|  | //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include <cctype> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisableHazardRecognizer( | 
|  | "disable-sched-hazard", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable hazard detection during preRA scheduling")); | 
|  |  | 
|  | TargetInstrInfo::~TargetInstrInfo() { | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* | 
|  | TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MachineFunction &MF) const { | 
|  | if (OpNum >= MCID.getNumOperands()) | 
|  | return nullptr; | 
|  |  | 
|  | short RegClass = MCID.OpInfo[OpNum].RegClass; | 
|  | if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) | 
|  | return TRI->getPointerRegClass(MF, RegClass); | 
|  |  | 
|  | // Instructions like INSERT_SUBREG do not have fixed register classes. | 
|  | if (RegClass < 0) | 
|  | return nullptr; | 
|  |  | 
|  | // Otherwise just look it up normally. | 
|  | return TRI->getRegClass(RegClass); | 
|  | } | 
|  |  | 
|  | /// insertNoop - Insert a noop into the instruction stream at the specified | 
|  | /// point. | 
|  | void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | llvm_unreachable("Target didn't implement insertNoop!"); | 
|  | } | 
|  |  | 
|  | /// Measure the specified inline asm to determine an approximation of its | 
|  | /// length. | 
|  | /// Comments (which run till the next SeparatorString or newline) do not | 
|  | /// count as an instruction. | 
|  | /// Any other non-whitespace text is considered an instruction, with | 
|  | /// multiple instructions separated by SeparatorString or newlines. | 
|  | /// Variable-length instructions are not handled here; this function | 
|  | /// may be overloaded in the target code to do that. | 
|  | unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, | 
|  | const MCAsmInfo &MAI) const { | 
|  | // Count the number of instructions in the asm. | 
|  | bool atInsnStart = true; | 
|  | unsigned InstCount = 0; | 
|  | for (; *Str; ++Str) { | 
|  | if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | 
|  | strlen(MAI.getSeparatorString())) == 0) { | 
|  | atInsnStart = true; | 
|  | } else if (strncmp(Str, MAI.getCommentString().data(), | 
|  | MAI.getCommentString().size()) == 0) { | 
|  | // Stop counting as an instruction after a comment until the next | 
|  | // separator. | 
|  | atInsnStart = false; | 
|  | } | 
|  |  | 
|  | if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { | 
|  | ++InstCount; | 
|  | atInsnStart = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return InstCount * MAI.getMaxInstLength(); | 
|  | } | 
|  |  | 
|  | /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | 
|  | /// after it, replacing it with an unconditional branch to NewDest. | 
|  | void | 
|  | TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | 
|  | MachineBasicBlock *NewDest) const { | 
|  | MachineBasicBlock *MBB = Tail->getParent(); | 
|  |  | 
|  | // Remove all the old successors of MBB from the CFG. | 
|  | while (!MBB->succ_empty()) | 
|  | MBB->removeSuccessor(MBB->succ_begin()); | 
|  |  | 
|  | // Save off the debug loc before erasing the instruction. | 
|  | DebugLoc DL = Tail->getDebugLoc(); | 
|  |  | 
|  | // Remove all the dead instructions from the end of MBB. | 
|  | MBB->erase(Tail, MBB->end()); | 
|  |  | 
|  | // If MBB isn't immediately before MBB, insert a branch to it. | 
|  | if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | 
|  | insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); | 
|  | MBB->addSuccessor(NewDest); | 
|  | } | 
|  |  | 
|  | MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, | 
|  | bool NewMI, unsigned Idx1, | 
|  | unsigned Idx2) const { | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | bool HasDef = MCID.getNumDefs(); | 
|  | if (HasDef && !MI.getOperand(0).isReg()) | 
|  | // No idea how to commute this instruction. Target should implement its own. | 
|  | return nullptr; | 
|  |  | 
|  | unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; | 
|  | unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; | 
|  | assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && | 
|  | CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && | 
|  | "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); | 
|  | assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && | 
|  | "This only knows how to commute register operands so far"); | 
|  |  | 
|  | unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; | 
|  | unsigned Reg1 = MI.getOperand(Idx1).getReg(); | 
|  | unsigned Reg2 = MI.getOperand(Idx2).getReg(); | 
|  | unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; | 
|  | unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); | 
|  | unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); | 
|  | bool Reg1IsKill = MI.getOperand(Idx1).isKill(); | 
|  | bool Reg2IsKill = MI.getOperand(Idx2).isKill(); | 
