DotDotDotLoc, ColonLoc); | 
|  | getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); | 
|  | return CS; | 
|  | } | 
|  |  | 
|  | /// ActOnCaseStmtBody - This installs a statement as the body of a case. | 
|  | void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { | 
|  | cast<CaseStmt>(S)->setSubStmt(SubStmt); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, | 
|  | Stmt *SubStmt, Scope *CurScope) { | 
|  | if (getCurFunction()->SwitchStack.empty()) { | 
|  | Diag(DefaultLoc, diag::err_default_not_in_switch); | 
|  | return SubStmt; | 
|  | } | 
|  |  | 
|  | DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); | 
|  | getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); | 
|  | return DS; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, | 
|  | SourceLocation ColonLoc, Stmt *SubStmt) { | 
|  | // If the label was multiply defined, reject it now. | 
|  | if (TheDecl->getStmt()) { | 
|  | Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); | 
|  | Diag(TheDecl->getLocation(), diag::note_previous_definition); | 
|  | return SubStmt; | 
|  | } | 
|  |  | 
|  | // Otherwise, things are good.  Fill in the declaration and return it. | 
|  | LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); | 
|  | TheDecl->setStmt(LS); | 
|  | if (!TheDecl->isGnuLocal()) { | 
|  | TheDecl->setLocStart(IdentLoc); | 
|  | if (!TheDecl->isMSAsmLabel()) { | 
|  | // Don't update the location of MS ASM labels.  These will result in | 
|  | // a diagnostic, and changing the location here will mess that up. | 
|  | TheDecl->setLocation(IdentLoc); | 
|  | } | 
|  | } | 
|  | return LS; | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc, | 
|  | ArrayRef<const Attr*> Attrs, | 
|  | Stmt *SubStmt) { | 
|  | // Fill in the declaration and return it. | 
|  | AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt); | 
|  | return LS; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { | 
|  | typedef EvaluatedExprVisitor<CommaVisitor> Inherited; | 
|  | Sema &SemaRef; | 
|  | public: | 
|  | CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} | 
|  | void VisitBinaryOperator(BinaryOperator *E) { | 
|  | if (E->getOpcode() == BO_Comma) | 
|  | SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); | 
|  | EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, | 
|  | ConditionResult Cond, | 
|  | Stmt *thenStmt, SourceLocation ElseLoc, | 
|  | Stmt *elseStmt) { | 
|  | if (Cond.isInvalid()) | 
|  | Cond = ConditionResult( | 
|  | *this, nullptr, | 
|  | MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(), | 
|  | Context.BoolTy, VK_RValue), | 
|  | IfLoc), | 
|  | false); | 
|  |  | 
|  | Expr *CondExpr = Cond.get().second; | 
|  | // Only call the CommaVisitor when not C89 due to differences in scope flags. | 
|  | if ((getLangOpts().C99 || getLangOpts().CPlusPlus) && | 
|  | !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) | 
|  | CommaVisitor(*this).Visit(CondExpr); | 
|  |  | 
|  | if (!elseStmt) | 
|  | DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt, | 
|  | diag::warn_empty_if_body); | 
|  |  | 
|  | return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc, | 
|  | elseStmt); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, | 
|  | Stmt *InitStmt, ConditionResult Cond, | 
|  | Stmt *thenStmt, SourceLocation ElseLoc, | 
|  | Stmt *elseStmt) { | 
|  | if (Cond.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first, | 
|  | Cond.get().second, thenStmt, ElseLoc, elseStmt); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CaseCompareFunctor { | 
|  | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, | 
|  | const llvm::APSInt &RHS) { | 
|  | return LHS.first < RHS; | 
|  | } | 
|  | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, | 
|  | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { | 
|  | return LHS.first < RHS.first; | 
|  | } | 
|  | bool operator()(const llvm::APSInt &LHS, | 
|  | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { | 
|  | return LHS < RHS.first; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// CmpCaseVals - Comparison predicate for sorting case values. | 
|  | /// | 
|  | static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, | 
|  | const std::pair<llvm::APSInt, CaseStmt*>& rhs) { | 
|  | if (lhs.first < rhs.first) | 
|  | return true; | 
|  |  | 
|  | if (lhs.first == rhs.first && | 
|  | lhs.second->getCaseLoc().getRawEncoding() | 
|  | < rhs.second->getCaseLoc().getRawEncoding()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CmpEnumVals - Comparison predicate for sorting enumeration values. | 
|  | /// | 
|  | static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, | 
|  | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) | 
|  | { | 
|  | return lhs.first < rhs.first; | 
|  | } | 
|  |  | 
|  | /// EqEnumVals - Comparison preficate for uniqing enumeration values. | 
|  | /// | 
|  | static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, | 
|  | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) | 
|  | { | 
|  | return lhs.first == rhs.first; | 
|  | } | 
|  |  | 
|  | /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of | 
|  | /// potentially integral-promoted expression @p expr. | 
|  | static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { | 
|  | if (const auto *FE = dyn_cast<FullExpr>(E)) | 
|  | E = FE->getSubExpr(); | 
|  | while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ImpCast->getCastKind() != CK_IntegralCast) break; | 
|  | E = ImpCast->getSubExpr(); | 
|  | } | 
|  | return E->getType(); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { | 
|  | class SwitchConvertDiagnoser : public ICEConvertDiagnoser { | 
|  | Expr *Cond; | 
|  |  | 
|  | public: | 
|  | SwitchConvertDiagnoser(Expr *Cond) | 
|  | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), | 
|  | Cond(Cond) {} | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseIncomplete( | 
|  | Sema &S, SourceLocation Loc, QualType T) override { | 
|  | return S.Diag(Loc, diag::err_switch_incomplete_class_type) | 
|  | << T << Cond->getSourceRange(); | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseExplicitConv( | 
|  | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | 
|  | return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteExplicitConv( | 
|  | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_switch_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, | 
|  | QualType T) override { | 
|  | return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder noteAmbiguous( | 
|  | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | 
|  | return S.Diag(Conv->getLocation(), diag::note_switch_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  |  | 
|  | SemaDiagnosticBuilder diagnoseConversion( | 
|  | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | 
|  | llvm_unreachable("conversion functions are permitted"); | 
|  | } | 
|  | } SwitchDiagnoser(Cond); | 
|  |  | 
|  | ExprResult CondResult = | 
|  | PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); | 
|  | if (CondResult.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // FIXME: PerformContextualImplicitConversion doesn't always tell us if it | 
|  | // failed and produced a diagnostic. | 
|  | Cond = CondResult.get(); | 
|  | if (!Cond->isTypeDependent() && | 
|  | !Cond->getType()->isIntegralOrEnumerationType()) | 
|  | return ExprError(); | 
|  |  | 
|  | // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. | 
|  | return UsualUnaryConversions(Cond); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, | 
|  | Stmt *InitStmt, ConditionResult Cond) { | 
|  | Expr *CondExpr = Cond.get().second; | 
|  | assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); | 
|  |  | 
|  | if (CondExpr && !CondExpr->isTypeDependent()) { | 
|  | // We have already converted the expression to an integral or enumeration | 
|  | // type, when we parsed the switch condition. If we don't have an | 
|  | // appropriate type now, enter the switch scope but remember that it's | 
|  | // invalid. | 
|  | assert(CondExpr->getType()->isIntegralOrEnumerationType() && | 
|  | "invalid condition type"); | 
|  | if (CondExpr->isKnownToHaveBooleanValue()) { | 
|  | // switch(bool_expr) {...} is often a programmer error, e.g. | 
|  | //   switch(n && mask) { ... }  // Doh - should be "n & mask". | 
|  | // One can always use an if statement instead of switch(bool_expr). | 
|  | Diag(SwitchLoc, diag::warn_bool_switch_condition) | 
|  | << CondExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | setFunctionHasBranchIntoScope(); | 
|  |  | 
|  | auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr); | 
|  | getCurFunction()->SwitchStack.push_back( | 
|  | FunctionScopeInfo::SwitchInfo(SS, false)); | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { | 
|  | Val = Val.extOrTrunc(BitWidth); | 
|  | Val.setIsSigned(IsSigned); | 
|  | } | 
|  |  | 
|  | /// Check the specified case value is in range for the given unpromoted switch | 
|  | /// type. | 
|  | static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, | 
|  | unsigned UnpromotedWidth, bool UnpromotedSign) { | 
|  | // In C++11 onwards, this is checked by the language rules. | 
|  | if (S.getLangOpts().CPlusPlus11) | 
|  | return; | 
|  |  | 
|  | // If the case value was signed and negative and the switch expression is | 
|  | // unsigned, don't bother to warn: this is implementation-defined behavior. | 
|  | // FIXME: Introduce a second, default-ignored warning for this case? | 
|  | if (UnpromotedWidth < Val.getBitWidth()) { | 
|  | llvm::APSInt ConvVal(Val); | 
|  | AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); | 
|  | AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); | 
|  | // FIXME: Use different diagnostics for overflow  in conversion to promoted | 
|  | // type versus "switch expression cannot have this value". Use proper | 
|  | // IntRange checking rather than just looking at the unpromoted type here. | 
|  | if (ConvVal != Val) | 
|  | S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10) | 
|  | << ConvVal.toString(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; | 
|  |  | 
|  | /// Returns true if we should emit a diagnostic about this case expression not | 
|  | /// being a part of the enum used in the switch controlling expression. | 
|  | static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, | 
|  | const EnumDecl *ED, | 
|  | const Expr *CaseExpr, | 
|  | EnumValsTy::iterator &EI, | 
|  | EnumValsTy::iterator &EIEnd, | 
|  | const llvm::APSInt &Val) { | 
|  | if (!ED->isClosed()) | 
|  | return false; | 
|  |  | 
|  | if (const DeclRefExpr *DRE = | 
|  | dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { | 
|  | QualType VarType = VD->getType(); | 
|  | QualType EnumType = S.Context.getTypeDeclType(ED); | 
|  | if (VD->hasGlobalStorage() && VarType.isConstQualified() && | 
|  | S.Context.hasSameUnqualifiedType(EnumType, VarType)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ED->hasAttr<FlagEnumAttr>()) | 
|  | return !S.IsValueInFlagEnum(ED, Val, false); | 
|  |  | 
|  | while (EI != EIEnd && EI->first < Val) | 
|  | EI++; | 
|  |  | 
|  | if (EI != EIEnd && EI->first == Val) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, | 
|  | const Expr *Case) { | 
|  | QualType CondType = Cond->getType(); | 
|  | QualType CaseType = Case->getType(); | 
|  |  | 
|  | const EnumType *CondEnumType = CondType->getAs<EnumType>(); | 
|  | const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); | 
|  | if (!CondEnumType || !CaseEnumType) | 
|  | return; | 
|  |  | 
|  | // Ignore anonymous enums. | 
|  | if (!CondEnumType->getDecl()->getIdentifier() && | 
|  | !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) | 
|  | return; | 
|  | if (!CaseEnumType->getDecl()->getIdentifier() && | 
|  | !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) | 
|  | return; | 
|  |  | 
|  | if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) | 
|  | return; | 
|  |  | 
|  | S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) | 
|  | << CondType << CaseType << Cond->getSourceRange() | 
|  | << Case->getSourceRange(); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, | 
|  | Stmt *BodyStmt) { | 
|  | SwitchStmt *SS = cast<SwitchStmt>(Switch); | 
|  | bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); | 
|  | assert(SS == getCurFunction()->SwitchStack.back().getPointer() && | 
|  | "switch stack missing push/pop!"); | 
|  |  | 
|  | getCurFunction()->SwitchStack.pop_back(); | 
|  |  | 
|  | if (!BodyStmt) return StmtError(); | 
|  | SS->setBody(BodyStmt, SwitchLoc); | 
|  |  | 
|  | Expr *CondExpr = SS->getCond(); | 
|  | if (!CondExpr) return StmtError(); | 
|  |  | 
|  | QualType CondType = CondExpr->getType(); | 
|  |  | 
|  | // C++ 6.4.2.p2: | 
|  | // Integral promotions are performed (on the switch condition). | 
|  | // | 
|  | // A case value unrepresentable by the original switch condition | 
|  | // type (before the promotion) doesn't make sense, even when it can | 
|  | // be represented by the promoted type.  Therefore we need to find | 
|  | // the pre-promotion type of the switch condition. | 
|  | const Expr *CondExprBeforePromotion = CondExpr; | 
|  | QualType CondTypeBeforePromotion = | 
|  | GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); | 
|  |  | 
|  | // Get the bitwidth of the switched-on value after promotions. We must | 
|  | // convert the integer case values to this width before comparison. | 
|  | bool HasDependentValue | 
|  | = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); | 
|  | unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); | 
|  | bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | // Get the width and signedness that the condition might actually have, for | 
|  | // warning purposes. | 
|  | // FIXME: Grab an IntRange for the condition rather than using the unpromoted | 
|  | // type. | 
|  | unsigned CondWidthBeforePromotion | 
|  | = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); | 
|  | bool CondIsSignedBeforePromotion | 
|  | = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | // Accumulate all of the case values in a vector so that we can sort them | 
|  | // and detect duplicates.  This vector contains the APInt for the case after | 
|  | // it has been converted to the condition type. | 
|  | typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; | 
|  | CaseValsTy CaseVals; | 
|  |  | 
|  | // Keep track of any GNU case ranges we see.  The APSInt is the low value. | 
|  | typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; | 
|  | CaseRangesTy CaseRanges; | 
|  |  | 
|  | DefaultStmt *TheDefaultStmt = nullptr; | 
|  |  | 
|  | bool CaseListIsErroneous = false; | 
|  |  | 
|  | for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; | 
|  | SC = SC->getNextSwitchCase()) { | 
|  |  | 
|  | if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { | 
|  | if (TheDefaultStmt) { | 
|  | Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); | 
|  | Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); | 
|  |  | 
|  | // FIXME: Remove the default statement from the switch block so that | 
|  | // we'll return a valid AST.  This requires recursing down the AST and | 
|  | // finding it, not something we are set up to do right now.  For now, | 
|  | // just lop the entire switch stmt out of the AST. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | TheDefaultStmt = DS; | 
|  |  | 
|  | } else { | 
|  | CaseStmt *CS = cast<CaseStmt>(SC); | 
|  |  | 
|  | Expr *Lo = CS->getLHS(); | 
|  |  | 
|  | if (Lo->isValueDependent()) { | 
|  | HasDependentValue = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We already verified that the expression has a constant value; | 
|  | // get that value (prior to conversions). | 
|  | const Expr *LoBeforePromotion = Lo; | 
|  | GetTypeBeforeIntegralPromotion(LoBeforePromotion); | 
|  | llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); | 
|  |  | 
|  | // Check the unconverted value is within the range of possible values of | 
|  | // the switch expression. | 
|  | checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, | 
|  | CondIsSignedBeforePromotion); | 
|  |  | 
|  | // FIXME: This duplicates the check performed for warn_not_in_enum below. | 
|  | checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, | 
|  | LoBeforePromotion); | 
|  |  | 
|  | // Convert the value to the same width/sign as the condition. | 
|  | AdjustAPSInt(LoVal, CondWidth, CondIsSigned); | 
|  |  | 
|  | // If this is a case range, remember it in CaseRanges, otherwise CaseVals. | 
|  | if (CS->getRHS()) { | 
|  | if (CS->getRHS()->isValueDependent()) { | 
|  | HasDependentValue = true; | 
|  | break; | 
|  | } | 
|  | CaseRanges.push_back(std::make_pair(LoVal, CS)); | 
|  | } else | 
|  | CaseVals.push_back(std::make_pair(LoVal, CS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!HasDependentValue) { | 
|  | // If we don't have a default statement, check whether the | 
|  | // condition is constant. | 
|  | llvm::APSInt ConstantCondValue; | 
|  | bool HasConstantCond = false; | 
|  | if (!TheDefaultStmt) { | 
|  | Expr::EvalResult Result; | 
|  | HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, | 
|  | Expr::SE_AllowSideEffects); | 
|  | if (Result.Val.isInt()) | 
|  | ConstantCondValue = Result.Val.getInt(); | 
|  | assert(!HasConstantCond || | 
|  | (ConstantCondValue.getBitWidth() == CondWidth && | 
|  | ConstantCondValue.isSigned() == CondIsSigned)); | 
|  | } | 
|  | bool ShouldCheckConstantCond = HasConstantCond; | 
|  |  | 
|  | // Sort all the scalar case values so we can easily detect duplicates. | 
|  | llvm::stable_sort(CaseVals, CmpCaseVals); | 
|  |  | 
|  | if (!CaseVals.empty()) { | 
|  | for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { | 
|  | if (ShouldCheckConstantCond && | 
|  | CaseVals[i].first == ConstantCondValue) | 
|  | ShouldCheckConstantCond = false; | 
|  |  | 
|  | if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { | 
|  | // If we have a duplicate, report it. | 
|  | // First, determine if either case value has a name | 
|  | StringRef PrevString, CurrString; | 
|  | Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); | 
|  | Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); | 
|  | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { | 
|  | PrevString = DeclRef->getDecl()->getName(); | 
|  | } | 
|  | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { | 
|  | CurrString = DeclRef->getDecl()->getName(); | 
|  | } | 
|  | SmallString<16> CaseValStr; | 
