|  | //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the function verifier interface, that can be used for some | 
|  | // sanity checking of input to the system. | 
|  | // | 
|  | // Note that this does not provide full `Java style' security and verifications, | 
|  | // instead it just tries to ensure that code is well-formed. | 
|  | // | 
|  | //  * Both of a binary operator's parameters are of the same type | 
|  | //  * Verify that the indices of mem access instructions match other operands | 
|  | //  * Verify that arithmetic and other things are only performed on first-class | 
|  | //    types.  Verify that shifts & logicals only happen on integrals f.e. | 
|  | //  * All of the constants in a switch statement are of the correct type | 
|  | //  * The code is in valid SSA form | 
|  | //  * It should be illegal to put a label into any other type (like a structure) | 
|  | //    or to return one. [except constant arrays!] | 
|  | //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad | 
|  | //  * PHI nodes must have an entry for each predecessor, with no extras. | 
|  | //  * PHI nodes must be the first thing in a basic block, all grouped together | 
|  | //  * PHI nodes must have at least one entry | 
|  | //  * All basic blocks should only end with terminator insts, not contain them | 
|  | //  * The entry node to a function must not have predecessors | 
|  | //  * All Instructions must be embedded into a basic block | 
|  | //  * Functions cannot take a void-typed parameter | 
|  | //  * Verify that a function's argument list agrees with it's declared type. | 
|  | //  * It is illegal to specify a name for a void value. | 
|  | //  * It is illegal to have a internal global value with no initializer | 
|  | //  * It is illegal to have a ret instruction that returns a value that does not | 
|  | //    agree with the function return value type. | 
|  | //  * Function call argument types match the function prototype | 
|  | //  * All other things that are tested by asserts spread about the code... | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Verifier.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Metadata.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/ModuleProvider.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstdarg> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace {  // Anonymous namespace for class | 
|  | struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  |  | 
|  | PreVerifier() : FunctionPass(&ID) { } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | // Check that the prerequisites for successful DominatorTree construction | 
|  | // are satisfied. | 
|  | bool runOnFunction(Function &F) { | 
|  | bool Broken = false; | 
|  |  | 
|  | for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { | 
|  | if (I->empty() || !I->back().isTerminator()) { | 
|  | errs() << "Basic Block does not have terminator!\n"; | 
|  | WriteAsOperand(errs(), I, true); | 
|  | errs() << "\n"; | 
|  | Broken = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Broken) | 
|  | llvm_report_error("Broken module, no Basic Block terminator!"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char PreVerifier::ID = 0; | 
|  | static RegisterPass<PreVerifier> | 
|  | PreVer("preverify", "Preliminary module verification"); | 
|  | static const PassInfo *const PreVerifyID = &PreVer; | 
|  |  | 
|  | namespace { | 
|  | struct VISIBILITY_HIDDEN | 
|  | Verifier : public FunctionPass, InstVisitor<Verifier> { | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  | bool Broken;          // Is this module found to be broken? | 
|  | bool RealPass;        // Are we not being run by a PassManager? | 
|  | VerifierFailureAction action; | 
|  | // What to do if verification fails. | 
|  | Module *Mod;          // Module we are verifying right now | 
|  | DominatorTree *DT; // Dominator Tree, caution can be null! | 
|  |  | 
|  | std::string Messages; | 
|  | raw_string_ostream MessagesStr; | 
|  |  | 
|  | /// InstInThisBlock - when verifying a basic block, keep track of all of the | 
|  | /// instructions we have seen so far.  This allows us to do efficient | 
|  | /// dominance checks for the case when an instruction has an operand that is | 
|  | /// an instruction in the same block. | 
|  | SmallPtrSet<Instruction*, 16> InstsInThisBlock; | 
|  |  | 
|  | Verifier() | 
|  | : FunctionPass(&ID), | 
|  | Broken(false), RealPass(true), action(AbortProcessAction), | 
|  | DT(0), MessagesStr(Messages) {} | 
|  | explicit Verifier(VerifierFailureAction ctn) | 
|  | : FunctionPass(&ID), | 
|  | Broken(false), RealPass(true), action(ctn), DT(0), | 
|  | MessagesStr(Messages) {} | 
|  | explicit Verifier(bool AB) | 
|  | : FunctionPass(&ID), | 
|  | Broken(false), RealPass(true), | 
|  | action( AB ? AbortProcessAction : PrintMessageAction), DT(0), | 
|  | MessagesStr(Messages) {} | 
|  | explicit Verifier(DominatorTree &dt) | 
|  | : FunctionPass(&ID), | 
|  | Broken(false), RealPass(false), action(PrintMessageAction), | 
|  | DT(&dt), MessagesStr(Messages) {} | 
|  |  | 
|  |  | 
|  | bool doInitialization(Module &M) { | 
|  | Mod = &M; | 
|  | verifyTypeSymbolTable(M.getTypeSymbolTable()); | 
|  |  | 
|  | // If this is a real pass, in a pass manager, we must abort before | 
|  | // returning back to the pass manager, or else the pass manager may try to | 
|  | // run other passes on the broken module. | 
|  | if (RealPass) | 
|  | return abortIfBroken(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) { | 
|  | // Get dominator information if we are being run by PassManager | 
|  | if (RealPass) DT = &getAnalysis<DominatorTree>(); | 
|  |  | 
|  | Mod = F.getParent(); | 
|  |  | 
|  | visit(F); | 
|  | InstsInThisBlock.clear(); | 
|  |  | 
|  | // If this is a real pass, in a pass manager, we must abort before | 
|  | // returning back to the pass manager, or else the pass manager may try to | 
|  | // run other passes on the broken module. | 
|  | if (RealPass) | 
|  | return abortIfBroken(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool doFinalization(Module &M) { | 
|  | // Scan through, checking all of the external function's linkage now... | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { | 
|  | visitGlobalValue(*I); | 
|  |  | 
|  | // Check to make sure function prototypes are okay. | 
|  | if (I->isDeclaration()) visitFunction(*I); | 
|  | } | 
|  |  | 
|  | for (Module::global_iterator I = M.global_begin(), E = M.global_end(); | 
|  | I != E; ++I) | 
|  | visitGlobalVariable(*I); | 
|  |  | 
|  | for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); | 
|  | I != E; ++I) | 
|  | visitGlobalAlias(*I); | 
|  |  | 
|  | // If the module is broken, abort at this time. | 
|  | return abortIfBroken(); | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredID(PreVerifyID); | 
|  | if (RealPass) | 
|  | AU.addRequired<DominatorTree>(); | 
|  | } | 
|  |  | 
|  | /// abortIfBroken - If the module is broken and we are supposed to abort on | 
|  | /// this condition, do so. | 
|  | /// | 
|  | bool abortIfBroken() { | 
|  | if (!Broken) return false; | 
|  | MessagesStr << "Broken module found, "; | 
|  | switch (action) { | 
|  | default: llvm_unreachable("Unknown action"); | 
|  | case AbortProcessAction: | 
|  | MessagesStr << "compilation aborted!\n"; | 
|  | errs() << MessagesStr.str(); | 
|  | // Client should choose different reaction if abort is not desired | 
|  | abort(); | 
|  | case PrintMessageAction: | 
|  | MessagesStr << "verification continues.\n"; | 
|  | errs() << MessagesStr.str(); | 
|  | return false; | 
|  | case ReturnStatusAction: | 
|  | MessagesStr << "compilation terminated.\n"; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Verification methods... | 
|  | void verifyTypeSymbolTable(TypeSymbolTable &ST); | 
|  | void visitGlobalValue(GlobalValue &GV); | 
|  | void visitGlobalVariable(GlobalVariable &GV); | 
|  | void visitGlobalAlias(GlobalAlias &GA); | 
|  | void visitFunction(Function &F); | 
|  | void visitBasicBlock(BasicBlock &BB); | 
|  | using InstVisitor<Verifier>::visit; | 
|  |  | 
|  | void visit(Instruction &I); | 
