|  | //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Methods common to all machine instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSlotTracker.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> PrintWholeRegMask( | 
|  | "print-whole-regmask", | 
|  | cl::desc("Print the full contents of regmask operands in IR dumps"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MachineOperand Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void MachineOperand::setReg(unsigned Reg) { | 
|  | if (getReg() == Reg) return; // No change. | 
|  |  | 
|  | // Otherwise, we have to change the register.  If this operand is embedded | 
|  | // into a machine function, we need to update the old and new register's | 
|  | // use/def lists. | 
|  | if (MachineInstr *MI = getParent()) | 
|  | if (MachineBasicBlock *MBB = MI->getParent()) | 
|  | if (MachineFunction *MF = MBB->getParent()) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | MRI.removeRegOperandFromUseList(this); | 
|  | SmallContents.RegNo = Reg; | 
|  | MRI.addRegOperandToUseList(this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, just change the register, no problem.  :) | 
|  | SmallContents.RegNo = Reg; | 
|  | } | 
|  |  | 
|  | void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg)); | 
|  | if (SubIdx && getSubReg()) | 
|  | SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); | 
|  | setReg(Reg); | 
|  | if (SubIdx) | 
|  | setSubReg(SubIdx); | 
|  | } | 
|  |  | 
|  | void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(Reg)); | 
|  | if (getSubReg()) { | 
|  | Reg = TRI.getSubReg(Reg, getSubReg()); | 
|  | // Note that getSubReg() may return 0 if the sub-register doesn't exist. | 
|  | // That won't happen in legal code. | 
|  | setSubReg(0); | 
|  | if (isDef()) | 
|  | setIsUndef(false); | 
|  | } | 
|  | setReg(Reg); | 
|  | } | 
|  |  | 
|  | /// Change a def to a use, or a use to a def. | 
|  | void MachineOperand::setIsDef(bool Val) { | 
|  | assert(isReg() && "Wrong MachineOperand accessor"); | 
|  | assert((!Val || !isDebug()) && "Marking a debug operation as def"); | 
|  | if (IsDef == Val) | 
|  | return; | 
|  | // MRI may keep uses and defs in different list positions. | 
|  | if (MachineInstr *MI = getParent()) | 
|  | if (MachineBasicBlock *MBB = MI->getParent()) | 
|  | if (MachineFunction *MF = MBB->getParent()) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | MRI.removeRegOperandFromUseList(this); | 
|  | IsDef = Val; | 
|  | MRI.addRegOperandToUseList(this); | 
|  | return; | 
|  | } | 
|  | IsDef = Val; | 
|  | } | 
|  |  | 
|  | // If this operand is currently a register operand, and if this is in a | 
|  | // function, deregister the operand from the register's use/def list. | 
|  | void MachineOperand::removeRegFromUses() { | 
|  | if (!isReg() || !isOnRegUseList()) | 
|  | return; | 
|  |  | 
|  | if (MachineInstr *MI = getParent()) { | 
|  | if (MachineBasicBlock *MBB = MI->getParent()) { | 
|  | if (MachineFunction *MF = MBB->getParent()) | 
|  | MF->getRegInfo().removeRegOperandFromUseList(this); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ChangeToImmediate - Replace this operand with a new immediate operand of | 
|  | /// the specified value.  If an operand is known to be an immediate already, | 
|  | /// the setImm method should be used. | 
|  | void MachineOperand::ChangeToImmediate(int64_t ImmVal) { | 
|  | assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); | 
|  |  | 
|  | removeRegFromUses(); | 
|  |  | 
|  | OpKind = MO_Immediate; | 
|  | Contents.ImmVal = ImmVal; | 
|  | } | 
|  |  | 
|  | void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { | 
|  | assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); | 
|  |  | 
|  | removeRegFromUses(); | 
|  |  | 
|  | OpKind = MO_FPImmediate; | 
|  | Contents.CFP = FPImm; | 
|  | } | 
|  |  | 
|  | void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { | 
|  | assert((!isReg() || !isTied()) && | 
|  | "Cannot change a tied operand into an external symbol"); | 
|  |  | 
|  | removeRegFromUses(); | 
|  |  | 
|  | OpKind = MO_ExternalSymbol; | 
|  | Contents.OffsetedInfo.Val.SymbolName = SymName; | 
|  | setOffset(0); // Offset is always 0. | 
|  | setTargetFlags(TargetFlags); | 
|  | } | 
|  |  | 
|  | void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { | 
|  | assert((!isReg() || !isTied()) && | 
|  | "Cannot change a tied operand into an MCSymbol"); | 
|  |  | 
|  | removeRegFromUses(); | 
|  |  | 
|  | OpKind = MO_MCSymbol; | 
|  | Contents.Sym = Sym; | 
|  | } | 
|  |  | 
|  | void MachineOperand::ChangeToFrameIndex(int Idx) { | 
|  | assert((!isReg() || !isTied()) && | 
|  | "Cannot change a tied operand into a FrameIndex"); | 
|  |  | 
|  | removeRegFromUses(); | 
|  |  | 
|  | OpKind = MO_FrameIndex; | 
|  | setIndex(Idx); | 
|  | } | 
|  |  | 
|  | /// ChangeToRegister - Replace this operand with a new register operand of | 
|  | /// the specified value.  If an operand is known to be an register already, | 
|  | /// the setReg method should be used. | 
|  | void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, | 
|  | bool isKill, bool isDead, bool isUndef, | 
|  | bool isDebug) { | 
|  | MachineRegisterInfo *RegInfo = nullptr; | 
|  | if (MachineInstr *MI = getParent()) | 
|  | if (MachineBasicBlock *MBB = MI->getParent()) | 
|  | if (MachineFunction *MF = MBB->getParent()) | 
|  | RegInfo = &MF->getRegInfo(); | 
|  | // If this operand is already a register operand, remove it from the | 
|  | // register's use/def lists. | 
|  | bool WasReg = isReg(); | 
|  | if (RegInfo && WasReg) | 
|  | RegInfo->removeRegOperandFromUseList(this); | 
|  |  | 
|  | // Change this to a register and set the reg#. | 
|  | OpKind = MO_Register; | 
|  | SmallContents.RegNo = Reg; | 
|  | SubReg_TargetFlags = 0; | 
|  | IsDef = isDef; | 
|  | IsImp = isImp; | 
|  | IsKill = isKill; | 
|  | IsDead = isDead; | 
|  | IsUndef = isUndef; | 
|  | IsInternalRead = false; | 
|  | IsEarlyClobber = false; | 
|  | IsDebug = isDebug; | 
|  | // Ensure isOnRegUseList() returns false. | 
|  | Contents.Reg.Prev = nullptr; | 
|  | // Preserve the tie when the operand was already a register. | 
|  | if (!WasReg) | 
|  | TiedTo = 0; | 
|  |  | 
|  | // If this operand is embedded in a function, add the operand to the | 
|  | // register's use/def list. | 
|  | if (RegInfo) | 
|  | RegInfo->addRegOperandToUseList(this); | 
|  | } | 
|  |  | 
|  | /// isIdenticalTo - Return true if this operand is identical to the specified | 
|  | /// operand. Note that this should stay in sync with the hash_value overload | 
|  | /// below. | 
|  | bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { | 
|  | if (getType() != Other.getType() || | 
|  | getTargetFlags() != Other.getTargetFlags()) | 
|  | return false; | 
|  |  | 
|  | switch (getType()) { | 
|  | case MachineOperand::MO_Register: | 
|  | return getReg() == Other.getReg() && isDef() == Other.isDef() && | 
|  | getSubReg() == Other.getSubReg(); | 
|  | case MachineOperand::MO_Immediate: | 
|  | return getImm() == Other.getImm(); | 
|  | case MachineOperand::MO_CImmediate: | 
|  | return getCImm() == Other.getCImm(); | 
|  | case MachineOperand::MO_FPImmediate: | 
|  | return getFPImm() == Other.getFPImm(); | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | return getMBB() == Other.getMBB(); | 
|  | case MachineOperand::MO_FrameIndex: | 
|  | return getIndex() == Other.getIndex(); | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | return getIndex() == Other.getIndex(); | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | return !strcmp(getSymbolName(), Other.getSymbolName()) && | 
|  | getOffset() == Other.getOffset(); | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | return getBlockAddress() == Other.getBlockAddress() && | 
|  | getOffset() == Other.getOffset(); | 
|  | case MachineOperand::MO_RegisterMask: | 
|  | case MachineOperand::MO_RegisterLiveOut: | 
|  | return getRegMask() == Other.getRegMask(); | 
|  | case MachineOperand::MO_MCSymbol: | 
|  | return getMCSymbol() == Other.getMCSymbol(); | 
|  | case MachineOperand::MO_CFIIndex: | 
|  | return getCFIIndex() == Other.getCFIIndex(); | 
|  | case MachineOperand::MO_Metadata: | 
|  | return getMetadata() == Other.getMetadata(); | 
|  | case MachineOperand::MO_IntrinsicID: | 
|  | return getIntrinsicID() == Other.getIntrinsicID(); | 
|  | case MachineOperand::MO_Predicate: | 
|  | return getPredicate() == Other.getPredicate(); | 
|  | } | 
|  | llvm_unreachable("Invalid machine operand type"); | 
|  | } | 
|  |  | 
|  | // Note: this must stay exactly in sync with isIdenticalTo above. | 
|  | hash_code llvm::hash_value(const MachineOperand &MO) { | 
|  | switch (MO.getType()) { | 
|  | case MachineOperand::MO_Register: | 
|  | // Register operands don't have target flags. | 
|  | return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); | 
|  | case MachineOperand::MO_Immediate: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); | 
|  | case MachineOperand::MO_CImmediate: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); | 
|  | case MachineOperand::MO_FPImmediate: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); | 
|  | case MachineOperand::MO_FrameIndex: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), | 
|  | MO.getOffset()); | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), | 
|  | MO.getSymbolName()); | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), | 
|  | MO.getOffset()); | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), | 
|  | MO.getBlockAddress(), MO.getOffset()); | 
|  | case MachineOperand::MO_RegisterMask: | 
|  | case MachineOperand::MO_RegisterLiveOut: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); | 