|  | CaseVals[i-1].first.toString(CaseValStr); | 
|  |  | 
|  | if (PrevString == CurrString) | 
|  | Diag(CaseVals[i].second->getLHS()->getBeginLoc(), | 
|  | diag::err_duplicate_case) | 
|  | << (PrevString.empty() ? StringRef(CaseValStr) : PrevString); | 
|  | else | 
|  | Diag(CaseVals[i].second->getLHS()->getBeginLoc(), | 
|  | diag::err_duplicate_case_differing_expr) | 
|  | << (PrevString.empty() ? StringRef(CaseValStr) : PrevString) | 
|  | << (CurrString.empty() ? StringRef(CaseValStr) : CurrString) | 
|  | << CaseValStr; | 
|  |  | 
|  | Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), | 
|  | diag::note_duplicate_case_prev); | 
|  | // FIXME: We really want to remove the bogus case stmt from the | 
|  | // substmt, but we have no way to do this right now. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect duplicate case ranges, which usually don't exist at all in | 
|  | // the first place. | 
|  | if (!CaseRanges.empty()) { | 
|  | // Sort all the case ranges by their low value so we can easily detect | 
|  | // overlaps between ranges. | 
|  | llvm::stable_sort(CaseRanges); | 
|  |  | 
|  | // Scan the ranges, computing the high values and removing empty ranges. | 
|  | std::vector<llvm::APSInt> HiVals; | 
|  | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { | 
|  | llvm::APSInt &LoVal = CaseRanges[i].first; | 
|  | CaseStmt *CR = CaseRanges[i].second; | 
|  | Expr *Hi = CR->getRHS(); | 
|  |  | 
|  | const Expr *HiBeforePromotion = Hi; | 
|  | GetTypeBeforeIntegralPromotion(HiBeforePromotion); | 
|  | llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); | 
|  |  | 
|  | // Check the unconverted value is within the range of possible values of | 
|  | // the switch expression. | 
|  | checkCaseValue(*this, Hi->getBeginLoc(), HiVal, | 
|  | CondWidthBeforePromotion, CondIsSignedBeforePromotion); | 
|  |  | 
|  | // Convert the value to the same width/sign as the condition. | 
|  | AdjustAPSInt(HiVal, CondWidth, CondIsSigned); | 
|  |  | 
|  | // If the low value is bigger than the high value, the case is empty. | 
|  | if (LoVal > HiVal) { | 
|  | Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) | 
|  | << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); | 
|  | CaseRanges.erase(CaseRanges.begin()+i); | 
|  | --i; | 
|  | --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ShouldCheckConstantCond && | 
|  | LoVal <= ConstantCondValue && | 
|  | ConstantCondValue <= HiVal) | 
|  | ShouldCheckConstantCond = false; | 
|  |  | 
|  | HiVals.push_back(HiVal); | 
|  | } | 
|  |  | 
|  | // Rescan the ranges, looking for overlap with singleton values and other | 
|  | // ranges.  Since the range list is sorted, we only need to compare case | 
|  | // ranges with their neighbors. | 
|  | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { | 
|  | llvm::APSInt &CRLo = CaseRanges[i].first; | 
|  | llvm::APSInt &CRHi = HiVals[i]; | 
|  | CaseStmt *CR = CaseRanges[i].second; | 
|  |  | 
|  | // Check to see whether the case range overlaps with any | 
|  | // singleton cases. | 
|  | CaseStmt *OverlapStmt = nullptr; | 
|  | llvm::APSInt OverlapVal(32); | 
|  |  | 
|  | // Find the smallest value >= the lower bound.  If I is in the | 
|  | // case range, then we have overlap. | 
|  | CaseValsTy::iterator I = | 
|  | llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); | 
|  | if (I != CaseVals.end() && I->first < CRHi) { | 
|  | OverlapVal  = I->first;   // Found overlap with scalar. | 
|  | OverlapStmt = I->second; | 
|  | } | 
|  |  | 
|  | // Find the smallest value bigger than the upper bound. | 
|  | I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); | 
|  | if (I != CaseVals.begin() && (I-1)->first >= CRLo) { | 
|  | OverlapVal  = (I-1)->first;      // Found overlap with scalar. | 
|  | OverlapStmt = (I-1)->second; | 
|  | } | 
|  |  | 
|  | // Check to see if this case stmt overlaps with the subsequent | 
|  | // case range. | 
|  | if (i && CRLo <= HiVals[i-1]) { | 
|  | OverlapVal  = HiVals[i-1];       // Found overlap with range. | 
|  | OverlapStmt = CaseRanges[i-1].second; | 
|  | } | 
|  |  | 
|  | if (OverlapStmt) { | 
|  | // If we have a duplicate, report it. | 
|  | Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) | 
|  | << OverlapVal.toString(10); | 
|  | Diag(OverlapStmt->getLHS()->getBeginLoc(), | 
|  | diag::note_duplicate_case_prev); | 
|  | // FIXME: We really want to remove the bogus case stmt from the | 
|  | // substmt, but we have no way to do this right now. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Complain if we have a constant condition and we didn't find a match. | 
|  | if (!CaseListIsErroneous && !CaseListIsIncomplete && | 
|  | ShouldCheckConstantCond) { | 
|  | // TODO: it would be nice if we printed enums as enums, chars as | 
|  | // chars, etc. | 
|  | Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) | 
|  | << ConstantCondValue.toString(10) | 
|  | << CondExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Check to see if switch is over an Enum and handles all of its | 
|  | // values.  We only issue a warning if there is not 'default:', but | 
|  | // we still do the analysis to preserve this information in the AST | 
|  | // (which can be used by flow-based analyes). | 
|  | // | 
|  | const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); | 
|  |  | 
|  | // If switch has default case, then ignore it. | 
|  | if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && | 
|  | ET && ET->getDecl()->isCompleteDefinition()) { | 
|  | const EnumDecl *ED = ET->getDecl(); | 
|  | EnumValsTy EnumVals; | 
|  |  | 
|  | // Gather all enum values, set their type and sort them, | 
|  | // allowing easier comparison with CaseVals. | 
|  | for (auto *EDI : ED->enumerators()) { | 
|  | llvm::APSInt Val = EDI->getInitVal(); | 
|  | AdjustAPSInt(Val, CondWidth, CondIsSigned); | 
|  | EnumVals.push_back(std::make_pair(Val, EDI)); | 
|  | } | 
|  | llvm::stable_sort(EnumVals, CmpEnumVals); | 
|  | auto EI = EnumVals.begin(), EIEnd = | 
|  | std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); | 
|  |  | 
|  | // See which case values aren't in enum. | 
|  | for (CaseValsTy::const_iterator CI = CaseVals.begin(); | 
|  | CI != CaseVals.end(); CI++) { | 
|  | Expr *CaseExpr = CI->second->getLHS(); | 
|  | if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, | 
|  | CI->first)) | 
|  | Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) | 
|  | << CondTypeBeforePromotion; | 
|  | } | 
|  |  | 
|  | // See which of case ranges aren't in enum | 
|  | EI = EnumVals.begin(); | 
|  | for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); | 
|  | RI != CaseRanges.end(); RI++) { | 
|  | Expr *CaseExpr = RI->second->getLHS(); | 
|  | if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, | 
|  | RI->first)) | 
|  | Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) | 
|  | << CondTypeBeforePromotion; | 
|  |  | 
|  | llvm::APSInt Hi = | 
|  | RI->second->getRHS()->EvaluateKnownConstInt(Context); | 
|  | AdjustAPSInt(Hi, CondWidth, CondIsSigned); | 
|  |  | 
|  | CaseExpr = RI->second->getRHS(); | 
|  | if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, | 
|  | Hi)) | 
|  | Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) | 
|  | << CondTypeBeforePromotion; | 
|  | } | 
|  |  | 
|  | // Check which enum vals aren't in switch | 
|  | auto CI = CaseVals.begin(); | 
|  | auto RI = CaseRanges.begin(); | 
|  | bool hasCasesNotInSwitch = false; | 
|  |  | 
|  | SmallVector<DeclarationName,8> UnhandledNames; | 
|  |  | 
|  | for (EI = EnumVals.begin(); EI != EIEnd; EI++) { | 
|  | // Don't warn about omitted unavailable EnumConstantDecls. | 
|  | switch (EI->second->getAvailability()) { | 
|  | case AR_Deprecated: | 
|  | // Omitting a deprecated constant is ok; it should never materialize. | 
|  | case AR_Unavailable: | 
|  | continue; | 
|  |  | 
|  | case AR_NotYetIntroduced: | 
|  | // Partially available enum constants should be present. Note that we | 
|  | // suppress -Wunguarded-availability diagnostics for such uses. | 
|  | case AR_Available: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EI->second->hasAttr<UnusedAttr>()) | 
|  | continue; | 
|  |  | 
|  | // Drop unneeded case values | 
|  | while (CI != CaseVals.end() && CI->first < EI->first) | 
|  | CI++; | 
|  |  | 
|  | if (CI != CaseVals.end() && CI->first == EI->first) | 
|  | continue; | 
|  |  | 
|  | // Drop unneeded case ranges | 
|  | for (; RI != CaseRanges.end(); RI++) { | 
|  | llvm::APSInt Hi = | 
|  | RI->second->getRHS()->EvaluateKnownConstInt(Context); | 
|  | AdjustAPSInt(Hi, CondWidth, CondIsSigned); | 
|  | if (EI->first <= Hi) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (RI == CaseRanges.end() || EI->first < RI->first) { | 
|  | hasCasesNotInSwitch = true; | 
|  | UnhandledNames.push_back(EI->second->getDeclName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) | 
|  | Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); | 
|  |  | 
|  | // Produce a nice diagnostic if multiple values aren't handled. | 
|  | if (!UnhandledNames.empty()) { | 
|  | DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(), | 
|  | TheDefaultStmt ? diag::warn_def_missing_case | 
|  | : diag::warn_missing_case) | 
|  | << (int)UnhandledNames.size(); | 
|  |  | 
|  | for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); | 
|  | I != E; ++I) | 
|  | DB << UnhandledNames[I]; | 
|  | } | 
|  |  | 
|  | if (!hasCasesNotInSwitch) | 
|  | SS->setAllEnumCasesCovered(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BodyStmt) | 
|  | DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, | 
|  | diag::warn_empty_switch_body); | 
|  |  | 
|  | // FIXME: If the case list was broken is some way, we don't have a good system | 
|  | // to patch it up.  Instead, just return the whole substmt as broken. | 
|  | if (CaseListIsErroneous) | 
|  | return StmtError(); | 
|  |  | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, | 
|  | Expr *SrcExpr) { | 
|  | if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) | 
|  | return; | 
|  |  | 
|  | if (const EnumType *ET = DstType->getAs<EnumType>()) | 
|  | if (!Context.hasSameUnqualifiedType(SrcType, DstType) && | 
|  | SrcType->isIntegerType()) { | 
|  | if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && | 
|  | SrcExpr->isIntegerConstantExpr(Context)) { | 
|  | // Get the bitwidth of the enum value before promotions. | 
|  | unsigned DstWidth = Context.getIntWidth(DstType); | 
|  | bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); | 
|  | AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); | 
|  | const EnumDecl *ED = ET->getDecl(); | 
|  |  | 
|  | if (!ED->isClosed()) | 
|  | return; | 
|  |  | 
|  | if (ED->hasAttr<FlagEnumAttr>()) { | 
|  | if (!IsValueInFlagEnum(ED, RhsVal, true)) | 
|  | Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) | 
|  | << DstType.getUnqualifiedType(); | 
|  | } else { | 
|  | typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> | 
|  | EnumValsTy; | 
|  | EnumValsTy EnumVals; | 
|  |  | 
|  | // Gather all enum values, set their type and sort them, | 
|  | // allowing easier comparison with rhs constant. | 
|  | for (auto *EDI : ED->enumerators()) { | 
|  | llvm::APSInt Val = EDI->getInitVal(); | 
|  | AdjustAPSInt(Val, DstWidth, DstIsSigned); | 
|  | EnumVals.push_back(std::make_pair(Val, EDI)); | 
|  | } | 
|  | if (EnumVals.empty()) | 
|  | return; | 
|  | llvm::stable_sort(EnumVals, CmpEnumVals); | 
|  | EnumValsTy::iterator EIend = | 
|  | std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); | 
|  |  | 
|  | // See which values aren't in the enum. | 
|  | EnumValsTy::const_iterator EI = EnumVals.begin(); | 
|  | while (EI != EIend && EI->first < RhsVal) | 
|  | EI++; | 
|  | if (EI == EIend || EI->first != RhsVal) { | 
|  | Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) | 
|  | << DstType.getUnqualifiedType(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, | 
|  | Stmt *Body) { | 
|  | if (Cond.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | auto CondVal = Cond.get(); | 
|  | CheckBreakContinueBinding(CondVal.second); | 
|  |  | 
|  | if (CondVal.second && | 
|  | !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) | 
|  | CommaVisitor(*this).Visit(CondVal.second); | 
|  |  | 
|  | if (isa<NullStmt>(Body)) | 
|  | getCurCompoundScope().setHasEmptyLoopBodies(); | 
|  |  | 
|  | return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, | 
|  | WhileLoc); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, | 
|  | SourceLocation WhileLoc, SourceLocation CondLParen, | 
|  | Expr *Cond, SourceLocation CondRParen) { | 
|  | assert(Cond && "ActOnDoStmt(): missing expression"); | 
|  |  | 
|  | CheckBreakContinueBinding(Cond); | 
|  | ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); | 
|  | if (CondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | Cond = CondResult.get(); | 
|  |  | 
|  | CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); | 
|  | if (CondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | Cond = CondResult.get(); | 
|  |  | 
|  | // Only call the CommaVisitor for C89 due to differences in scope flags. | 
|  | if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && | 
|  | !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) | 
|  | CommaVisitor(*this).Visit(Cond); | 
|  |  | 
|  | return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Use SetVector since the diagnostic cares about the ordering of the Decl's. | 
|  | using DeclSetVector = | 
|  | llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>, | 
|  | llvm::SmallPtrSet<VarDecl *, 8>>; | 
|  |  | 
|  | // This visitor will traverse a conditional statement and store all | 
|  | // the evaluated decls into a vector.  Simple is set to true if none | 
|  | // of the excluded constructs are used. | 
|  | class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { | 
|  | DeclSetVector &Decls; | 
|  | SmallVectorImpl<SourceRange> &Ranges; | 
|  | bool Simple; | 
|  | public: | 
|  | typedef EvaluatedExprVisitor<DeclExtractor> Inherited; | 
|  |  | 
|  | DeclExtractor(Sema &S, DeclSetVector &Decls, | 
|  | SmallVectorImpl<SourceRange> &Ranges) : | 
|  | Inherited(S.Context), | 
|  | Decls(Decls), | 
|  | Ranges(Ranges), | 
|  | Simple(true) {} | 
|  |  | 
|  | bool isSimple() { return Simple; } | 
|  |  | 
|  | // Replaces the method in EvaluatedExprVisitor. | 
|  | void VisitMemberExpr(MemberExpr* E) { | 
|  | Simple = false; | 
|  | } | 
|  |  | 
|  | // Any Stmt not whitelisted will cause the condition to be marked complex. | 
|  | void VisitStmt(Stmt *S) { | 
|  | Simple = false; | 
|  | } | 
|  |  | 
|  | void VisitBinaryOperator(BinaryOperator *E) { | 
|  | Visit(E->getLHS()); | 
|  | Visit(E->getRHS()); | 
|  | } | 
|  |  | 
|  | void VisitCastExpr(CastExpr *E) { | 
|  | Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | void VisitUnaryOperator(UnaryOperator *E) { | 
|  | // Skip checking conditionals with derefernces. | 
|  | if (E->getOpcode() == UO_Deref) | 
|  | Simple = false; | 
|  | else | 
|  | Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | void VisitConditionalOperator(ConditionalOperator *E) { | 
|  | Visit(E->getCond()); | 
|  | Visit(E->getTrueExpr()); | 
|  | Visit(E->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | void VisitParenExpr(ParenExpr *E) { | 
|  | Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { | 
|  | Visit(E->getOpaqueValue()->getSourceExpr()); | 
|  | Visit(E->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | void VisitIntegerLiteral(IntegerLiteral *E) { } | 
|  | void VisitFloatingLiteral(FloatingLiteral *E) { } | 
|  | void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } | 
|  | void VisitCharacterLiteral(CharacterLiteral *E) { } | 
|  | void VisitGNUNullExpr(GNUNullExpr *E) { } | 
|  | void VisitImaginaryLiteral(ImaginaryLiteral *E) { } | 
|  |  | 
|  | void VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); | 
|  | if (!VD) { | 
|  | // Don't allow unhandled Decl types. | 
|  | Simple = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Ranges.push_back(E->getSourceRange()); | 
|  |  | 
|  | Decls.insert(VD); | 
|  | } | 
|  |  | 
|  | }; // end class DeclExtractor | 
|  |  | 
|  | // DeclMatcher checks to see if the decls are used in a non-evaluated | 
|  | // context. | 
|  | class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { | 
|  | DeclSetVector &Decls; | 
|  | bool FoundDecl; | 
|  |  | 
|  | public: | 
|  | typedef EvaluatedExprVisitor<DeclMatcher> Inherited; | 
|  |  | 
|  | DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : | 
|  | Inherited(S.Context), Decls(Decls), FoundDecl(false) { | 
|  | if (!Statement) return; | 
|  |  | 
|  | Visit(Statement); | 
|  | } | 
|  |  | 
|  | void VisitReturnStmt(ReturnStmt *S) { | 
|  | FoundDecl = true; | 
|  | } | 
|  |  | 
|  | void VisitBreakStmt(BreakStmt *S) { | 
|  | FoundDecl = true; | 
|  | } | 
|  |  | 
|  | void VisitGotoStmt(GotoStmt *S) { | 
|  | FoundDecl = true; | 
|  | } | 
|  |  | 
|  | void VisitCastExpr(CastExpr *E) { | 
|  | if (E->getCastKind() == CK_LValueToRValue) | 
|  | CheckLValueToRValueCast(E->getSubExpr()); | 
|  | else | 
|  | Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | void CheckLValueToRValueCast(Expr *E) { | 
|  | E = E->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (isa<DeclRefExpr>(E)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | 
|  | Visit(CO->getCond()); | 
|  | CheckLValueToRValueCast(CO->getTrueExpr()); | 
|  | CheckLValueToRValueCast(CO->getFalseExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (BinaryConditionalOperator *BCO = | 
|  | dyn_cast<BinaryConditionalOperator>(E)) { | 
|  | CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); | 
|  | CheckLValueToRValueCast(BCO->getFalseExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | void VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) | 
|  | if (Decls.count(VD)) | 
|  | FoundDecl = true; | 
|  | } | 
|  |  | 
|  | void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { | 
|  | // Only need to visit the semantics for POE. | 
|  | // SyntaticForm doesn't really use the Decal. | 
|  | for (auto *S : POE->semantics()) { | 
|  | if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) | 
|  | // Look past the OVE into the expression it binds. | 
|  | Visit(OVE->getSourceExpr()); | 
|  | else | 
|  | Visit(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FoundDeclInUse() { return FoundDecl; } | 
|  |  | 
|  | };  // end class DeclMatcher | 
|  |  | 