|  |  | 
|  | void visitTruncInst(TruncInst &I); | 
|  | void visitZExtInst(ZExtInst &I); | 
|  | void visitSExtInst(SExtInst &I); | 
|  | void visitFPTruncInst(FPTruncInst &I); | 
|  | void visitFPExtInst(FPExtInst &I); | 
|  | void visitFPToUIInst(FPToUIInst &I); | 
|  | void visitFPToSIInst(FPToSIInst &I); | 
|  | void visitUIToFPInst(UIToFPInst &I); | 
|  | void visitSIToFPInst(SIToFPInst &I); | 
|  | void visitIntToPtrInst(IntToPtrInst &I); | 
|  | void visitPtrToIntInst(PtrToIntInst &I); | 
|  | void visitBitCastInst(BitCastInst &I); | 
|  | void visitPHINode(PHINode &PN); | 
|  | void visitBinaryOperator(BinaryOperator &B); | 
|  | void visitICmpInst(ICmpInst &IC); | 
|  | void visitFCmpInst(FCmpInst &FC); | 
|  | void visitExtractElementInst(ExtractElementInst &EI); | 
|  | void visitInsertElementInst(InsertElementInst &EI); | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &EI); | 
|  | void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } | 
|  | void visitCallInst(CallInst &CI); | 
|  | void visitInvokeInst(InvokeInst &II); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &GEP); | 
|  | void visitLoadInst(LoadInst &LI); | 
|  | void visitStoreInst(StoreInst &SI); | 
|  | void visitInstruction(Instruction &I); | 
|  | void visitTerminatorInst(TerminatorInst &I); | 
|  | void visitReturnInst(ReturnInst &RI); | 
|  | void visitSwitchInst(SwitchInst &SI); | 
|  | void visitSelectInst(SelectInst &SI); | 
|  | void visitUserOp1(Instruction &I); | 
|  | void visitUserOp2(Instruction &I) { visitUserOp1(I); } | 
|  | void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); | 
|  | void visitAllocationInst(AllocationInst &AI); | 
|  | void visitExtractValueInst(ExtractValueInst &EVI); | 
|  | void visitInsertValueInst(InsertValueInst &IVI); | 
|  |  | 
|  | void VerifyCallSite(CallSite CS); | 
|  | bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, | 
|  | int VT, unsigned ArgNo, std::string &Suffix); | 
|  | void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, | 
|  | unsigned RetNum, unsigned ParamNum, ...); | 
|  | void VerifyParameterAttrs(Attributes Attrs, const Type *Ty, | 
|  | bool isReturnValue, const Value *V); | 
|  | void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, | 
|  | const Value *V); | 
|  |  | 
|  | void WriteValue(const Value *V) { | 
|  | if (!V) return; | 
|  | if (isa<Instruction>(V)) { | 
|  | MessagesStr << *V; | 
|  | } else { | 
|  | WriteAsOperand(MessagesStr, V, true, Mod); | 
|  | MessagesStr << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void WriteType(const Type *T) { | 
|  | if (!T) return; | 
|  | MessagesStr << ' '; | 
|  | WriteTypeSymbolic(MessagesStr, T, Mod); | 
|  | } | 
|  |  | 
|  |  | 
|  | // CheckFailed - A check failed, so print out the condition and the message | 
|  | // that failed.  This provides a nice place to put a breakpoint if you want | 
|  | // to see why something is not correct. | 
|  | void CheckFailed(const Twine &Message, | 
|  | const Value *V1 = 0, const Value *V2 = 0, | 
|  | const Value *V3 = 0, const Value *V4 = 0) { | 
|  | MessagesStr << Message.str() << "\n"; | 
|  | WriteValue(V1); | 
|  | WriteValue(V2); | 
|  | WriteValue(V3); | 
|  | WriteValue(V4); | 
|  | Broken = true; | 
|  | } | 
|  |  | 
|  | void CheckFailed(const Twine &Message, const Value* V1, | 
|  | const Type* T2, const Value* V3 = 0) { | 
|  | MessagesStr << Message.str() << "\n"; | 
|  | WriteValue(V1); | 
|  | WriteType(T2); | 
|  | WriteValue(V3); | 
|  | Broken = true; | 
|  | } | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | char Verifier::ID = 0; | 
|  | static RegisterPass<Verifier> X("verify", "Module Verifier"); | 
|  |  | 
|  | // Assert - We know that cond should be true, if not print an error message. | 
|  | #define Assert(C, M) \ | 
|  | do { if (!(C)) { CheckFailed(M); return; } } while (0) | 
|  | #define Assert1(C, M, V1) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) | 
|  | #define Assert2(C, M, V1, V2) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) | 
|  | #define Assert3(C, M, V1, V2, V3) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) | 
|  | #define Assert4(C, M, V1, V2, V3, V4) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) | 
|  |  | 
|  | void Verifier::visit(Instruction &I) { | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | Assert1(I.getOperand(i) != 0, "Operand is null", &I); | 
|  | InstVisitor<Verifier>::visit(I); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Verifier::visitGlobalValue(GlobalValue &GV) { | 
|  | Assert1(!GV.isDeclaration() || | 
|  | GV.hasExternalLinkage() || | 
|  | GV.hasDLLImportLinkage() || | 
|  | GV.hasExternalWeakLinkage() || | 
|  | GV.hasGhostLinkage() || | 
|  | (isa<GlobalAlias>(GV) && | 
|  | (GV.hasLocalLinkage() || GV.hasWeakLinkage())), | 
|  | "Global is external, but doesn't have external or dllimport or weak linkage!", | 
|  | &GV); | 
|  |  | 
|  | Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), | 
|  | "Global is marked as dllimport, but not external", &GV); | 
|  |  | 
|  | Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), | 
|  | "Only global variables can have appending linkage!", &GV); | 
|  |  | 
|  | if (GV.hasAppendingLinkage()) { | 
|  | GlobalVariable &GVar = cast<GlobalVariable>(GV); | 
|  | Assert1(isa<ArrayType>(GVar.getType()->getElementType()), | 
|  | "Only global arrays can have appending linkage!", &GV); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitGlobalVariable(GlobalVariable &GV) { | 
|  | if (GV.hasInitializer()) { | 
|  | Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), | 
|  | "Global variable initializer type does not match global " | 
|  | "variable type!", &GV); | 
|  |  | 
|  | // If the global has common linkage, it must have a zero initializer and | 
|  | // cannot be constant. | 
|  | if (GV.hasCommonLinkage()) { | 
|  | Assert1(GV.getInitializer()->isNullValue(), | 
|  | "'common' global must have a zero initializer!", &GV); | 
|  | Assert1(!GV.isConstant(), "'common' global may not be marked constant!", | 
|  | &GV); | 
|  | } | 
|  |  | 
|  | // Verify that any metadata used in a global initializer points only to | 
|  | // other globals. | 
|  | if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) { | 
|  | SmallVector<const MDNode *, 4> NodesToAnalyze; | 
|  | NodesToAnalyze.push_back(FirstNode); | 
|  | while (!NodesToAnalyze.empty()) { | 
|  | const MDNode *N = NodesToAnalyze.back(); | 
|  | NodesToAnalyze.pop_back(); | 
|  |  | 
|  | for (MDNode::const_elem_iterator I = N->elem_begin(), | 
|  | E = N->elem_end(); I != E; ++I) | 
|  | if (const Value *V = *I) { | 
|  | if (const MDNode *Next = dyn_cast<MDNode>(V)) | 
|  | NodesToAnalyze.push_back(Next); | 
|  | else | 
|  | Assert3(isa<Constant>(V), | 
|  | "reference to instruction from global metadata node", | 
|  | &GV, N, V); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || | 
|  | GV.hasExternalWeakLinkage(), | 
|  | "invalid linkage type for global declaration", &GV); | 
|  | } | 
|  |  | 
|  | visitGlobalValue(GV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitGlobalAlias(GlobalAlias &GA) { | 
|  | Assert1(!GA.getName().empty(), | 
|  | "Alias name cannot be empty!", &GA); | 
|  | Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || | 
|  | GA.hasWeakLinkage(), | 
|  | "Alias should have external or external weak linkage!", &GA); | 
|  | Assert1(GA.getAliasee(), | 
|  | "Aliasee cannot be NULL!", &GA); | 
|  | Assert1(GA.getType() == GA.getAliasee()->getType(), | 
|  | "Alias and aliasee types should match!", &GA); | 
|  |  | 
|  | if (!isa<GlobalValue>(GA.getAliasee())) { | 
|  | const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee()); | 
|  | Assert1(CE && | 
|  | (CE->getOpcode() == Instruction::BitCast || | 
|  | CE->getOpcode() == Instruction::GetElementPtr) && | 
|  | isa<GlobalValue>(CE->getOperand(0)), | 
|  | "Aliasee should be either GlobalValue or bitcast of GlobalValue", | 
|  | &GA); | 
|  | } | 
|  |  | 
|  | const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); | 
|  | Assert1(Aliasee, | 
