|  | //===- InstCombineAndOrXor.cpp --------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visitAnd, visitOr, and visitXor functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/Analysis/CmpInstAnalysis.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into | 
|  | /// a four bit mask. | 
|  | static unsigned getFCmpCode(FCmpInst::Predicate CC) { | 
|  | assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && | 
|  | "Unexpected FCmp predicate!"); | 
|  | // Take advantage of the bit pattern of FCmpInst::Predicate here. | 
|  | //                                                 U L G E | 
|  | static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0 | 
|  | static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1 | 
|  | static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0 | 
|  | static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1 | 
|  | static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0 | 
|  | static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1 | 
|  | static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0 | 
|  | static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1 | 
|  | static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0 | 
|  | static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1 | 
|  | static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0 | 
|  | static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1 | 
|  | static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0 | 
|  | static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1 | 
|  | static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0 | 
|  | static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1 | 
|  | return CC; | 
|  | } | 
|  |  | 
|  | /// This is the complement of getICmpCode, which turns an opcode and two | 
|  | /// operands into either a constant true or false, or a brand new ICmp | 
|  | /// instruction. The sign is passed in to determine which kind of predicate to | 
|  | /// use in the new icmp instruction. | 
|  | static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate NewPred; | 
|  | if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred)) | 
|  | return NewConstant; | 
|  | return Builder.CreateICmp(NewPred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// This is the complement of getFCmpCode, which turns an opcode and two | 
|  | /// operands into either a FCmp instruction, or a true/false constant. | 
|  | static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | const auto Pred = static_cast<FCmpInst::Predicate>(Code); | 
|  | assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && | 
|  | "Unexpected FCmp predicate!"); | 
|  | if (Pred == FCmpInst::FCMP_FALSE) | 
|  | return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); | 
|  | if (Pred == FCmpInst::FCMP_TRUE) | 
|  | return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); | 
|  | return Builder.CreateFCmp(Pred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or | 
|  | /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) | 
|  | /// \param I Binary operator to transform. | 
|  | /// \return Pointer to node that must replace the original binary operator, or | 
|  | ///         null pointer if no transformation was made. | 
|  | static Value *SimplifyBSwap(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); | 
|  |  | 
|  | Value *OldLHS = I.getOperand(0); | 
|  | Value *OldRHS = I.getOperand(1); | 
|  |  | 
|  | Value *NewLHS; | 
|  | if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *NewRHS; | 
|  | const APInt *C; | 
|  |  | 
|  | if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { | 
|  | // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) | 
|  | if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) | 
|  | return nullptr; | 
|  | // NewRHS initialized by the matcher. | 
|  | } else if (match(OldRHS, m_APInt(C))) { | 
|  | // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) | 
|  | if (!OldLHS->hasOneUse()) | 
|  | return nullptr; | 
|  | NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); | 
|  | } else | 
|  | return nullptr; | 
|  |  | 
|  | Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); | 
|  | Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, | 
|  | I.getType()); | 
|  | return Builder.CreateCall(F, BinOp); | 
|  | } | 
|  |  | 
|  | /// This handles expressions of the form ((val OP C1) & C2).  Where | 
|  | /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. | 
|  | Instruction *InstCombiner::OptAndOp(BinaryOperator *Op, | 
|  | ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, | 
|  | BinaryOperator &TheAnd) { | 
|  | Value *X = Op->getOperand(0); | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Add: | 