|  | void CheckForLoopConditionalStatement(Sema &S, Expr *Second, | 
|  | Expr *Third, Stmt *Body) { | 
|  | // Condition is empty | 
|  | if (!Second) return; | 
|  |  | 
|  | if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, | 
|  | Second->getBeginLoc())) | 
|  | return; | 
|  |  | 
|  | PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); | 
|  | DeclSetVector Decls; | 
|  | SmallVector<SourceRange, 10> Ranges; | 
|  | DeclExtractor DE(S, Decls, Ranges); | 
|  | DE.Visit(Second); | 
|  |  | 
|  | // Don't analyze complex conditionals. | 
|  | if (!DE.isSimple()) return; | 
|  |  | 
|  | // No decls found. | 
|  | if (Decls.size() == 0) return; | 
|  |  | 
|  | // Don't warn on volatile, static, or global variables. | 
|  | for (auto *VD : Decls) | 
|  | if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) | 
|  | return; | 
|  |  | 
|  | if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || | 
|  | DeclMatcher(S, Decls, Third).FoundDeclInUse() || | 
|  | DeclMatcher(S, Decls, Body).FoundDeclInUse()) | 
|  | return; | 
|  |  | 
|  | // Load decl names into diagnostic. | 
|  | if (Decls.size() > 4) { | 
|  | PDiag << 0; | 
|  | } else { | 
|  | PDiag << (unsigned)Decls.size(); | 
|  | for (auto *VD : Decls) | 
|  | PDiag << VD->getDeclName(); | 
|  | } | 
|  |  | 
|  | for (auto Range : Ranges) | 
|  | PDiag << Range; | 
|  |  | 
|  | S.Diag(Ranges.begin()->getBegin(), PDiag); | 
|  | } | 
|  |  | 
|  | // If Statement is an incemement or decrement, return true and sets the | 
|  | // variables Increment and DRE. | 
|  | bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, | 
|  | DeclRefExpr *&DRE) { | 
|  | if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) | 
|  | if (!Cleanups->cleanupsHaveSideEffects()) | 
|  | Statement = Cleanups->getSubExpr(); | 
|  |  | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { | 
|  | switch (UO->getOpcode()) { | 
|  | default: return false; | 
|  | case UO_PostInc: | 
|  | case UO_PreInc: | 
|  | Increment = true; | 
|  | break; | 
|  | case UO_PostDec: | 
|  | case UO_PreDec: | 
|  | Increment = false; | 
|  | break; | 
|  | } | 
|  | DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); | 
|  | return DRE; | 
|  | } | 
|  |  | 
|  | if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { | 
|  | FunctionDecl *FD = Call->getDirectCallee(); | 
|  | if (!FD || !FD->isOverloadedOperator()) return false; | 
|  | switch (FD->getOverloadedOperator()) { | 
|  | default: return false; | 
|  | case OO_PlusPlus: | 
|  | Increment = true; | 
|  | break; | 
|  | case OO_MinusMinus: | 
|  | Increment = false; | 
|  | break; | 
|  | } | 
|  | DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); | 
|  | return DRE; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // A visitor to determine if a continue or break statement is a | 
|  | // subexpression. | 
|  | class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { | 
|  | SourceLocation BreakLoc; | 
|  | SourceLocation ContinueLoc; | 
|  | bool InSwitch = false; | 
|  |  | 
|  | public: | 
|  | BreakContinueFinder(Sema &S, const Stmt* Body) : | 
|  | Inherited(S.Context) { | 
|  | Visit(Body); | 
|  | } | 
|  |  | 
|  | typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; | 
|  |  | 
|  | void VisitContinueStmt(const ContinueStmt* E) { | 
|  | ContinueLoc = E->getContinueLoc(); | 
|  | } | 
|  |  | 
|  | void VisitBreakStmt(const BreakStmt* E) { | 
|  | if (!InSwitch) | 
|  | BreakLoc = E->getBreakLoc(); | 
|  | } | 
|  |  | 
|  | void VisitSwitchStmt(const SwitchStmt* S) { | 
|  | if (const Stmt *Init = S->getInit()) | 
|  | Visit(Init); | 
|  | if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) | 
|  | Visit(CondVar); | 
|  | if (const Stmt *Cond = S->getCond()) | 
|  | Visit(Cond); | 
|  |  | 
|  | // Don't return break statements from the body of a switch. | 
|  | InSwitch = true; | 
|  | if (const Stmt *Body = S->getBody()) | 
|  | Visit(Body); | 
|  | InSwitch = false; | 
|  | } | 
|  |  | 
|  | void VisitForStmt(const ForStmt *S) { | 
|  | // Only visit the init statement of a for loop; the body | 
|  | // has a different break/continue scope. | 
|  | if (const Stmt *Init = S->getInit()) | 
|  | Visit(Init); | 
|  | } | 
|  |  | 
|  | void VisitWhileStmt(const WhileStmt *) { | 
|  | // Do nothing; the children of a while loop have a different | 
|  | // break/continue scope. | 
|  | } | 
|  |  | 
|  | void VisitDoStmt(const DoStmt *) { | 
|  | // Do nothing; the children of a while loop have a different | 
|  | // break/continue scope. | 
|  | } | 
|  |  | 
|  | void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { | 
|  | // Only visit the initialization of a for loop; the body | 
|  | // has a different break/continue scope. | 
|  | if (const Stmt *Init = S->getInit()) | 
|  | Visit(Init); | 
|  | if (const Stmt *Range = S->getRangeStmt()) | 
|  | Visit(Range); | 
|  | if (const Stmt *Begin = S->getBeginStmt()) | 
|  | Visit(Begin); | 
|  | if (const Stmt *End = S->getEndStmt()) | 
|  | Visit(End); | 
|  | } | 
|  |  | 
|  | void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { | 
|  | // Only visit the initialization of a for loop; the body | 
|  | // has a different break/continue scope. | 
|  | if (const Stmt *Element = S->getElement()) | 
|  | Visit(Element); | 
|  | if (const Stmt *Collection = S->getCollection()) | 
|  | Visit(Collection); | 
|  | } | 
|  |  | 
|  | bool ContinueFound() { return ContinueLoc.isValid(); } | 
|  | bool BreakFound() { return BreakLoc.isValid(); } | 
|  | SourceLocation GetContinueLoc() { return ContinueLoc; } | 
|  | SourceLocation GetBreakLoc() { return BreakLoc; } | 
|  |  | 
|  | };  // end class BreakContinueFinder | 
|  |  | 
|  | // Emit a warning when a loop increment/decrement appears twice per loop | 
|  | // iteration.  The conditions which trigger this warning are: | 
|  | // 1) The last statement in the loop body and the third expression in the | 
|  | //    for loop are both increment or both decrement of the same variable | 
|  | // 2) No continue statements in the loop body. | 
|  | void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { | 
|  | // Return when there is nothing to check. | 
|  | if (!Body || !Third) return; | 
|  |  | 
|  | if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, | 
|  | Third->getBeginLoc())) | 
|  | return; | 
|  |  | 
|  | // Get the last statement from the loop body. | 
|  | CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); | 
|  | if (!CS || CS->body_empty()) return; | 
|  | Stmt *LastStmt = CS->body_back(); | 
|  | if (!LastStmt) return; | 
|  |  | 
|  | bool LoopIncrement, LastIncrement; | 
|  | DeclRefExpr *LoopDRE, *LastDRE; | 
|  |  | 
|  | if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; | 
|  | if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; | 
|  |  | 
|  | // Check that the two statements are both increments or both decrements | 
|  | // on the same variable. | 
|  | if (LoopIncrement != LastIncrement || | 
|  | LoopDRE->getDecl() != LastDRE->getDecl()) return; | 
|  |  | 
|  | if (BreakContinueFinder(S, Body).ContinueFound()) return; | 
|  |  | 
|  | S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) | 
|  | << LastDRE->getDecl() << LastIncrement; | 
|  | S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) | 
|  | << LoopIncrement; | 
|  | } | 
|  |  | 
|  | } // end namespace | 
|  |  | 
|  |  | 
|  | void Sema::CheckBreakContinueBinding(Expr *E) { | 
|  | if (!E || getLangOpts().CPlusPlus) | 
|  | return; | 
|  | BreakContinueFinder BCFinder(*this, E); | 
|  | Scope *BreakParent = CurScope->getBreakParent(); | 
|  | if (BCFinder.BreakFound() && BreakParent) { | 
|  | if (BreakParent->getFlags() & Scope::SwitchScope) { | 
|  | Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); | 
|  | } else { | 
|  | Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) | 
|  | << "break"; | 
|  | } | 
|  | } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { | 
|  | Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) | 
|  | << "continue"; | 
|  | } | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, | 
|  | Stmt *First, ConditionResult Second, | 
|  | FullExprArg third, SourceLocation RParenLoc, | 
|  | Stmt *Body) { | 
|  | if (Second.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { | 
|  | // C99 6.8.5p3: The declaration part of a 'for' statement shall only | 
|  | // declare identifiers for objects having storage class 'auto' or | 
|  | // 'register'. | 
|  | for (auto *DI : DS->decls()) { | 
|  | VarDecl *VD = dyn_cast<VarDecl>(DI); | 
|  | if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage()) | 
|  | VD = nullptr; | 
|  | if (!VD) { | 
|  | Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); | 
|  | DI->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CheckBreakContinueBinding(Second.get().second); | 
|  | CheckBreakContinueBinding(third.get()); | 
|  |  | 
|  | if (!Second.get().first) | 
|  | CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), | 
|  | Body); | 
|  | CheckForRedundantIteration(*this, third.get(), Body); | 
|  |  | 
|  | if (Second.get().second && | 
|  | !Diags.isIgnored(diag::warn_comma_operator, | 
|  | Second.get().second->getExprLoc())) | 
|  | CommaVisitor(*this).Visit(Second.get().second); | 
|  |  | 
|  | Expr *Third  = third.release().getAs<Expr>(); | 
|  | if (isa<NullStmt>(Body)) | 
|  | getCurCompoundScope().setHasEmptyLoopBodies(); | 
|  |  | 
|  | return new (Context) | 
|  | ForStmt(Context, First, Second.get().second, Second.get().first, Third, | 
|  | Body, ForLoc, LParenLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// In an Objective C collection iteration statement: | 
|  | ///   for (x in y) | 
|  | /// x can be an arbitrary l-value expression.  Bind it up as a | 
|  | /// full-expression. | 
|  | StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { | 
|  | // Reduce placeholder expressions here.  Note that this rejects the | 
|  | // use of pseudo-object l-values in this position. | 
|  | ExprResult result = CheckPlaceholderExpr(E); | 
|  | if (result.isInvalid()) return StmtError(); | 
|  | E = result.get(); | 
|  |  | 
|  | ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); | 
|  | if (FullExpr.isInvalid()) | 
|  | return StmtError(); | 
|  | return StmtResult(static_cast<Stmt*>(FullExpr.get())); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { | 
|  | if (!collection) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult result = CorrectDelayedTyposInExpr(collection); | 
|  | if (!result.isUsable()) | 
|  | return ExprError(); | 
|  | collection = result.get(); | 
|  |  | 
|  | // Bail out early if we've got a type-dependent expression. | 
|  | if (collection->isTypeDependent()) return collection; | 
|  |  | 
|  | // Perform normal l-value conversion. | 
|  | result = DefaultFunctionArrayLvalueConversion(collection); | 
|  | if (result.isInvalid()) | 
|  | return ExprError(); | 
|  | collection = result.get(); | 
|  |  | 
|  | // The operand needs to have object-pointer type. | 
|  | // TODO: should we do a contextual conversion? | 
|  | const ObjCObjectPointerType *pointerType = | 
|  | collection->getType()->getAs<ObjCObjectPointerType>(); | 
|  | if (!pointerType) | 
|  | return Diag(forLoc, diag::err_collection_expr_type) | 
|  | << collection->getType() << collection->getSourceRange(); | 
|  |  | 
|  | // Check that the operand provides | 
|  | //   - countByEnumeratingWithState:objects:count: | 
|  | const ObjCObjectType *objectType = pointerType->getObjectType(); | 
|  | ObjCInterfaceDecl *iface = objectType->getInterface(); | 
|  |  | 
|  | // If we have a forward-declared type, we can't do this check. | 
|  | // Under ARC, it is an error not to have a forward-declared class. | 
|  | if (iface && | 
|  | (getLangOpts().ObjCAutoRefCount | 
|  | ? RequireCompleteType(forLoc, QualType(objectType, 0), | 
|  | diag::err_arc_collection_forward, collection) | 
|  | : !isCompleteType(forLoc, QualType(objectType, 0)))) { | 
|  | // Otherwise, if we have any useful type information, check that | 
|  | // the type declares the appropriate method. | 
|  | } else if (iface || !objectType->qual_empty()) { | 
|  | IdentifierInfo *selectorIdents[] = { | 
|  | &Context.Idents.get("countByEnumeratingWithState"), | 
|  | &Context.Idents.get("objects"), | 
|  | &Context.Idents.get("count") | 
|  | }; | 
|  | Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); | 
|  |  | 
|  | ObjCMethodDecl *method = nullptr; | 
|  |  | 
|  | // If there's an interface, look in both the public and private APIs. | 
|  | if (iface) { | 
|  | method = iface->lookupInstanceMethod(selector); | 
|  | if (!method) method = iface->lookupPrivateMethod(selector); | 
|  | } | 
|  |  | 
|  | // Also check protocol qualifiers. | 
|  | if (!method) | 
|  | method = LookupMethodInQualifiedType(selector, pointerType, | 
|  | /*instance*/ true); | 
|  |  | 
|  | // If we didn't find it anywhere, give up. | 
|  | if (!method) { | 
|  | Diag(forLoc, diag::warn_collection_expr_type) | 
|  | << collection->getType() << selector << collection->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // TODO: check for an incompatible signature? | 
|  | } | 
|  |  | 
|  | // Wrap up any cleanups in the expression. | 
|  | return collection; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, | 
|  | Stmt *First, Expr *collection, | 
|  | SourceLocation RParenLoc) { | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | ExprResult CollectionExprResult = | 
|  | CheckObjCForCollectionOperand(ForLoc, collection); | 
|  |  | 
|  | if (First) { | 
|  | QualType FirstType; | 
|  | if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { | 
|  | if (!DS->isSingleDecl()) | 
|  | return StmtError(Diag((*DS->decl_begin())->getLocation(), | 
|  | diag::err_toomany_element_decls)); | 
|  |  | 
|  | VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); | 
|  | if (!D || D->isInvalidDecl()) | 
|  | return StmtError(); | 
|  |  | 
|  | FirstType = D->getType(); | 
|  | // C99 6.8.5p3: The declaration part of a 'for' statement shall only | 
|  | // declare identifiers for objects having storage class 'auto' or | 
|  | // 'register'. | 
|  | if (!D->hasLocalStorage()) | 
|  | return StmtError(Diag(D->getLocation(), | 
|  | diag::err_non_local_variable_decl_in_for)); | 
|  |  | 
|  | // If the type contained 'auto', deduce the 'auto' to 'id'. | 
|  | if (FirstType->getContainedAutoType()) { | 
|  | OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), | 
|  | VK_RValue); | 
|  | Expr *DeducedInit = &OpaqueId; | 
|  | if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == | 
|  | DAR_Failed) | 
|  | DiagnoseAutoDeductionFailure(D, DeducedInit); | 
|  | if (FirstType.isNull()) { | 
|  | D->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | D->setType(FirstType); | 
|  |  | 
|  | if (!inTemplateInstantiation()) { | 
|  | SourceLocation Loc = | 
|  | D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); | 
|  | Diag(Loc, diag::warn_auto_var_is_id) | 
|  | << D->getDeclName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else { | 
|  | Expr *FirstE = cast<Expr>(First); | 
|  | if (!FirstE->isTypeDependent() && !FirstE->isLValue()) | 
|  | return StmtError( | 
|  | Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue) | 
|  | << First->getSourceRange()); | 
|  |  | 
|  | FirstType = static_cast<Expr*>(First)->getType(); | 
|  | if (FirstType.isConstQualified()) | 
|  | Diag(ForLoc, diag::err_selector_element_const_type) | 
|  | << FirstType << First->getSourceRange(); | 
|  | } | 
|  | if (!FirstType->isDependentType() && | 
|  | !FirstType->isObjCObjectPointerType() && | 
|  | !FirstType->isBlockPointerType()) | 
|  | return StmtError(Diag(ForLoc, diag::err_selector_element_type) | 
|  | << FirstType << First->getSourceRange()); | 
|  | } | 
|  |  | 
|  | if (CollectionExprResult.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | CollectionExprResult = | 
|  | ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false); | 
|  | if (CollectionExprResult.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), | 
|  | nullptr, ForLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// Finish building a variable declaration for a for-range statement. | 
|  | /// \return true if an error occurs. | 
|  | static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, | 
|  | SourceLocation Loc, int DiagID) { | 
|  | if (Decl->getType()->isUndeducedType()) { | 
|  | ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); | 
|  | if (!Res.isUsable()) { | 
|  | Decl->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | Init = Res.get(); | 
|  | } | 
|  |  | 
|  | // Deduce the type for the iterator variable now rather than leaving it to | 
|  | // AddInitializerToDecl, so we can produce a more suitable diagnostic. | 
|  | QualType InitType; | 
|  | if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || | 
|  | SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == | 
|  | Sema::DAR_Failed) | 
|  | SemaRef.Diag(Loc, DiagID) << Init->getType(); | 
|  | if (InitType.isNull()) { | 
|  | Decl->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | Decl->setType(InitType); | 
|  |  | 
|  | // In ARC, infer lifetime. | 
|  | // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if | 
|  | // we're doing the equivalent of fast iteration. | 
|  | if (SemaRef.getLangOpts().ObjCAutoRefCount && | 
|  | SemaRef.inferObjCARCLifetime(Decl)) | 
|  | Decl->setInvalidDecl(); | 
|  |  | 
|  | SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); | 
|  | SemaRef.FinalizeDeclaration(Decl); | 
|  | SemaRef.CurContext->addHiddenDecl(Decl); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // An enum to represent whether something is dealing with a call to begin() | 
|  | // or a call to end() in a range-based for loop. | 
|  | enum BeginEndFunction { | 
|  | BEF_begin, | 
|  | BEF_end | 
|  | }; | 
|  |  | 
|  | /// Produce a note indicating which begin/end function was implicitly called | 
|  | /// by a C++11 for-range statement. This is often not obvious from the code, | 
|  | /// nor from the diagnostics produced when analysing the implicit expressions | 
|  | /// required in a for-range statement. | 
|  | void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, | 
|  | BeginEndFunction BEF) { | 
|  | CallExpr *CE = dyn_cast<CallExpr>(E); | 
|  | if (!CE) | 
|  | return; | 
|  | FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); | 
|  | if (!D) | 
|  | return; | 
|  | SourceLocation Loc = D->getLocation(); | 
|  |  | 
|  | std::string Description; | 