|  | bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); | 
|  | bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); | 
|  | bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); | 
|  | bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); | 
|  | // If destination is tied to either of the commuted source register, then | 
|  | // it must be updated. | 
|  | if (HasDef && Reg0 == Reg1 && | 
|  | MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { | 
|  | Reg2IsKill = false; | 
|  | Reg0 = Reg2; | 
|  | SubReg0 = SubReg2; | 
|  | } else if (HasDef && Reg0 == Reg2 && | 
|  | MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { | 
|  | Reg1IsKill = false; | 
|  | Reg0 = Reg1; | 
|  | SubReg0 = SubReg1; | 
|  | } | 
|  |  | 
|  | MachineInstr *CommutedMI = nullptr; | 
|  | if (NewMI) { | 
|  | // Create a new instruction. | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | CommutedMI = MF.CloneMachineInstr(&MI); | 
|  | } else { | 
|  | CommutedMI = &MI; | 
|  | } | 
|  |  | 
|  | if (HasDef) { | 
|  | CommutedMI->getOperand(0).setReg(Reg0); | 
|  | CommutedMI->getOperand(0).setSubReg(SubReg0); | 
|  | } | 
|  | CommutedMI->getOperand(Idx2).setReg(Reg1); | 
|  | CommutedMI->getOperand(Idx1).setReg(Reg2); | 
|  | CommutedMI->getOperand(Idx2).setSubReg(SubReg1); | 
|  | CommutedMI->getOperand(Idx1).setSubReg(SubReg2); | 
|  | CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); | 
|  | CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); | 
|  | CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); | 
|  | CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); | 
|  | CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); | 
|  | CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); | 
|  | return CommutedMI; | 
|  | } | 
|  |  | 
|  | MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose | 
|  | // any commutable operand, which is done in findCommutedOpIndices() method | 
|  | // called below. | 
|  | if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && | 
|  | !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { | 
|  | assert(MI.isCommutable() && | 
|  | "Precondition violation: MI must be commutable."); | 
|  | return nullptr; | 
|  | } | 
|  | return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, | 
|  | unsigned &ResultIdx2, | 
|  | unsigned CommutableOpIdx1, | 
|  | unsigned CommutableOpIdx2) { | 
|  | if (ResultIdx1 == CommuteAnyOperandIndex && | 
|  | ResultIdx2 == CommuteAnyOperandIndex) { | 
|  | ResultIdx1 = CommutableOpIdx1; | 
|  | ResultIdx2 = CommutableOpIdx2; | 
|  | } else if (ResultIdx1 == CommuteAnyOperandIndex) { | 
|  | if (ResultIdx2 == CommutableOpIdx1) | 
|  | ResultIdx1 = CommutableOpIdx2; | 
|  | else if (ResultIdx2 == CommutableOpIdx2) | 
|  | ResultIdx1 = CommutableOpIdx1; | 
|  | else | 
|  | return false; | 
|  | } else if (ResultIdx2 == CommuteAnyOperandIndex) { | 
|  | if (ResultIdx1 == CommutableOpIdx1) | 
|  | ResultIdx2 = CommutableOpIdx2; | 
|  | else if (ResultIdx1 == CommutableOpIdx2) | 
|  | ResultIdx2 = CommutableOpIdx1; | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | // Check that the result operand indices match the given commutable | 
|  | // operand indices. | 
|  | return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || | 
|  | (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | assert(!MI.isBundle() && | 
|  | "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (!MCID.isCommutable()) | 
|  | return false; | 
|  |  | 
|  | // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | 
|  | // is not true, then the target must implement this. | 
|  | unsigned CommutableOpIdx1 = MCID.getNumDefs(); | 
|  | unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
|  | CommutableOpIdx1, CommutableOpIdx2)) | 
|  | return false; | 
|  |  | 
|  | if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { | 
|  | if (!MI.isTerminator()) return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI.isBranch() && !MI.isBarrier()) | 
|  | return true; | 
|  | if (!MI.isPredicable()) | 
|  | return true; | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::PredicateInstruction( | 
|  | MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | assert(!MI.isBundle() && | 
|  | "TargetInstrInfo::PredicateInstruction() can't handle bundles"); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (!MI.isPredicable()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | if (MCID.OpInfo[i].isPredicate()) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | MO.setReg(Pred[j].getReg()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isImm()) { | 
|  | MO.setImm(Pred[j].getImm()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isMBB()) { | 
|  | MO.setMBB(Pred[j].getMBB()); | 
|  | MadeChange = true; | 
|  | } | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI, | 
|  | const MachineMemOperand *&MMO, | 
|  | int &FrameIndex) const { | 
