|  | //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements some loop unrolling utilities. It does not define any | 
|  | // actual pass or policy, but provides a single function to perform loop | 
|  | // unrolling. | 
|  | // | 
|  | // The process of unrolling can produce extraneous basic blocks linked with | 
|  | // unconditional branches.  This will be corrected in the future. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unroll" | 
|  | #include "llvm/Transforms/Utils/UnrollLoop.h" | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyIndVar.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | // TODO: Should these be here or in LoopUnroll? | 
|  | STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); | 
|  | STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); | 
|  |  | 
|  | /// RemapInstruction - Convert the instruction operands from referencing the | 
|  | /// current values into those specified by VMap. | 
|  | static inline void RemapInstruction(Instruction *I, | 
|  | ValueToValueMapTy &VMap) { | 
|  | for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { | 
|  | Value *Op = I->getOperand(op); | 
|  | ValueToValueMapTy::iterator It = VMap.find(Op); | 
|  | if (It != VMap.end()) | 
|  | I->setOperand(op, It->second); | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); | 
|  | if (It != VMap.end()) | 
|  | PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it | 
|  | /// only has one predecessor, and that predecessor only has one successor. | 
|  | /// The LoopInfo Analysis that is passed will be kept consistent. | 
|  | /// Returns the new combined block. | 
|  | static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, | 
|  | LPPassManager *LPM) { | 
|  | // Merge basic blocks into their predecessor if there is only one distinct | 
|  | // pred, and if there is only one distinct successor of the predecessor, and | 
|  | // if there are no PHI nodes. | 
|  | BasicBlock *OnlyPred = BB->getSinglePredecessor(); | 
|  | if (!OnlyPred) return 0; | 
|  |  | 
|  | if (OnlyPred->getTerminator()->getNumSuccessors() != 1) | 
|  | return 0; | 
|  |  | 
|  | DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); | 
|  |  | 
|  | // Resolve any PHI nodes at the start of the block.  They are all | 
|  | // guaranteed to have exactly one entry if they exist, unless there are | 
|  | // multiple duplicate (but guaranteed to be equal) entries for the | 
|  | // incoming edges.  This occurs when there are multiple edges from | 
|  | // OnlyPred to OnlySucc. | 
|  | FoldSingleEntryPHINodes(BB); | 
|  |  | 
|  | // Delete the unconditional branch from the predecessor... | 
|  | OnlyPred->getInstList().pop_back(); | 
|  |  | 
|  | // Make all PHI nodes that referred to BB now refer to Pred as their | 
|  | // source... | 
|  | BB->replaceAllUsesWith(OnlyPred); | 
|  |  | 
|  | // Move all definitions in the successor to the predecessor... | 
|  | OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); | 
|  |  | 
|  | std::string OldName = BB->getName(); | 
|  |  | 
|  | // Erase basic block from the function... | 
|  |  | 
|  | // ScalarEvolution holds references to loop exit blocks. | 
|  | if (LPM) { | 
|  | if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { | 
|  | if (Loop *L = LI->getLoopFor(BB)) | 
|  | SE->forgetLoop(L); | 
|  | } | 
|  | } | 
|  | LI->removeBlock(BB); | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | // Inherit predecessor's name if it exists... | 
|  | if (!OldName.empty() && !OnlyPred->hasName()) | 
|  | OnlyPred->setName(OldName); | 
|  |  | 
|  | return OnlyPred; | 
|  | } | 
|  |  | 
|  | /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true | 
|  | /// if unrolling was successful, or false if the loop was unmodified. Unrolling | 
|  | /// can only fail when the loop's latch block is not terminated by a conditional | 
|  | /// branch instruction. However, if the trip count (and multiple) are not known, | 
|  | /// loop unrolling will mostly produce more code that is no faster. | 
|  | /// | 
|  | /// TripCount is generally defined as the number of times the loop header | 
|  | /// executes. UnrollLoop relaxes the definition to permit early exits: here | 
|  | /// TripCount is the iteration on which control exits LatchBlock if no early | 
|  | /// exits were taken. Note that UnrollLoop assumes that the loop counter test | 