|  | bool IsTemplate = false; | 
|  | if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { | 
|  | Description = SemaRef.getTemplateArgumentBindingsText( | 
|  | FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); | 
|  | IsTemplate = true; | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(Loc, diag::note_for_range_begin_end) | 
|  | << BEF << IsTemplate << Description << E->getType(); | 
|  | } | 
|  |  | 
|  | /// Build a variable declaration for a for-range statement. | 
|  | VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, | 
|  | QualType Type, StringRef Name) { | 
|  | DeclContext *DC = SemaRef.CurContext; | 
|  | IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); | 
|  | TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); | 
|  | VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, | 
|  | TInfo, SC_None); | 
|  | Decl->setImplicit(); | 
|  | return Decl; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool ObjCEnumerationCollection(Expr *Collection) { | 
|  | return !Collection->isTypeDependent() | 
|  | && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. | 
|  | /// | 
|  | /// C++11 [stmt.ranged]: | 
|  | ///   A range-based for statement is equivalent to | 
|  | /// | 
|  | ///   { | 
|  | ///     auto && __range = range-init; | 
|  | ///     for ( auto __begin = begin-expr, | 
|  | ///           __end = end-expr; | 
|  | ///           __begin != __end; | 
|  | ///           ++__begin ) { | 
|  | ///       for-range-declaration = *__begin; | 
|  | ///       statement | 
|  | ///     } | 
|  | ///   } | 
|  | /// | 
|  | /// The body of the loop is not available yet, since it cannot be analysed until | 
|  | /// we have determined the type of the for-range-declaration. | 
|  | StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, | 
|  | SourceLocation CoawaitLoc, Stmt *InitStmt, | 
|  | Stmt *First, SourceLocation ColonLoc, | 
|  | Expr *Range, SourceLocation RParenLoc, | 
|  | BuildForRangeKind Kind) { | 
|  | if (!First) | 
|  | return StmtError(); | 
|  |  | 
|  | if (Range && ObjCEnumerationCollection(Range)) { | 
|  | // FIXME: Support init-statements in Objective-C++20 ranged for statement. | 
|  | if (InitStmt) | 
|  | return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) | 
|  | << InitStmt->getSourceRange(); | 
|  | return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); | 
|  | } | 
|  |  | 
|  | DeclStmt *DS = dyn_cast<DeclStmt>(First); | 
|  | assert(DS && "first part of for range not a decl stmt"); | 
|  |  | 
|  | if (!DS->isSingleDecl()) { | 
|  | Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Decl *LoopVar = DS->getSingleDecl(); | 
|  | if (LoopVar->isInvalidDecl() || !Range || | 
|  | DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { | 
|  | LoopVar->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Build the coroutine state immediately and not later during template | 
|  | // instantiation | 
|  | if (!CoawaitLoc.isInvalid()) { | 
|  | if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Build  auto && __range = range-init | 
|  | // Divide by 2, since the variables are in the inner scope (loop body). | 
|  | const auto DepthStr = std::to_string(S->getDepth() / 2); | 
|  | SourceLocation RangeLoc = Range->getBeginLoc(); | 
|  | VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, | 
|  | Context.getAutoRRefDeductType(), | 
|  | std::string("__range") + DepthStr); | 
|  | if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, | 
|  | diag::err_for_range_deduction_failure)) { | 
|  | LoopVar->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Claim the type doesn't contain auto: we've already done the checking. | 
|  | DeclGroupPtrTy RangeGroup = | 
|  | BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); | 
|  | StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); | 
|  | if (RangeDecl.isInvalid()) { | 
|  | LoopVar->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | return BuildCXXForRangeStmt( | 
|  | ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), | 
|  | /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, | 
|  | /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind); | 
|  | } | 
|  |  | 
|  | /// Create the initialization, compare, and increment steps for | 
|  | /// the range-based for loop expression. | 
|  | /// This function does not handle array-based for loops, | 
|  | /// which are created in Sema::BuildCXXForRangeStmt. | 
|  | /// | 
|  | /// \returns a ForRangeStatus indicating success or what kind of error occurred. | 
|  | /// BeginExpr and EndExpr are set and FRS_Success is returned on success; | 
|  | /// CandidateSet and BEF are set and some non-success value is returned on | 
|  | /// failure. | 
|  | static Sema::ForRangeStatus | 
|  | BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, | 
|  | QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, | 
|  | SourceLocation ColonLoc, SourceLocation CoawaitLoc, | 
|  | OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, | 
|  | ExprResult *EndExpr, BeginEndFunction *BEF) { | 
|  | DeclarationNameInfo BeginNameInfo( | 
|  | &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); | 
|  | DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), | 
|  | ColonLoc); | 
|  |  | 
|  | LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, | 
|  | Sema::LookupMemberName); | 
|  | LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); | 
|  |  | 
|  | auto BuildBegin = [&] { | 
|  | *BEF = BEF_begin; | 
|  | Sema::ForRangeStatus RangeStatus = | 
|  | SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, | 
|  | BeginMemberLookup, CandidateSet, | 
|  | BeginRange, BeginExpr); | 
|  |  | 
|  | if (RangeStatus != Sema::FRS_Success) { | 
|  | if (RangeStatus == Sema::FRS_DiagnosticIssued) | 
|  | SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) | 
|  | << ColonLoc << BEF_begin << BeginRange->getType(); | 
|  | return RangeStatus; | 
|  | } | 
|  | if (!CoawaitLoc.isInvalid()) { | 
|  | // FIXME: getCurScope() should not be used during template instantiation. | 
|  | // We should pick up the set of unqualified lookup results for operator | 
|  | // co_await during the initial parse. | 
|  | *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, | 
|  | BeginExpr->get()); | 
|  | if (BeginExpr->isInvalid()) | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  | } | 
|  | if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, | 
|  | diag::err_for_range_iter_deduction_failure)) { | 
|  | NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  | } | 
|  | return Sema::FRS_Success; | 
|  | }; | 
|  |  | 
|  | auto BuildEnd = [&] { | 
|  | *BEF = BEF_end; | 
|  | Sema::ForRangeStatus RangeStatus = | 
|  | SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, | 
|  | EndMemberLookup, CandidateSet, | 
|  | EndRange, EndExpr); | 
|  | if (RangeStatus != Sema::FRS_Success) { | 
|  | if (RangeStatus == Sema::FRS_DiagnosticIssued) | 
|  | SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) | 
|  | << ColonLoc << BEF_end << EndRange->getType(); | 
|  | return RangeStatus; | 
|  | } | 
|  | if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, | 
|  | diag::err_for_range_iter_deduction_failure)) { | 
|  | NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  | } | 
|  | return Sema::FRS_Success; | 
|  | }; | 
|  |  | 
|  | if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { | 
|  | // - if _RangeT is a class type, the unqualified-ids begin and end are | 
|  | //   looked up in the scope of class _RangeT as if by class member access | 
|  | //   lookup (3.4.5), and if either (or both) finds at least one | 
|  | //   declaration, begin-expr and end-expr are __range.begin() and | 
|  | //   __range.end(), respectively; | 
|  | SemaRef.LookupQualifiedName(BeginMemberLookup, D); | 
|  | if (BeginMemberLookup.isAmbiguous()) | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  |  | 
|  | SemaRef.LookupQualifiedName(EndMemberLookup, D); | 
|  | if (EndMemberLookup.isAmbiguous()) | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  |  | 
|  | if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { | 
|  | // Look up the non-member form of the member we didn't find, first. | 
|  | // This way we prefer a "no viable 'end'" diagnostic over a "i found | 
|  | // a 'begin' but ignored it because there was no member 'end'" | 
|  | // diagnostic. | 
|  | auto BuildNonmember = [&]( | 
|  | BeginEndFunction BEFFound, LookupResult &Found, | 
|  | llvm::function_ref<Sema::ForRangeStatus()> BuildFound, | 
|  | llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { | 
|  | LookupResult OldFound = std::move(Found); | 
|  | Found.clear(); | 
|  |  | 
|  | if (Sema::ForRangeStatus Result = BuildNotFound()) | 
|  | return Result; | 
|  |  | 
|  | switch (BuildFound()) { | 
|  | case Sema::FRS_Success: | 
|  | return Sema::FRS_Success; | 
|  |  | 
|  | case Sema::FRS_NoViableFunction: | 
|  | CandidateSet->NoteCandidates( | 
|  | PartialDiagnosticAt(BeginRange->getBeginLoc(), | 
|  | SemaRef.PDiag(diag::err_for_range_invalid) | 
|  | << BeginRange->getType() << BEFFound), | 
|  | SemaRef, OCD_AllCandidates, BeginRange); | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case Sema::FRS_DiagnosticIssued: | 
|  | for (NamedDecl *D : OldFound) { | 
|  | SemaRef.Diag(D->getLocation(), | 
|  | diag::note_for_range_member_begin_end_ignored) | 
|  | << BeginRange->getType() << BEFFound; | 
|  | } | 
|  | return Sema::FRS_DiagnosticIssued; | 
|  | } | 
|  | llvm_unreachable("unexpected ForRangeStatus"); | 
|  | }; | 
|  | if (BeginMemberLookup.empty()) | 
|  | return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); | 
|  | return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); | 
|  | } | 
|  | } else { | 
|  | // - otherwise, begin-expr and end-expr are begin(__range) and | 
|  | //   end(__range), respectively, where begin and end are looked up with | 
|  | //   argument-dependent lookup (3.4.2). For the purposes of this name | 
|  | //   lookup, namespace std is an associated namespace. | 
|  | } | 
|  |  | 
|  | if (Sema::ForRangeStatus Result = BuildBegin()) | 
|  | return Result; | 
|  | return BuildEnd(); | 
|  | } | 
|  |  | 
|  | /// Speculatively attempt to dereference an invalid range expression. | 
|  | /// If the attempt fails, this function will return a valid, null StmtResult | 
|  | /// and emit no diagnostics. | 
|  | static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, | 
|  | SourceLocation ForLoc, | 
|  | SourceLocation CoawaitLoc, | 
|  | Stmt *InitStmt, | 
|  | Stmt *LoopVarDecl, | 
|  | SourceLocation ColonLoc, | 
|  | Expr *Range, | 
|  | SourceLocation RangeLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | // Determine whether we can rebuild the for-range statement with a | 
|  | // dereferenced range expression. | 
|  | ExprResult AdjustedRange; | 
|  | { | 
|  | Sema::SFINAETrap Trap(SemaRef); | 
|  |  | 
|  | AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); | 
|  | if (AdjustedRange.isInvalid()) | 
|  | return StmtResult(); | 
|  |  | 
|  | StmtResult SR = SemaRef.ActOnCXXForRangeStmt( | 
|  | S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, | 
|  | AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); | 
|  | if (SR.isInvalid()) | 
|  | return StmtResult(); | 
|  | } | 
|  |  | 
|  | // The attempt to dereference worked well enough that it could produce a valid | 
|  | // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in | 
|  | // case there are any other (non-fatal) problems with it. | 
|  | SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) | 
|  | << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); | 
|  | return SemaRef.ActOnCXXForRangeStmt( | 
|  | S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, | 
|  | AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// RAII object to automatically invalidate a declaration if an error occurs. | 
|  | struct InvalidateOnErrorScope { | 
|  | InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled) | 
|  | : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {} | 
|  | ~InvalidateOnErrorScope() { | 
|  | if (Enabled && Trap.hasErrorOccurred()) | 
|  | D->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | DiagnosticErrorTrap Trap; | 
|  | Decl *D; | 
|  | bool Enabled; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. | 
|  | StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, | 
|  | SourceLocation CoawaitLoc, Stmt *InitStmt, | 
|  | SourceLocation ColonLoc, Stmt *RangeDecl, | 
|  | Stmt *Begin, Stmt *End, Expr *Cond, | 
|  | Expr *Inc, Stmt *LoopVarDecl, | 
|  | SourceLocation RParenLoc, | 
|  | BuildForRangeKind Kind) { | 
|  | // FIXME: This should not be used during template instantiation. We should | 
|  | // pick up the set of unqualified lookup results for the != and + operators | 
|  | // in the initial parse. | 
|  | // | 
|  | // Testcase (accepts-invalid): | 
|  | //   template<typename T> void f() { for (auto x : T()) {} } | 
|  | //   namespace N { struct X { X begin(); X end(); int operator*(); }; } | 
|  | //   bool operator!=(N::X, N::X); void operator++(N::X); | 
|  | //   void g() { f<N::X>(); } | 
|  | Scope *S = getCurScope(); | 
|  |  | 
|  | DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); | 
|  | VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); | 
|  | QualType RangeVarType = RangeVar->getType(); | 
|  |  | 
|  | DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); | 
|  | VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); | 
|  |  | 
|  | // If we hit any errors, mark the loop variable as invalid if its type | 
|  | // contains 'auto'. | 
|  | InvalidateOnErrorScope Invalidate(*this, LoopVar, | 
|  | LoopVar->getType()->isUndeducedType()); | 
|  |  | 
|  | StmtResult BeginDeclStmt = Begin; | 
|  | StmtResult EndDeclStmt = End; | 
|  | ExprResult NotEqExpr = Cond, IncrExpr = Inc; | 
|  |  | 
|  | if (RangeVarType->isDependentType()) { | 
|  | // The range is implicitly used as a placeholder when it is dependent. | 
|  | RangeVar->markUsed(Context); | 
|  |  | 
|  | // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill | 
|  | // them in properly when we instantiate the loop. | 
|  | if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) | 
|  | for (auto *Binding : DD->bindings()) | 
|  | Binding->setType(Context.DependentTy); | 
|  | LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); | 
|  | } | 
|  | } else if (!BeginDeclStmt.get()) { | 
|  | SourceLocation RangeLoc = RangeVar->getLocation(); | 
|  |  | 
|  | const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); | 
|  |  | 
|  | ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, | 
|  | VK_LValue, ColonLoc); | 
|  | if (BeginRangeRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, | 
|  | VK_LValue, ColonLoc); | 
|  | if (EndRangeRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | QualType AutoType = Context.getAutoDeductType(); | 
|  | Expr *Range = RangeVar->getInit(); | 
|  | if (!Range) | 
|  | return StmtError(); | 
|  | QualType RangeType = Range->getType(); | 
|  |  | 
|  | if (RequireCompleteType(RangeLoc, RangeType, | 
|  | diag::err_for_range_incomplete_type)) | 
|  | return StmtError(); | 
|  |  | 
|  | // Build auto __begin = begin-expr, __end = end-expr. | 
|  | // Divide by 2, since the variables are in the inner scope (loop body). | 
|  | const auto DepthStr = std::to_string(S->getDepth() / 2); | 
|  | VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, | 
|  | std::string("__begin") + DepthStr); | 
|  | VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, | 
|  | std::string("__end") + DepthStr); | 
|  |  | 
|  | // Build begin-expr and end-expr and attach to __begin and __end variables. | 
|  | ExprResult BeginExpr, EndExpr; | 
|  | if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { | 
|  | // - if _RangeT is an array type, begin-expr and end-expr are __range and | 
|  | //   __range + __bound, respectively, where __bound is the array bound. If | 
|  | //   _RangeT is an array of unknown size or an array of incomplete type, | 
|  | //   the program is ill-formed; | 
|  |  | 
|  | // begin-expr is __range. | 
|  | BeginExpr = BeginRangeRef; | 
|  | if (!CoawaitLoc.isInvalid()) { | 
|  | BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); | 
|  | if (BeginExpr.isInvalid()) | 
|  | return StmtError(); | 
|  | } | 
|  | if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, | 
|  | diag::err_for_range_iter_deduction_failure)) { | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Find the array bound. | 
|  | ExprResult BoundExpr; | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) | 
|  | BoundExpr = IntegerLiteral::Create( | 
|  | Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); | 
|  | else if (const VariableArrayType *VAT = | 
|  | dyn_cast<VariableArrayType>(UnqAT)) { | 
|  | // For a variably modified type we can't just use the expression within | 
|  | // the array bounds, since we don't want that to be re-evaluated here. | 
|  | // Rather, we need to determine what it was when the array was first | 
|  | // created - so we resort to using sizeof(vla)/sizeof(element). | 
|  | // For e.g. | 
|  | //  void f(int b) { | 
|  | //    int vla[b]; | 
|  | //    b = -1;   <-- This should not affect the num of iterations below | 
|  | //    for (int &c : vla) { .. } | 
|  | //  } | 
|  |  | 
|  | // FIXME: This results in codegen generating IR that recalculates the | 
|  | // run-time number of elements (as opposed to just using the IR Value | 
|  | // that corresponds to the run-time value of each bound that was | 
|  | // generated when the array was created.) If this proves too embarrassing | 
|  | // even for unoptimized IR, consider passing a magic-value/cookie to | 
|  | // codegen that then knows to simply use that initial llvm::Value (that | 
|  | // corresponds to the bound at time of array creation) within | 
|  | // getelementptr.  But be prepared to pay the price of increasing a | 
|  | // customized form of coupling between the two components - which  could | 
|  | // be hard to maintain as the codebase evolves. | 
|  |  | 
|  | ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( | 
|  | EndVar->getLocation(), UETT_SizeOf, | 
|  | /*IsType=*/true, | 
|  | CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( | 
|  | VAT->desugar(), RangeLoc)) | 
|  | .getAsOpaquePtr(), | 
|  | EndVar->getSourceRange()); | 
|  | if (SizeOfVLAExprR.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( | 
|  | EndVar->getLocation(), UETT_SizeOf, | 