|  | case MachineOperand::MO_Metadata: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); | 
|  | case MachineOperand::MO_MCSymbol: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); | 
|  | case MachineOperand::MO_CFIIndex: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); | 
|  | case MachineOperand::MO_IntrinsicID: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); | 
|  | case MachineOperand::MO_Predicate: | 
|  | return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); | 
|  | } | 
|  | llvm_unreachable("Invalid machine operand type"); | 
|  | } | 
|  |  | 
|  | void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, | 
|  | const TargetIntrinsicInfo *IntrinsicInfo) const { | 
|  | ModuleSlotTracker DummyMST(nullptr); | 
|  | print(OS, DummyMST, TRI, IntrinsicInfo); | 
|  | } | 
|  |  | 
|  | void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const TargetIntrinsicInfo *IntrinsicInfo) const { | 
|  | switch (getType()) { | 
|  | case MachineOperand::MO_Register: | 
|  | OS << PrintReg(getReg(), TRI, getSubReg()); | 
|  |  | 
|  | if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || | 
|  | isInternalRead() || isEarlyClobber() || isTied()) { | 
|  | OS << '<'; | 
|  | bool NeedComma = false; | 
|  | if (isDef()) { | 
|  | if (NeedComma) OS << ','; | 
|  | if (isEarlyClobber()) | 
|  | OS << "earlyclobber,"; | 
|  | if (isImplicit()) | 
|  | OS << "imp-"; | 
|  | OS << "def"; | 
|  | NeedComma = true; | 
|  | // <def,read-undef> only makes sense when getSubReg() is set. | 
|  | // Don't clutter the output otherwise. | 
|  | if (isUndef() && getSubReg()) | 
|  | OS << ",read-undef"; | 
|  | } else if (isImplicit()) { | 
|  | OS << "imp-use"; | 
|  | NeedComma = true; | 
|  | } | 
|  |  | 
|  | if (isKill()) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << "kill"; | 
|  | NeedComma = true; | 
|  | } | 
|  | if (isDead()) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << "dead"; | 
|  | NeedComma = true; | 
|  | } | 
|  | if (isUndef() && isUse()) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << "undef"; | 
|  | NeedComma = true; | 
|  | } | 
|  | if (isInternalRead()) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << "internal"; | 
|  | NeedComma = true; | 
|  | } | 
|  | if (isTied()) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << "tied"; | 
|  | if (TiedTo != 15) | 
|  | OS << unsigned(TiedTo - 1); | 
|  | } | 
|  | OS << '>'; | 
|  | } | 
|  | break; | 
|  | case MachineOperand::MO_Immediate: | 
|  | OS << getImm(); | 
|  | break; | 
|  | case MachineOperand::MO_CImmediate: | 
|  | getCImm()->getValue().print(OS, false); | 
|  | break; | 
|  | case MachineOperand::MO_FPImmediate: | 
|  | if (getFPImm()->getType()->isFloatTy()) { | 
|  | OS << getFPImm()->getValueAPF().convertToFloat(); | 
|  | } else if (getFPImm()->getType()->isHalfTy()) { | 
|  | APFloat APF = getFPImm()->getValueAPF(); | 
|  | bool Unused; | 
|  | APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); | 
|  | OS << "half " << APF.convertToFloat(); | 
|  | } else { | 
|  | OS << getFPImm()->getValueAPF().convertToDouble(); | 
|  | } | 
|  | break; | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | OS << "<BB#" << getMBB()->getNumber() << ">"; | 
|  | break; | 
|  | case MachineOperand::MO_FrameIndex: | 
|  | OS << "<fi#" << getIndex() << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | OS << "<cp#" << getIndex(); | 
|  | if (getOffset()) OS << "+" << getOffset(); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | OS << "<ti#" << getIndex(); | 
|  | if (getOffset()) OS << "+" << getOffset(); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | OS << "<jt#" << getIndex() << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | OS << "<ga:"; | 
|  | getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); | 
|  | if (getOffset()) OS << "+" << getOffset(); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | OS << "<es:" << getSymbolName(); | 
|  | if (getOffset()) OS << "+" << getOffset(); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | OS << '<'; | 
|  | getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); | 
|  | if (getOffset()) OS << "+" << getOffset(); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_RegisterMask: { | 
|  | unsigned NumRegsInMask = 0; | 
|  | unsigned NumRegsEmitted = 0; | 
|  | OS << "<regmask"; | 
|  | for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { | 
|  | unsigned MaskWord = i / 32; | 
|  | unsigned MaskBit = i % 32; | 
|  | if (getRegMask()[MaskWord] & (1 << MaskBit)) { | 
|  | if (PrintWholeRegMask || NumRegsEmitted <= 10) { | 
|  | OS << " " << PrintReg(i, TRI); | 
|  | NumRegsEmitted++; | 
|  | } | 
|  | NumRegsInMask++; | 
|  | } | 
|  | } | 
|  | if (NumRegsEmitted != NumRegsInMask) | 
|  | OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; | 
|  | OS << ">"; | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_RegisterLiveOut: | 
|  | OS << "<regliveout>"; | 
|  | break; | 
|  | case MachineOperand::MO_Metadata: | 
|  | OS << '<'; | 
|  | getMetadata()->printAsOperand(OS, MST); | 
|  | OS << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_MCSymbol: | 
|  | OS << "<MCSym=" << *getMCSymbol() << '>'; | 
|  | break; | 
|  | case MachineOperand::MO_CFIIndex: | 
|  | OS << "<call frame instruction>"; | 
|  | break; | 
|  | case MachineOperand::MO_IntrinsicID: { | 
|  | Intrinsic::ID ID = getIntrinsicID(); | 
|  | if (ID < Intrinsic::num_intrinsics) | 
|  | OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; | 
|  | else if (IntrinsicInfo) | 
|  | OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; | 
|  | else | 
|  | OS << "<intrinsic:" << ID << '>'; | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_Predicate: { | 
|  | auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); | 
|  | OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") | 
|  | << CmpInst::getPredicateName(Pred) << '>'; | 
|  | } | 
|  | } | 
|  | if (unsigned TF = getTargetFlags()) | 
|  | OS << "[TF=" << TF << ']'; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MachineMemOperand Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getAddrSpace - Return the LLVM IR address space number that this pointer | 
|  | /// points into. | 
|  | unsigned MachinePointerInfo::getAddrSpace() const { | 
|  | if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; | 
|  | return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); | 
|  | } | 
|  |  | 
|  | /// getConstantPool - Return a MachinePointerInfo record that refers to the | 
|  | /// constant pool. | 
|  | MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { | 
|  | return MachinePointerInfo(MF.getPSVManager().getConstantPool()); | 
|  | } | 
|  |  | 
|  | /// getFixedStack - Return a MachinePointerInfo record that refers to the | 
|  | /// the specified FrameIndex. | 
|  | MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, | 
|  | int FI, int64_t Offset) { | 
|  | return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); | 
|  | } | 
|  |  | 
|  | MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { | 
|  | return MachinePointerInfo(MF.getPSVManager().getJumpTable()); | 
|  | } | 
|  |  | 
|  | MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { | 
|  | return MachinePointerInfo(MF.getPSVManager().getGOT()); | 
|  | } | 
|  |  | 
|  | MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, | 
|  | int64_t Offset) { | 
|  | return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); | 
|  | } | 
|  |  | 
|  | MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, | 
|  | uint64_t s, unsigned int a, | 
|  | const AAMDNodes &AAInfo, | 
|  | const MDNode *Ranges, | 
|  | SynchronizationScope SynchScope, | 
|  | AtomicOrdering Ordering, | 
|  | AtomicOrdering FailureOrdering) | 
|  | : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), | 
|  | AAInfo(AAInfo), Ranges(Ranges) { | 
|  | assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || | 
|  | isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && | 
|  | "invalid pointer value"); | 
|  | assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); | 
|  | assert((isLoad() || isStore()) && "Not a load/store!"); | 
|  |  | 
|  | AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); | 
|  | assert(getSynchScope() == SynchScope && "Value truncated"); | 
|  | AtomicInfo.Ordering = static_cast<unsigned>(Ordering); | 
|  | assert(getOrdering() == Ordering && "Value truncated"); | 
|  | AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); | 
|  | assert(getFailureOrdering() == FailureOrdering && "Value truncated"); | 
|  | } | 
|  |  | 
|  | /// Profile - Gather unique data for the object. | 
|  | /// | 
|  | void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { | 
|  | ID.AddInteger(getOffset()); | 
|  | ID.AddInteger(Size); | 
|  | ID.AddPointer(getOpaqueValue()); | 
|  | ID.AddInteger(getFlags()); | 
|  | ID.AddInteger(getBaseAlignment()); | 
|  | } | 
|  |  | 
|  | void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { | 
|  | // The Value and Offset may differ due to CSE. But the flags and size | 
|  | // should be the same. | 
|  | assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); | 
|  | assert(MMO->getSize() == getSize() && "Size mismatch!"); | 
|  |  | 
|  | if (MMO->getBaseAlignment() >= getBaseAlignment()) { | 
|  | // Update the alignment value. | 
|  | BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; | 
|  | // Also update the base and offset, because the new alignment may | 
|  | // not be applicable with the old ones. | 
|  | PtrInfo = MMO->PtrInfo; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getAlignment - Return the minimum known alignment in bytes of the | 