|  | for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), | 
|  | oe = MI.memoperands_end(); | 
|  | o != oe; ++o) { | 
|  | if ((*o)->isLoad()) { | 
|  | if (const FixedStackPseudoSourceValue *Value = | 
|  | dyn_cast_or_null<FixedStackPseudoSourceValue>( | 
|  | (*o)->getPseudoValue())) { | 
|  | FrameIndex = Value->getFrameIndex(); | 
|  | MMO = *o; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI, | 
|  | const MachineMemOperand *&MMO, | 
|  | int &FrameIndex) const { | 
|  | for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), | 
|  | oe = MI.memoperands_end(); | 
|  | o != oe; ++o) { | 
|  | if ((*o)->isStore()) { | 
|  | if (const FixedStackPseudoSourceValue *Value = | 
|  | dyn_cast_or_null<FixedStackPseudoSourceValue>( | 
|  | (*o)->getPseudoValue())) { | 
|  | FrameIndex = Value->getFrameIndex(); | 
|  | MMO = *o; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, | 
|  | unsigned SubIdx, unsigned &Size, | 
|  | unsigned &Offset, | 
|  | const MachineFunction &MF) const { | 
|  | if (!SubIdx) { | 
|  | Size = RC->getSize(); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); | 
|  | // Convert bit size to byte size to be consistent with | 
|  | // MCRegisterClass::getSize(). | 
|  | if (BitSize % 8) | 
|  | return false; | 
|  |  | 
|  | int BitOffset = TRI->getSubRegIdxOffset(SubIdx); | 
|  | if (BitOffset < 0 || BitOffset % 8) | 
|  | return false; | 
|  |  | 
|  | Size = BitSize /= 8; | 
|  | Offset = (unsigned)BitOffset / 8; | 
|  |  | 
|  | assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); | 
|  |  | 
|  | if (!MF.getDataLayout().isLittleEndian()) { | 
|  | Offset = RC->getSize() - (Offset + Size); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr &Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); | 
|  | MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, | 
|  | const MachineInstr &MI1, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
|  | } | 
|  |  | 
|  | MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig, | 
|  | MachineFunction &MF) const { | 
|  | assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); | 
|  | return MF.CloneMachineInstr(&Orig); | 
|  | } | 
|  |  | 
|  | // If the COPY instruction in MI can be folded to a stack operation, return | 
|  | // the register class to use. | 
|  | static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, | 
|  | unsigned FoldIdx) { | 
|  | assert(MI.isCopy() && "MI must be a COPY instruction"); | 
|  | if (MI.getNumOperands() != 2) | 
|  | return nullptr; | 
|  | assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); | 
|  |  | 
|  | const MachineOperand &FoldOp = MI.getOperand(FoldIdx); | 
|  | const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); | 
|  |  | 
|  | if (FoldOp.getSubReg() || LiveOp.getSubReg()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned FoldReg = FoldOp.getReg(); | 
|  | unsigned LiveReg = LiveOp.getReg(); | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && | 
|  | "Cannot fold physregs"); | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) | 
|  | return RC->contains(LiveOp.getReg()) ? RC : nullptr; | 
|  |  | 
|  | if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) | 
|  | return RC; | 
|  |  | 
|  | // FIXME: Allow folding when register classes are memory compatible. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | 
|  | llvm_unreachable("Not a MachO target"); | 
|  | } | 
|  |  | 
|  | static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, | 
|  | ArrayRef<unsigned> Ops, int FrameIndex, | 
|  | const TargetInstrInfo &TII) { | 
|  | unsigned StartIdx = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::STACKMAP: { | 
|  | // StackMapLiveValues are foldable | 
|  | StartIdx = StackMapOpers(&MI).getVarIdx(); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::PATCHPOINT: { | 
|  | // For PatchPoint, the call args are not foldable (even if reported in the | 
|  | // stackmap e.g. via anyregcc). | 
|  | StartIdx = PatchPointOpers(&MI).getVarIdx(); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::STATEPOINT: { | 
|  | // For statepoints, fold deopt and gc arguments, but not call arguments. | 
|  | StartIdx = StatepointOpers(&MI).getVarIdx(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unexpected stackmap opcode"); | 
|  | } | 
|  |  | 
|  | // Return false if any operands requested for folding are not foldable (not | 
|  | // part of the stackmap's live values). | 
|  | for (unsigned Op : Ops) { | 
|  | if (Op < StartIdx) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  |  | 
|  | // No need to fold return, the meta data, and function arguments | 
|  | for (unsigned i = 0; i < StartIdx; ++i) | 
|  | MIB.addOperand(MI.getOperand(i)); | 
|  |  | 
|  | for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (is_contained(Ops, i)) { | 
|  | unsigned SpillSize; | 
|  | unsigned SpillOffset; | 
|  | // Compute the spill slot size and offset. | 
|  | const TargetRegisterClass *RC = | 