|  | /*IsType=*/true, | 
|  | CreateParsedType(VAT->desugar(), | 
|  | Context.getTrivialTypeSourceInfo( | 
|  | VAT->getElementType(), RangeLoc)) | 
|  | .getAsOpaquePtr(), | 
|  | EndVar->getSourceRange()); | 
|  | if (SizeOfEachElementExprR.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | BoundExpr = | 
|  | ActOnBinOp(S, EndVar->getLocation(), tok::slash, | 
|  | SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); | 
|  | if (BoundExpr.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | } else { | 
|  | // Can't be a DependentSizedArrayType or an IncompleteArrayType since | 
|  | // UnqAT is not incomplete and Range is not type-dependent. | 
|  | llvm_unreachable("Unexpected array type in for-range"); | 
|  | } | 
|  |  | 
|  | // end-expr is __range + __bound. | 
|  | EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), | 
|  | BoundExpr.get()); | 
|  | if (EndExpr.isInvalid()) | 
|  | return StmtError(); | 
|  | if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, | 
|  | diag::err_for_range_iter_deduction_failure)) { | 
|  | NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); | 
|  | return StmtError(); | 
|  | } | 
|  | } else { | 
|  | OverloadCandidateSet CandidateSet(RangeLoc, | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | BeginEndFunction BEFFailure; | 
|  | ForRangeStatus RangeStatus = BuildNonArrayForRange( | 
|  | *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, | 
|  | EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, | 
|  | &BEFFailure); | 
|  |  | 
|  | if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && | 
|  | BEFFailure == BEF_begin) { | 
|  | // If the range is being built from an array parameter, emit a | 
|  | // a diagnostic that it is being treated as a pointer. | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { | 
|  | if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { | 
|  | QualType ArrayTy = PVD->getOriginalType(); | 
|  | QualType PointerTy = PVD->getType(); | 
|  | if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { | 
|  | Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) | 
|  | << RangeLoc << PVD << ArrayTy << PointerTy; | 
|  | Diag(PVD->getLocation(), diag::note_declared_at); | 
|  | return StmtError(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If building the range failed, try dereferencing the range expression | 
|  | // unless a diagnostic was issued or the end function is problematic. | 
|  | StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, | 
|  | CoawaitLoc, InitStmt, | 
|  | LoopVarDecl, ColonLoc, | 
|  | Range, RangeLoc, | 
|  | RParenLoc); | 
|  | if (SR.isInvalid() || SR.isUsable()) | 
|  | return SR; | 
|  | } | 
|  |  | 
|  | // Otherwise, emit diagnostics if we haven't already. | 
|  | if (RangeStatus == FRS_NoViableFunction) { | 
|  | Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(Range->getBeginLoc(), | 
|  | PDiag(diag::err_for_range_invalid) | 
|  | << RangeLoc << Range->getType() | 
|  | << BEFFailure), | 
|  | *this, OCD_AllCandidates, Range); | 
|  | } | 
|  | // Return an error if no fix was discovered. | 
|  | if (RangeStatus != FRS_Success) | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && | 
|  | "invalid range expression in for loop"); | 
|  |  | 
|  | // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. | 
|  | // C++1z removes this restriction. | 
|  | QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); | 
|  | if (!Context.hasSameType(BeginType, EndType)) { | 
|  | Diag(RangeLoc, getLangOpts().CPlusPlus17 | 
|  | ? diag::warn_for_range_begin_end_types_differ | 
|  | : diag::ext_for_range_begin_end_types_differ) | 
|  | << BeginType << EndType; | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); | 
|  | } | 
|  |  | 
|  | BeginDeclStmt = | 
|  | ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); | 
|  | EndDeclStmt = | 
|  | ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); | 
|  |  | 
|  | const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); | 
|  | ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, | 
|  | VK_LValue, ColonLoc); | 
|  | if (BeginRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), | 
|  | VK_LValue, ColonLoc); | 
|  | if (EndRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // Build and check __begin != __end expression. | 
|  | NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, | 
|  | BeginRef.get(), EndRef.get()); | 
|  | if (!NotEqExpr.isInvalid()) | 
|  | NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); | 
|  | if (!NotEqExpr.isInvalid()) | 
|  | NotEqExpr = | 
|  | ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); | 
|  | if (NotEqExpr.isInvalid()) { | 
|  | Diag(RangeLoc, diag::note_for_range_invalid_iterator) | 
|  | << RangeLoc << 0 << BeginRangeRef.get()->getType(); | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | if (!Context.hasSameType(BeginType, EndType)) | 
|  | NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Build and check ++__begin expression. | 
|  | BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, | 
|  | VK_LValue, ColonLoc); | 
|  | if (BeginRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); | 
|  | if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) | 
|  | // FIXME: getCurScope() should not be used during template instantiation. | 
|  | // We should pick up the set of unqualified lookup results for operator | 
|  | // co_await during the initial parse. | 
|  | IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); | 
|  | if (!IncrExpr.isInvalid()) | 
|  | IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); | 
|  | if (IncrExpr.isInvalid()) { | 
|  | Diag(RangeLoc, diag::note_for_range_invalid_iterator) | 
|  | << RangeLoc << 2 << BeginRangeRef.get()->getType() ; | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Build and check *__begin  expression. | 
|  | BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, | 
|  | VK_LValue, ColonLoc); | 
|  | if (BeginRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); | 
|  | if (DerefExpr.isInvalid()) { | 
|  | Diag(RangeLoc, diag::note_for_range_invalid_iterator) | 
|  | << RangeLoc << 1 << BeginRangeRef.get()->getType(); | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Attach  *__begin  as initializer for VD. Don't touch it if we're just | 
|  | // trying to determine whether this would be a valid range. | 
|  | if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { | 
|  | AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); | 
|  | if (LoopVar->isInvalidDecl()) | 
|  | NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't bother to actually allocate the result if we're just trying to | 
|  | // determine whether it would be valid. | 
|  | if (Kind == BFRK_Check) | 
|  | return StmtResult(); | 
|  |  | 
|  | // In OpenMP loop region loop control variable must be private. Perform | 
|  | // analysis of first part (if any). | 
|  | if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) | 
|  | ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); | 
|  |  | 
|  | return new (Context) CXXForRangeStmt( | 
|  | InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), | 
|  | cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), | 
|  | IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, | 
|  | ColonLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach | 
|  | /// statement. | 
|  | StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { | 
|  | if (!S || !B) | 
|  | return StmtError(); | 
|  | ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); | 
|  |  | 
|  | ForStmt->setBody(B); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // Warn when the loop variable is a const reference that creates a copy. | 
|  | // Suggest using the non-reference type for copies.  If a copy can be prevented | 
|  | // suggest the const reference type that would do so. | 
|  | // For instance, given "for (const &Foo : Range)", suggest | 
|  | // "for (const Foo : Range)" to denote a copy is made for the loop.  If | 
|  | // possible, also suggest "for (const &Bar : Range)" if this type prevents | 
|  | // the copy altogether. | 
|  | static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, | 
|  | const VarDecl *VD, | 
|  | QualType RangeInitType) { | 
|  | const Expr *InitExpr = VD->getInit(); | 
|  | if (!InitExpr) | 
|  | return; | 
|  |  | 
|  | QualType VariableType = VD->getType(); | 
|  |  | 
|  | if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) | 
|  | if (!Cleanups->cleanupsHaveSideEffects()) | 
|  | InitExpr = Cleanups->getSubExpr(); | 
|  |  | 
|  | const MaterializeTemporaryExpr *MTE = | 
|  | dyn_cast<MaterializeTemporaryExpr>(InitExpr); | 
|  |  | 
|  | // No copy made. | 
|  | if (!MTE) | 
|  | return; | 
|  |  | 
|  | const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); | 
|  |  | 
|  | // Searching for either UnaryOperator for dereference of a pointer or | 
|  | // CXXOperatorCallExpr for handling iterators. | 
|  | while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { | 
|  | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { | 
|  | E = CCE->getArg(0); | 
|  | } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { | 
|  | const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); | 
|  | E = ME->getBase(); | 
|  | } else { | 
|  | const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); | 
|  | E = MTE->getSubExpr(); | 
|  | } | 
|  | E = E->IgnoreImpCasts(); | 
|  | } | 
|  |  | 
|  | bool ReturnsReference = false; | 
|  | if (isa<UnaryOperator>(E)) { | 
|  | ReturnsReference = true; | 
|  | } else { | 
|  | const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); | 
|  | const FunctionDecl *FD = Call->getDirectCallee(); | 
|  | QualType ReturnType = FD->getReturnType(); | 
|  | ReturnsReference = ReturnType->isReferenceType(); | 
|  | } | 
|  |  | 
|  | if (ReturnsReference) { | 
|  | // Loop variable creates a temporary.  Suggest either to go with | 
|  | // non-reference loop variable to indicate a copy is made, or | 
|  | // the correct time to bind a const reference. | 
|  | SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy) | 
|  | << VD << VariableType << E->getType(); | 
|  | QualType NonReferenceType = VariableType.getNonReferenceType(); | 
|  | NonReferenceType.removeLocalConst(); | 
|  | QualType NewReferenceType = | 
|  | SemaRef.Context.getLValueReferenceType(E->getType().withConst()); | 
|  | SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) | 
|  | << NonReferenceType << NewReferenceType << VD->getSourceRange() | 
|  | << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); | 
|  | } else { | 
|  | // The range always returns a copy, so a temporary is always created. | 
|  | // Suggest removing the reference from the loop variable. | 
|  | SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy) | 
|  | << VD << RangeInitType; | 
|  | QualType NonReferenceType = VariableType.getNonReferenceType(); | 
|  | NonReferenceType.removeLocalConst(); | 
|  | SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) | 
|  | << NonReferenceType << VD->getSourceRange() | 
|  | << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Warns when the loop variable can be changed to a reference type to | 
|  | // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest | 
|  | // "for (const Foo &x : Range)" if this form does not make a copy. | 
|  | static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, | 
|  | const VarDecl *VD) { | 
|  | const Expr *InitExpr = VD->getInit(); | 
|  | if (!InitExpr) | 
|  | return; | 
|  |  | 
|  | QualType VariableType = VD->getType(); | 
|  |  | 
|  | if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { | 
|  | if (!CE->getConstructor()->isCopyConstructor()) | 
|  | return; | 
|  | } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { | 
|  | if (CE->getCastKind() != CK_LValueToRValue) | 
|  | return; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: Determine a maximum size that a POD type can be before a diagnostic | 
|  | // should be emitted.  Also, only ignore POD types with trivial copy | 
|  | // constructors. | 
|  | if (VariableType.isPODType(SemaRef.Context)) | 
|  | return; | 
|  |  | 
|  | // Suggest changing from a const variable to a const reference variable | 
|  | // if doing so will prevent a copy. | 
|  | SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) | 
|  | << VD << VariableType << InitExpr->getType(); | 
|  | SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) | 
|  | << SemaRef.Context.getLValueReferenceType(VariableType) | 
|  | << VD->getSourceRange() | 
|  | << FixItHint::CreateInsertion(VD->getLocation(), "&"); | 
|  | } | 
|  |  | 
|  | /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. | 
|  | /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest | 
|  | ///    using "const foo x" to show that a copy is made | 
|  | /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. | 
|  | ///    Suggest either "const bar x" to keep the copying or "const foo& x" to | 
|  | ///    prevent the copy. | 
|  | /// 3) for (const foo x : foos) where x is constructed from a reference foo. | 
|  | ///    Suggest "const foo &x" to prevent the copy. | 
|  | static void DiagnoseForRangeVariableCopies(Sema &SemaRef, | 
|  | const CXXForRangeStmt *ForStmt) { | 
|  | if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy, | 
|  | ForStmt->getBeginLoc()) && | 
|  | SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy, | 
|  | ForStmt->getBeginLoc()) && | 
|  | SemaRef.Diags.isIgnored(diag::warn_for_range_copy, | 
|  | ForStmt->getBeginLoc())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const VarDecl *VD = ForStmt->getLoopVariable(); | 
|  | if (!VD) | 
|  | return; | 
|  |  | 
|  | QualType VariableType = VD->getType(); | 
|  |  | 
|  | if (VariableType->isIncompleteType()) | 
|  | return; | 
|  |  | 
|  | const Expr *InitExpr = VD->getInit(); | 
|  | if (!InitExpr) | 
|  | return; | 
|  |  | 
|  | if (VariableType->isReferenceType()) { | 
|  | DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, | 
|  | ForStmt->getRangeInit()->getType()); | 
|  | } else if (VariableType.isConstQualified()) { | 
|  | DiagnoseForRangeConstVariableCopies(SemaRef, VD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. | 
|  | /// This is a separate step from ActOnCXXForRangeStmt because analysis of the | 
|  | /// body cannot be performed until after the type of the range variable is | 
|  | /// determined. | 
|  | StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { | 
|  | if (!S || !B) | 
|  | return StmtError(); | 
|  |  | 
|  | if (isa<ObjCForCollectionStmt>(S)) | 
|  | return FinishObjCForCollectionStmt(S, B); | 
|  |  | 
|  | CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); | 
|  | ForStmt->setBody(B); | 
|  |  | 
|  | DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, | 
|  | diag::warn_empty_range_based_for_body); | 
|  |  | 
|  | DiagnoseForRangeVariableCopies(*this, ForStmt); | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, | 
|  | SourceLocation LabelLoc, | 
|  | LabelDecl *TheDecl) { | 
|  | setFunctionHasBranchIntoScope(); | 
|  | TheDecl->markUsed(Context); | 
|  | return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, | 
|  | Expr *E) { | 
|  | // Convert operand to void* | 
|  | if (!E->isTypeDependent()) { | 
|  | QualType ETy = E->getType(); | 
|  | QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); | 
|  | ExprResult ExprRes = E; | 
|  | AssignConvertType ConvTy = | 
|  | CheckSingleAssignmentConstraints(DestTy, ExprRes); | 
|  | if (ExprRes.isInvalid()) | 
|  | return StmtError(); | 
|  | E = ExprRes.get(); | 
|  | if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); | 
|  | if (ExprRes.isInvalid()) | 
|  | return StmtError(); | 
|  | E = ExprRes.get(); | 
|  |  | 
|  | setFunctionHasIndirectGoto(); | 
|  |  | 
|  | return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); | 
|  | } | 
|  |  | 
|  | static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, | 
|  | const Scope &DestScope) { | 
|  | if (!S.CurrentSEHFinally.empty() && | 
|  | DestScope.Contains(*S.CurrentSEHFinally.back())) { | 
|  | S.Diag(Loc, diag::warn_jump_out_of_seh_finally); | 
|  | } | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { | 
|  | Scope *S = CurScope->getContinueParent(); | 
|  | if (!S) { | 
|  | // C99 6.8.6.2p1: A break shall appear only in or as a loop body. | 
|  | return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); | 
|  | } | 
|  | CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); | 
|  |  | 
|  | return new (Context) ContinueStmt(ContinueLoc); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { | 
|  | Scope *S = CurScope->getBreakParent(); | 
|  | if (!S) { | 
|  | // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. | 
|  | return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); | 
|  | } | 
|  | if (S->isOpenMPLoopScope()) | 
|  | return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) | 
|  | << "break"); | 
|  | CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); | 
|  |  | 
|  | return new (Context) BreakStmt(BreakLoc); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given expression is a candidate for | 
|  | /// copy elision in either a return statement or a throw expression. | 
|  | /// | 
|  | /// \param ReturnType If we're determining the copy elision candidate for | 
|  | /// a return statement, this is the return type of the function. If we're | 
|  | /// determining the copy elision candidate for a throw expression, this will | 
|  | /// be a NULL type. | 
|  | /// | 
|  | /// \param E The expression being returned from the function or block, or | 
|  | /// being thrown. | 
|  | /// | 
|  | /// \param CESK Whether we allow function parameters or | 
|  | /// id-expressions that could be moved out of the function to be considered NRVO | 
|  | /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to | 
|  | /// determine whether we should try to move as part of a return or throw (which | 
|  | /// does allow function parameters). | 
|  | /// | 
|  | /// \returns The NRVO candidate variable, if the return statement may use the | 
|  | /// NRVO, or NULL if there is no such candidate. | 
|  | VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E, | 
|  | CopyElisionSemanticsKind CESK) { | 
|  | // - in a return statement in a function [where] ... | 
|  | // ... the expression is the name of a non-volatile automatic object ... | 
|  | DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); | 
|  | if (!DR || DR->refersToEnclosingVariableOrCapture()) | 