|  | /// actual memory reference. | 
|  | uint64_t MachineMemOperand::getAlignment() const { | 
|  | return MinAlign(getBaseAlignment(), getOffset()); | 
|  | } | 
|  |  | 
|  | void MachineMemOperand::print(raw_ostream &OS) const { | 
|  | ModuleSlotTracker DummyMST(nullptr); | 
|  | print(OS, DummyMST); | 
|  | } | 
|  | void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { | 
|  | assert((isLoad() || isStore()) && | 
|  | "SV has to be a load, store or both."); | 
|  |  | 
|  | if (isVolatile()) | 
|  | OS << "Volatile "; | 
|  |  | 
|  | if (isLoad()) | 
|  | OS << "LD"; | 
|  | if (isStore()) | 
|  | OS << "ST"; | 
|  | OS << getSize(); | 
|  |  | 
|  | // Print the address information. | 
|  | OS << "["; | 
|  | if (const Value *V = getValue()) | 
|  | V->printAsOperand(OS, /*PrintType=*/false, MST); | 
|  | else if (const PseudoSourceValue *PSV = getPseudoValue()) | 
|  | PSV->printCustom(OS); | 
|  | else | 
|  | OS << "<unknown>"; | 
|  |  | 
|  | unsigned AS = getAddrSpace(); | 
|  | if (AS != 0) | 
|  | OS << "(addrspace=" << AS << ')'; | 
|  |  | 
|  | // If the alignment of the memory reference itself differs from the alignment | 
|  | // of the base pointer, print the base alignment explicitly, next to the base | 
|  | // pointer. | 
|  | if (getBaseAlignment() != getAlignment()) | 
|  | OS << "(align=" << getBaseAlignment() << ")"; | 
|  |  | 
|  | if (getOffset() != 0) | 
|  | OS << "+" << getOffset(); | 
|  | OS << "]"; | 
|  |  | 
|  | // Print the alignment of the reference. | 
|  | if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) | 
|  | OS << "(align=" << getAlignment() << ")"; | 
|  |  | 
|  | // Print TBAA info. | 
|  | if (const MDNode *TBAAInfo = getAAInfo().TBAA) { | 
|  | OS << "(tbaa="; | 
|  | if (TBAAInfo->getNumOperands() > 0) | 
|  | TBAAInfo->getOperand(0)->printAsOperand(OS, MST); | 
|  | else | 
|  | OS << "<unknown>"; | 
|  | OS << ")"; | 
|  | } | 
|  |  | 
|  | // Print AA scope info. | 
|  | if (const MDNode *ScopeInfo = getAAInfo().Scope) { | 
|  | OS << "(alias.scope="; | 
|  | if (ScopeInfo->getNumOperands() > 0) | 
|  | for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { | 
|  | ScopeInfo->getOperand(i)->printAsOperand(OS, MST); | 
|  | if (i != ie-1) | 
|  | OS << ","; | 
|  | } | 
|  | else | 
|  | OS << "<unknown>"; | 
|  | OS << ")"; | 
|  | } | 
|  |  | 
|  | // Print AA noalias scope info. | 
|  | if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { | 
|  | OS << "(noalias="; | 
|  | if (NoAliasInfo->getNumOperands() > 0) | 
|  | for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { | 
|  | NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); | 
|  | if (i != ie-1) | 
|  | OS << ","; | 
|  | } | 
|  | else | 
|  | OS << "<unknown>"; | 
|  | OS << ")"; | 
|  | } | 
|  |  | 
|  | if (isNonTemporal()) | 
|  | OS << "(nontemporal)"; | 
|  | if (isDereferenceable()) | 
|  | OS << "(dereferenceable)"; | 
|  | if (isInvariant()) | 
|  | OS << "(invariant)"; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MachineInstr Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { | 
|  | if (MCID->ImplicitDefs) | 
|  | for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; | 
|  | ++ImpDefs) | 
|  | addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); | 
|  | if (MCID->ImplicitUses) | 
|  | for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; | 
|  | ++ImpUses) | 
|  | addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); | 
|  | } | 
|  |  | 
|  | /// MachineInstr ctor - This constructor creates a MachineInstr and adds the | 
|  | /// implicit operands. It reserves space for the number of operands specified by | 
|  | /// the MCInstrDesc. | 
|  | MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, | 
|  | DebugLoc dl, bool NoImp) | 
|  | : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), | 
|  | AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), | 
|  | debugLoc(std::move(dl)) { | 
|  | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); | 
|  |  | 
|  | // Reserve space for the expected number of operands. | 
|  | if (unsigned NumOps = MCID->getNumOperands() + | 
|  | MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { | 
|  | CapOperands = OperandCapacity::get(NumOps); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  | } | 
|  |  | 
|  | if (!NoImp) | 
|  | addImplicitDefUseOperands(MF); | 
|  | } | 
|  |  | 
|  | /// MachineInstr ctor - Copies MachineInstr arg exactly | 
|  | /// | 
|  | MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) | 
|  | : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), | 
|  | Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), | 
|  | MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { | 
|  | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); | 
|  |  | 
|  | CapOperands = OperandCapacity::get(MI.getNumOperands()); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  |  | 
|  | // Copy operands. | 
|  | for (const MachineOperand &MO : MI.operands()) | 
|  | addOperand(MF, MO); | 
|  |  | 
|  | // Copy all the sensible flags. | 
|  | setFlags(MI.Flags); | 
|  | } | 
|  |  | 
|  | /// getRegInfo - If this instruction is embedded into a MachineFunction, | 
|  | /// return the MachineRegisterInfo object for the current function, otherwise | 
|  | /// return null. | 
|  | MachineRegisterInfo *MachineInstr::getRegInfo() { | 
|  | if (MachineBasicBlock *MBB = getParent()) | 
|  | return &MBB->getParent()->getRegInfo(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in | 
|  | /// this instruction from their respective use lists.  This requires that the | 
|  | /// operands already be on their use lists. | 
|  | void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { | 
|  | for (MachineOperand &MO : operands()) | 
|  | if (MO.isReg()) | 
|  | MRI.removeRegOperandFromUseList(&MO); | 
|  | } | 
|  |  | 
|  | /// AddRegOperandsToUseLists - Add all of the register operands in | 
|  | /// this instruction from their respective use lists.  This requires that the | 
|  | /// operands not be on their use lists yet. | 
|  | void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { | 
|  | for (MachineOperand &MO : operands()) | 
|  | if (MO.isReg()) | 
|  | MRI.addRegOperandToUseList(&MO); | 
|  | } | 
|  |  | 
|  | void MachineInstr::addOperand(const MachineOperand &Op) { | 
|  | MachineBasicBlock *MBB = getParent(); | 
|  | assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); | 
|  | addOperand(*MF, Op); | 
|  | } | 
|  |  | 
|  | /// Move NumOps MachineOperands from Src to Dst, with support for overlapping | 
|  | /// ranges. If MRI is non-null also update use-def chains. | 
|  | static void moveOperands(MachineOperand *Dst, MachineOperand *Src, | 
|  | unsigned NumOps, MachineRegisterInfo *MRI) { | 
|  | if (MRI) | 
|  | return MRI->moveOperands(Dst, Src, NumOps); | 
|  |  | 
|  | // MachineOperand is a trivially copyable type so we can just use memmove. | 
|  | std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); | 
|  | } | 
|  |  | 
|  | /// addOperand - Add the specified operand to the instruction.  If it is an | 
|  | /// implicit operand, it is added to the end of the operand list.  If it is | 
|  | /// an explicit operand it is added at the end of the explicit operand list | 
|  | /// (before the first implicit operand). | 
|  | void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { | 
|  | assert(MCID && "Cannot add operands before providing an instr descriptor"); | 
|  |  | 
|  | // Check if we're adding one of our existing operands. | 
|  | if (&Op >= Operands && &Op < Operands + NumOperands) { | 
|  | // This is unusual: MI->addOperand(MI->getOperand(i)). | 
|  | // If adding Op requires reallocating or moving existing operands around, | 
|  | // the Op reference could go stale. Support it by copying Op. | 
|  | MachineOperand CopyOp(Op); | 
|  | return addOperand(MF, CopyOp); | 
|  | } | 
|  |  | 
|  | // Find the insert location for the new operand.  Implicit registers go at | 
|  | // the end, everything else goes before the implicit regs. | 
|  | // | 
|  | // FIXME: Allow mixed explicit and implicit operands on inline asm. | 
|  | // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as | 
|  | // implicit-defs, but they must not be moved around.  See the FIXME in | 
|  | // InstrEmitter.cpp. | 
|  | unsigned OpNo = getNumOperands(); | 
|  | bool isImpReg = Op.isReg() && Op.isImplicit(); | 
|  | if (!isImpReg && !isInlineAsm()) { | 
|  | while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { | 
|  | --OpNo; | 
|  | assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; | 
|  | // OpNo now points as the desired insertion point.  Unless this is a variadic | 
|  | // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). | 
|  | // RegMask operands go between the explicit and implicit operands. | 
|  | assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || | 
|  | OpNo < MCID->getNumOperands() || isMetaDataOp) && | 
|  | "Trying to add an operand to a machine instr that is already done!"); | 
|  | #endif | 
|  |  | 
|  | MachineRegisterInfo *MRI = getRegInfo(); | 
|  |  | 
|  | // Determine if the Operands array needs to be reallocated. | 
|  | // Save the old capacity and operand array. | 
|  | OperandCapacity OldCap = CapOperands; | 
|  | MachineOperand *OldOperands = Operands; | 
|  | if (!OldOperands || OldCap.getSize() == getNumOperands()) { | 
|  | CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  | // Move the operands before the insertion point. | 
|  | if (OpNo) | 
|  | moveOperands(Operands, OldOperands, OpNo, MRI); | 
|  | } | 
|  |  | 
|  | // Move the operands following the insertion point. | 
|  | if (OpNo != NumOperands) | 