|  | MF.getRegInfo().getRegClass(MO.getReg()); | 
|  | bool Valid = | 
|  | TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); | 
|  | if (!Valid) | 
|  | report_fatal_error("cannot spill patchpoint subregister operand"); | 
|  | MIB.addImm(StackMaps::IndirectMemRefOp); | 
|  | MIB.addImm(SpillSize); | 
|  | MIB.addFrameIndex(FrameIndex); | 
|  | MIB.addImm(SpillOffset); | 
|  | } | 
|  | else | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Attempt to fold a load or store of the specified stack | 
|  | /// slot into the specified machine instruction for the specified operand(s). | 
|  | /// If this is possible, a new instruction is returned with the specified | 
|  | /// operand folded, otherwise NULL is returned. The client is responsible for | 
|  | /// removing the old instruction and adding the new one in the instruction | 
|  | /// stream. | 
|  | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, | 
|  | ArrayRef<unsigned> Ops, int FI, | 
|  | LiveIntervals *LIS) const { | 
|  | auto Flags = MachineMemOperand::MONone; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (MI.getOperand(Ops[i]).isDef()) | 
|  | Flags |= MachineMemOperand::MOStore; | 
|  | else | 
|  | Flags |= MachineMemOperand::MOLoad; | 
|  |  | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | assert(MBB && "foldMemoryOperand needs an inserted instruction"); | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | if (MI.getOpcode() == TargetOpcode::STACKMAP || | 
|  | MI.getOpcode() == TargetOpcode::PATCHPOINT || | 
|  | MI.getOpcode() == TargetOpcode::STATEPOINT) { | 
|  | // Fold stackmap/patchpoint. | 
|  | NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); | 
|  | if (NewMI) | 
|  | MBB->insert(MI, NewMI); | 
|  | } else { | 
|  | // Ask the target to do the actual folding. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); | 
|  | } | 
|  |  | 
|  | if (NewMI) { | 
|  | NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); | 
|  | // Add a memory operand, foldMemoryOperandImpl doesn't do that. | 
|  | assert((!(Flags & MachineMemOperand::MOStore) || | 
|  | NewMI->mayStore()) && | 
|  | "Folded a def to a non-store!"); | 
|  | assert((!(Flags & MachineMemOperand::MOLoad) || | 
|  | NewMI->mayLoad()) && | 
|  | "Folded a use to a non-load!"); | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | assert(MFI.getObjectOffset(FI) != -1); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), | 
|  | MFI.getObjectAlignment(FI)); | 
|  | NewMI->addMemOperand(MF, MMO); | 
|  |  | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | // Straight COPY may fold as load/store. | 
|  | if (!MI.isCopy() || Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); | 
|  | if (!RC) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(1 - Ops[0]); | 
|  | MachineBasicBlock::iterator Pos = MI; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | if (Flags == MachineMemOperand::MOStore) | 
|  | storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); | 
|  | else | 
|  | loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); | 
|  | return &*--Pos; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasReassociableOperands( | 
|  | const MachineInstr &Inst, const MachineBasicBlock *MBB) const { | 
|  | const MachineOperand &Op1 = Inst.getOperand(1); | 
|  | const MachineOperand &Op2 = Inst.getOperand(2); | 
|  | const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  |  | 
|  | // We need virtual register definitions for the operands that we will | 
|  | // reassociate. | 
|  | MachineInstr *MI1 = nullptr; | 
|  | MachineInstr *MI2 = nullptr; | 
|  | if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) | 
|  | MI1 = MRI.getUniqueVRegDef(Op1.getReg()); | 
|  | if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) | 
|  | MI2 = MRI.getUniqueVRegDef(Op2.getReg()); | 
|  |  | 
|  | // And they need to be in the trace (otherwise, they won't have a depth). | 
|  | return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, | 
|  | bool &Commuted) const { | 
|  | const MachineBasicBlock *MBB = Inst.getParent(); | 
|  | const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  | MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); | 
|  | MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); | 
|  | unsigned AssocOpcode = Inst.getOpcode(); | 
|  |  | 
|  | // If only one operand has the same opcode and it's the second source operand, | 
|  | // the operands must be commuted. | 
|  | Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; | 
|  | if (Commuted) | 
|  | std::swap(MI1, MI2); | 
|  |  | 
|  | // 1. The previous instruction must be the same type as Inst. | 
|  | // 2. The previous instruction must have virtual register definitions for its | 
|  | //    operands in the same basic block as Inst. | 
|  | // 3. The previous instruction's result must only be used by Inst. | 
|  | return MI1->getOpcode() == AssocOpcode && | 