|  | /// terminates LatchBlock in order to remove unnecesssary instances of the | 
|  | /// test. In other words, control may exit the loop prior to TripCount | 
|  | /// iterations via an early branch, but control may not exit the loop from the | 
|  | /// LatchBlock's terminator prior to TripCount iterations. | 
|  | /// | 
|  | /// Similarly, TripMultiple divides the number of times that the LatchBlock may | 
|  | /// execute without exiting the loop. | 
|  | /// | 
|  | /// The LoopInfo Analysis that is passed will be kept consistent. | 
|  | /// | 
|  | /// If a LoopPassManager is passed in, and the loop is fully removed, it will be | 
|  | /// removed from the LoopPassManager as well. LPM can also be NULL. | 
|  | /// | 
|  | /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are | 
|  | /// available it must also preserve those analyses. | 
|  | bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, | 
|  | bool AllowRuntime, unsigned TripMultiple, | 
|  | LoopInfo *LI, LPPassManager *LPM) { | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) { | 
|  | DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | if (!LatchBlock) { | 
|  | DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Loops with indirectbr cannot be cloned. | 
|  | if (!L->isSafeToClone()) { | 
|  | DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); | 
|  |  | 
|  | if (!BI || BI->isUnconditional()) { | 
|  | // The loop-rotate pass can be helpful to avoid this in many cases. | 
|  | DEBUG(dbgs() << | 
|  | "  Can't unroll; loop not terminated by a conditional branch.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Header->hasAddressTaken()) { | 
|  | // The loop-rotate pass can be helpful to avoid this in many cases. | 
|  | DEBUG(dbgs() << | 
|  | "  Won't unroll loop: address of header block is taken.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TripCount != 0) | 
|  | DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n"); | 
|  | if (TripMultiple != 1) | 
|  | DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n"); | 
|  |  | 
|  | // Effectively "DCE" unrolled iterations that are beyond the tripcount | 
|  | // and will never be executed. | 
|  | if (TripCount != 0 && Count > TripCount) | 
|  | Count = TripCount; | 
|  |  | 
|  | // Don't enter the unroll code if there is nothing to do. This way we don't | 
|  | // need to support "partial unrolling by 1". | 
|  | if (TripCount == 0 && Count < 2) | 
|  | return false; | 
|  |  | 
|  | assert(Count > 0); | 
|  | assert(TripMultiple > 0); | 
|  | assert(TripCount == 0 || TripCount % TripMultiple == 0); | 
|  |  | 
|  | // Are we eliminating the loop control altogether? | 
|  | bool CompletelyUnroll = Count == TripCount; | 
|  |  | 
|  | // We assume a run-time trip count if the compiler cannot | 
|  | // figure out the loop trip count and the unroll-runtime | 
|  | // flag is specified. | 
|  | bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); | 
|  |  | 
|  | if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) | 
|  | return false; | 
|  |  | 
|  | // Notify ScalarEvolution that the loop will be substantially changed, | 
|  | // if not outright eliminated. | 
|  | if (LPM) { | 
|  | ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); | 
|  | if (SE) | 
|  | SE->forgetLoop(L); | 
|  | } | 
|  |  | 
|  | // If we know the trip count, we know the multiple... | 
|  | unsigned BreakoutTrip = 0; | 
|  | if (TripCount != 0) { | 
|  | BreakoutTrip = TripCount % Count; | 
|  | TripMultiple = 0; | 
|  | } else { | 
|  | // Figure out what multiple to use. | 
|  | BreakoutTrip = TripMultiple = | 
|  | (unsigned)GreatestCommonDivisor64(Count, TripMultiple); | 
|  | } | 
|  |  | 
|  | if (CompletelyUnroll) { | 
|  | DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() | 
|  | << " with trip count " << TripCount << "!\n"); | 
|  | } else { | 
|  | DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() | 
|  | << " by " << Count); | 
|  | if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { | 
|  | DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); | 
|  | } else if (TripMultiple != 1) { | 
|  | DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); | 
|  | } else if (RuntimeTripCount) { | 
|  | DEBUG(dbgs() << " with run-time trip count"); | 
|  | } | 
|  | DEBUG(dbgs() << "!\n"); | 