|  | moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, | 
|  | MRI); | 
|  | ++NumOperands; | 
|  |  | 
|  | // Deallocate the old operand array. | 
|  | if (OldOperands != Operands && OldOperands) | 
|  | MF.deallocateOperandArray(OldCap, OldOperands); | 
|  |  | 
|  | // Copy Op into place. It still needs to be inserted into the MRI use lists. | 
|  | MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); | 
|  | NewMO->ParentMI = this; | 
|  |  | 
|  | // When adding a register operand, tell MRI about it. | 
|  | if (NewMO->isReg()) { | 
|  | // Ensure isOnRegUseList() returns false, regardless of Op's status. | 
|  | NewMO->Contents.Reg.Prev = nullptr; | 
|  | // Ignore existing ties. This is not a property that can be copied. | 
|  | NewMO->TiedTo = 0; | 
|  | // Add the new operand to MRI, but only for instructions in an MBB. | 
|  | if (MRI) | 
|  | MRI->addRegOperandToUseList(NewMO); | 
|  | // The MCID operand information isn't accurate until we start adding | 
|  | // explicit operands. The implicit operands are added first, then the | 
|  | // explicits are inserted before them. | 
|  | if (!isImpReg) { | 
|  | // Tie uses to defs as indicated in MCInstrDesc. | 
|  | if (NewMO->isUse()) { | 
|  | int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); | 
|  | if (DefIdx != -1) | 
|  | tieOperands(DefIdx, OpNo); | 
|  | } | 
|  | // If the register operand is flagged as early, mark the operand as such. | 
|  | if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) | 
|  | NewMO->setIsEarlyClobber(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RemoveOperand - Erase an operand  from an instruction, leaving it with one | 
|  | /// fewer operand than it started with. | 
|  | /// | 
|  | void MachineInstr::RemoveOperand(unsigned OpNo) { | 
|  | assert(OpNo < getNumOperands() && "Invalid operand number"); | 
|  | untieRegOperand(OpNo); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Moving tied operands would break the ties. | 
|  | for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) | 
|  | if (Operands[i].isReg()) | 
|  | assert(!Operands[i].isTied() && "Cannot move tied operands"); | 
|  | #endif | 
|  |  | 
|  | MachineRegisterInfo *MRI = getRegInfo(); | 
|  | if (MRI && Operands[OpNo].isReg()) | 
|  | MRI->removeRegOperandFromUseList(Operands + OpNo); | 
|  |  | 
|  | // Don't call the MachineOperand destructor. A lot of this code depends on | 
|  | // MachineOperand having a trivial destructor anyway, and adding a call here | 
|  | // wouldn't make it 'destructor-correct'. | 
|  |  | 
|  | if (unsigned N = NumOperands - 1 - OpNo) | 
|  | moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); | 
|  | --NumOperands; | 
|  | } | 
|  |  | 
|  | /// addMemOperand - Add a MachineMemOperand to the machine instruction. | 
|  | /// This function should be used only occasionally. The setMemRefs function | 
|  | /// is the primary method for setting up a MachineInstr's MemRefs list. | 
|  | void MachineInstr::addMemOperand(MachineFunction &MF, | 
|  | MachineMemOperand *MO) { | 
|  | mmo_iterator OldMemRefs = MemRefs; | 
|  | unsigned OldNumMemRefs = NumMemRefs; | 
|  |  | 
|  | unsigned NewNum = NumMemRefs + 1; | 
|  | mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); | 
|  |  | 
|  | std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); | 
|  | NewMemRefs[NewNum - 1] = MO; | 
|  | setMemRefs(NewMemRefs, NewMemRefs + NewNum); | 
|  | } | 
|  |  | 
|  | /// Check to see if the MMOs pointed to by the two MemRefs arrays are | 
|  | /// identical. | 
|  | static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { | 
|  | auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); | 
|  | auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); | 
|  | if ((E1 - I1) != (E2 - I2)) | 
|  | return false; | 
|  | for (; I1 != E1; ++I1, ++I2) { | 
|  | if (**I1 != **I2) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::pair<MachineInstr::mmo_iterator, unsigned> | 
|  | MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { | 
|  |  | 
|  | // If either of the incoming memrefs are empty, we must be conservative and | 
|  | // treat this as if we've exhausted our space for memrefs and dropped them. | 
|  | if (memoperands_empty() || Other.memoperands_empty()) | 
|  | return std::make_pair(nullptr, 0); | 
|  |  | 
|  | // If both instructions have identical memrefs, we don't need to merge them. | 
|  | // Since many instructions have a single memref, and we tend to merge things | 
|  | // like pairs of loads from the same location, this catches a large number of | 
|  | // cases in practice. | 
|  | if (hasIdenticalMMOs(*this, Other)) | 
|  | return std::make_pair(MemRefs, NumMemRefs); | 
|  |  | 
|  | // TODO: consider uniquing elements within the operand lists to reduce | 
|  | // space usage and fall back to conservative information less often. | 
|  | size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; | 
|  |  | 
|  | // If we don't have enough room to store this many memrefs, be conservative | 
|  | // and drop them.  Otherwise, we'd fail asserts when trying to add them to | 
|  | // the new instruction. | 
|  | if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) | 
|  | return std::make_pair(nullptr, 0); | 
|  |  | 
|  | MachineFunction *MF = getParent()->getParent(); | 
|  | mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); | 
|  | mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), | 
|  | MemBegin); | 
|  | MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), | 
|  | MemEnd); | 
|  | assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && | 
|  | "missing memrefs"); | 
|  |  | 
|  | return std::make_pair(MemBegin, CombinedNumMemRefs); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { | 
|  | assert(!isBundledWithPred() && "Must be called on bundle header"); | 
|  | for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { | 
|  | if (MII->getDesc().getFlags() & Mask) { | 
|  | if (Type == AnyInBundle) | 
|  | return true; | 
|  | } else { | 
|  | if (Type == AllInBundle && !MII->isBundle()) | 
|  | return false; | 
|  | } | 
|  | // This was the last instruction in the bundle. | 
|  | if (!MII->isBundledWithSucc()) | 
|  | return Type == AllInBundle; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isIdenticalTo(const MachineInstr &Other, | 
|  | MICheckType Check) const { | 
|  | // If opcodes or number of operands are not the same then the two | 
|  | // instructions are obviously not identical. | 
|  | if (Other.getOpcode() != getOpcode() || | 
|  | Other.getNumOperands() != getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | if (isBundle()) { | 
|  | // Both instructions are bundles, compare MIs inside the bundle. | 
|  | MachineBasicBlock::const_instr_iterator I1 = getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); | 
|  | MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); | 
|  | while (++I1 != E1 && I1->isInsideBundle()) { | 
|  | ++I2; | 
|  | if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check operands to make sure they match. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | const MachineOperand &OMO = Other.getOperand(i); | 
|  | if (!MO.isReg()) { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Clients may or may not want to ignore defs when testing for equality. | 
|  | // For example, machine CSE pass only cares about finding common | 
|  | // subexpressions, so it's safe to ignore virtual register defs. | 
|  | if (MO.isDef()) { | 
|  | if (Check == IgnoreDefs) | 
|  | continue; | 
|  | else if (Check == IgnoreVRegDefs) { | 
|  | if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || | 
|  | TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) | 
|  | if (MO.getReg() != OMO.getReg()) | 
|  | return false; | 
|  | } else { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // If DebugLoc does not match then two dbg.values are not identical. | 
|  | if (isDebugValue()) | 
|  | if (getDebugLoc() && Other.getDebugLoc() && | 
|  | getDebugLoc() != Other.getDebugLoc()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr *MachineInstr::removeFromParent() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | return getParent()->remove(this); | 
|  | } | 
|  |  | 
|  | MachineInstr *MachineInstr::removeFromBundle() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | return getParent()->remove_instr(this); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromParent() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | getParent()->erase(this); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | MachineBasicBlock *MBB = getParent(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | assert(MF && "Not embedded in a function!"); | 
|  |  | 
|  | MachineInstr *MI = (MachineInstr *)this; | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | MRI.markUsesInDebugValueAsUndef(Reg); | 
|  | } | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromBundle() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | getParent()->erase_instr(this); | 
|  | } | 
|  |  | 
|  | /// getNumExplicitOperands - Returns the number of non-implicit operands. | 
|  | /// | 
|  | unsigned MachineInstr::getNumExplicitOperands() const { | 
|  | unsigned NumOperands = MCID->getNumOperands(); | 
|  | if (!MCID->isVariadic()) | 
|  | return NumOperands; | 
|  |  | 
|  | for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isImplicit()) | 
|  | NumOperands++; | 
|  | } | 
|  | return NumOperands; | 
|  | } | 
|  |  | 
|  | void MachineInstr::bundleWithPred() { | 
|  | assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); | 
|  | setFlag(BundledPred); | 
|  | MachineBasicBlock::instr_iterator Pred = getIterator(); | 
|  | --Pred; | 
|  | assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); | 