|  | "Aliasing chain should end with function or global variable", &GA); | 
|  |  | 
|  | visitGlobalValue(GA); | 
|  | } | 
|  |  | 
|  | void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { | 
|  | } | 
|  |  | 
|  | // VerifyParameterAttrs - Check the given attributes for an argument or return | 
|  | // value of the specified type.  The value V is printed in error messages. | 
|  | void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty, | 
|  | bool isReturnValue, const Value *V) { | 
|  | if (Attrs == Attribute::None) | 
|  | return; | 
|  |  | 
|  | Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; | 
|  | Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + | 
|  | " only applies to the function!", V); | 
|  |  | 
|  | if (isReturnValue) { | 
|  | Attributes RetI = Attrs & Attribute::ParameterOnly; | 
|  | Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + | 
|  | " does not apply to return values!", V); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; | 
|  | i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { | 
|  | Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; | 
|  | Assert1(!(MutI & (MutI - 1)), "Attributes " + | 
|  | Attribute::getAsString(MutI) + " are incompatible!", V); | 
|  | } | 
|  |  | 
|  | Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); | 
|  | Assert1(!TypeI, "Wrong type for attribute " + | 
|  | Attribute::getAsString(TypeI), V); | 
|  |  | 
|  | Attributes ByValI = Attrs & Attribute::ByVal; | 
|  | if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { | 
|  | Assert1(!ByValI || PTy->getElementType()->isSized(), | 
|  | "Attribute " + Attribute::getAsString(ByValI) + | 
|  | " does not support unsized types!", V); | 
|  | } else { | 
|  | Assert1(!ByValI, | 
|  | "Attribute " + Attribute::getAsString(ByValI) + | 
|  | " only applies to parameters with pointer type!", V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // VerifyFunctionAttrs - Check parameter attributes against a function type. | 
|  | // The value V is printed in error messages. | 
|  | void Verifier::VerifyFunctionAttrs(const FunctionType *FT, | 
|  | const AttrListPtr &Attrs, | 
|  | const Value *V) { | 
|  | if (Attrs.isEmpty()) | 
|  | return; | 
|  |  | 
|  | bool SawNest = false; | 
|  |  | 
|  | for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { | 
|  | const AttributeWithIndex &Attr = Attrs.getSlot(i); | 
|  |  | 
|  | const Type *Ty; | 
|  | if (Attr.Index == 0) | 
|  | Ty = FT->getReturnType(); | 
|  | else if (Attr.Index-1 < FT->getNumParams()) | 
|  | Ty = FT->getParamType(Attr.Index-1); | 
|  | else | 
|  | break;  // VarArgs attributes, verified elsewhere. | 
|  |  | 
|  | VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); | 
|  |  | 
|  | if (Attr.Attrs & Attribute::Nest) { | 
|  | Assert1(!SawNest, "More than one parameter has attribute nest!", V); | 
|  | SawNest = true; | 
|  | } | 
|  |  | 
|  | if (Attr.Attrs & Attribute::StructRet) | 
|  | Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); | 
|  | } | 
|  |  | 
|  | Attributes FAttrs = Attrs.getFnAttributes(); | 
|  | Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); | 
|  | Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + | 
|  | " does not apply to the function!", V); | 
|  |  | 
|  | for (unsigned i = 0; | 
|  | i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { | 
|  | Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; | 
|  | Assert1(!(MutI & (MutI - 1)), "Attributes " + | 
|  | Attribute::getAsString(MutI) + " are incompatible!", V); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { | 
|  | if (Attrs.isEmpty()) | 
|  | return true; | 
|  |  | 
|  | unsigned LastSlot = Attrs.getNumSlots() - 1; | 
|  | unsigned LastIndex = Attrs.getSlot(LastSlot).Index; | 
|  | if (LastIndex <= Params | 
|  | || (LastIndex == (unsigned)~0 | 
|  | && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | // visitFunction - Verify that a function is ok. | 
|  | // | 
|  | void Verifier::visitFunction(Function &F) { | 
|  | // Check function arguments. | 
|  | const FunctionType *FT = F.getFunctionType(); | 
|  | unsigned NumArgs = F.arg_size(); | 
|  |  | 
|  | Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); | 
|  | Assert2(FT->getNumParams() == NumArgs, | 
|  | "# formal arguments must match # of arguments for function type!", | 
|  | &F, FT); | 
|  | Assert1(F.getReturnType()->isFirstClassType() || | 
|  | F.getReturnType() == Type::getVoidTy(F.getContext()) || | 
|  | isa<StructType>(F.getReturnType()), | 
|  | "Functions cannot return aggregate values!", &F); | 
|  |  | 
|  | Assert1(!F.hasStructRetAttr() || | 
|  | F.getReturnType() == Type::getVoidTy(F.getContext()), | 
|  | "Invalid struct return type!", &F); | 
|  |  | 
|  | const AttrListPtr &Attrs = F.getAttributes(); | 
|  |  | 
|  | Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), | 
|  | "Attributes after last parameter!", &F); | 
|  |  | 
|  | // Check function attributes. | 
|  | VerifyFunctionAttrs(FT, Attrs, &F); | 
|  |  | 
|  | // Check that this function meets the restrictions on this calling convention. | 
|  | switch (F.getCallingConv()) { | 
|  | default: | 
|  | break; | 
|  | case CallingConv::C: | 
|  | break; | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::Cold: | 
|  | case CallingConv::X86_FastCall: | 
|  | Assert1(!F.isVarArg(), | 
|  | "Varargs functions must have C calling conventions!", &F); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool isLLVMdotName = F.getName().size() >= 5 && | 
|  | F.getName().substr(0, 5) == "llvm."; | 
|  | if (!isLLVMdotName) | 
|  | Assert1(F.getReturnType() != Type::getMetadataTy(F.getContext()), | 
|  | "Function may not return metadata unless it's an intrinsic", &F); | 
|  |  | 
|  | // Check that the argument values match the function type for this function... | 
|  | unsigned i = 0; | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
|  | I != E; ++I, ++i) { | 
|  | Assert2(I->getType() == FT->getParamType(i), | 
|  | "Argument value does not match function argument type!", | 
|  | I, FT->getParamType(i)); | 
|  | Assert1(I->getType()->isFirstClassType(), | 
|  | "Function arguments must have first-class types!", I); | 
|  | if (!isLLVMdotName) | 
|  | Assert2(I->getType() != Type::getMetadataTy(F.getContext()), | 
|  | "Function takes metadata but isn't an intrinsic", I, &F); | 
|  | } | 
|  |  | 
|  | if (F.isDeclaration()) { | 
|  | Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || | 
|  | F.hasExternalWeakLinkage() || F.hasGhostLinkage(), | 
|  | "invalid linkage type for function declaration", &F); | 
|  | } else { | 
|  | // Verify that this function (which has a body) is not named "llvm.*".  It | 
|  | // is not legal to define intrinsics. | 
|  | Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); | 
|  |  | 
|  | // Check the entry node | 
|  | BasicBlock *Entry = &F.getEntryBlock(); | 
|  | Assert1(pred_begin(Entry) == pred_end(Entry), | 
|  | "Entry block to function must not have predecessors!", Entry); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // verifyBasicBlock - Verify that a basic block is well formed... | 
|  | // | 
|  | void Verifier::visitBasicBlock(BasicBlock &BB) { | 
|  | InstsInThisBlock.clear(); | 
|  |  | 
|  | // Ensure that basic blocks have terminators! | 
|  | Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); | 
|  |  | 
|  | // Check constraints that this basic block imposes on all of the PHI nodes in | 
|  | // it. | 
|  | if (isa<PHINode>(BB.front())) { | 
|  | SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); | 
|  | SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; | 
|  | std::sort(Preds.begin(), Preds.end()); | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { | 
|  |  | 
|  | // Ensure that PHI nodes have at least one entry! | 
|  | Assert1(PN->getNumIncomingValues() != 0, | 
|  | "PHI nodes must have at least one entry.  If the block is dead, " | 
|  | "the PHI should be removed!", PN); | 
|  | Assert1(PN->getNumIncomingValues() == Preds.size(), | 
|  | "PHINode should have one entry for each predecessor of its " | 
|  | "parent basic block!", PN); | 
|  |  | 