|  | } | 
|  |  | 
|  | std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); | 
|  |  | 
|  | bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); | 
|  | BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); | 
|  |  | 
|  | // For the first iteration of the loop, we should use the precloned values for | 
|  | // PHI nodes.  Insert associations now. | 
|  | ValueToValueMapTy LastValueMap; | 
|  | std::vector<PHINode*> OrigPHINode; | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | OrigPHINode.push_back(cast<PHINode>(I)); | 
|  | } | 
|  |  | 
|  | std::vector<BasicBlock*> Headers; | 
|  | std::vector<BasicBlock*> Latches; | 
|  | Headers.push_back(Header); | 
|  | Latches.push_back(LatchBlock); | 
|  |  | 
|  | // The current on-the-fly SSA update requires blocks to be processed in | 
|  | // reverse postorder so that LastValueMap contains the correct value at each | 
|  | // exit. | 
|  | LoopBlocksDFS DFS(L); | 
|  | DFS.perform(LI); | 
|  |  | 
|  | // Stash the DFS iterators before adding blocks to the loop. | 
|  | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); | 
|  | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); | 
|  |  | 
|  | for (unsigned It = 1; It != Count; ++It) { | 
|  | std::vector<BasicBlock*> NewBlocks; | 
|  |  | 
|  | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | 
|  | ValueToValueMapTy VMap; | 
|  | BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); | 
|  | Header->getParent()->getBasicBlockList().push_back(New); | 
|  |  | 
|  | // Loop over all of the PHI nodes in the block, changing them to use the | 
|  | // incoming values from the previous block. | 
|  | if (*BB == Header) | 
|  | for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { | 
|  | PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); | 
|  | Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); | 
|  | if (Instruction *InValI = dyn_cast<Instruction>(InVal)) | 
|  | if (It > 1 && L->contains(InValI)) | 
|  | InVal = LastValueMap[InValI]; | 
|  | VMap[OrigPHINode[i]] = InVal; | 
|  | New->getInstList().erase(NewPHI); | 
|  | } | 
|  |  | 
|  | // Update our running map of newest clones | 
|  | LastValueMap[*BB] = New; | 
|  | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); | 
|  | VI != VE; ++VI) | 
|  | LastValueMap[VI->first] = VI->second; | 
|  |  | 
|  | L->addBasicBlockToLoop(New, LI->getBase()); | 
|  |  | 
|  | // Add phi entries for newly created values to all exit blocks. | 
|  | for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); | 
|  | SI != SE; ++SI) { | 
|  | if (L->contains(*SI)) | 
|  | continue; | 
|  | for (BasicBlock::iterator BBI = (*SI)->begin(); | 
|  | PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { | 
|  | Value *Incoming = phi->getIncomingValueForBlock(*BB); | 
|  | ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); | 
|  | if (It != LastValueMap.end()) | 
|  | Incoming = It->second; | 
|  | phi->addIncoming(Incoming, New); | 
|  | } | 
|  | } | 
|  | // Keep track of new headers and latches as we create them, so that | 
|  | // we can insert the proper branches later. | 
|  | if (*BB == Header) | 
|  | Headers.push_back(New); | 
|  | if (*BB == LatchBlock) | 
|  | Latches.push_back(New); | 
|  |  | 
|  | NewBlocks.push_back(New); | 
|  | } | 
|  |  | 
|  | // Remap all instructions in the most recent iteration | 
|  | for (unsigned i = 0; i < NewBlocks.size(); ++i) | 
|  | for (BasicBlock::iterator I = NewBlocks[i]->begin(), | 
|  | E = NewBlocks[i]->end(); I != E; ++I) | 
|  | ::RemapInstruction(I, LastValueMap); | 
|  | } | 
|  |  | 
|  | // Loop over the PHI nodes in the original block, setting incoming values. | 
|  | for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { | 
|  | PHINode *PN = OrigPHINode[i]; | 
|  | if (CompletelyUnroll) { | 
|  | PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); | 
|  | Header->getInstList().erase(PN); | 
|  | } | 
|  | else if (Count > 1) { | 
|  | Value *InVal = PN->removeIncomingValue(LatchBlock, false); | 
|  | // If this value was defined in the loop, take the value defined by the | 
|  | // last iteration of the loop. | 
|  | if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { | 
|  | if (L->contains(InValI)) | 
|  | InVal = LastValueMap[InVal]; | 
|  | } | 
|  | assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); | 