|  | return nullptr; | 
|  | VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); | 
|  | if (!VD) | 
|  | return nullptr; | 
|  |  | 
|  | if (isCopyElisionCandidate(ReturnType, VD, CESK)) | 
|  | return VD; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, | 
|  | CopyElisionSemanticsKind CESK) { | 
|  | QualType VDType = VD->getType(); | 
|  | // - in a return statement in a function with ... | 
|  | // ... a class return type ... | 
|  | if (!ReturnType.isNull() && !ReturnType->isDependentType()) { | 
|  | if (!ReturnType->isRecordType()) | 
|  | return false; | 
|  | // ... the same cv-unqualified type as the function return type ... | 
|  | // When considering moving this expression out, allow dissimilar types. | 
|  | if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(ReturnType, VDType)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ...object (other than a function or catch-clause parameter)... | 
|  | if (VD->getKind() != Decl::Var && | 
|  | !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar)) | 
|  | return false; | 
|  | if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable()) | 
|  | return false; | 
|  |  | 
|  | // ...automatic... | 
|  | if (!VD->hasLocalStorage()) return false; | 
|  |  | 
|  | // Return false if VD is a __block variable. We don't want to implicitly move | 
|  | // out of a __block variable during a return because we cannot assume the | 
|  | // variable will no longer be used. | 
|  | if (VD->hasAttr<BlocksAttr>()) return false; | 
|  |  | 
|  | if (CESK & CES_AllowDifferentTypes) | 
|  | return true; | 
|  |  | 
|  | // ...non-volatile... | 
|  | if (VD->getType().isVolatileQualified()) return false; | 
|  |  | 
|  | // Variables with higher required alignment than their type's ABI | 
|  | // alignment cannot use NRVO. | 
|  | if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() && | 
|  | Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to perform the initialization of a potentially-movable value, | 
|  | /// which is the operand to a return or throw statement. | 
|  | /// | 
|  | /// This routine implements C++14 [class.copy]p32, which attempts to treat | 
|  | /// returned lvalues as rvalues in certain cases (to prefer move construction), | 
|  | /// then falls back to treating them as lvalues if that failed. | 
|  | /// | 
|  | /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject | 
|  | /// resolutions that find non-constructors, such as derived-to-base conversions | 
|  | /// or `operator T()&&` member functions. If false, do consider such | 
|  | /// conversion sequences. | 
|  | /// | 
|  | /// \param Res We will fill this in if move-initialization was possible. | 
|  | /// If move-initialization is not possible, such that we must fall back to | 
|  | /// treating the operand as an lvalue, we will leave Res in its original | 
|  | /// invalid state. | 
|  | static void TryMoveInitialization(Sema& S, | 
|  | const InitializedEntity &Entity, | 
|  | const VarDecl *NRVOCandidate, | 
|  | QualType ResultType, | 
|  | Expr *&Value, | 
|  | bool ConvertingConstructorsOnly, | 
|  | ExprResult &Res) { | 
|  | ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), | 
|  | CK_NoOp, Value, VK_XValue); | 
|  |  | 
|  | Expr *InitExpr = &AsRvalue; | 
|  |  | 
|  | InitializationKind Kind = InitializationKind::CreateCopy( | 
|  | Value->getBeginLoc(), Value->getBeginLoc()); | 
|  |  | 
|  | InitializationSequence Seq(S, Entity, Kind, InitExpr); | 
|  |  | 
|  | if (!Seq) | 
|  | return; | 
|  |  | 
|  | for (const InitializationSequence::Step &Step : Seq.steps()) { | 
|  | if (Step.Kind != InitializationSequence::SK_ConstructorInitialization && | 
|  | Step.Kind != InitializationSequence::SK_UserConversion) | 
|  | continue; | 
|  |  | 
|  | FunctionDecl *FD = Step.Function.Function; | 
|  | if (ConvertingConstructorsOnly) { | 
|  | if (isa<CXXConstructorDecl>(FD)) { | 
|  | // C++14 [class.copy]p32: | 
|  | // [...] If the first overload resolution fails or was not performed, | 
|  | // or if the type of the first parameter of the selected constructor | 
|  | // is not an rvalue reference to the object's type (possibly | 
|  | // cv-qualified), overload resolution is performed again, considering | 
|  | // the object as an lvalue. | 
|  | const RValueReferenceType *RRefType = | 
|  | FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>(); | 
|  | if (!RRefType) | 
|  | break; | 
|  | if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(), | 
|  | NRVOCandidate->getType())) | 
|  | break; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | if (isa<CXXConstructorDecl>(FD)) { | 
|  | // Check that overload resolution selected a constructor taking an | 
|  | // rvalue reference. If it selected an lvalue reference, then we | 
|  | // didn't need to cast this thing to an rvalue in the first place. | 
|  | if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType())) | 
|  | break; | 
|  | } else if (isa<CXXMethodDecl>(FD)) { | 
|  | // Check that overload resolution selected a conversion operator | 
|  | // taking an rvalue reference. | 
|  | if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue) | 
|  | break; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote "AsRvalue" to the heap, since we now need this | 
|  | // expression node to persist. | 
|  | Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp, | 
|  | Value, nullptr, VK_XValue); | 
|  |  | 
|  | // Complete type-checking the initialization of the return type | 
|  | // using the constructor we found. | 
|  | Res = Seq.Perform(S, Entity, Kind, Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Perform the initialization of a potentially-movable value, which | 
|  | /// is the result of return value. | 
|  | /// | 
|  | /// This routine implements C++14 [class.copy]p32, which attempts to treat | 
|  | /// returned lvalues as rvalues in certain cases (to prefer move construction), | 
|  | /// then falls back to treating them as lvalues if that failed. | 
|  | ExprResult | 
|  | Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity, | 
|  | const VarDecl *NRVOCandidate, | 
|  | QualType ResultType, | 
|  | Expr *Value, | 
|  | bool AllowNRVO) { | 
|  | // C++14 [class.copy]p32: | 
|  | // When the criteria for elision of a copy/move operation are met, but not for | 
|  | // an exception-declaration, and the object to be copied is designated by an | 
|  | // lvalue, or when the expression in a return statement is a (possibly | 
|  | // parenthesized) id-expression that names an object with automatic storage | 
|  | // duration declared in the body or parameter-declaration-clause of the | 
|  | // innermost enclosing function or lambda-expression, overload resolution to | 
|  | // select the constructor for the copy is first performed as if the object | 
|  | // were designated by an rvalue. | 
|  | ExprResult Res = ExprError(); | 
|  |  | 
|  | if (AllowNRVO) { | 
|  | bool AffectedByCWG1579 = false; | 
|  |  | 
|  | if (!NRVOCandidate) { | 
|  | NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default); | 
|  | if (NRVOCandidate && | 
|  | !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11, | 
|  | Value->getExprLoc())) { | 
|  | const VarDecl *NRVOCandidateInCXX11 = | 
|  | getCopyElisionCandidate(ResultType, Value, CES_FormerDefault); | 
|  | AffectedByCWG1579 = (!NRVOCandidateInCXX11); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NRVOCandidate) { | 
|  | TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value, | 
|  | true, Res); | 
|  | } | 
|  |  | 
|  | if (!Res.isInvalid() && AffectedByCWG1579) { | 
|  | QualType QT = NRVOCandidate->getType(); | 
|  | if (QT.getNonReferenceType() | 
|  | .getUnqualifiedType() | 
|  | .isTriviallyCopyableType(Context)) { | 
|  | // Adding 'std::move' around a trivially copyable variable is probably | 
|  | // pointless. Don't suggest it. | 
|  | } else { | 
|  | // Common cases for this are returning unique_ptr<Derived> from a | 
|  | // function of return type unique_ptr<Base>, or returning T from a | 
|  | // function of return type Expected<T>. This is totally fine in a | 
|  | // post-CWG1579 world, but was not fine before. | 
|  | assert(!ResultType.isNull()); | 
|  | SmallString<32> Str; | 
|  | Str += "std::move("; | 
|  | Str += NRVOCandidate->getDeclName().getAsString(); | 
|  | Str += ")"; | 
|  | Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11) | 
|  | << Value->getSourceRange() | 
|  | << NRVOCandidate->getDeclName() << ResultType << QT; | 
|  | Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11) | 
|  | << FixItHint::CreateReplacement(Value->getSourceRange(), Str); | 
|  | } | 
|  | } else if (Res.isInvalid() && | 
|  | !getDiagnostics().isIgnored(diag::warn_return_std_move, | 
|  | Value->getExprLoc())) { | 
|  | const VarDecl *FakeNRVOCandidate = | 
|  | getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove); | 
|  | if (FakeNRVOCandidate) { | 
|  | QualType QT = FakeNRVOCandidate->getType(); | 
|  | if (QT->isLValueReferenceType()) { | 
|  | // Adding 'std::move' around an lvalue reference variable's name is | 
|  | // dangerous. Don't suggest it. | 
|  | } else if (QT.getNonReferenceType() | 
|  | .getUnqualifiedType() | 
|  | .isTriviallyCopyableType(Context)) { | 
|  | // Adding 'std::move' around a trivially copyable variable is probably | 
|  | // pointless. Don't suggest it. | 
|  | } else { | 
|  | ExprResult FakeRes = ExprError(); | 
|  | Expr *FakeValue = Value; | 
|  | TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType, | 
|  | FakeValue, false, FakeRes); | 
|  | if (!FakeRes.isInvalid()) { | 
|  | bool IsThrow = | 
|  | (Entity.getKind() == InitializedEntity::EK_Exception); | 
|  | SmallString<32> Str; | 
|  | Str += "std::move("; | 
|  | Str += FakeNRVOCandidate->getDeclName().getAsString(); | 
|  | Str += ")"; | 
|  | Diag(Value->getExprLoc(), diag::warn_return_std_move) | 
|  | << Value->getSourceRange() | 
|  | << FakeNRVOCandidate->getDeclName() << IsThrow; | 
|  | Diag(Value->getExprLoc(), diag::note_add_std_move) | 
|  | << FixItHint::CreateReplacement(Value->getSourceRange(), Str); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Either we didn't meet the criteria for treating an lvalue as an rvalue, | 
|  | // above, or overload resolution failed. Either way, we need to try | 
|  | // (again) now with the return value expression as written. | 
|  | if (Res.isInvalid()) | 
|  | Res = PerformCopyInitialization(Entity, SourceLocation(), Value); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// Determine whether the declared return type of the specified function | 
|  | /// contains 'auto'. | 
|  | static bool hasDeducedReturnType(FunctionDecl *FD) { | 
|  | const FunctionProtoType *FPT = | 
|  | FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); | 
|  | return FPT->getReturnType()->isUndeducedType(); | 
|  | } | 
|  |  | 
|  | /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements | 
|  | /// for capturing scopes. | 
|  | /// | 
|  | StmtResult | 
|  | Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { | 
|  | // If this is the first return we've seen, infer the return type. | 
|  | // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. | 
|  | CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); | 
|  | QualType FnRetType = CurCap->ReturnType; | 
|  | LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); | 
|  | bool HasDeducedReturnType = | 
|  | CurLambda && hasDeducedReturnType(CurLambda->CallOperator); | 
|  |  | 
|  | if (ExprEvalContexts.back().Context == | 
|  | ExpressionEvaluationContext::DiscardedStatement && | 
|  | (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { | 
|  | if (RetValExp) { | 
|  | ExprResult ER = | 
|  | ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = ER.get(); | 
|  | } | 
|  | return ReturnStmt::Create(Context, ReturnLoc, RetValExp, | 
|  | /* NRVOCandidate=*/nullptr); | 
|  | } | 
|  |  | 
|  | if (HasDeducedReturnType) { | 
|  | // In C++1y, the return type may involve 'auto'. | 
|  | // FIXME: Blocks might have a return type of 'auto' explicitly specified. | 
|  | FunctionDecl *FD = CurLambda->CallOperator; | 
|  | if (CurCap->ReturnType.isNull()) | 
|  | CurCap->ReturnType = FD->getReturnType(); | 
|  |  | 
|  | AutoType *AT = CurCap->ReturnType->getContainedAutoType(); | 
|  | assert(AT && "lost auto type from lambda return type"); | 
|  | if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { | 
|  | FD->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } | 
|  | CurCap->ReturnType = FnRetType = FD->getReturnType(); | 
|  | } else if (CurCap->HasImplicitReturnType) { | 
|  | // For blocks/lambdas with implicit return types, we check each return | 
|  | // statement individually, and deduce the common return type when the block | 
|  | // or lambda is completed. | 
|  | // FIXME: Fold this into the 'auto' codepath above. | 
|  | if (RetValExp && !isa<InitListExpr>(RetValExp)) { | 
|  | ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); | 
|  | if (Result.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = Result.get(); | 
|  |  | 
|  | // DR1048: even prior to C++14, we should use the 'auto' deduction rules | 
|  | // when deducing a return type for a lambda-expression (or by extension | 
|  | // for a block). These rules differ from the stated C++11 rules only in | 
|  | // that they remove top-level cv-qualifiers. | 
|  | if (!CurContext->isDependentContext()) | 
|  | FnRetType = RetValExp->getType().getUnqualifiedType(); | 
|  | else | 
|  | FnRetType = CurCap->ReturnType = Context.DependentTy; | 
|  | } else { | 
|  | if (RetValExp) { | 
|  | // C++11 [expr.lambda.prim]p4 bans inferring the result from an | 
|  | // initializer list, because it is not an expression (even | 
|  | // though we represent it as one). We still deduce 'void'. | 
|  | Diag(ReturnLoc, diag::err_lambda_return_init_list) | 
|  | << RetValExp->getSourceRange(); | 
|  | } | 
|  |  | 
|  | FnRetType = Context.VoidTy; | 
|  | } | 
|  |  | 
|  | // Although we'll properly infer the type of the block once it's completed, | 
|  | // make sure we provide a return type now for better error recovery. | 
|  | if (CurCap->ReturnType.isNull()) | 
|  | CurCap->ReturnType = FnRetType; | 
|  | } | 
|  | assert(!FnRetType.isNull()); | 
|  |  | 
|  | if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { | 
|  | if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { | 
|  | Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); | 
|  | return StmtError(); | 
|  | } | 
|  | } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { | 
|  | Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); | 
|  | return StmtError(); | 
|  | } else { | 
|  | assert(CurLambda && "unknown kind of captured scope"); | 
|  | if (CurLambda->CallOperator->getType() | 
|  | ->castAs<FunctionType>() | 
|  | ->getNoReturnAttr()) { | 
|  | Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); | 
|  | return StmtError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, verify that this result type matches the previous one.  We are | 
|  | // pickier with blocks than for normal functions because we don't have GCC | 
|  | // compatibility to worry about here. | 
|  | const VarDecl *NRVOCandidate = nullptr; | 
|  | if (FnRetType->isDependentType()) { | 
|  | // Delay processing for now.  TODO: there are lots of dependent | 
|  | // types we can conclusively prove aren't void. | 
|  | } else if (FnRetType->isVoidType()) { | 
|  | if (RetValExp && !isa<InitListExpr>(RetValExp) && | 
|  | !(getLangOpts().CPlusPlus && | 
|  | (RetValExp->isTypeDependent() || | 
|  | RetValExp->getType()->isVoidType()))) { | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | RetValExp->getType()->isVoidType()) | 
|  | Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; | 
|  | else { | 
|  | Diag(ReturnLoc, diag::err_return_block_has_expr); | 
|  | RetValExp = nullptr; | 
|  | } | 
|  | } | 
|  | } else if (!RetValExp) { | 
|  | return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); | 
|  | } else if (!RetValExp->isTypeDependent()) { | 
|  | // we have a non-void block with an expression, continue checking | 
|  |  | 
|  | // C99 6.8.6.4p3(136): The return statement is not an assignment. The | 
|  | // overlap restriction of subclause 6.5.16.1 does not apply to the case of | 
|  | // function return. | 
|  |  | 
|  | // In C++ the return statement is handled via a copy initialization. | 
|  | // the C version of which boils down to CheckSingleAssignmentConstraints. | 
|  | NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, | 
|  | FnRetType, | 
|  | NRVOCandidate != nullptr); | 
|  | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, | 
|  | FnRetType, RetValExp); | 
|  | if (Res.isInvalid()) { | 
|  | // FIXME: Cleanup temporaries here, anyway? | 
|  | return StmtError(); | 
|  | } | 
|  | RetValExp = Res.get(); | 
|  | CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); | 
|  | } else { | 
|  | NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); | 
|  | } | 
|  |  | 
|  | if (RetValExp) { | 
|  | ExprResult ER = | 
|  | ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = ER.get(); | 
|  | } | 
|  | auto *Result = | 
|  | ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); | 
|  |  | 
|  | // If we need to check for the named return value optimization, | 
|  | // or if we need to infer the return type, | 
|  | // save the return statement in our scope for later processing. | 
|  | if (CurCap->HasImplicitReturnType || NRVOCandidate) | 
|  | FunctionScopes.back()->Returns.push_back(Result); | 
|  |  | 
|  | if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) | 
|  | FunctionScopes.back()->FirstReturnLoc = ReturnLoc; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Marks all typedefs in all local classes in a type referenced. | 
|  | /// | 
|  | /// In a function like | 
|  | /// auto f() { | 
|  | ///   struct S { typedef int a; }; | 
|  | ///   return S(); | 
|  | /// } | 
|  | /// | 
|  | /// the local type escapes and could be referenced in some TUs but not in | 
|  | /// others. Pretend that all local typedefs are always referenced, to not warn | 
|  | /// on this. This isn't necessary if f has internal linkage, or the typedef | 
|  | /// is private. | 
|  | class LocalTypedefNameReferencer | 
|  | : public RecursiveASTVisitor<LocalTypedefNameReferencer> { | 
|  | public: | 
|  | LocalTypedefNameReferencer(Sema &S) : S(S) {} | 
|  | bool VisitRecordType(const RecordType *RT); | 
|  | private: | 
|  | Sema &S; | 
|  | }; | 