|  | hasReassociableOperands(*MI1, MBB) && | 
|  | MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); | 
|  | } | 
|  |  | 
|  | // 1. The operation must be associative and commutative. | 
|  | // 2. The instruction must have virtual register definitions for its | 
|  | //    operands in the same basic block. | 
|  | // 3. The instruction must have a reassociable sibling. | 
|  | bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, | 
|  | bool &Commuted) const { | 
|  | return isAssociativeAndCommutative(Inst) && | 
|  | hasReassociableOperands(Inst, Inst.getParent()) && | 
|  | hasReassociableSibling(Inst, Commuted); | 
|  | } | 
|  |  | 
|  | // The concept of the reassociation pass is that these operations can benefit | 
|  | // from this kind of transformation: | 
|  | // | 
|  | // A = ? op ? | 
|  | // B = A op X (Prev) | 
|  | // C = B op Y (Root) | 
|  | // --> | 
|  | // A = ? op ? | 
|  | // B = X op Y | 
|  | // C = A op B | 
|  | // | 
|  | // breaking the dependency between A and B, allowing them to be executed in | 
|  | // parallel (or back-to-back in a pipeline) instead of depending on each other. | 
|  |  | 
|  | // FIXME: This has the potential to be expensive (compile time) while not | 
|  | // improving the code at all. Some ways to limit the overhead: | 
|  | // 1. Track successful transforms; bail out if hit rate gets too low. | 
|  | // 2. Only enable at -O3 or some other non-default optimization level. | 
|  | // 3. Pre-screen pattern candidates here: if an operand of the previous | 
|  | //    instruction is known to not increase the critical path, then don't match | 
|  | //    that pattern. | 
|  | bool TargetInstrInfo::getMachineCombinerPatterns( | 
|  | MachineInstr &Root, | 
|  | SmallVectorImpl<MachineCombinerPattern> &Patterns) const { | 
|  | bool Commute; | 
|  | if (isReassociationCandidate(Root, Commute)) { | 
|  | // We found a sequence of instructions that may be suitable for a | 
|  | // reassociation of operands to increase ILP. Specify each commutation | 
|  | // possibility for the Prev instruction in the sequence and let the | 
|  | // machine combiner decide if changing the operands is worthwhile. | 
|  | if (Commute) { | 
|  | Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); | 
|  | Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); | 
|  | } else { | 
|  | Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); | 
|  | Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | /// Return true when a code sequence can improve loop throughput. | 
|  | bool | 
|  | TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { | 
|  | return false; | 
|  | } | 
|  | /// Attempt the reassociation transformation to reduce critical path length. | 
|  | /// See the above comments before getMachineCombinerPatterns(). | 
|  | void TargetInstrInfo::reassociateOps( | 
|  | MachineInstr &Root, MachineInstr &Prev, | 
|  | MachineCombinerPattern Pattern, | 
|  | SmallVectorImpl<MachineInstr *> &InsInstrs, | 
|  | SmallVectorImpl<MachineInstr *> &DelInstrs, | 
|  | DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { | 
|  | MachineFunction *MF = Root.getParent()->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); | 
|  |  | 
|  | // This array encodes the operand index for each parameter because the | 
|  | // operands may be commuted. Each row corresponds to a pattern value, | 
|  | // and each column specifies the index of A, B, X, Y. | 
|  | unsigned OpIdx[4][4] = { | 
|  | { 1, 1, 2, 2 }, | 
|  | { 1, 2, 2, 1 }, | 
|  | { 2, 1, 1, 2 }, | 
|  | { 2, 2, 1, 1 } | 
|  | }; | 
|  |  | 
|  | int Row; | 
|  | switch (Pattern) { | 
|  | case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; | 
|  | case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; | 
|  | case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; | 
|  | case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; | 
|  | default: llvm_unreachable("unexpected MachineCombinerPattern"); | 
|  | } | 
|  |  | 
|  | MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); | 
|  | MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); | 
|  | MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); | 
|  | MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); | 
|  | MachineOperand &OpC = Root.getOperand(0); | 
|  |  | 
|  | unsigned RegA = OpA.getReg(); | 
|  | unsigned RegB = OpB.getReg(); | 
|  | unsigned RegX = OpX.getReg(); | 
|  | unsigned RegY = OpY.getReg(); | 
|  | unsigned RegC = OpC.getReg(); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegA)) | 
|  | MRI.constrainRegClass(RegA, RC); | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegB)) | 
|  | MRI.constrainRegClass(RegB, RC); | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegX)) | 
|  | MRI.constrainRegClass(RegX, RC); | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegY)) | 
|  | MRI.constrainRegClass(RegY, RC); | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegC)) | 