|  | // Get and sort all incoming values in the PHI node... | 
|  | Values.clear(); | 
|  | Values.reserve(PN->getNumIncomingValues()); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | Values.push_back(std::make_pair(PN->getIncomingBlock(i), | 
|  | PN->getIncomingValue(i))); | 
|  | std::sort(Values.begin(), Values.end()); | 
|  |  | 
|  | for (unsigned i = 0, e = Values.size(); i != e; ++i) { | 
|  | // Check to make sure that if there is more than one entry for a | 
|  | // particular basic block in this PHI node, that the incoming values are | 
|  | // all identical. | 
|  | // | 
|  | Assert4(i == 0 || Values[i].first  != Values[i-1].first || | 
|  | Values[i].second == Values[i-1].second, | 
|  | "PHI node has multiple entries for the same basic block with " | 
|  | "different incoming values!", PN, Values[i].first, | 
|  | Values[i].second, Values[i-1].second); | 
|  |  | 
|  | // Check to make sure that the predecessors and PHI node entries are | 
|  | // matched up. | 
|  | Assert3(Values[i].first == Preds[i], | 
|  | "PHI node entries do not match predecessors!", PN, | 
|  | Values[i].first, Preds[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitTerminatorInst(TerminatorInst &I) { | 
|  | // Ensure that terminators only exist at the end of the basic block. | 
|  | Assert1(&I == I.getParent()->getTerminator(), | 
|  | "Terminator found in the middle of a basic block!", I.getParent()); | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitReturnInst(ReturnInst &RI) { | 
|  | Function *F = RI.getParent()->getParent(); | 
|  | unsigned N = RI.getNumOperands(); | 
|  | if (F->getReturnType() == Type::getVoidTy(RI.getContext())) | 
|  | Assert2(N == 0, | 
|  | "Found return instr that returns non-void in Function of void " | 
|  | "return type!", &RI, F->getReturnType()); | 
|  | else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { | 
|  | // Exactly one return value and it matches the return type. Good. | 
|  | } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { | 
|  | // The return type is a struct; check for multiple return values. | 
|  | Assert2(STy->getNumElements() == N, | 
|  | "Incorrect number of return values in ret instruction!", | 
|  | &RI, F->getReturnType()); | 
|  | for (unsigned i = 0; i != N; ++i) | 
|  | Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(), | 
|  | "Function return type does not match operand " | 
|  | "type of return inst!", &RI, F->getReturnType()); | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) { | 
|  | // The return type is an array; check for multiple return values. | 
|  | Assert2(ATy->getNumElements() == N, | 
|  | "Incorrect number of return values in ret instruction!", | 
|  | &RI, F->getReturnType()); | 
|  | for (unsigned i = 0; i != N; ++i) | 
|  | Assert2(ATy->getElementType() == RI.getOperand(i)->getType(), | 
|  | "Function return type does not match operand " | 
|  | "type of return inst!", &RI, F->getReturnType()); | 
|  | } else { | 
|  | CheckFailed("Function return type does not match operand " | 
|  | "type of return inst!", &RI, F->getReturnType()); | 
|  | } | 
|  |  | 
|  | // Check to make sure that the return value has necessary properties for | 
|  | // terminators... | 
|  | visitTerminatorInst(RI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSwitchInst(SwitchInst &SI) { | 
|  | // Check to make sure that all of the constants in the switch instruction | 
|  | // have the same type as the switched-on value. | 
|  | const Type *SwitchTy = SI.getCondition()->getType(); | 
|  | for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) | 
|  | Assert1(SI.getCaseValue(i)->getType() == SwitchTy, | 
|  | "Switch constants must all be same type as switch value!", &SI); | 
|  |  | 
|  | visitTerminatorInst(SI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSelectInst(SelectInst &SI) { | 
|  | Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), | 
|  | SI.getOperand(2)), | 
|  | "Invalid operands for select instruction!", &SI); | 
|  |  | 
|  | Assert1(SI.getTrueValue()->getType() == SI.getType(), | 
|  | "Select values must have same type as select instruction!", &SI); | 
|  | visitInstruction(SI); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of | 
|  | /// a pass, if any exist, it's an error. | 
|  | /// | 
|  | void Verifier::visitUserOp1(Instruction &I) { | 
|  | Assert1(0, "User-defined operators should not live outside of a pass!", &I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitTruncInst(TruncInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); | 
|  | Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); | 
|  | Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), | 
|  | "trunc source and destination must both be a vector or neither", &I); | 
|  | Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitZExtInst(ZExtInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); | 
|  | Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); | 
|  | Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), | 
|  | "zext source and destination must both be a vector or neither", &I); | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSExtInst(SExtInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); | 
|  | Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); | 
|  | Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), | 
|  | "sext source and destination must both be a vector or neither", &I); | 
|  | Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPTruncInst(FPTruncInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); | 
|  | Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); | 
|  | Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), | 
|  | "fptrunc source and destination must both be a vector or neither",&I); | 
|  | Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPExtInst(FPExtInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); | 
|  | Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); | 
|  | Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), | 
|  | "fpext source and destination must both be a vector or neither", &I); | 
|  | Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitUIToFPInst(UIToFPInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = isa<VectorType>(SrcTy); | 
|  | bool DstVec = isa<VectorType>(DestTy); | 
|  |  | 
|  | Assert1(SrcVec == DstVec, | 
|  | "UIToFP source and dest must both be vector or scalar", &I); | 
|  | Assert1(SrcTy->isIntOrIntVector(), | 
|  | "UIToFP source must be integer or integer vector", &I); | 
|  | Assert1(DestTy->isFPOrFPVector(), | 
|  | "UIToFP result must be FP or FP vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert1(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "UIToFP source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSIToFPInst(SIToFPInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID; | 
|  | bool DstVec = DestTy->getTypeID() == Type::VectorTyID; | 
|  |  | 
|  | Assert1(SrcVec == DstVec, | 
|  | "SIToFP source and dest must both be vector or scalar", &I); | 
|  | Assert1(SrcTy->isIntOrIntVector(), | 
|  | "SIToFP source must be integer or integer vector", &I); | 
|  | Assert1(DestTy->isFPOrFPVector(), | 
|  | "SIToFP result must be FP or FP vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert1(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "SIToFP source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPToUIInst(FPToUIInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = isa<VectorType>(SrcTy); | 
|  | bool DstVec = isa<VectorType>(DestTy); | 
|  |  | 
|  | Assert1(SrcVec == DstVec, | 
|  | "FPToUI source and dest must both be vector or scalar", &I); | 
|  | Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I); | 
|  | Assert1(DestTy->isIntOrIntVector(), | 
|  | "FPToUI result must be integer or integer vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert1(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "FPToUI source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPToSIInst(FPToSIInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = isa<VectorType>(SrcTy); | 
|  | bool DstVec = isa<VectorType>(DestTy); | 
|  |  | 