|  | Pred->setFlag(BundledSucc); | 
|  | } | 
|  |  | 
|  | void MachineInstr::bundleWithSucc() { | 
|  | assert(!isBundledWithSucc() && "MI is already bundled with its successor"); | 
|  | setFlag(BundledSucc); | 
|  | MachineBasicBlock::instr_iterator Succ = getIterator(); | 
|  | ++Succ; | 
|  | assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); | 
|  | Succ->setFlag(BundledPred); | 
|  | } | 
|  |  | 
|  | void MachineInstr::unbundleFromPred() { | 
|  | assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); | 
|  | clearFlag(BundledPred); | 
|  | MachineBasicBlock::instr_iterator Pred = getIterator(); | 
|  | --Pred; | 
|  | assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); | 
|  | Pred->clearFlag(BundledSucc); | 
|  | } | 
|  |  | 
|  | void MachineInstr::unbundleFromSucc() { | 
|  | assert(isBundledWithSucc() && "MI isn't bundled with its successor"); | 
|  | clearFlag(BundledSucc); | 
|  | MachineBasicBlock::instr_iterator Succ = getIterator(); | 
|  | ++Succ; | 
|  | assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); | 
|  | Succ->clearFlag(BundledPred); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isStackAligningInlineAsm() const { | 
|  | if (isInlineAsm()) { | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { | 
|  | assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); | 
|  | } | 
|  |  | 
|  | int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, | 
|  | unsigned *GroupNo) const { | 
|  | assert(isInlineAsm() && "Expected an inline asm instruction"); | 
|  | assert(OpIdx < getNumOperands() && "OpIdx out of range"); | 
|  |  | 
|  | // Ignore queries about the initial operands. | 
|  | if (OpIdx < InlineAsm::MIOp_FirstOperand) | 
|  | return -1; | 
|  |  | 
|  | unsigned Group = 0; | 
|  | unsigned NumOps; | 
|  | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; | 
|  | i += NumOps) { | 
|  | const MachineOperand &FlagMO = getOperand(i); | 
|  | // If we reach the implicit register operands, stop looking. | 
|  | if (!FlagMO.isImm()) | 
|  | return -1; | 
|  | NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); | 
|  | if (i + NumOps > OpIdx) { | 
|  | if (GroupNo) | 
|  | *GroupNo = Group; | 
|  | return i; | 
|  | } | 
|  | ++Group; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const DILocalVariable *MachineInstr::getDebugVariable() const { | 
|  | assert(isDebugValue() && "not a DBG_VALUE"); | 
|  | return cast<DILocalVariable>(getOperand(2).getMetadata()); | 
|  | } | 
|  |  | 
|  | const DIExpression *MachineInstr::getDebugExpression() const { | 
|  | assert(isDebugValue() && "not a DBG_VALUE"); | 
|  | return cast<DIExpression>(getOperand(3).getMetadata()); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* | 
|  | MachineInstr::getRegClassConstraint(unsigned OpIdx, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | assert(getParent() && "Can't have an MBB reference here!"); | 
|  | assert(getParent()->getParent() && "Can't have an MF reference here!"); | 
|  | const MachineFunction &MF = *getParent()->getParent(); | 
|  |  | 
|  | // Most opcodes have fixed constraints in their MCInstrDesc. | 
|  | if (!isInlineAsm()) | 
|  | return TII->getRegClass(getDesc(), OpIdx, TRI, MF); | 
|  |  | 
|  | if (!getOperand(OpIdx).isReg()) | 
|  | return nullptr; | 
|  |  | 
|  | // For tied uses on inline asm, get the constraint from the def. | 
|  | unsigned DefIdx; | 
|  | if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) | 
|  | OpIdx = DefIdx; | 
|  |  | 
|  | // Inline asm stores register class constraints in the flag word. | 
|  | int FlagIdx = findInlineAsmFlagIdx(OpIdx); | 
|  | if (FlagIdx < 0) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned Flag = getOperand(FlagIdx).getImm(); | 
|  | unsigned RCID; | 
|  | if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || | 
|  | InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || | 
|  | InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && | 
|  | InlineAsm::hasRegClassConstraint(Flag, RCID)) | 
|  | return TRI->getRegClass(RCID); | 
|  |  | 
|  | // Assume that all registers in a memory operand are pointers. | 
|  | if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) | 
|  | return TRI->getPointerRegClass(MF); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( | 
|  | unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI, bool ExploreBundle) const { | 
|  | // Check every operands inside the bundle if we have | 
|  | // been asked to. | 
|  | if (ExploreBundle) | 
|  | for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; | 
|  | ++OpndIt) | 
|  | CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( | 
|  | OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); | 
|  | else | 
|  | // Otherwise, just check the current operands. | 
|  | for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) | 
|  | CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); | 
|  | return CurRC; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( | 
|  | unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, | 
|  | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { | 
|  | assert(CurRC && "Invalid initial register class"); | 
|  | // Check if Reg is constrained by some of its use/def from MI. | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | if (!MO.isReg() || MO.getReg() != Reg) | 
|  | return CurRC; | 
|  | // If yes, accumulate the constraints through the operand. | 
|  | return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( | 
|  | unsigned OpIdx, const TargetRegisterClass *CurRC, | 
|  | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { | 
|  | const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | assert(MO.isReg() && | 
|  | "Cannot get register constraints for non-register operand"); | 
|  | assert(CurRC && "Invalid initial register class"); | 
|  | if (unsigned SubIdx = MO.getSubReg()) { | 
|  | if (OpRC) | 
|  | CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); | 
|  | else | 
|  | CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); | 
|  | } else if (OpRC) | 
|  | CurRC = TRI->getCommonSubClass(CurRC, OpRC); | 
|  | return CurRC; | 
|  | } | 
|  |  | 
|  | /// Return the number of instructions inside the MI bundle, not counting the | 
|  | /// header instruction. | 
|  | unsigned MachineInstr::getBundleSize() const { | 
|  | MachineBasicBlock::const_instr_iterator I = getIterator(); | 
|  | unsigned Size = 0; | 
|  | while (I->isBundledWithSucc()) { | 
|  | ++Size; | 
|  | ++I; | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | /// Returns true if the MachineInstr has an implicit-use operand of exactly | 
|  | /// the given register (not considering sub/super-registers). | 
|  | bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of | 
|  | /// the specific register or -1 if it is not found. It further tightens | 
|  | /// the search criteria to a use that kills the register if isKill is true. | 
|  | int MachineInstr::findRegisterUseOperandIdx( | 
|  | unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && | 
|  | TargetRegisterInfo::isPhysicalRegister(Reg) && | 
|  | TRI->isSubRegister(MOReg, Reg))) | 
|  | if (!isKill || MO.isKill()) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) | 
|  | /// indicating if this instruction reads or writes Reg. This also considers | 
|  | /// partial defines. | 
|  | std::pair<bool,bool> | 
|  | MachineInstr::readsWritesVirtualRegister(unsigned Reg, | 
|  | SmallVectorImpl<unsigned> *Ops) const { | 
|  | bool PartDef = false; // Partial redefine. | 
|  | bool FullDef = false; // Full define. | 
|  | bool Use = false; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() != Reg) | 
|  | continue; | 
|  | if (Ops) | 
|  | Ops->push_back(i); | 
|  | if (MO.isUse()) | 
|  | Use |= !MO.isUndef(); | 
|  | else if (MO.getSubReg() && !MO.isUndef()) | 
|  | // A partial <def,undef> doesn't count as reading the register. | 
|  | PartDef = true; | 
|  | else | 
|  | FullDef = true; | 
|  | } | 
|  | // A partial redefine uses Reg unless there is also a full define. | 
|  | return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); | 
|  | } | 
|  |  | 
|  | /// findRegisterDefOperandIdx() - Returns the operand index that is a def of | 
|  | /// the specified register or -1 if it is not found. If isDead is true, defs | 
|  | /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it | 
|  | /// also checks if there is a def of a super-register. | 
|  | int | 
|  | MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | // Accept regmask operands when Overlap is set. | 
|  | // Ignore them when looking for a specific def operand (Overlap == false). | 
|  | if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) | 
|  | return i; | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | bool Found = (MOReg == Reg); | 
|  | if (!Found && TRI && isPhys && | 
|  | TargetRegisterInfo::isPhysicalRegister(MOReg)) { | 
|  | if (Overlap) | 
|  | Found = TRI->regsOverlap(MOReg, Reg); | 
|  | else | 
|  | Found = TRI->isSubRegister(MOReg, Reg); | 
|  | } | 
|  | if (Found && (!isDead || MO.isDead())) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// findFirstPredOperandIdx() - Find the index of the first operand in the | 
|  | /// operand list that is used to represent the predicate. It returns -1 if | 
|  | /// none is found. | 
|  | int MachineInstr::findFirstPredOperandIdx() const { | 
|  | // Don't call MCID.findFirstPredOperandIdx() because this variant | 
|  | // is sometimes called on an instruction that's not yet complete, and | 
|  | // so the number of operands is less than the MCID indicates. In | 
|  | // particular, the PTX target does this. | 
|  | const MCInstrDesc &MCID = getDesc(); | 