|  | MRI.constrainRegClass(RegC, RC); | 
|  |  | 
|  | // Create a new virtual register for the result of (X op Y) instead of | 
|  | // recycling RegB because the MachineCombiner's computation of the critical | 
|  | // path requires a new register definition rather than an existing one. | 
|  | unsigned NewVR = MRI.createVirtualRegister(RC); | 
|  | InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); | 
|  |  | 
|  | unsigned Opcode = Root.getOpcode(); | 
|  | bool KillA = OpA.isKill(); | 
|  | bool KillX = OpX.isKill(); | 
|  | bool KillY = OpY.isKill(); | 
|  |  | 
|  | // Create new instructions for insertion. | 
|  | MachineInstrBuilder MIB1 = | 
|  | BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) | 
|  | .addReg(RegX, getKillRegState(KillX)) | 
|  | .addReg(RegY, getKillRegState(KillY)); | 
|  | MachineInstrBuilder MIB2 = | 
|  | BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) | 
|  | .addReg(RegA, getKillRegState(KillA)) | 
|  | .addReg(NewVR, getKillRegState(true)); | 
|  |  | 
|  | setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); | 
|  |  | 
|  | // Record new instructions for insertion and old instructions for deletion. | 
|  | InsInstrs.push_back(MIB1); | 
|  | InsInstrs.push_back(MIB2); | 
|  | DelInstrs.push_back(&Prev); | 
|  | DelInstrs.push_back(&Root); | 
|  | } | 
|  |  | 
|  | void TargetInstrInfo::genAlternativeCodeSequence( | 
|  | MachineInstr &Root, MachineCombinerPattern Pattern, | 
|  | SmallVectorImpl<MachineInstr *> &InsInstrs, | 
|  | SmallVectorImpl<MachineInstr *> &DelInstrs, | 
|  | DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { | 
|  | MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | // Select the previous instruction in the sequence based on the input pattern. | 
|  | MachineInstr *Prev = nullptr; | 
|  | switch (Pattern) { | 
|  | case MachineCombinerPattern::REASSOC_AX_BY: | 
|  | case MachineCombinerPattern::REASSOC_XA_BY: | 
|  | Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); | 
|  | break; | 
|  | case MachineCombinerPattern::REASSOC_AX_YB: | 
|  | case MachineCombinerPattern::REASSOC_XA_YB: | 
|  | Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Prev && "Unknown pattern for machine combiner"); | 
|  |  | 
|  | reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Same as the previous version except it allows folding | 
|  | /// of any load and store from / to any address, not just from a specific | 
|  | /// stack slot. | 
|  | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, | 
|  | ArrayRef<unsigned> Ops, | 
|  | MachineInstr &LoadMI, | 
|  | LiveIntervals *LIS) const { | 
|  | assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!"); | 
|  | #endif | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  |  | 
|  | // Ask the target to do the actual folding. | 
|  | MachineInstr *NewMI = nullptr; | 
|  | int FrameIndex = 0; | 
|  |  | 
|  | if ((MI.getOpcode() == TargetOpcode::STACKMAP || | 
|  | MI.getOpcode() == TargetOpcode::PATCHPOINT || | 
|  | MI.getOpcode() == TargetOpcode::STATEPOINT) && | 
|  | isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
|  | // Fold stackmap/patchpoint. | 
|  | NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); | 
|  | if (NewMI) | 
|  | NewMI = &*MBB.insert(MI, NewMI); | 
|  | } else { | 
|  | // Ask the target to do the actual folding. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); | 
|  | } | 
|  |  | 
|  | if (!NewMI) return nullptr; | 
|  |  | 
|  | // Copy the memoperands from the load to the folded instruction. | 
|  | if (MI.memoperands_empty()) { | 
|  | NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end()); | 
|  | } | 
|  | else { | 
|  | // Handle the rare case of folding multiple loads. | 
|  | NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); | 
|  | for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), | 
|  | E = LoadMI.memoperands_end(); | 
|  | I != E; ++I) { | 
|  | NewMI->addMemOperand(MF, *I); | 
|  | } | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( | 
|  | const MachineInstr &MI, AliasAnalysis *AA) const { | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Remat clients assume operand 0 is the defined register. | 
|  | if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) | 
|  | return false; | 
|  | unsigned DefReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // A sub-register definition can only be rematerialized if the instruction | 
|  | // doesn't read the other parts of the register.  Otherwise it is really a | 
|  | // read-modify-write operation on the full virtual register which cannot be | 
|  | // moved safely. | 
|  | if (TargetRegisterInfo::isVirtualRegister(DefReg) && | 
|  | MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) | 
|  | return false; | 
|  |  | 
|  | // A load from a fixed stack slot can be rematerialized. This may be | 
|  | // redundant with subsequent checks, but it's target-independent, | 