|  | Assert1(SrcVec == DstVec, | 
|  | "FPToSI source and dest must both be vector or scalar", &I); | 
|  | Assert1(SrcTy->isFPOrFPVector(), | 
|  | "FPToSI source must be FP or FP vector", &I); | 
|  | Assert1(DestTy->isIntOrIntVector(), | 
|  | "FPToSI result must be integer or integer vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert1(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "FPToSI source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitPtrToIntInst(PtrToIntInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I); | 
|  | Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitIntToPtrInst(IntToPtrInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); | 
|  | Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitBitCastInst(BitCastInst &I) { | 
|  | // Get the source and destination types | 
|  | const Type *SrcTy = I.getOperand(0)->getType(); | 
|  | const Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // BitCast implies a no-op cast of type only. No bits change. | 
|  | // However, you can't cast pointers to anything but pointers. | 
|  | Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy), | 
|  | "Bitcast requires both operands to be pointer or neither", &I); | 
|  | Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I); | 
|  |  | 
|  | // Disallow aggregates. | 
|  | Assert1(!SrcTy->isAggregateType(), | 
|  | "Bitcast operand must not be aggregate", &I); | 
|  | Assert1(!DestTy->isAggregateType(), | 
|  | "Bitcast type must not be aggregate", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | /// visitPHINode - Ensure that a PHI node is well formed. | 
|  | /// | 
|  | void Verifier::visitPHINode(PHINode &PN) { | 
|  | // Ensure that the PHI nodes are all grouped together at the top of the block. | 
|  | // This can be tested by checking whether the instruction before this is | 
|  | // either nonexistent (because this is begin()) or is a PHI node.  If not, | 
|  | // then there is some other instruction before a PHI. | 
|  | Assert2(&PN == &PN.getParent()->front() || | 
|  | isa<PHINode>(--BasicBlock::iterator(&PN)), | 
|  | "PHI nodes not grouped at top of basic block!", | 
|  | &PN, PN.getParent()); | 
|  |  | 
|  | // Check that all of the operands of the PHI node have the same type as the | 
|  | // result. | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), | 
|  | "PHI node operands are not the same type as the result!", &PN); | 
|  |  | 
|  | // All other PHI node constraints are checked in the visitBasicBlock method. | 
|  |  | 
|  | visitInstruction(PN); | 
|  | } | 
|  |  | 
|  | void Verifier::VerifyCallSite(CallSite CS) { | 
|  | Instruction *I = CS.getInstruction(); | 
|  |  | 
|  | Assert1(isa<PointerType>(CS.getCalledValue()->getType()), | 
|  | "Called function must be a pointer!", I); | 
|  | const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  | Assert1(isa<FunctionType>(FPTy->getElementType()), | 
|  | "Called function is not pointer to function type!", I); | 
|  |  | 
|  | const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); | 
|  |  | 
|  | // Verify that the correct number of arguments are being passed | 
|  | if (FTy->isVarArg()) | 
|  | Assert1(CS.arg_size() >= FTy->getNumParams(), | 
|  | "Called function requires more parameters than were provided!",I); | 
|  | else | 
|  | Assert1(CS.arg_size() == FTy->getNumParams(), | 
|  | "Incorrect number of arguments passed to called function!", I); | 
|  |  | 
|  | // Verify that all arguments to the call match the function type... | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
|  | Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), | 
|  | "Call parameter type does not match function signature!", | 
|  | CS.getArgument(i), FTy->getParamType(i), I); | 
|  |  | 
|  | const AttrListPtr &Attrs = CS.getAttributes(); | 
|  |  | 
|  | Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), | 
|  | "Attributes after last parameter!", I); | 
|  |  | 
|  | // Verify call attributes. | 
|  | VerifyFunctionAttrs(FTy, Attrs, I); | 
|  |  | 
|  | if (FTy->isVarArg()) | 
|  | // Check attributes on the varargs part. | 
|  | for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { | 
|  | Attributes Attr = Attrs.getParamAttributes(Idx); | 
|  |  | 
|  | VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); | 
|  |  | 
|  | Attributes VArgI = Attr & Attribute::VarArgsIncompatible; | 
|  | Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + | 
|  | " cannot be used for vararg call arguments!", I); | 
|  | } | 
|  |  | 
|  | // Verify that there's no metadata unless it's a direct call to an intrinsic. | 
|  | if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || | 
|  | CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { | 
|  | Assert1(FTy->getReturnType() != Type::getMetadataTy(I->getContext()), | 
|  | "Only intrinsics may return metadata", I); | 
|  | for (FunctionType::param_iterator PI = FTy->param_begin(), | 
|  | PE = FTy->param_end(); PI != PE; ++PI) | 
|  | Assert1(PI->get() != Type::getMetadataTy(I->getContext()), | 
|  | "Function has metadata parameter but isn't an intrinsic", I); | 
|  | } | 
|  |  | 
|  | visitInstruction(*I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCallInst(CallInst &CI) { | 
|  | VerifyCallSite(&CI); | 
|  |  | 
|  | if (Function *F = CI.getCalledFunction()) | 
|  | if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) | 
|  | visitIntrinsicFunctionCall(ID, CI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInvokeInst(InvokeInst &II) { | 
|  | VerifyCallSite(&II); | 
|  | } | 
|  |  | 
|  | /// visitBinaryOperator - Check that both arguments to the binary operator are | 
|  | /// of the same type! | 
|  | /// | 
|  | void Verifier::visitBinaryOperator(BinaryOperator &B) { | 
|  | Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), | 
|  | "Both operands to a binary operator are not of the same type!", &B); | 
|  |  | 
|  | switch (B.getOpcode()) { | 
|  | // Check that integer arithmetic operators are only used with | 
|  | // integral operands. | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | Assert1(B.getType()->isIntOrIntVector(), | 
|  | "Integer arithmetic operators only work with integral types!", &B); | 
|  | Assert1(B.getType() == B.getOperand(0)->getType(), | 
|  | "Integer arithmetic operators must have same type " | 
|  | "for operands and result!", &B); | 
|  | break; | 
|  | // Check that floating-point arithmetic operators are only used with | 
|  | // floating-point operands. | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | Assert1(B.getType()->isFPOrFPVector(), | 
|  | "Floating-point arithmetic operators only work with " | 
|  | "floating-point types!", &B); | 
|  | Assert1(B.getType() == B.getOperand(0)->getType(), | 
|  | "Floating-point arithmetic operators must have same type " | 
|  | "for operands and result!", &B); | 
|  | break; | 
|  | // Check that logical operators are only used with integral operands. | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | Assert1(B.getType()->isIntOrIntVector(), | 
|  | "Logical operators only work with integral types!", &B); | 
|  | Assert1(B.getType() == B.getOperand(0)->getType(), | 
|  | "Logical operators must have same type for operands and result!", | 
|  | &B); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | Assert1(B.getType()->isIntOrIntVector(), | 
|  | "Shifts only work with integral types!", &B); | 
|  | Assert1(B.getType() == B.getOperand(0)->getType(), | 
|  | "Shift return type must be same as operands!", &B); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown BinaryOperator opcode!"); | 
|  | } | 
|  |  | 
|  | visitInstruction(B); | 
|  | } | 
|  |  | 
|  | void Verifier::visitICmpInst(ICmpInst& IC) { | 
|  | // Check that the operands are the same type | 
|  | const Type* Op0Ty = IC.getOperand(0)->getType(); | 
|  | const Type* Op1Ty = IC.getOperand(1)->getType(); | 
|  | Assert1(Op0Ty == Op1Ty, | 
|  | "Both operands to ICmp instruction are not of the same type!", &IC); | 
|  | // Check that the operands are the right type | 
|  | Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty), | 