|  | bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { | 
|  | auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || | 
|  | R->isDependentType()) | 
|  | return true; | 
|  | for (auto *TmpD : R->decls()) | 
|  | if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) | 
|  | if (T->getAccess() != AS_private || R->hasFriends()) | 
|  | S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { | 
|  | return FD->getTypeSourceInfo() | 
|  | ->getTypeLoc() | 
|  | .getAsAdjusted<FunctionProtoTypeLoc>() | 
|  | .getReturnLoc(); | 
|  | } | 
|  |  | 
|  | /// Deduce the return type for a function from a returned expression, per | 
|  | /// C++1y [dcl.spec.auto]p6. | 
|  | bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, | 
|  | SourceLocation ReturnLoc, | 
|  | Expr *&RetExpr, | 
|  | AutoType *AT) { | 
|  | // If this is the conversion function for a lambda, we choose to deduce it | 
|  | // type from the corresponding call operator, not from the synthesized return | 
|  | // statement within it. See Sema::DeduceReturnType. | 
|  | if (isLambdaConversionOperator(FD)) | 
|  | return false; | 
|  |  | 
|  | TypeLoc OrigResultType = getReturnTypeLoc(FD); | 
|  | QualType Deduced; | 
|  |  | 
|  | if (RetExpr && isa<InitListExpr>(RetExpr)) { | 
|  | //  If the deduction is for a return statement and the initializer is | 
|  | //  a braced-init-list, the program is ill-formed. | 
|  | Diag(RetExpr->getExprLoc(), | 
|  | getCurLambda() ? diag::err_lambda_return_init_list | 
|  | : diag::err_auto_fn_return_init_list) | 
|  | << RetExpr->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FD->isDependentContext()) { | 
|  | // C++1y [dcl.spec.auto]p12: | 
|  | //   Return type deduction [...] occurs when the definition is | 
|  | //   instantiated even if the function body contains a return | 
|  | //   statement with a non-type-dependent operand. | 
|  | assert(AT->isDeduced() && "should have deduced to dependent type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RetExpr) { | 
|  | //  Otherwise, [...] deduce a value for U using the rules of template | 
|  | //  argument deduction. | 
|  | DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); | 
|  |  | 
|  | if (DAR == DAR_Failed && !FD->isInvalidDecl()) | 
|  | Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) | 
|  | << OrigResultType.getType() << RetExpr->getType(); | 
|  |  | 
|  | if (DAR != DAR_Succeeded) | 
|  | return true; | 
|  |  | 
|  | // If a local type is part of the returned type, mark its fields as | 
|  | // referenced. | 
|  | LocalTypedefNameReferencer Referencer(*this); | 
|  | Referencer.TraverseType(RetExpr->getType()); | 
|  | } else { | 
|  | //  In the case of a return with no operand, the initializer is considered | 
|  | //  to be void(). | 
|  | // | 
|  | // Deduction here can only succeed if the return type is exactly 'cv auto' | 
|  | // or 'decltype(auto)', so just check for that case directly. | 
|  | if (!OrigResultType.getType()->getAs<AutoType>()) { | 
|  | Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) | 
|  | << OrigResultType.getType(); | 
|  | return true; | 
|  | } | 
|  | // We always deduce U = void in this case. | 
|  | Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); | 
|  | if (Deduced.isNull()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CUDA: Kernel function must have 'void' return type. | 
|  | if (getLangOpts().CUDA) | 
|  | if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) { | 
|  | Diag(FD->getLocation(), diag::err_kern_type_not_void_return) | 
|  | << FD->getType() << FD->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //  If a function with a declared return type that contains a placeholder type | 
|  | //  has multiple return statements, the return type is deduced for each return | 
|  | //  statement. [...] if the type deduced is not the same in each deduction, | 
|  | //  the program is ill-formed. | 
|  | QualType DeducedT = AT->getDeducedType(); | 
|  | if (!DeducedT.isNull() && !FD->isInvalidDecl()) { | 
|  | AutoType *NewAT = Deduced->getContainedAutoType(); | 
|  | // It is possible that NewAT->getDeducedType() is null. When that happens, | 
|  | // we should not crash, instead we ignore this deduction. | 
|  | if (NewAT->getDeducedType().isNull()) | 
|  | return false; | 
|  |  | 
|  | CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( | 
|  | DeducedT); | 
|  | CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( | 
|  | NewAT->getDeducedType()); | 
|  | if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { | 
|  | const LambdaScopeInfo *LambdaSI = getCurLambda(); | 
|  | if (LambdaSI && LambdaSI->HasImplicitReturnType) { | 
|  | Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) | 
|  | << NewAT->getDeducedType() << DeducedT | 
|  | << true /*IsLambda*/; | 
|  | } else { | 
|  | Diag(ReturnLoc, diag::err_auto_fn_different_deductions) | 
|  | << (AT->isDecltypeAuto() ? 1 : 0) | 
|  | << NewAT->getDeducedType() << DeducedT; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } else if (!FD->isInvalidDecl()) { | 
|  | // Update all declarations of the function to have the deduced return type. | 
|  | Context.adjustDeducedFunctionResultType(FD, Deduced); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, | 
|  | Scope *CurScope) { | 
|  | // Correct typos, in case the containing function returns 'auto' and | 
|  | // RetValExp should determine the deduced type. | 
|  | ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp); | 
|  | if (RetVal.isInvalid()) | 
|  | return StmtError(); | 
|  | StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get()); | 
|  | if (R.isInvalid() || ExprEvalContexts.back().Context == | 
|  | ExpressionEvaluationContext::DiscardedStatement) | 
|  | return R; | 
|  |  | 
|  | if (VarDecl *VD = | 
|  | const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { | 
|  | CurScope->addNRVOCandidate(VD); | 
|  | } else { | 
|  | CurScope->setNoNRVO(); | 
|  | } | 
|  |  | 
|  | CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { | 
|  | // Check for unexpanded parameter packs. | 
|  | if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) | 
|  | return StmtError(); | 
|  |  | 
|  | if (isa<CapturingScopeInfo>(getCurFunction())) | 
|  | return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp); | 
|  |  | 
|  | QualType FnRetType; | 
|  | QualType RelatedRetType; | 
|  | const AttrVec *Attrs = nullptr; | 
|  | bool isObjCMethod = false; | 
|  |  | 
|  | if (const FunctionDecl *FD = getCurFunctionDecl()) { | 
|  | FnRetType = FD->getReturnType(); | 
|  | if (FD->hasAttrs()) | 
|  | Attrs = &FD->getAttrs(); | 
|  | if (FD->isNoReturn()) | 
|  | Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) | 
|  | << FD->getDeclName(); | 
|  | if (FD->isMain() && RetValExp) | 
|  | if (isa<CXXBoolLiteralExpr>(RetValExp)) | 
|  | Diag(ReturnLoc, diag::warn_main_returns_bool_literal) | 
|  | << RetValExp->getSourceRange(); | 
|  | } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { | 
|  | FnRetType = MD->getReturnType(); | 
|  | isObjCMethod = true; | 
|  | if (MD->hasAttrs()) | 
|  | Attrs = &MD->getAttrs(); | 
|  | if (MD->hasRelatedResultType() && MD->getClassInterface()) { | 
|  | // In the implementation of a method with a related return type, the | 
|  | // type used to type-check the validity of return statements within the | 
|  | // method body is a pointer to the type of the class being implemented. | 
|  | RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); | 
|  | RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); | 
|  | } | 
|  | } else // If we don't have a function/method context, bail. | 
|  | return StmtError(); | 
|  |  | 
|  | // C++1z: discarded return statements are not considered when deducing a | 
|  | // return type. | 
|  | if (ExprEvalContexts.back().Context == | 
|  | ExpressionEvaluationContext::DiscardedStatement && | 
|  | FnRetType->getContainedAutoType()) { | 
|  | if (RetValExp) { | 
|  | ExprResult ER = | 
|  | ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = ER.get(); | 
|  | } | 
|  | return ReturnStmt::Create(Context, ReturnLoc, RetValExp, | 
|  | /* NRVOCandidate=*/nullptr); | 
|  | } | 
|  |  | 
|  | // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing | 
|  | // deduction. | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | if (AutoType *AT = FnRetType->getContainedAutoType()) { | 
|  | FunctionDecl *FD = cast<FunctionDecl>(CurContext); | 
|  | if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { | 
|  | FD->setInvalidDecl(); | 
|  | return StmtError(); | 
|  | } else { | 
|  | FnRetType = FD->getReturnType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasDependentReturnType = FnRetType->isDependentType(); | 
|  |  | 
|  | ReturnStmt *Result = nullptr; | 
|  | if (FnRetType->isVoidType()) { | 
|  | if (RetValExp) { | 
|  | if (isa<InitListExpr>(RetValExp)) { | 
|  | // We simply never allow init lists as the return value of void | 
|  | // functions. This is compatible because this was never allowed before, | 
|  | // so there's no legacy code to deal with. | 
|  | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); | 
|  | int FunctionKind = 0; | 
|  | if (isa<ObjCMethodDecl>(CurDecl)) | 
|  | FunctionKind = 1; | 
|  | else if (isa<CXXConstructorDecl>(CurDecl)) | 
|  | FunctionKind = 2; | 
|  | else if (isa<CXXDestructorDecl>(CurDecl)) | 
|  | FunctionKind = 3; | 
|  |  | 
|  | Diag(ReturnLoc, diag::err_return_init_list) | 
|  | << CurDecl->getDeclName() << FunctionKind | 
|  | << RetValExp->getSourceRange(); | 
|  |  | 
|  | // Drop the expression. | 
|  | RetValExp = nullptr; | 
|  | } else if (!RetValExp->isTypeDependent()) { | 
|  | // C99 6.8.6.4p1 (ext_ since GCC warns) | 
|  | unsigned D = diag::ext_return_has_expr; | 
|  | if (RetValExp->getType()->isVoidType()) { | 
|  | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); | 
|  | if (isa<CXXConstructorDecl>(CurDecl) || | 
|  | isa<CXXDestructorDecl>(CurDecl)) | 
|  | D = diag::err_ctor_dtor_returns_void; | 
|  | else | 
|  | D = diag::ext_return_has_void_expr; | 
|  | } | 
|  | else { | 
|  | ExprResult Result = RetValExp; | 
|  | Result = IgnoredValueConversions(Result.get()); | 
|  | if (Result.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = Result.get(); | 
|  | RetValExp = ImpCastExprToType(RetValExp, | 
|  | Context.VoidTy, CK_ToVoid).get(); | 
|  | } | 
|  | // return of void in constructor/destructor is illegal in C++. | 
|  | if (D == diag::err_ctor_dtor_returns_void) { | 
|  | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); | 
|  | Diag(ReturnLoc, D) | 
|  | << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl) | 
|  | << RetValExp->getSourceRange(); | 
|  | } | 
|  | // return (some void expression); is legal in C++. | 
|  | else if (D != diag::ext_return_has_void_expr || | 
|  | !getLangOpts().CPlusPlus) { | 
|  | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); | 
|  |  | 
|  | int FunctionKind = 0; | 
|  | if (isa<ObjCMethodDecl>(CurDecl)) | 
|  | FunctionKind = 1; | 
|  | else if (isa<CXXConstructorDecl>(CurDecl)) | 
|  | FunctionKind = 2; | 
|  | else if (isa<CXXDestructorDecl>(CurDecl)) | 
|  | FunctionKind = 3; | 
|  |  | 
|  | Diag(ReturnLoc, D) | 
|  | << CurDecl->getDeclName() << FunctionKind | 
|  | << RetValExp->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RetValExp) { | 
|  | ExprResult ER = | 
|  | ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = ER.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, | 
|  | /* NRVOCandidate=*/nullptr); | 
|  | } else if (!RetValExp && !HasDependentReturnType) { | 
|  | FunctionDecl *FD = getCurFunctionDecl(); | 
|  |  | 
|  | unsigned DiagID; | 
|  | if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { | 
|  | // C++11 [stmt.return]p2 | 
|  | DiagID = diag::err_constexpr_return_missing_expr; | 
|  | FD->setInvalidDecl(); | 
|  | } else if (getLangOpts().C99) { | 
|  | // C99 6.8.6.4p1 (ext_ since GCC warns) | 
|  | DiagID = diag::ext_return_missing_expr; | 
|  | } else { | 
|  | // C90 6.6.6.4p4 | 
|  | DiagID = diag::warn_return_missing_expr; | 
|  | } | 
|  |  | 
|  | if (FD) | 
|  | Diag(ReturnLoc, DiagID) | 
|  | << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval(); | 
|  | else | 
|  | Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; | 
|  |  | 
|  | Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, | 
|  | /* NRVOCandidate=*/nullptr); | 
|  | } else { | 
|  | assert(RetValExp || HasDependentReturnType); | 
|  | const VarDecl *NRVOCandidate = nullptr; | 
|  |  | 
|  | QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; | 
|  |  | 
|  | // C99 6.8.6.4p3(136): The return statement is not an assignment. The | 
|  | // overlap restriction of subclause 6.5.16.1 does not apply to the case of | 
|  | // function return. | 
|  |  | 
|  | // In C++ the return statement is handled via a copy initialization, | 
|  | // the C version of which boils down to CheckSingleAssignmentConstraints. | 
|  | if (RetValExp) | 
|  | NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); | 
|  | if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { | 
|  | // we have a non-void function with an expression, continue checking | 
|  | InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, | 
|  | RetType, | 
|  | NRVOCandidate != nullptr); | 
|  | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, | 
|  | RetType, RetValExp); | 
|  | if (Res.isInvalid()) { | 
|  | // FIXME: Clean up temporaries here anyway? | 
|  | return StmtError(); | 
|  | } | 
|  | RetValExp = Res.getAs<Expr>(); | 
|  |  | 
|  | // If we have a related result type, we need to implicitly | 
|  | // convert back to the formal result type.  We can't pretend to | 
|  | // initialize the result again --- we might end double-retaining | 
|  | // --- so instead we initialize a notional temporary. | 
|  | if (!RelatedRetType.isNull()) { | 
|  | Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), | 
|  | FnRetType); | 
|  | Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); | 
|  | if (Res.isInvalid()) { | 
|  | // FIXME: Clean up temporaries here anyway? | 
|  | return StmtError(); | 
|  | } | 
|  | RetValExp = Res.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, | 
|  | getCurFunctionDecl()); | 
|  | } | 
|  |  | 
|  | if (RetValExp) { | 
|  | ExprResult ER = | 
|  | ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | RetValExp = ER.get(); | 
|  | } | 
|  | Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); | 
|  | } | 
|  |  | 
|  | // If we need to check for the named return value optimization, save the | 
|  | // return statement in our scope for later processing. | 
|  | if (Result->getNRVOCandidate()) | 
|  | FunctionScopes.back()->Returns.push_back(Result); | 
|  |  | 
|  | if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) | 
|  | FunctionScopes.back()->FirstReturnLoc = ReturnLoc; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, | 
|  | SourceLocation RParen, Decl *Parm, | 
|  | Stmt *Body) { | 
|  | VarDecl *Var = cast_or_null<VarDecl>(Parm); | 
|  | if (Var && Var->isInvalidDecl()) | 
|  | return StmtError(); | 
|  |  | 
|  | return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { | 
|  | return new (Context) ObjCAtFinallyStmt(AtLoc, Body); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, | 
|  | MultiStmtArg CatchStmts, Stmt *Finally) { | 
|  | if (!getLangOpts().ObjCExceptions) | 
|  | Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; | 
|  |  | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | unsigned NumCatchStmts = CatchStmts.size(); | 
|  | return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), | 
|  | NumCatchStmts, Finally); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { | 
|  | if (Throw) { | 
|  | ExprResult Result = DefaultLvalueConversion(Throw); | 
|  | if (Result.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false); | 
|  | if (Result.isInvalid()) | 
|  | return StmtError(); | 
|  | Throw = Result.get(); | 
|  |  | 
|  | QualType ThrowType = Throw->getType(); | 
|  | // Make sure the expression type is an ObjC pointer or "void *". | 
|  | if (!ThrowType->isDependentType() && | 
|  | !ThrowType->isObjCObjectPointerType()) { | 
|  | const PointerType *PT = ThrowType->getAs<PointerType>(); | 
|  | if (!PT || !PT->getPointeeType()->isVoidType()) | 
|  | return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) | 
|  | << Throw->getType() << Throw->getSourceRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) ObjCAtThrowStmt(AtLoc, Throw); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, | 
|  | Scope *CurScope) { | 
|  | if (!getLangOpts().ObjCExceptions) | 
|  | Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; | 
|  |  | 
|  | if (!Throw) { | 
|  | // @throw without an expression designates a rethrow (which must occur | 
|  | // in the context of an @catch clause). | 
|  | Scope *AtCatchParent = CurScope; | 
|  | while (AtCatchParent && !AtCatchParent->isAtCatchScope()) | 
|  | AtCatchParent = AtCatchParent->getParent(); | 
|  | if (!AtCatchParent) | 
|  | return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); | 
|  | } | 
|  | return BuildObjCAtThrowStmt(AtLoc, Throw); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { | 
|  | ExprResult result = DefaultLvalueConversion(operand); | 
|  | if (result.isInvalid()) | 
|  | return ExprError(); | 
|  | operand = result.get(); | 
|  |  | 
|  | // Make sure the expression type is an ObjC pointer or "void *". | 
|  | QualType type = operand->getType(); | 
|  | if (!type->isDependentType() && | 
|  | !type->isObjCObjectPointerType()) { | 
|  | const PointerType *pointerType = type->getAs<PointerType>(); | 
|  | if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (RequireCompleteType(atLoc, type, | 
|  | diag::err_incomplete_receiver_type)) | 
|  | return Diag(atLoc, diag::err_objc_synchronized_expects_object) | 
|  | << type << operand->getSourceRange(); | 
|  |  | 
|  | ExprResult result = PerformContextuallyConvertToObjCPointer(operand); | 
|  | if (result.isInvalid()) | 
|  | return ExprError(); | 
|  | if (!result.isUsable()) | 
|  | return Diag(atLoc, diag::err_objc_synchronized_expects_object) | 
|  | << type << operand->getSourceRange(); | 
|  |  | 
|  | operand = result.get(); | 
|  | } else { | 
|  | return Diag(atLoc, diag::err_objc_synchronized_expects_object) | 
|  | << type << operand->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The operand to @synchronized is a full-expression. | 
|  | return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, | 
|  | Stmt *SyncBody) { | 