|  | PN->addIncoming(InVal, Latches.back()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all the basic blocks for the unrolled iterations are in place, | 
|  | // set up the branches to connect them. | 
|  | for (unsigned i = 0, e = Latches.size(); i != e; ++i) { | 
|  | // The original branch was replicated in each unrolled iteration. | 
|  | BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); | 
|  |  | 
|  | // The branch destination. | 
|  | unsigned j = (i + 1) % e; | 
|  | BasicBlock *Dest = Headers[j]; | 
|  | bool NeedConditional = true; | 
|  |  | 
|  | if (RuntimeTripCount && j != 0) { | 
|  | NeedConditional = false; | 
|  | } | 
|  |  | 
|  | // For a complete unroll, make the last iteration end with a branch | 
|  | // to the exit block. | 
|  | if (CompletelyUnroll && j == 0) { | 
|  | Dest = LoopExit; | 
|  | NeedConditional = false; | 
|  | } | 
|  |  | 
|  | // If we know the trip count or a multiple of it, we can safely use an | 
|  | // unconditional branch for some iterations. | 
|  | if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { | 
|  | NeedConditional = false; | 
|  | } | 
|  |  | 
|  | if (NeedConditional) { | 
|  | // Update the conditional branch's successor for the following | 
|  | // iteration. | 
|  | Term->setSuccessor(!ContinueOnTrue, Dest); | 
|  | } else { | 
|  | // Remove phi operands at this loop exit | 
|  | if (Dest != LoopExit) { | 
|  | BasicBlock *BB = Latches[i]; | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); | 
|  | SI != SE; ++SI) { | 
|  | if (*SI == Headers[i]) | 
|  | continue; | 
|  | for (BasicBlock::iterator BBI = (*SI)->begin(); | 
|  | PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { | 
|  | Phi->removeIncomingValue(BB, false); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Replace the conditional branch with an unconditional one. | 
|  | BranchInst::Create(Dest, Term); | 
|  | Term->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge adjacent basic blocks, if possible. | 
|  | for (unsigned i = 0, e = Latches.size(); i != e; ++i) { | 
|  | BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); | 
|  | if (Term->isUnconditional()) { | 
|  | BasicBlock *Dest = Term->getSuccessor(0); | 
|  | if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) | 
|  | std::replace(Latches.begin(), Latches.end(), Dest, Fold); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LPM) { | 
|  | // FIXME: Reconstruct dom info, because it is not preserved properly. | 
|  | // Incrementally updating domtree after loop unrolling would be easy. | 
|  | if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>()) | 
|  | DT->runOnFunction(*L->getHeader()->getParent()); | 
|  |  | 
|  | // Simplify any new induction variables in the partially unrolled loop. | 
|  | ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); | 
|  | if (SE && !CompletelyUnroll) { | 
|  | SmallVector<WeakVH, 16> DeadInsts; | 
|  | simplifyLoopIVs(L, SE, LPM, DeadInsts); | 
|  |  | 
|  | // Aggressively clean up dead instructions that simplifyLoopIVs already | 
|  | // identified. Any remaining should be cleaned up below. | 
|  | while (!DeadInsts.empty()) | 
|  | if (Instruction *Inst = | 
|  | dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Inst); | 
|  | } | 
|  | } | 
|  | // At this point, the code is well formed.  We now do a quick sweep over the | 
|  | // inserted code, doing constant propagation and dead code elimination as we | 
|  | // go. | 
|  | const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); | 
|  | for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), | 
|  | BBE = NewLoopBlocks.end(); BB != BBE; ++BB) | 
|  | for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { | 
|  | Instruction *Inst = I++; | 
|  |  | 
|  | if (isInstructionTriviallyDead(Inst)) | 
|  | (*BB)->getInstList().erase(Inst); | 
|  | else if (Value *V = SimplifyInstruction(Inst)) | 
|  | if (LI->replacementPreservesLCSSAForm(Inst, V)) { | 
|  | Inst->replaceAllUsesWith(V); | 
|  | (*BB)->getInstList().erase(Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | NumCompletelyUnrolled += CompletelyUnroll; | 
|  | ++NumUnrolled; | 
|  | // Remove the loop from the LoopPassManager if it's completely removed. | 
|  | if (CompletelyUnroll && LPM != NULL) | 
|  | LPM->deleteLoopFromQueue(L); | 
|  |  | 
|  | return true; | 
|  | } |