|  | "Invalid operand types for ICmp instruction", &IC); | 
|  |  | 
|  | visitInstruction(IC); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFCmpInst(FCmpInst& FC) { | 
|  | // Check that the operands are the same type | 
|  | const Type* Op0Ty = FC.getOperand(0)->getType(); | 
|  | const Type* Op1Ty = FC.getOperand(1)->getType(); | 
|  | Assert1(Op0Ty == Op1Ty, | 
|  | "Both operands to FCmp instruction are not of the same type!", &FC); | 
|  | // Check that the operands are the right type | 
|  | Assert1(Op0Ty->isFPOrFPVector(), | 
|  | "Invalid operand types for FCmp instruction", &FC); | 
|  | visitInstruction(FC); | 
|  | } | 
|  |  | 
|  | void Verifier::visitExtractElementInst(ExtractElementInst &EI) { | 
|  | Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), | 
|  | EI.getOperand(1)), | 
|  | "Invalid extractelement operands!", &EI); | 
|  | visitInstruction(EI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInsertElementInst(InsertElementInst &IE) { | 
|  | Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), | 
|  | IE.getOperand(1), | 
|  | IE.getOperand(2)), | 
|  | "Invalid insertelement operands!", &IE); | 
|  | visitInstruction(IE); | 
|  | } | 
|  |  | 
|  | void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { | 
|  | Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), | 
|  | SV.getOperand(2)), | 
|  | "Invalid shufflevector operands!", &SV); | 
|  |  | 
|  | const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType()); | 
|  | Assert1(VTy, "Operands are not a vector type", &SV); | 
|  |  | 
|  | // Check to see if Mask is valid. | 
|  | if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) { | 
|  | for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { | 
|  | if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { | 
|  | Assert1(!CI->uge(VTy->getNumElements()*2), | 
|  | "Invalid shufflevector shuffle mask!", &SV); | 
|  | } else { | 
|  | Assert1(isa<UndefValue>(MV->getOperand(i)), | 
|  | "Invalid shufflevector shuffle mask!", &SV); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Assert1(isa<UndefValue>(SV.getOperand(2)) || | 
|  | isa<ConstantAggregateZero>(SV.getOperand(2)), | 
|  | "Invalid shufflevector shuffle mask!", &SV); | 
|  | } | 
|  |  | 
|  | visitInstruction(SV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { | 
|  | SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); | 
|  | const Type *ElTy = | 
|  | GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), | 
|  | Idxs.begin(), Idxs.end()); | 
|  | Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); | 
|  | Assert2(isa<PointerType>(GEP.getType()) && | 
|  | cast<PointerType>(GEP.getType())->getElementType() == ElTy, | 
|  | "GEP is not of right type for indices!", &GEP, ElTy); | 
|  | visitInstruction(GEP); | 
|  | } | 
|  |  | 
|  | void Verifier::visitLoadInst(LoadInst &LI) { | 
|  | const Type *ElTy = | 
|  | cast<PointerType>(LI.getOperand(0)->getType())->getElementType(); | 
|  | Assert2(ElTy == LI.getType(), | 
|  | "Load result type does not match pointer operand type!", &LI, ElTy); | 
|  | Assert1(ElTy != Type::getMetadataTy(LI.getContext()), | 
|  | "Can't load metadata!", &LI); | 
|  | visitInstruction(LI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitStoreInst(StoreInst &SI) { | 
|  | const Type *ElTy = | 
|  | cast<PointerType>(SI.getOperand(1)->getType())->getElementType(); | 
|  | Assert2(ElTy == SI.getOperand(0)->getType(), | 
|  | "Stored value type does not match pointer operand type!", &SI, ElTy); | 
|  | Assert1(ElTy != Type::getMetadataTy(SI.getContext()), | 
|  | "Can't store metadata!", &SI); | 
|  | visitInstruction(SI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAllocationInst(AllocationInst &AI) { | 
|  | const PointerType *PTy = AI.getType(); | 
|  | Assert1(PTy->getAddressSpace() == 0, | 
|  | "Allocation instruction pointer not in the generic address space!", | 
|  | &AI); | 
|  | Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", | 
|  | &AI); | 
|  | visitInstruction(AI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { | 
|  | Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), | 
|  | EVI.idx_begin(), EVI.idx_end()) == | 
|  | EVI.getType(), | 
|  | "Invalid ExtractValueInst operands!", &EVI); | 
|  |  | 
|  | visitInstruction(EVI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInsertValueInst(InsertValueInst &IVI) { | 
|  | Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), | 
|  | IVI.idx_begin(), IVI.idx_end()) == | 
|  | IVI.getOperand(1)->getType(), | 
|  | "Invalid InsertValueInst operands!", &IVI); | 
|  |  | 
|  | visitInstruction(IVI); | 
|  | } | 
|  |  | 
|  | /// verifyInstruction - Verify that an instruction is well formed. | 
|  | /// | 
|  | void Verifier::visitInstruction(Instruction &I) { | 
|  | BasicBlock *BB = I.getParent(); | 
|  | Assert1(BB, "Instruction not embedded in basic block!", &I); | 
|  |  | 
|  | if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential | 
|  | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); | 
|  | UI != UE; ++UI) | 
|  | Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), | 
|  | "Only PHI nodes may reference their own value!", &I); | 
|  | } | 
|  |  | 
|  | // Verify that if this is a terminator that it is at the end of the block. | 
|  | if (isa<TerminatorInst>(I)) | 
|  | Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I); | 
|  |  | 
|  |  | 
|  | // Check that void typed values don't have names | 
|  | Assert1(I.getType() != Type::getVoidTy(I.getContext()) || !I.hasName(), | 
|  | "Instruction has a name, but provides a void value!", &I); | 
|  |  | 
|  | // Check that the return value of the instruction is either void or a legal | 
|  | // value type. | 
|  | Assert1(I.getType() == Type::getVoidTy(I.getContext()) || | 
|  | I.getType()->isFirstClassType() | 
|  | || ((isa<CallInst>(I) || isa<InvokeInst>(I)) | 
|  | && isa<StructType>(I.getType())), | 
|  | "Instruction returns a non-scalar type!", &I); | 
|  |  | 
|  | // Check that the instruction doesn't produce metadata or metadata*. Calls | 
|  | // all already checked against the callee type. | 
|  | Assert1(I.getType() != Type::getMetadataTy(I.getContext()) || | 
|  | isa<CallInst>(I) || isa<InvokeInst>(I), | 
|  | "Invalid use of metadata!", &I); | 
|  |  | 
|  | if (const PointerType *PTy = dyn_cast<PointerType>(I.getType())) | 
|  | Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()), | 
|  | "Instructions may not produce pointer to metadata.", &I); | 
|  |  | 
|  |  | 
|  | // Check that all uses of the instruction, if they are instructions | 
|  | // themselves, actually have parent basic blocks.  If the use is not an | 
|  | // instruction, it is an error! | 
|  | for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); | 
|  | UI != UE; ++UI) { | 
|  | Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!", | 
|  | *UI); | 
|  | Instruction *Used = cast<Instruction>(*UI); | 
|  | Assert2(Used->getParent() != 0, "Instruction referencing instruction not" | 
|  | " embedded in a basic block!", &I, Used); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); | 
|  |  | 
|  | // Check to make sure that only first-class-values are operands to | 
|  | // instructions. | 
|  | if (!I.getOperand(i)->getType()->isFirstClassType()) { | 
|  | Assert1(0, "Instruction operands must be first-class values!", &I); | 
|  | } | 
|  |  | 
|  | if (const PointerType *PTy = | 
|  | dyn_cast<PointerType>(I.getOperand(i)->getType())) | 
|  | Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()), | 
|  | "Invalid use of metadata pointer.", &I); | 
|  |  | 
|  | if (Function *F = dyn_cast<Function>(I.getOperand(i))) { | 
|  | // Check to make sure that the "address of" an intrinsic function is never | 
|  | // taken. | 
|  | Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)), | 
|  | "Cannot take the address of an intrinsic!", &I); | 
|  | Assert1(F->getParent() == Mod, "Referencing function in another module!", | 
|  | &I); | 
|  | } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { | 
|  | Assert1(OpBB->getParent() == BB->getParent(), | 
|  | "Referring to a basic block in another function!", &I); | 