|  | // simple, and a common case. | 
|  | int FrameIdx = 0; | 
|  | if (isLoadFromStackSlot(MI, FrameIdx) && | 
|  | MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) | 
|  | return true; | 
|  |  | 
|  | // Avoid instructions obviously unsafe for remat. | 
|  | if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // Don't remat inline asm. We have no idea how expensive it is | 
|  | // even if it's side effect free. | 
|  | if (MI.isInlineAsm()) | 
|  | return false; | 
|  |  | 
|  | // Avoid instructions which load from potentially varying memory. | 
|  | if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) | 
|  | return false; | 
|  |  | 
|  | // If any of the registers accessed are non-constant, conservatively assume | 
|  | // the instruction is not rematerializable. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // Check for a well-behaved physical register. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (MO.isUse()) { | 
|  | // If the physreg has no defs anywhere, it's just an ambient register | 
|  | // and we can freely move its uses. Alternatively, if it's allocatable, | 
|  | // it could get allocated to something with a def during allocation. | 
|  | if (!MRI.isConstantPhysReg(Reg, MF)) | 
|  | return false; | 
|  | } else { | 
|  | // A physreg def. We can't remat it. | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only allow one virtual-register def.  There may be multiple defs of the | 
|  | // same virtual register, though. | 
|  | if (MO.isDef() && Reg != DefReg) | 
|  | return false; | 
|  |  | 
|  | // Don't allow any virtual-register uses. Rematting an instruction with | 
|  | // virtual register uses would length the live ranges of the uses, which | 
|  | // is not necessarily a good idea, certainly not "trivial". | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Everything checked out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  | bool StackGrowsDown = | 
|  | TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; | 
|  |  | 
|  | unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); | 
|  | unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); | 
|  |  | 
|  | if (MI.getOpcode() != FrameSetupOpcode && | 
|  | MI.getOpcode() != FrameDestroyOpcode) | 
|  | return 0; | 
|  |  | 
|  | int SPAdj = MI.getOperand(0).getImm(); | 
|  | SPAdj = TFI->alignSPAdjust(SPAdj); | 
|  |  | 
|  | if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || | 
|  | (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) | 
|  | SPAdj = -SPAdj; | 
|  |  | 
|  | return SPAdj; | 
|  | } | 
|  |  | 
|  | /// isSchedulingBoundary - Test if the given instruction should be | 
|  | /// considered a scheduling boundary. This primarily includes labels | 
|  | /// and terminators. | 
|  | bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI.isTerminator() || MI.isPosition()) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that defines | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); | 
|  | } | 
|  |  | 
|  | // Provide a global flag for disabling the PreRA hazard recognizer that targets | 
|  | // may choose to honor. | 
|  | bool TargetInstrInfo::usePreRAHazardRecognizer() const { | 
|  | return !DisableHazardRecognizer; | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetRAHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
|  | const ScheduleDAG *DAG) const { | 
|  | // Dummy hazard recognizer allows all instructions to issue. | 
|  | return new ScheduleHazardRecognizer(); | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetMIHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetMIHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | return (ScheduleHazardRecognizer *) | 
|  | new ScoreboardHazardRecognizer(II, DAG, "misched"); | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetPostRAHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | return (ScheduleHazardRecognizer *) | 
|  | new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  SelectionDAG latency interface. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int | 
|  | TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *DefNode, unsigned DefIdx, | 
|  | SDNode *UseNode, unsigned UseIdx) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return -1; | 
|  |  | 
|  | if (!DefNode->isMachineOpcode()) | 
|  | return -1; | 
|  |  | 
|  | unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); | 
|  | if (!UseNode->isMachineOpcode()) | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  | } | 
|  |  | 
|  | int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *N) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | if (!N->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  MachineInstr latency interface. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | unsigned Class = MI.getDesc().getSchedClass(); | 
|  | int UOps = ItinData->Itineraries[Class].NumMicroOps; | 