|  | if (Op->hasOneUse()) { | 
|  | // Adding a one to a single bit bit-field should be turned into an XOR | 
|  | // of the bit.  First thing to check is to see if this AND is with a | 
|  | // single bit constant. | 
|  | const APInt &AndRHSV = AndRHS->getValue(); | 
|  |  | 
|  | // If there is only one bit set. | 
|  | if (AndRHSV.isPowerOf2()) { | 
|  | // Ok, at this point, we know that we are masking the result of the | 
|  | // ADD down to exactly one bit.  If the constant we are adding has | 
|  | // no bits set below this bit, then we can eliminate the ADD. | 
|  | const APInt& AddRHS = OpRHS->getValue(); | 
|  |  | 
|  | // Check to see if any bits below the one bit set in AndRHSV are set. | 
|  | if ((AddRHS & (AndRHSV - 1)).isNullValue()) { | 
|  | // If not, the only thing that can effect the output of the AND is | 
|  | // the bit specified by AndRHSV.  If that bit is set, the effect of | 
|  | // the XOR is to toggle the bit.  If it is clear, then the ADD has | 
|  | // no effect. | 
|  | if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop | 
|  | TheAnd.setOperand(0, X); | 
|  | return &TheAnd; | 
|  | } else { | 
|  | // Pull the XOR out of the AND. | 
|  | Value *NewAnd = Builder.CreateAnd(X, AndRHS); | 
|  | NewAnd->takeName(Op); | 
|  | return BinaryOperator::CreateXor(NewAnd, AndRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise | 
|  | /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates | 
|  | /// whether to treat V, Lo, and Hi as signed or not. | 
|  | Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, | 
|  | bool isSigned, bool Inside) { | 
|  | assert((isSigned ? Lo.sle(Hi) : Lo.ule(Hi)) && | 
|  | "Lo is not <= Hi in range emission code!"); | 
|  |  | 
|  | Type *Ty = V->getType(); | 
|  | if (Lo == Hi) | 
|  | return Inside ? ConstantInt::getFalse(Ty) : ConstantInt::getTrue(Ty); | 
|  |  | 
|  | // V >= Min && V <  Hi --> V <  Hi | 
|  | // V <  Min || V >= Hi --> V >= Hi | 
|  | ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; | 
|  | if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { | 
|  | Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; | 
|  | return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); | 
|  | } | 
|  |  | 
|  | // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo | 
|  | // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo | 
|  | Value *VMinusLo = | 
|  | Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); | 
|  | Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); | 
|  | return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); | 
|  | } | 
|  |  | 
|  | /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns | 
|  | /// that can be simplified. | 
|  | /// One of A and B is considered the mask. The other is the value. This is | 
|  | /// described as the "AMask" or "BMask" part of the enum. If the enum contains | 
|  | /// only "Mask", then both A and B can be considered masks. If A is the mask, | 
|  | /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. | 
|  | /// If both A and C are constants, this proof is also easy. | 
|  | /// For the following explanations, we assume that A is the mask. | 
|  | /// | 
|  | /// "AllOnes" declares that the comparison is true only if (A & B) == A or all | 
|  | /// bits of A are set in B. | 
|  | ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes | 
|  | /// | 
|  | /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all | 
|  | /// bits of A are cleared in B. | 
|  | ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes | 
|  | /// | 
|  | /// "Mixed" declares that (A & B) == C and C might or might not contain any | 
|  | /// number of one bits and zero bits. | 
|  | ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed | 
|  | /// | 
|  | /// "Not" means that in above descriptions "==" should be replaced by "!=". | 
|  | ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes | 
|  | /// | 
|  | /// If the mask A contains a single bit, then the following is equivalent: | 
|  | ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0) | 
|  | ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0) | 
|  | enum MaskedICmpType { | 
|  | AMask_AllOnes           =     1, | 
|  | AMask_NotAllOnes        =     2, | 
|  | BMask_AllOnes           =     4, | 
|  | BMask_NotAllOnes        =     8, | 
|  | Mask_AllZeros           =    16, | 
|  | Mask_NotAllZeros        =    32, | 
|  | AMask_Mixed             =    64, | 
|  | AMask_NotMixed          =   128, | 
|  | BMask_Mixed             =   256, | 
|  | BMask_NotMixed          =   512 | 
|  | }; | 
|  |  | 
|  | /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) | 
|  | /// satisfies. | 
|  | static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, | 
|  | ICmpInst::Predicate Pred) { | 