|  | if (MCID.isPredicable()) { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (MCID.OpInfo[i].isPredicate()) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // MachineOperand::TiedTo is 4 bits wide. | 
|  | const unsigned TiedMax = 15; | 
|  |  | 
|  | /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. | 
|  | /// | 
|  | /// Use and def operands can be tied together, indicated by a non-zero TiedTo | 
|  | /// field. TiedTo can have these values: | 
|  | /// | 
|  | /// 0:              Operand is not tied to anything. | 
|  | /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). | 
|  | /// TiedMax:        Tied to an operand >= TiedMax-1. | 
|  | /// | 
|  | /// The tied def must be one of the first TiedMax operands on a normal | 
|  | /// instruction. INLINEASM instructions allow more tied defs. | 
|  | /// | 
|  | void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { | 
|  | MachineOperand &DefMO = getOperand(DefIdx); | 
|  | MachineOperand &UseMO = getOperand(UseIdx); | 
|  | assert(DefMO.isDef() && "DefIdx must be a def operand"); | 
|  | assert(UseMO.isUse() && "UseIdx must be a use operand"); | 
|  | assert(!DefMO.isTied() && "Def is already tied to another use"); | 
|  | assert(!UseMO.isTied() && "Use is already tied to another def"); | 
|  |  | 
|  | if (DefIdx < TiedMax) | 
|  | UseMO.TiedTo = DefIdx + 1; | 
|  | else { | 
|  | // Inline asm can use the group descriptors to find tied operands, but on | 
|  | // normal instruction, the tied def must be within the first TiedMax | 
|  | // operands. | 
|  | assert(isInlineAsm() && "DefIdx out of range"); | 
|  | UseMO.TiedTo = TiedMax; | 
|  | } | 
|  |  | 
|  | // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). | 
|  | DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); | 
|  | } | 
|  |  | 
|  | /// Given the index of a tied register operand, find the operand it is tied to. | 
|  | /// Defs are tied to uses and vice versa. Returns the index of the tied operand | 
|  | /// which must exist. | 
|  | unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | assert(MO.isTied() && "Operand isn't tied"); | 
|  |  | 
|  | // Normally TiedTo is in range. | 
|  | if (MO.TiedTo < TiedMax) | 
|  | return MO.TiedTo - 1; | 
|  |  | 
|  | // Uses on normal instructions can be out of range. | 
|  | if (!isInlineAsm()) { | 
|  | // Normal tied defs must be in the 0..TiedMax-1 range. | 
|  | if (MO.isUse()) | 
|  | return TiedMax - 1; | 
|  | // MO is a def. Search for the tied use. | 
|  | for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &UseMO = getOperand(i); | 
|  | if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) | 
|  | return i; | 
|  | } | 
|  | llvm_unreachable("Can't find tied use"); | 
|  | } | 
|  |  | 
|  | // Now deal with inline asm by parsing the operand group descriptor flags. | 
|  | // Find the beginning of each operand group. | 
|  | SmallVector<unsigned, 8> GroupIdx; | 
|  | unsigned OpIdxGroup = ~0u; | 
|  | unsigned NumOps; | 
|  | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; | 
|  | i += NumOps) { | 
|  | const MachineOperand &FlagMO = getOperand(i); | 
|  | assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); | 
|  | unsigned CurGroup = GroupIdx.size(); | 
|  | GroupIdx.push_back(i); | 
|  | NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); | 
|  | // OpIdx belongs to this operand group. | 
|  | if (OpIdx > i && OpIdx < i + NumOps) | 
|  | OpIdxGroup = CurGroup; | 
|  | unsigned TiedGroup; | 
|  | if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) | 
|  | continue; | 
|  | // Operands in this group are tied to operands in TiedGroup which must be | 
|  | // earlier. Find the number of operands between the two groups. | 
|  | unsigned Delta = i - GroupIdx[TiedGroup]; | 
|  |  | 
|  | // OpIdx is a use tied to TiedGroup. | 
|  | if (OpIdxGroup == CurGroup) | 
|  | return OpIdx - Delta; | 
|  |  | 
|  | // OpIdx is a def tied to this use group. | 
|  | if (OpIdxGroup == TiedGroup) | 
|  | return OpIdx + Delta; | 
|  | } | 
|  | llvm_unreachable("Invalid tied operand on inline asm"); | 
|  | } | 
|  |  | 
|  | /// clearKillInfo - Clears kill flags on all operands. | 
|  | /// | 
|  | void MachineInstr::clearKillInfo() { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (MO.isReg() && MO.isUse()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::substituteRegister(unsigned FromReg, | 
|  | unsigned ToReg, | 
|  | unsigned SubIdx, | 
|  | const TargetRegisterInfo &RegInfo) { | 
|  | if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { | 
|  | if (SubIdx) | 
|  | ToReg = RegInfo.getSubReg(ToReg, SubIdx); | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.getReg() != FromReg) | 
|  | continue; | 
|  | MO.substPhysReg(ToReg, RegInfo); | 
|  | } | 
|  | } else { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.getReg() != FromReg) | 
|  | continue; | 
|  | MO.substVirtReg(ToReg, SubIdx, RegInfo); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeToMove - Return true if it is safe to move this instruction. If | 
|  | /// SawStore is set to true, it means that there is a store (or call) between | 
|  | /// the instruction's location and its intended destination. | 
|  | bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { | 
|  | // Ignore stuff that we obviously can't move. | 
|  | // | 
|  | // Treat volatile loads as stores. This is not strictly necessary for | 
|  | // volatiles, but it is required for atomic loads. It is not allowed to move | 
|  | // a load across an atomic load with Ordering > Monotonic. | 
|  | if (mayStore() || isCall() || | 
|  | (mayLoad() && hasOrderedMemoryRef())) { | 
|  | SawStore = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isPosition() || isDebugValue() || isTerminator() || | 
|  | hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // See if this instruction does a load.  If so, we have to guarantee that the | 
|  | // loaded value doesn't change between the load and the its intended | 
|  | // destination. The check for isInvariantLoad gives the targe the chance to | 
|  | // classify the load as always returning a constant, e.g. a constant pool | 
|  | // load. | 
|  | if (mayLoad() && !isDereferenceableInvariantLoad(AA)) | 
|  | // Otherwise, this is a real load.  If there is a store between the load and | 
|  | // end of block, we can't move it. | 
|  | return !SawStore; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// hasOrderedMemoryRef - Return true if this instruction may have an ordered | 
|  | /// or volatile memory reference, or if the information describing the memory | 
|  | /// reference is not available. Return false if it is known to have no ordered | 
|  | /// memory references. | 
|  | bool MachineInstr::hasOrderedMemoryRef() const { | 
|  | // An instruction known never to access memory won't have a volatile access. | 
|  | if (!mayStore() && | 
|  | !mayLoad() && | 
|  | !isCall() && | 
|  | !hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, if the instruction has no memory reference information, | 
|  | // conservatively assume it wasn't preserved. | 
|  | if (memoperands_empty()) | 
|  | return true; | 
|  |  | 
|  | // Check if any of our memory operands are ordered. | 
|  | return any_of(memoperands(), [](const MachineMemOperand *MMO) { | 
|  | return !MMO->isUnordered(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// isDereferenceableInvariantLoad - Return true if this instruction will never | 
|  | /// trap and is loading from a location whose value is invariant across a run of | 
|  | /// this function. | 
|  | bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { | 
|  | // If the instruction doesn't load at all, it isn't an invariant load. | 
|  | if (!mayLoad()) | 
|  | return false; | 
|  |  | 
|  | // If the instruction has lost its memoperands, conservatively assume that | 
|  | // it may not be an invariant load. | 
|  | if (memoperands_empty()) | 
|  | return false; | 
|  |  | 
|  | const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); | 
|  |  | 
|  | for (MachineMemOperand *MMO : memoperands()) { | 
|  | if (MMO->isVolatile()) return false; | 
|  | if (MMO->isStore()) return false; | 
|  | if (MMO->isInvariant() && MMO->isDereferenceable()) | 
|  | continue; | 
|  |  | 
|  | // A load from a constant PseudoSourceValue is invariant. | 
|  | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) | 
|  | if (PSV->isConstant(&MFI)) | 
|  | continue; | 
|  |  | 
|  | if (const Value *V = MMO->getValue()) { | 
|  | // If we have an AliasAnalysis, ask it whether the memory is constant. | 
|  | if (AA && | 
|  | AA->pointsToConstantMemory( | 
|  | MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise assume conservatively. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Everything checks out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isConstantValuePHI - If the specified instruction is a PHI that always | 
|  | /// merges together the same virtual register, return the register, otherwise | 
|  | /// return 0. | 
|  | unsigned MachineInstr::isConstantValuePHI() const { | 
|  | if (!isPHI()) | 
|  | return 0; | 
|  | assert(getNumOperands() >= 3 && | 
|  | "It's illegal to have a PHI without source operands"); | 
|  |  | 
|  | unsigned Reg = getOperand(1).getReg(); | 
|  | for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) | 
|  | if (getOperand(i).getReg() != Reg) | 
|  | return 0; | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::hasUnmodeledSideEffects() const { | 
|  | if (hasProperty(MCID::UnmodeledSideEffects)) | 
|  | return true; | 
|  | if (isInlineAsm()) { | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isLoadFoldBarrier() const { | 