|  | } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { | 
|  | Assert1(OpArg->getParent() == BB->getParent(), | 
|  | "Referring to an argument in another function!", &I); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { | 
|  | Assert1(GV->getParent() == Mod, "Referencing global in another module!", | 
|  | &I); | 
|  | } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { | 
|  | BasicBlock *OpBlock = Op->getParent(); | 
|  |  | 
|  | // Check that a definition dominates all of its uses. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { | 
|  | // Invoke results are only usable in the normal destination, not in the | 
|  | // exceptional destination. | 
|  | BasicBlock *NormalDest = II->getNormalDest(); | 
|  |  | 
|  | Assert2(NormalDest != II->getUnwindDest(), | 
|  | "No uses of invoke possible due to dominance structure!", | 
|  | Op, &I); | 
|  |  | 
|  | // PHI nodes differ from other nodes because they actually "use" the | 
|  | // value in the predecessor basic blocks they correspond to. | 
|  | BasicBlock *UseBlock = BB; | 
|  | if (isa<PHINode>(I)) | 
|  | UseBlock = cast<BasicBlock>(I.getOperand(i+1)); | 
|  |  | 
|  | if (isa<PHINode>(I) && UseBlock == OpBlock) { | 
|  | // Special case of a phi node in the normal destination or the unwind | 
|  | // destination. | 
|  | Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), | 
|  | "Invoke result not available in the unwind destination!", | 
|  | Op, &I); | 
|  | } else { | 
|  | Assert2(DT->dominates(NormalDest, UseBlock) || | 
|  | !DT->isReachableFromEntry(UseBlock), | 
|  | "Invoke result does not dominate all uses!", Op, &I); | 
|  |  | 
|  | // If the normal successor of an invoke instruction has multiple | 
|  | // predecessors, then the normal edge from the invoke is critical, | 
|  | // so the invoke value can only be live if the destination block | 
|  | // dominates all of it's predecessors (other than the invoke). | 
|  | if (!NormalDest->getSinglePredecessor() && | 
|  | DT->isReachableFromEntry(UseBlock)) | 
|  | // If it is used by something non-phi, then the other case is that | 
|  | // 'NormalDest' dominates all of its predecessors other than the | 
|  | // invoke.  In this case, the invoke value can still be used. | 
|  | for (pred_iterator PI = pred_begin(NormalDest), | 
|  | E = pred_end(NormalDest); PI != E; ++PI) | 
|  | if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && | 
|  | DT->isReachableFromEntry(*PI)) { | 
|  | CheckFailed("Invoke result does not dominate all uses!", Op,&I); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (isa<PHINode>(I)) { | 
|  | // PHI nodes are more difficult than other nodes because they actually | 
|  | // "use" the value in the predecessor basic blocks they correspond to. | 
|  | BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1)); | 
|  | Assert2(DT->dominates(OpBlock, PredBB) || | 
|  | !DT->isReachableFromEntry(PredBB), | 
|  | "Instruction does not dominate all uses!", Op, &I); | 
|  | } else { | 
|  | if (OpBlock == BB) { | 
|  | // If they are in the same basic block, make sure that the definition | 
|  | // comes before the use. | 
|  | Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), | 
|  | "Instruction does not dominate all uses!", Op, &I); | 
|  | } | 
|  |  | 
|  | // Definition must dominate use unless use is unreachable! | 
|  | Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || | 
|  | !DT->isReachableFromEntry(BB), | 
|  | "Instruction does not dominate all uses!", Op, &I); | 
|  | } | 
|  | } else if (isa<InlineAsm>(I.getOperand(i))) { | 
|  | Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)), | 
|  | "Cannot take the address of an inline asm!", &I); | 
|  | } | 
|  | } | 
|  | InstsInThisBlock.insert(&I); | 
|  | } | 
|  |  | 
|  | // Flags used by TableGen to mark intrinsic parameters with the | 
|  | // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. | 
|  | static const unsigned ExtendedElementVectorType = 0x40000000; | 
|  | static const unsigned TruncatedElementVectorType = 0x20000000; | 
|  |  | 
|  | /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. | 
|  | /// | 
|  | void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { | 
|  | Function *IF = CI.getCalledFunction(); | 
|  | Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", | 
|  | IF); | 
|  |  | 
|  | #define GET_INTRINSIC_VERIFIER | 
|  | #include "llvm/Intrinsics.gen" | 
|  | #undef GET_INTRINSIC_VERIFIER | 
|  |  | 
|  | switch (ID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::dbg_declare:  // llvm.dbg.declare | 
|  | if (Constant *C = dyn_cast<Constant>(CI.getOperand(1))) | 
|  | Assert1(C && !isa<ConstantPointerNull>(C), | 
|  | "invalid llvm.dbg.declare intrinsic call", &CI); | 
|  | break; | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memset: | 
|  | Assert1(isa<ConstantInt>(CI.getOperand(4)), | 
|  | "alignment argument of memory intrinsics must be a constant int", | 
|  | &CI); | 
|  | break; | 
|  | case Intrinsic::gcroot: | 
|  | case Intrinsic::gcwrite: | 
|  | case Intrinsic::gcread: | 
|  | if (ID == Intrinsic::gcroot) { | 
|  | AllocaInst *AI = | 
|  | dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts()); | 
|  | Assert1(AI && isa<PointerType>(AI->getType()->getElementType()), | 
|  | "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); | 
|  | Assert1(isa<Constant>(CI.getOperand(2)), | 
|  | "llvm.gcroot parameter #2 must be a constant.", &CI); | 
|  | } | 
|  |  | 
|  | Assert1(CI.getParent()->getParent()->hasGC(), | 
|  | "Enclosing function does not use GC.", &CI); | 
|  | break; | 
|  | case Intrinsic::init_trampoline: | 
|  | Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()), | 
|  | "llvm.init_trampoline parameter #2 must resolve to a function.", | 
|  | &CI); | 
|  | break; | 
|  | case Intrinsic::prefetch: | 
|  | Assert1(isa<ConstantInt>(CI.getOperand(2)) && | 
|  | isa<ConstantInt>(CI.getOperand(3)) && | 
|  | cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 && | 
|  | cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4, | 
|  | "invalid arguments to llvm.prefetch", | 
|  | &CI); | 
|  | break; | 
|  | case Intrinsic::stackprotector: | 
|  | Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()), | 
|  | "llvm.stackprotector parameter #2 must resolve to an alloca.", | 
|  | &CI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Produce a string to identify an intrinsic parameter or return value. | 
|  | /// The ArgNo value numbers the return values from 0 to NumRets-1 and the | 
|  | /// parameters beginning with NumRets. | 
|  | /// | 
|  | static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { | 
|  | if (ArgNo < NumRets) { | 
|  | if (NumRets == 1) | 
|  | return "Intrinsic result type"; | 
|  | else | 
|  | return "Intrinsic result type #" + utostr(ArgNo); | 
|  | } else | 
|  | return "Intrinsic parameter #" + utostr(ArgNo - NumRets); | 
|  | } | 
|  |  | 
|  | bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, | 
|  | int VT, unsigned ArgNo, std::string &Suffix) { | 
|  | const FunctionType *FTy = F->getFunctionType(); | 
|  |  | 
|  | unsigned NumElts = 0; | 
|  | const Type *EltTy = Ty; | 
|  | const VectorType *VTy = dyn_cast<VectorType>(Ty); | 
|  | if (VTy) { | 
|  | EltTy = VTy->getElementType(); | 
|  | NumElts = VTy->getNumElements(); | 
|  | } | 
|  |  | 
|  | const Type *RetTy = FTy->getReturnType(); | 
|  | const StructType *ST = dyn_cast<StructType>(RetTy); | 
|  | unsigned NumRets = 1; | 
|  | if (ST) | 
|  | NumRets = ST->getNumElements(); | 
|  |  | 
|  | if (VT < 0) { | 
|  | int Match = ~VT; | 
|  |  | 
|  | // Check flags that indicate a type that is an integral vector type with | 
|  | // elements that are larger or smaller than the elements of the matched | 
|  | // type. | 
|  | if ((Match & (ExtendedElementVectorType | | 
|  | TruncatedElementVectorType)) != 0) { | 
|  | const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy); | 
|  | if (!VTy || !IEltTy) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " | 
|  | "an integral vector type.", F); | 
|  | return false; | 
|  | } | 