|  | if (UOps >= 0) | 
|  | return UOps; | 
|  |  | 
|  | // The # of u-ops is dynamically determined. The specific target should | 
|  | // override this function to return the right number. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// Return the default expected latency for a def based on it's opcode. | 
|  | unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, | 
|  | const MachineInstr &DefMI) const { | 
|  | if (DefMI.isTransient()) | 
|  | return 0; | 
|  | if (DefMI.mayLoad()) | 
|  | return SchedModel.LoadLatency; | 
|  | if (isHighLatencyDef(DefMI.getOpcode())) | 
|  | return SchedModel.HighLatency; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost) const { | 
|  | // Default to one cycle for no itinerary. However, an "empty" itinerary may | 
|  | // still have a MinLatency property, which getStageLatency checks. | 
|  | if (!ItinData) | 
|  | return MI.mayLoad() ? 2 : 1; | 
|  |  | 
|  | return ItinData->getStageLatency(MI.getDesc().getSchedClass()); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx) const { | 
|  | const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | unsigned DefClass = DefMI.getDesc().getSchedClass(); | 
|  | int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | return (DefCycle != -1 && DefCycle <= 1); | 
|  | } | 
|  |  | 
|  | /// Both DefMI and UseMI must be valid.  By default, call directly to the | 
|  | /// itinerary. This may be overriden by the target. | 
|  | int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | unsigned DefClass = DefMI.getDesc().getSchedClass(); | 
|  | unsigned UseClass = UseMI.getDesc().getSchedClass(); | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  | } | 
|  |  | 
|  | /// If we can determine the operand latency from the def only, without itinerary | 
|  | /// lookup, do so. Otherwise return -1. | 
|  | int TargetInstrInfo::computeDefOperandLatency( | 
|  | const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { | 
|  |  | 
|  | // Let the target hook getInstrLatency handle missing itineraries. | 
|  | if (!ItinData) | 
|  | return getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | if(ItinData->isEmpty()) | 
|  | return defaultDefLatency(ItinData->SchedModel, DefMI); | 
|  |  | 
|  | // ...operand lookup required | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getRegSequenceInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { | 
|  | assert((MI.isRegSequence() || | 
|  | MI.isRegSequenceLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isRegSequence()) | 
|  | return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... | 
|  | assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); | 
|  | for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; | 
|  | OpIdx += 2) { | 
|  | const MachineOperand &MOReg = MI.getOperand(OpIdx); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "One of the subindex of the reg_sequence is not an immediate"); | 
|  | // Record Reg:SubReg, SubIdx. | 
|  | InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), | 
|  | (unsigned)MOSubIdx.getImm())); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getExtractSubregInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | RegSubRegPairAndIdx &InputReg) const { | 
|  | assert((MI.isExtractSubreg() || | 
|  | MI.isExtractSubregLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isExtractSubreg()) | 
|  | return getExtractSubregLikeInputs(MI, DefIdx, InputReg); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = EXTRACT_SUBREG v0.sub1, sub0. | 
|  | assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); | 
|  | const MachineOperand &MOReg = MI.getOperand(1); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(2); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "The subindex of the extract_subreg is not an immediate"); | 
|  |  | 
|  | InputReg.Reg = MOReg.getReg(); | 
|  | InputReg.SubReg = MOReg.getSubReg(); | 
|  | InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getInsertSubregInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { | 
|  | assert((MI.isInsertSubreg() || | 
|  | MI.isInsertSubregLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isInsertSubreg()) | 
|  | return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = INSERT_SEQUENCE v0, v1, sub0. | 
|  | assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); | 
|  | const MachineOperand &MOBaseReg = MI.getOperand(1); | 
|  | const MachineOperand &MOInsertedReg = MI.getOperand(2); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(3); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "One of the subindex of the reg_sequence is not an immediate"); | 
|  | BaseReg.Reg = MOBaseReg.getReg(); | 
|  | BaseReg.SubReg = MOBaseReg.getSubReg(); | 
|  |  | 
|  | InsertedReg.Reg = MOInsertedReg.getReg(); | 
|  | InsertedReg.SubReg = MOInsertedReg.getSubReg(); | 
|  | InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
|  | return true; | 
|  | } |