|  | return mayStore() || isCall() || hasUnmodeledSideEffects(); | 
|  | } | 
|  |  | 
|  | /// allDefsAreDead - Return true if all the defs of this instruction are dead. | 
|  | /// | 
|  | bool MachineInstr::allDefsAreDead() const { | 
|  | for (const MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.isUse()) | 
|  | continue; | 
|  | if (!MO.isDead()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// copyImplicitOps - Copy implicit register operands from specified | 
|  | /// instruction to this instruction. | 
|  | void MachineInstr::copyImplicitOps(MachineFunction &MF, | 
|  | const MachineInstr &MI) { | 
|  | for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); | 
|  | i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) | 
|  | addOperand(MF, MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void MachineInstr::dump() const { | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | dbgs() << "  " << *this; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { | 
|  | const Module *M = nullptr; | 
|  | if (const MachineBasicBlock *MBB = getParent()) | 
|  | if (const MachineFunction *MF = MBB->getParent()) | 
|  | M = MF->getFunction()->getParent(); | 
|  |  | 
|  | ModuleSlotTracker MST(M); | 
|  | print(OS, MST, SkipOpers); | 
|  | } | 
|  |  | 
|  | void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, | 
|  | bool SkipOpers) const { | 
|  | // We can be a bit tidier if we know the MachineFunction. | 
|  | const MachineFunction *MF = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | const MachineRegisterInfo *MRI = nullptr; | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | const TargetIntrinsicInfo *IntrinsicInfo = nullptr; | 
|  |  | 
|  | if (const MachineBasicBlock *MBB = getParent()) { | 
|  | MF = MBB->getParent(); | 
|  | if (MF) { | 
|  | MRI = &MF->getRegInfo(); | 
|  | TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save a list of virtual registers. | 
|  | SmallVector<unsigned, 8> VirtRegs; | 
|  |  | 
|  | // Print explicitly defined operands on the left of an assignment syntax. | 
|  | unsigned StartOp = 0, e = getNumOperands(); | 
|  | for (; StartOp < e && getOperand(StartOp).isReg() && | 
|  | getOperand(StartOp).isDef() && | 
|  | !getOperand(StartOp).isImplicit(); | 
|  | ++StartOp) { | 
|  | if (StartOp != 0) OS << ", "; | 
|  | getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); | 
|  | unsigned Reg = getOperand(StartOp).getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | VirtRegs.push_back(Reg); | 
|  | LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; | 
|  | if (Ty.isValid()) | 
|  | OS << '(' << Ty << ')'; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (StartOp != 0) | 
|  | OS << " = "; | 
|  |  | 
|  | // Print the opcode name. | 
|  | if (TII) | 
|  | OS << TII->getName(getOpcode()); | 
|  | else | 
|  | OS << "UNKNOWN"; | 
|  |  | 
|  | if (SkipOpers) | 
|  | return; | 
|  |  | 
|  | // Print the rest of the operands. | 
|  | bool OmittedAnyCallClobbers = false; | 
|  | bool FirstOp = true; | 
|  | unsigned AsmDescOp = ~0u; | 
|  | unsigned AsmOpCount = 0; | 
|  |  | 
|  | if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { | 
|  | // Print asm string. | 
|  | OS << " "; | 
|  | getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); | 
|  |  | 
|  | // Print HasSideEffects, MayLoad, MayStore, IsAlignStack | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) | 
|  | OS << " [sideeffect]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_MayLoad) | 
|  | OS << " [mayload]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_MayStore) | 
|  | OS << " [maystore]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_IsConvergent) | 
|  | OS << " [isconvergent]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) | 
|  | OS << " [alignstack]"; | 
|  | if (getInlineAsmDialect() == InlineAsm::AD_ATT) | 
|  | OS << " [attdialect]"; | 
|  | if (getInlineAsmDialect() == InlineAsm::AD_Intel) | 
|  | OS << " [inteldialect]"; | 
|  |  | 
|  | StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; | 
|  | FirstOp = false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  |  | 
|  | if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | VirtRegs.push_back(MO.getReg()); | 
|  |  | 
|  | // Omit call-clobbered registers which aren't used anywhere. This makes | 
|  | // call instructions much less noisy on targets where calls clobber lots | 
|  | // of registers. Don't rely on MO.isDead() because we may be called before | 
|  | // LiveVariables is run, or we may be looking at a non-allocatable reg. | 
|  | if (MRI && isCall() && | 
|  | MO.isReg() && MO.isImplicit() && MO.isDef()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (MRI->use_empty(Reg)) { | 
|  | bool HasAliasLive = false; | 
|  | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { | 
|  | unsigned AliasReg = *AI; | 
|  | if (!MRI->use_empty(AliasReg)) { | 
|  | HasAliasLive = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasAliasLive) { | 
|  | OmittedAnyCallClobbers = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FirstOp) FirstOp = false; else OS << ","; | 
|  | OS << " "; | 
|  | if (i < getDesc().NumOperands) { | 
|  | const MCOperandInfo &MCOI = getDesc().OpInfo[i]; | 
|  | if (MCOI.isPredicate()) | 
|  | OS << "pred:"; | 
|  | if (MCOI.isOptionalDef()) | 
|  | OS << "opt:"; | 
|  | } | 
|  | if (isDebugValue() && MO.isMetadata()) { | 
|  | // Pretty print DBG_VALUE instructions. | 
|  | auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); | 
|  | if (DIV && !DIV->getName().empty()) | 
|  | OS << "!\"" << DIV->getName() << '\"'; | 
|  | else | 
|  | MO.print(OS, MST, TRI); | 
|  | } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { | 
|  | OS << TRI->getSubRegIndexName(MO.getImm()); | 
|  | } else if (i == AsmDescOp && MO.isImm()) { | 
|  | // Pretty print the inline asm operand descriptor. | 
|  | OS << '$' << AsmOpCount++; | 
|  | unsigned Flag = MO.getImm(); | 
|  | switch (InlineAsm::getKind(Flag)) { | 
|  | case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break; | 
|  | case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break; | 
|  | case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; | 
|  | case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break; | 
|  | case InlineAsm::Kind_Imm:                OS << ":[imm"; break; | 
|  | case InlineAsm::Kind_Mem:                OS << ":[mem"; break; | 
|  | default: OS << ":[??" << InlineAsm::getKind(Flag); break; | 
|  | } | 
|  |  | 
|  | unsigned RCID = 0; | 
|  | if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && | 
|  | InlineAsm::hasRegClassConstraint(Flag, RCID)) { | 
|  | if (TRI) { | 
|  | OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); | 
|  | } else | 
|  | OS << ":RC" << RCID; | 
|  | } | 
|  |  | 
|  | if (InlineAsm::isMemKind(Flag)) { | 
|  | unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); | 
|  | switch (MCID) { | 
|  | case InlineAsm::Constraint_es: OS << ":es"; break; | 
|  | case InlineAsm::Constraint_i:  OS << ":i"; break; | 
|  | case InlineAsm::Constraint_m:  OS << ":m"; break; | 
|  | case InlineAsm::Constraint_o:  OS << ":o"; break; | 
|  | case InlineAsm::Constraint_v:  OS << ":v"; break; | 
|  | case InlineAsm::Constraint_Q:  OS << ":Q"; break; | 
|  | case InlineAsm::Constraint_R:  OS << ":R"; break; | 
|  | case InlineAsm::Constraint_S:  OS << ":S"; break; | 
|  | case InlineAsm::Constraint_T:  OS << ":T"; break; | 
|  | case InlineAsm::Constraint_Um: OS << ":Um"; break; | 
|  | case InlineAsm::Constraint_Un: OS << ":Un"; break; | 
|  | case InlineAsm::Constraint_Uq: OS << ":Uq"; break; | 
|  | case InlineAsm::Constraint_Us: OS << ":Us"; break; | 
|  | case InlineAsm::Constraint_Ut: OS << ":Ut"; break; | 
|  | case InlineAsm::Constraint_Uv: OS << ":Uv"; break; | 
|  | case InlineAsm::Constraint_Uy: OS << ":Uy"; break; | 
|  | case InlineAsm::Constraint_X:  OS << ":X"; break; | 
|  | case InlineAsm::Constraint_Z:  OS << ":Z"; break; | 
|  | case InlineAsm::Constraint_ZC: OS << ":ZC"; break; | 
|  | case InlineAsm::Constraint_Zy: OS << ":Zy"; break; | 
|  | default: OS << ":?"; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned TiedTo = 0; | 
|  | if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) | 
|  | OS << " tiedto:$" << TiedTo; | 
|  |  | 
|  | OS << ']'; | 
|  |  | 
|  | // Compute the index of the next operand descriptor. | 
|  | AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); | 
|  | } else | 
|  | MO.print(OS, MST, TRI); | 
|  | } | 
|  |  | 
|  | // Briefly indicate whether any call clobbers were omitted. | 
|  | if (OmittedAnyCallClobbers) { | 
|  | if (!FirstOp) OS << ","; | 
|  | OS << " ..."; | 
|  | } | 
|  |  | 
|  | bool HaveSemi = false; | 
|  | const unsigned PrintableFlags = FrameSetup | FrameDestroy; | 
|  | if (Flags & PrintableFlags) { | 
|  | if (!HaveSemi) { | 
|  | OS << ";"; | 
|  | HaveSemi = true; | 
|  | } | 
|  | OS << " flags: "; | 
|  |  | 
|  | if (Flags & FrameSetup) | 
|  | OS << "FrameSetup"; | 
|  |  | 
|  | if (Flags & FrameDestroy) | 
|  | OS << "FrameDestroy"; | 
|  | } | 
|  |  | 
|  | if (!memoperands_empty()) { | 
|  | if (!HaveSemi) { | 
|  | OS << ";"; | 
|  | HaveSemi = true; | 
|  | } | 
|  |  | 
|  | OS << " mem:"; | 
|  | for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); | 
|  | i != e; ++i) { | 
|  | (*i)->print(OS, MST); | 
|  | if (std::next(i) != e) | 
|  | OS << " "; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print the regclass of any virtual registers encountered. | 
|  | if (MRI && !VirtRegs.empty()) { | 
|  | if (!HaveSemi) { | 
|  | OS << ";"; | 
|  | HaveSemi = true; | 
|  | } | 
|  | for (unsigned i = 0; i != VirtRegs.size(); ++i) { | 
|  | const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); | 