|  | // Adjust the current Ty (in the opposite direction) rather than | 
|  | // the type being matched against. | 
|  | if ((Match & ExtendedElementVectorType) != 0) { | 
|  | if ((IEltTy->getBitWidth() & 1) != 0) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " | 
|  | "element bit-width is odd.", F); | 
|  | return false; | 
|  | } | 
|  | Ty = VectorType::getTruncatedElementVectorType(VTy); | 
|  | } else | 
|  | Ty = VectorType::getExtendedElementVectorType(VTy); | 
|  | Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); | 
|  | } | 
|  |  | 
|  | if (Match <= static_cast<int>(NumRets - 1)) { | 
|  | if (ST) | 
|  | RetTy = ST->getElementType(Match); | 
|  |  | 
|  | if (Ty != RetTy) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " | 
|  | "match return type.", F); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (Ty != FTy->getParamType(Match - NumRets)) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " | 
|  | "match parameter %" + utostr(Match - NumRets) + ".", F); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else if (VT == MVT::iAny) { | 
|  | if (!EltTy->isInteger()) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " | 
|  | "an integer type.", F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth(); | 
|  | Suffix += "."; | 
|  |  | 
|  | if (EltTy != Ty) | 
|  | Suffix += "v" + utostr(NumElts); | 
|  |  | 
|  | Suffix += "i" + utostr(GotBits); | 
|  |  | 
|  | // Check some constraints on various intrinsics. | 
|  | switch (ID) { | 
|  | default: break; // Not everything needs to be checked. | 
|  | case Intrinsic::bswap: | 
|  | if (GotBits < 16 || GotBits % 16 != 0) { | 
|  | CheckFailed("Intrinsic requires even byte width argument", F); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else if (VT == MVT::fAny) { | 
|  | if (!EltTy->isFloatingPoint()) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " | 
|  | "a floating-point type.", F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Suffix += "."; | 
|  |  | 
|  | if (EltTy != Ty) | 
|  | Suffix += "v" + utostr(NumElts); | 
|  |  | 
|  | Suffix += EVT::getEVT(EltTy).getEVTString(); | 
|  | } else if (VT == MVT::vAny) { | 
|  | if (!VTy) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a vector type.", F); | 
|  | return false; | 
|  | } | 
|  | Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString(); | 
|  | } else if (VT == MVT::iPTR) { | 
|  | if (!isa<PointerType>(Ty)) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " | 
|  | "pointer and a pointer is required.", F); | 
|  | return false; | 
|  | } | 
|  | } else if (VT == MVT::iPTRAny) { | 
|  | // Outside of TableGen, we don't distinguish iPTRAny (to any address space) | 
|  | // and iPTR. In the verifier, we can not distinguish which case we have so | 
|  | // allow either case to be legal. | 
|  | if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) { | 
|  | Suffix += ".p" + utostr(PTyp->getAddressSpace()) + | 
|  | EVT::getEVT(PTyp->getElementType()).getEVTString(); | 
|  | } else { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " | 
|  | "pointer and a pointer is required.", F); | 
|  | return false; | 
|  | } | 
|  | } else if (EVT((MVT::SimpleValueType)VT).isVector()) { | 
|  | EVT VVT = EVT((MVT::SimpleValueType)VT); | 
|  |  | 
|  | // If this is a vector argument, verify the number and type of elements. | 
|  | if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) { | 
|  | CheckFailed("Intrinsic prototype has incorrect vector element type!", F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VVT.getVectorNumElements() != NumElts) { | 
|  | CheckFailed("Intrinsic prototype has incorrect number of " | 
|  | "vector elements!", F); | 
|  | return false; | 
|  | } | 
|  | } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != | 
|  | EltTy) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); | 
|  | return false; | 
|  | } else if (EltTy != Ty) { | 
|  | CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " | 
|  | "and a scalar is required.", F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// VerifyIntrinsicPrototype - TableGen emits calls to this function into | 
|  | /// Intrinsics.gen.  This implements a little state machine that verifies the | 
|  | /// prototype of intrinsics. | 
|  | void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, | 
|  | unsigned RetNum, | 
|  | unsigned ParamNum, ...) { | 
|  | va_list VA; | 
|  | va_start(VA, ParamNum); | 
|  | const FunctionType *FTy = F->getFunctionType(); | 
|  |  | 
|  | // For overloaded intrinsics, the Suffix of the function name must match the | 
|  | // types of the arguments. This variable keeps track of the expected | 
|  | // suffix, to be checked at the end. | 
|  | std::string Suffix; | 
|  |  | 
|  | if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { | 
|  | CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Type *Ty = FTy->getReturnType(); | 
|  | const StructType *ST = dyn_cast<StructType>(Ty); | 
|  |  | 
|  | // Verify the return types. | 
|  | if (ST && ST->getNumElements() != RetNum) { | 
|  | CheckFailed("Intrinsic prototype has incorrect number of return types!", F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { | 
|  | int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. | 
|  |  | 
|  | if (ST) Ty = ST->getElementType(ArgNo); | 
|  |  | 
|  | if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Verify the parameter types. | 
|  | for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { | 
|  | int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. | 
|  |  | 
|  | if (VT == MVT::isVoid && ArgNo > 0) { | 
|  | if (!FTy->isVarArg()) | 
|  | CheckFailed("Intrinsic prototype has no '...'!", F); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, | 
|  | Suffix)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | va_end(VA); | 
|  |  | 
|  | // For intrinsics without pointer arguments, if we computed a Suffix then the | 
|  | // intrinsic is overloaded and we need to make sure that the name of the | 
|  | // function is correct. We add the suffix to the name of the intrinsic and | 
|  | // compare against the given function name. If they are not the same, the | 
|  | // function name is invalid. This ensures that overloading of intrinsics | 
|  | // uses a sane and consistent naming convention.  Note that intrinsics with | 
|  | // pointer argument may or may not be overloaded so we will check assuming it | 
|  | // has a suffix and not. | 
|  | if (!Suffix.empty()) { | 
|  | std::string Name(Intrinsic::getName(ID)); | 
|  | if (Name + Suffix != F->getName()) { | 
|  | CheckFailed("Overloaded intrinsic has incorrect suffix: '" + | 
|  | F->getName().substr(Name.length()) + "'. It should be '" + | 
|  | Suffix + "'", F); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check parameter attributes. | 
|  | Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), | 
|  | "Intrinsic has wrong parameter attributes!", F); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Implement the public interfaces to this file... | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { | 
|  | return new Verifier(action); | 
|  | } | 
|  |  | 
|  |  | 
|  | // verifyFunction - Create | 
|  | bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { | 
|  | Function &F = const_cast<Function&>(f); | 
|  | assert(!F.isDeclaration() && "Cannot verify external functions"); | 
|  |  | 
|  | ExistingModuleProvider MP(F.getParent()); | 
|  | FunctionPassManager FPM(&MP); | 
|  | Verifier *V = new Verifier(action); | 
|  | FPM.add(V); | 
|  | FPM.run(F); | 
|  | MP.releaseModule(); | 
|  | return V->Broken; | 
|  | } | 
|  |  | 
|  | /// verifyModule - Check a module for errors, printing messages on stderr. | 
|  | /// Return true if the module is corrupt. | 
|  | /// | 
|  | bool llvm::verifyModule(const Module &M, VerifierFailureAction action, | 
|  | std::string *ErrorInfo) { | 
|  | PassManager PM; | 
|  | Verifier *V = new Verifier(action); | 
|  | PM.add(V); | 
|  | PM.run(const_cast<Module&>(M)); | 
|  |  | 
|  | if (ErrorInfo && V->Broken) | 
|  | *ErrorInfo = V->MessagesStr.str(); | 
|  | return V->Broken; | 
|  | } |