|  | // We can't jump into or indirect-jump out of a @synchronized block. | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block | 
|  | /// and creates a proper catch handler from them. | 
|  | StmtResult | 
|  | Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, | 
|  | Stmt *HandlerBlock) { | 
|  | // There's nothing to test that ActOnExceptionDecl didn't already test. | 
|  | return new (Context) | 
|  | CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class CatchHandlerType { | 
|  | QualType QT; | 
|  | unsigned IsPointer : 1; | 
|  |  | 
|  | // This is a special constructor to be used only with DenseMapInfo's | 
|  | // getEmptyKey() and getTombstoneKey() functions. | 
|  | friend struct llvm::DenseMapInfo<CatchHandlerType>; | 
|  | enum Unique { ForDenseMap }; | 
|  | CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} | 
|  |  | 
|  | public: | 
|  | /// Used when creating a CatchHandlerType from a handler type; will determine | 
|  | /// whether the type is a pointer or reference and will strip off the top | 
|  | /// level pointer and cv-qualifiers. | 
|  | CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { | 
|  | if (QT->isPointerType()) | 
|  | IsPointer = true; | 
|  |  | 
|  | if (IsPointer || QT->isReferenceType()) | 
|  | QT = QT->getPointeeType(); | 
|  | QT = QT.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | /// Used when creating a CatchHandlerType from a base class type; pretends the | 
|  | /// type passed in had the pointer qualifier, does not need to get an | 
|  | /// unqualified type. | 
|  | CatchHandlerType(QualType QT, bool IsPointer) | 
|  | : QT(QT), IsPointer(IsPointer) {} | 
|  |  | 
|  | QualType underlying() const { return QT; } | 
|  | bool isPointer() const { return IsPointer; } | 
|  |  | 
|  | friend bool operator==(const CatchHandlerType &LHS, | 
|  | const CatchHandlerType &RHS) { | 
|  | // If the pointer qualification does not match, we can return early. | 
|  | if (LHS.IsPointer != RHS.IsPointer) | 
|  | return false; | 
|  | // Otherwise, check the underlying type without cv-qualifiers. | 
|  | return LHS.QT == RHS.QT; | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | namespace llvm { | 
|  | template <> struct DenseMapInfo<CatchHandlerType> { | 
|  | static CatchHandlerType getEmptyKey() { | 
|  | return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), | 
|  | CatchHandlerType::ForDenseMap); | 
|  | } | 
|  |  | 
|  | static CatchHandlerType getTombstoneKey() { | 
|  | return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), | 
|  | CatchHandlerType::ForDenseMap); | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const CatchHandlerType &Base) { | 
|  | return DenseMapInfo<QualType>::getHashValue(Base.underlying()); | 
|  | } | 
|  |  | 
|  | static bool isEqual(const CatchHandlerType &LHS, | 
|  | const CatchHandlerType &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class CatchTypePublicBases { | 
|  | ASTContext &Ctx; | 
|  | const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; | 
|  | const bool CheckAgainstPointer; | 
|  |  | 
|  | CXXCatchStmt *FoundHandler; | 
|  | CanQualType FoundHandlerType; | 
|  |  | 
|  | public: | 
|  | CatchTypePublicBases( | 
|  | ASTContext &Ctx, | 
|  | const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) | 
|  | : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), | 
|  | FoundHandler(nullptr) {} | 
|  |  | 
|  | CXXCatchStmt *getFoundHandler() const { return FoundHandler; } | 
|  | CanQualType getFoundHandlerType() const { return FoundHandlerType; } | 
|  |  | 
|  | bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { | 
|  | if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { | 
|  | CatchHandlerType Check(S->getType(), CheckAgainstPointer); | 
|  | const auto &M = TypesToCheck; | 
|  | auto I = M.find(Check); | 
|  | if (I != M.end()) { | 
|  | FoundHandler = I->second; | 
|  | FoundHandlerType = Ctx.getCanonicalType(S->getType()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXTryBlock - Takes a try compound-statement and a number of | 
|  | /// handlers and creates a try statement from them. | 
|  | StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, | 
|  | ArrayRef<Stmt *> Handlers) { | 
|  | // Don't report an error if 'try' is used in system headers. | 
|  | if (!getLangOpts().CXXExceptions && | 
|  | !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { | 
|  | // Delay error emission for the OpenMP device code. | 
|  | targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; | 
|  | } | 
|  |  | 
|  | // Exceptions aren't allowed in CUDA device code. | 
|  | if (getLangOpts().CUDA) | 
|  | CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) | 
|  | << "try" << CurrentCUDATarget(); | 
|  |  | 
|  | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) | 
|  | Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; | 
|  |  | 
|  | sema::FunctionScopeInfo *FSI = getCurFunction(); | 
|  |  | 
|  | // C++ try is incompatible with SEH __try. | 
|  | if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { | 
|  | Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); | 
|  | Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; | 
|  | } | 
|  |  | 
|  | const unsigned NumHandlers = Handlers.size(); | 
|  | assert(!Handlers.empty() && | 
|  | "The parser shouldn't call this if there are no handlers."); | 
|  |  | 
|  | llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; | 
|  | for (unsigned i = 0; i < NumHandlers; ++i) { | 
|  | CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); | 
|  |  | 
|  | // Diagnose when the handler is a catch-all handler, but it isn't the last | 
|  | // handler for the try block. [except.handle]p5. Also, skip exception | 
|  | // declarations that are invalid, since we can't usefully report on them. | 
|  | if (!H->getExceptionDecl()) { | 
|  | if (i < NumHandlers - 1) | 
|  | return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); | 
|  | continue; | 
|  | } else if (H->getExceptionDecl()->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | // Walk the type hierarchy to diagnose when this type has already been | 
|  | // handled (duplication), or cannot be handled (derivation inversion). We | 
|  | // ignore top-level cv-qualifiers, per [except.handle]p3 | 
|  | CatchHandlerType HandlerCHT = | 
|  | (QualType)Context.getCanonicalType(H->getCaughtType()); | 
|  |  | 
|  | // We can ignore whether the type is a reference or a pointer; we need the | 
|  | // underlying declaration type in order to get at the underlying record | 
|  | // decl, if there is one. | 
|  | QualType Underlying = HandlerCHT.underlying(); | 
|  | if (auto *RD = Underlying->getAsCXXRecordDecl()) { | 
|  | if (!RD->hasDefinition()) | 
|  | continue; | 
|  | // Check that none of the public, unambiguous base classes are in the | 
|  | // map ([except.handle]p1). Give the base classes the same pointer | 
|  | // qualification as the original type we are basing off of. This allows | 
|  | // comparison against the handler type using the same top-level pointer | 
|  | // as the original type. | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(RD); | 
|  | CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); | 
|  | if (RD->lookupInBases(CTPB, Paths)) { | 
|  | const CXXCatchStmt *Problem = CTPB.getFoundHandler(); | 
|  | if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { | 
|  | Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), | 
|  | diag::warn_exception_caught_by_earlier_handler) | 
|  | << H->getCaughtType(); | 
|  | Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), | 
|  | diag::note_previous_exception_handler) | 
|  | << Problem->getCaughtType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the type the list of ones we have handled; diagnose if we've already | 
|  | // handled it. | 
|  | auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); | 
|  | if (!R.second) { | 
|  | const CXXCatchStmt *Problem = R.first->second; | 
|  | Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), | 
|  | diag::warn_exception_caught_by_earlier_handler) | 
|  | << H->getCaughtType(); | 
|  | Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), | 
|  | diag::note_previous_exception_handler) | 
|  | << Problem->getCaughtType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | FSI->setHasCXXTry(TryLoc); | 
|  |  | 
|  | return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, | 
|  | Stmt *TryBlock, Stmt *Handler) { | 
|  | assert(TryBlock && Handler); | 
|  |  | 
|  | sema::FunctionScopeInfo *FSI = getCurFunction(); | 
|  |  | 
|  | // SEH __try is incompatible with C++ try. Borland appears to support this, | 
|  | // however. | 
|  | if (!getLangOpts().Borland) { | 
|  | if (FSI->FirstCXXTryLoc.isValid()) { | 
|  | Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); | 
|  | Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'"; | 
|  | } | 
|  | } | 
|  |  | 
|  | FSI->setHasSEHTry(TryLoc); | 
|  |  | 
|  | // Reject __try in Obj-C methods, blocks, and captured decls, since we don't | 
|  | // track if they use SEH. | 
|  | DeclContext *DC = CurContext; | 
|  | while (DC && !DC->isFunctionOrMethod()) | 
|  | DC = DC->getParent(); | 
|  | FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); | 
|  | if (FD) | 
|  | FD->setUsesSEHTry(true); | 
|  | else | 
|  | Diag(TryLoc, diag::err_seh_try_outside_functions); | 
|  |  | 
|  | // Reject __try on unsupported targets. | 
|  | if (!Context.getTargetInfo().isSEHTrySupported()) | 
|  | Diag(TryLoc, diag::err_seh_try_unsupported); | 
|  |  | 
|  | return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, | 
|  | Stmt *Block) { | 
|  | assert(FilterExpr && Block); | 
|  | QualType FTy = FilterExpr->getType(); | 
|  | if (!FTy->isIntegerType() && !FTy->isDependentType()) { | 
|  | return StmtError( | 
|  | Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) | 
|  | << FTy); | 
|  | } | 
|  | return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartSEHFinallyBlock() { | 
|  | CurrentSEHFinally.push_back(CurScope); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnAbortSEHFinallyBlock() { | 
|  | CurrentSEHFinally.pop_back(); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { | 
|  | assert(Block); | 
|  | CurrentSEHFinally.pop_back(); | 
|  | return SEHFinallyStmt::Create(Context, Loc, Block); | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { | 
|  | Scope *SEHTryParent = CurScope; | 
|  | while (SEHTryParent && !SEHTryParent->isSEHTryScope()) | 
|  | SEHTryParent = SEHTryParent->getParent(); | 
|  | if (!SEHTryParent) | 
|  | return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); | 
|  | CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); | 
|  |  | 
|  | return new (Context) SEHLeaveStmt(Loc); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, | 
|  | bool IsIfExists, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | DeclarationNameInfo NameInfo, | 
|  | Stmt *Nested) | 
|  | { | 
|  | return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, | 
|  | QualifierLoc, NameInfo, | 
|  | cast<CompoundStmt>(Nested)); | 
|  | } | 
|  |  | 
|  |  | 
|  | StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, | 
|  | bool IsIfExists, | 
|  | CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name, | 
|  | Stmt *Nested) { | 
|  | return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, | 
|  | SS.getWithLocInContext(Context), | 
|  | GetNameFromUnqualifiedId(Name), | 
|  | Nested); | 
|  | } | 
|  |  | 
|  | RecordDecl* | 
|  | Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, | 
|  | unsigned NumParams) { | 
|  | DeclContext *DC = CurContext; | 
|  | while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) | 
|  | DC = DC->getParent(); | 
|  |  | 
|  | RecordDecl *RD = nullptr; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, | 
|  | /*Id=*/nullptr); | 
|  | else | 
|  | RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); | 
|  |  | 
|  | RD->setCapturedRecord(); | 
|  | DC->addDecl(RD); | 
|  | RD->setImplicit(); | 
|  | RD->startDefinition(); | 
|  |  | 
|  | assert(NumParams > 0 && "CapturedStmt requires context parameter"); | 
|  | CD = CapturedDecl::Create(Context, CurContext, NumParams); | 
|  | DC->addDecl(CD); | 
|  | return RD; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, | 
|  | SmallVectorImpl<CapturedStmt::Capture> &Captures, | 
|  | SmallVectorImpl<Expr *> &CaptureInits) { | 
|  | for (const sema::Capture &Cap : RSI->Captures) { | 
|  | if (Cap.isInvalid()) | 
|  | continue; | 
|  |  | 
|  | // Form the initializer for the capture. | 
|  | ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), | 
|  | RSI->CapRegionKind == CR_OpenMP); | 
|  |  | 
|  | // FIXME: Bail out now if the capture is not used and the initializer has | 
|  | // no side-effects. | 
|  |  | 
|  | // Create a field for this capture. | 
|  | FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); | 
|  |  | 
|  | // Add the capture to our list of captures. | 
|  | if (Cap.isThisCapture()) { | 
|  | Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), | 
|  | CapturedStmt::VCK_This)); | 
|  | } else if (Cap.isVLATypeCapture()) { | 
|  | Captures.push_back( | 
|  | CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); | 
|  | } else { | 
|  | assert(Cap.isVariableCapture() && "unknown kind of capture"); | 
|  |  | 
|  | if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) | 
|  | S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel); | 
|  |  | 
|  | Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), | 
|  | Cap.isReferenceCapture() | 
|  | ? CapturedStmt::VCK_ByRef | 
|  | : CapturedStmt::VCK_ByCopy, | 
|  | Cap.getVariable())); | 
|  | } | 
|  | CaptureInits.push_back(Init.get()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, | 
|  | CapturedRegionKind Kind, | 
|  | unsigned NumParams) { | 
|  | CapturedDecl *CD = nullptr; | 
|  | RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); | 
|  |  | 
|  | // Build the context parameter | 
|  | DeclContext *DC = CapturedDecl::castToDeclContext(CD); | 
|  | IdentifierInfo *ParamName = &Context.Idents.get("__context"); | 
|  | QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); | 
|  | auto *Param = | 
|  | ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, | 
|  | ImplicitParamDecl::CapturedContext); | 
|  | DC->addDecl(Param); | 
|  |  | 
|  | CD->setContextParam(0, Param); | 
|  |  | 
|  | // Enter the capturing scope for this captured region. | 
|  | PushCapturedRegionScope(CurScope, CD, RD, Kind); | 
|  |  | 
|  | if (CurScope) | 
|  | PushDeclContext(CurScope, CD); | 
|  | else | 
|  | CurContext = CD; | 
|  |  | 
|  | PushExpressionEvaluationContext( | 
|  | ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, | 
|  | CapturedRegionKind Kind, | 
|  | ArrayRef<CapturedParamNameType> Params, | 
|  | unsigned OpenMPCaptureLevel) { | 
|  | CapturedDecl *CD = nullptr; | 
|  | RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); | 
|  |  | 
|  | // Build the context parameter | 
|  | DeclContext *DC = CapturedDecl::castToDeclContext(CD); | 
|  | bool ContextIsFound = false; | 
|  | unsigned ParamNum = 0; | 
|  | for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), | 
|  | E = Params.end(); | 
|  | I != E; ++I, ++ParamNum) { | 
|  | if (I->second.isNull()) { | 
|  | assert(!ContextIsFound && | 
|  | "null type has been found already for '__context' parameter"); | 
|  | IdentifierInfo *ParamName = &Context.Idents.get("__context"); | 
|  | QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) | 
|  | .withConst() | 
|  | .withRestrict(); | 
|  | auto *Param = | 
|  | ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, | 
|  | ImplicitParamDecl::CapturedContext); | 
|  | DC->addDecl(Param); | 
|  | CD->setContextParam(ParamNum, Param); | 
|  | ContextIsFound = true; | 
|  | } else { | 
|  | IdentifierInfo *ParamName = &Context.Idents.get(I->first); | 
|  | auto *Param = | 
|  | ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, | 
|  | ImplicitParamDecl::CapturedContext); | 
|  | DC->addDecl(Param); | 
|  | CD->setParam(ParamNum, Param); | 
|  | } | 
|  | } | 
|  | assert(ContextIsFound && "no null type for '__context' parameter"); | 
|  | if (!ContextIsFound) { | 
|  | // Add __context implicitly if it is not specified. | 
|  | IdentifierInfo *ParamName = &Context.Idents.get("__context"); | 
|  | QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); | 
|  | auto *Param = | 
|  | ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, | 
|  | ImplicitParamDecl::CapturedContext); | 
|  | DC->addDecl(Param); | 
|  | CD->setContextParam(ParamNum, Param); | 
|  | } | 
|  | // Enter the capturing scope for this captured region. | 
|  | PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); | 
|  |  | 
|  | if (CurScope) | 
|  | PushDeclContext(CurScope, CD); | 
|  | else | 
|  | CurContext = CD; | 
|  |  | 
|  | PushExpressionEvaluationContext( | 
|  | ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnCapturedRegionError() { | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | PopExpressionEvaluationContext(); | 
|  | PopDeclContext(); | 
|  | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); | 
|  | CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); | 
|  |  | 
|  | RecordDecl *Record = RSI->TheRecordDecl; | 
|  | Record->setInvalidDecl(); | 
|  |  | 
|  | SmallVector<Decl*, 4> Fields(Record->fields()); | 
|  | ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, | 
|  | SourceLocation(), SourceLocation(), ParsedAttributesView()); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { | 
|  | // Leave the captured scope before we start creating captures in the | 
|  | // enclosing scope. | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | PopExpressionEvaluationContext(); | 
|  | PopDeclContext(); | 
|  | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); | 
|  | CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); | 
|  |  | 
|  | SmallVector<CapturedStmt::Capture, 4> Captures; | 
|  | SmallVector<Expr *, 4> CaptureInits; | 
|  | if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) | 
|  | return StmtError(); | 
|  |  | 
|  | CapturedDecl *CD = RSI->TheCapturedDecl; | 
|  | RecordDecl *RD = RSI->TheRecordDecl; | 
|  |  | 
|  | CapturedStmt *Res = CapturedStmt::Create( | 
|  | getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), | 
|  | Captures, CaptureInits, CD, RD); | 
|  |  | 
|  | CD->setBody(Res->getCapturedStmt()); | 
|  | RD->completeDefinition(); | 
|  |  | 
|  | return Res; | 
|  | } |