|  | if (!RC) | 
|  | continue; | 
|  | // Generic virtual registers do not have register classes. | 
|  | if (RC.is<const RegisterBank *>()) | 
|  | OS << " " << RC.get<const RegisterBank *>()->getName(); | 
|  | else | 
|  | OS << " " | 
|  | << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); | 
|  | OS << ':' << PrintReg(VirtRegs[i]); | 
|  | for (unsigned j = i+1; j != VirtRegs.size();) { | 
|  | if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { | 
|  | ++j; | 
|  | continue; | 
|  | } | 
|  | if (VirtRegs[i] != VirtRegs[j]) | 
|  | OS << "," << PrintReg(VirtRegs[j]); | 
|  | VirtRegs.erase(VirtRegs.begin()+j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print debug location information. | 
|  | if (isDebugValue() && getOperand(e - 2).isMetadata()) { | 
|  | if (!HaveSemi) | 
|  | OS << ";"; | 
|  | auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); | 
|  | OS << " line no:" <<  DV->getLine(); | 
|  | if (auto *InlinedAt = debugLoc->getInlinedAt()) { | 
|  | DebugLoc InlinedAtDL(InlinedAt); | 
|  | if (InlinedAtDL && MF) { | 
|  | OS << " inlined @[ "; | 
|  | InlinedAtDL.print(OS); | 
|  | OS << " ]"; | 
|  | } | 
|  | } | 
|  | if (isIndirectDebugValue()) | 
|  | OS << " indirect"; | 
|  | } else if (debugLoc && MF) { | 
|  | if (!HaveSemi) | 
|  | OS << ";"; | 
|  | OS << " dbg:"; | 
|  | debugLoc.print(OS); | 
|  | } | 
|  |  | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::addRegisterKilled(unsigned IncomingReg, | 
|  | const TargetRegisterInfo *RegInfo, | 
|  | bool AddIfNotFound) { | 
|  | bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); | 
|  | bool hasAliases = isPhysReg && | 
|  | MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); | 
|  | bool Found = false; | 
|  | SmallVector<unsigned,4> DeadOps; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) | 
|  | continue; | 
|  |  | 
|  | // DEBUG_VALUE nodes do not contribute to code generation and should | 
|  | // always be ignored. Failure to do so may result in trying to modify | 
|  | // KILL flags on DEBUG_VALUE nodes. | 
|  | if (MO.isDebug()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  |  | 
|  | if (Reg == IncomingReg) { | 
|  | if (!Found) { | 
|  | if (MO.isKill()) | 
|  | // The register is already marked kill. | 
|  | return true; | 
|  | if (isPhysReg && isRegTiedToDefOperand(i)) | 
|  | // Two-address uses of physregs must not be marked kill. | 
|  | return true; | 
|  | MO.setIsKill(); | 
|  | Found = true; | 
|  | } | 
|  | } else if (hasAliases && MO.isKill() && | 
|  | TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | // A super-register kill already exists. | 
|  | if (RegInfo->isSuperRegister(IncomingReg, Reg)) | 
|  | return true; | 
|  | if (RegInfo->isSubRegister(IncomingReg, Reg)) | 
|  | DeadOps.push_back(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Trim unneeded kill operands. | 
|  | while (!DeadOps.empty()) { | 
|  | unsigned OpIdx = DeadOps.back(); | 
|  | if (getOperand(OpIdx).isImplicit()) | 
|  | RemoveOperand(OpIdx); | 
|  | else | 
|  | getOperand(OpIdx).setIsKill(false); | 
|  | DeadOps.pop_back(); | 
|  | } | 
|  |  | 
|  | // If not found, this means an alias of one of the operands is killed. Add a | 
|  | // new implicit operand if required. | 
|  | if (!Found && AddIfNotFound) { | 
|  | addOperand(MachineOperand::CreateReg(IncomingReg, | 
|  | false /*IsDef*/, | 
|  | true  /*IsImp*/, | 
|  | true  /*IsKill*/)); | 
|  | return true; | 
|  | } | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | void MachineInstr::clearRegisterKills(unsigned Reg, | 
|  | const TargetRegisterInfo *RegInfo) { | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | RegInfo = nullptr; | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isUse() || !MO.isKill()) | 
|  | continue; | 
|  | unsigned OpReg = MO.getReg(); | 
|  | if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineInstr::addRegisterDead(unsigned Reg, | 
|  | const TargetRegisterInfo *RegInfo, | 
|  | bool AddIfNotFound) { | 
|  | bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); | 
|  | bool hasAliases = isPhysReg && | 
|  | MCRegAliasIterator(Reg, RegInfo, false).isValid(); | 
|  | bool Found = false; | 
|  | SmallVector<unsigned,4> DeadOps; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  |  | 
|  | if (MOReg == Reg) { | 
|  | MO.setIsDead(); | 
|  | Found = true; | 
|  | } else if (hasAliases && MO.isDead() && | 
|  | TargetRegisterInfo::isPhysicalRegister(MOReg)) { | 
|  | // There exists a super-register that's marked dead. | 
|  | if (RegInfo->isSuperRegister(Reg, MOReg)) | 
|  | return true; | 
|  | if (RegInfo->isSubRegister(Reg, MOReg)) | 
|  | DeadOps.push_back(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Trim unneeded dead operands. | 
|  | while (!DeadOps.empty()) { | 
|  | unsigned OpIdx = DeadOps.back(); | 
|  | if (getOperand(OpIdx).isImplicit()) | 
|  | RemoveOperand(OpIdx); | 
|  | else | 
|  | getOperand(OpIdx).setIsDead(false); | 
|  | DeadOps.pop_back(); | 
|  | } | 
|  |  | 
|  | // If not found, this means an alias of one of the operands is dead. Add a | 
|  | // new implicit operand if required. | 
|  | if (Found || !AddIfNotFound) | 
|  | return Found; | 
|  |  | 
|  | addOperand(MachineOperand::CreateReg(Reg, | 
|  | true  /*IsDef*/, | 
|  | true  /*IsImp*/, | 
|  | false /*IsKill*/, | 
|  | true  /*IsDead*/)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachineInstr::clearRegisterDeads(unsigned Reg) { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) | 
|  | continue; | 
|  | MO.setIsDead(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) | 
|  | continue; | 
|  | MO.setIsUndef(IsUndef); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::addRegisterDefined(unsigned Reg, | 
|  | const TargetRegisterInfo *RegInfo) { | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); | 
|  | if (MO) | 
|  | return; | 
|  | } else { | 
|  | for (const MachineOperand &MO : operands()) { | 
|  | if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && | 
|  | MO.getSubReg() == 0) | 
|  | return; | 
|  | } | 
|  | } | 
|  | addOperand(MachineOperand::CreateReg(Reg, | 
|  | true  /*IsDef*/, | 
|  | true  /*IsImp*/)); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | bool HasRegMask = false; | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (MO.isRegMask()) { | 
|  | HasRegMask = true; | 
|  | continue; | 
|  | } | 
|  | if (!MO.isReg() || !MO.isDef()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
|  | // If there are no uses, including partial uses, the def is dead. | 
|  | if (none_of(UsedRegs, | 
|  | [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) | 
|  | MO.setIsDead(); | 
|  | } | 
|  |  | 
|  | // This is a call with a register mask operand. | 
|  | // Mask clobbers are always dead, so add defs for the non-dead defines. | 
|  | if (HasRegMask) | 
|  | for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); | 
|  | I != E; ++I) | 
|  | addRegisterDefined(*I, &TRI); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { | 
|  | // Build up a buffer of hash code components. | 
|  | SmallVector<size_t, 8> HashComponents; | 
|  | HashComponents.reserve(MI->getNumOperands() + 1); | 
|  | HashComponents.push_back(MI->getOpcode()); | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.isDef() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue;  // Skip virtual register defs. | 
|  |  | 
|  | HashComponents.push_back(hash_value(MO)); | 
|  | } | 
|  | return hash_combine_range(HashComponents.begin(), HashComponents.end()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::emitError(StringRef Msg) const { | 
|  | // Find the source location cookie. | 
|  | unsigned LocCookie = 0; | 
|  | const MDNode *LocMD = nullptr; | 
|  | for (unsigned i = getNumOperands(); i != 0; --i) { | 
|  | if (getOperand(i-1).isMetadata() && | 
|  | (LocMD = getOperand(i-1).getMetadata()) && | 
|  | LocMD->getNumOperands() != 0) { | 
|  | if (const ConstantInt *CI = | 
|  | mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { | 
|  | LocCookie = CI->getZExtValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const MachineBasicBlock *MBB = getParent()) | 
|  | if (const MachineFunction *MF = MBB->getParent()) | 
|  | return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); | 
|  | report_fatal_error(Msg); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, | 
|  | const MCInstrDesc &MCID, bool IsIndirect, | 
|  | unsigned Reg, unsigned Offset, | 
|  | const MDNode *Variable, const MDNode *Expr) { | 
|  | assert(isa<DILocalVariable>(Variable) && "not a variable"); | 
|  | assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); | 
|  | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (IsIndirect) | 
|  | return BuildMI(MF, DL, MCID) | 
|  | .addReg(Reg, RegState::Debug) | 
|  | .addImm(Offset) | 
|  | .addMetadata(Variable) | 
|  | .addMetadata(Expr); | 
|  | else { | 
|  | assert(Offset == 0 && "A direct address cannot have an offset."); | 
|  | return BuildMI(MF, DL, MCID) | 
|  | .addReg(Reg, RegState::Debug) | 
|  | .addReg(0U, RegState::Debug) | 
|  | .addMetadata(Variable) | 
|  | .addMetadata(Expr); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, const MCInstrDesc &MCID, | 
|  | bool IsIndirect, unsigned Reg, | 
|  | unsigned Offset, const MDNode *Variable, | 
|  | const MDNode *Expr) { | 
|  | assert(isa<DILocalVariable>(Variable) && "not a variable"); | 
|  | assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); | 
|  | MachineFunction &MF = *BB.getParent(); | 
|  | MachineInstr *MI = | 
|  | BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); | 
|  | BB.insert(I, MI); | 
|  | return MachineInstrBuilder(MF, MI); | 
|  | } |