|  | ConstantInt *ACst = dyn_cast<ConstantInt>(A); | 
|  | ConstantInt *BCst = dyn_cast<ConstantInt>(B); | 
|  | ConstantInt *CCst = dyn_cast<ConstantInt>(C); | 
|  | bool IsEq = (Pred == ICmpInst::ICMP_EQ); | 
|  | bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2()); | 
|  | bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2()); | 
|  | unsigned MaskVal = 0; | 
|  | if (CCst && CCst->isZero()) { | 
|  | // if C is zero, then both A and B qualify as mask | 
|  | MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) | 
|  | : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); | 
|  | if (IsAPow2) | 
|  | MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) | 
|  | : (AMask_AllOnes | AMask_Mixed)); | 
|  | if (IsBPow2) | 
|  | MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) | 
|  | : (BMask_AllOnes | BMask_Mixed)); | 
|  | return MaskVal; | 
|  | } | 
|  |  | 
|  | if (A == C) { | 
|  | MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) | 
|  | : (AMask_NotAllOnes | AMask_NotMixed)); | 
|  | if (IsAPow2) | 
|  | MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) | 
|  | : (Mask_AllZeros | AMask_Mixed)); | 
|  | } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) { | 
|  | MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); | 
|  | } | 
|  |  | 
|  | if (B == C) { | 
|  | MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) | 
|  | : (BMask_NotAllOnes | BMask_NotMixed)); | 
|  | if (IsBPow2) | 
|  | MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) | 
|  | : (Mask_AllZeros | BMask_Mixed)); | 
|  | } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) { | 
|  | MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); | 
|  | } | 
|  |  | 
|  | return MaskVal; | 
|  | } | 
|  |  | 
|  | /// Convert an analysis of a masked ICmp into its equivalent if all boolean | 
|  | /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) | 
|  | /// is adjacent to the corresponding normal flag (recording ==), this just | 
|  | /// involves swapping those bits over. | 
|  | static unsigned conjugateICmpMask(unsigned Mask) { | 
|  | unsigned NewMask; | 
|  | NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | | 
|  | AMask_Mixed | BMask_Mixed)) | 
|  | << 1; | 
|  |  | 
|  | NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | | 
|  | AMask_NotMixed | BMask_NotMixed)) | 
|  | >> 1; | 
|  |  | 
|  | return NewMask; | 
|  | } | 
|  |  | 
|  | // Adapts the external decomposeBitTestICmp for local use. | 
|  | static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, | 
|  | Value *&X, Value *&Y, Value *&Z) { | 
|  | APInt Mask; | 
|  | if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) | 
|  | return false; | 
|  |  | 
|  | Y = ConstantInt::get(X->getType(), Mask); | 
|  | Z = ConstantInt::get(X->getType(), 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). | 
|  | /// Return the set of pattern classes (from MaskedICmpType) that both LHS and | 
|  | /// RHS satisfy. | 
|  | static unsigned getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, | 
|  | Value *&D, Value *&E, ICmpInst *LHS, | 
|  | ICmpInst *RHS, | 
|  | ICmpInst::Predicate &PredL, | 
|  | ICmpInst::Predicate &PredR) { | 
|  | // vectors are not (yet?) supported. Don't support pointers either. | 
|  | if (!LHS->getOperand(0)->getType()->isIntegerTy() || | 
|  | !RHS->getOperand(0)->getType()->isIntegerTy()) | 
|  | return 0; | 
|  |  | 
|  | // Here comes the tricky part: | 
|  | // LHS might be of the form L11 & L12 == X, X == L21 & L22, | 
|  | // and L11 & L12 == L21 & L22. The same goes for RHS. | 
|  | // Now we must find those components L** and R**, that are equal, so | 
|  | // that we can extract the parameters A, B, C, D, and E for the canonical | 
|  | // above. | 
|  | Value *L1 = LHS->getOperand(0); | 
|  | Value *L2 = LHS->getOperand(1); | 
|  | Value *L11, *L12, *L21, *L22; | 
|  | // Check whether the icmp can be decomposed into a bit test. | 
|  | if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { | 
|  | L21 = L22 = L1 = nullptr; | 
|  | } else { | 
|  | // Look for ANDs in the LHS icmp. | 
|  | if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { | 
|  | // Any icmp can be viewed as being trivially masked; if it allows us to | 
|  | // remove one, it's worth it. | 
|  | L11 = L1; | 
|  | L12 = Constant::getAllOnesValue(L1->getType()); | 
|  | } | 
|  |  | 
|  | if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { | 
|  | L21 = L2; | 
|  | L22 = Constant::getAllOnesValue(L2->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bail if LHS was a icmp that can't be decomposed into an equality. | 
|  | if (!ICmpInst::isEquality(PredL)) | 
|  | return 0; | 
|  |  | 
|  | Value *R1 = RHS->getOperand(0); | 
|  | Value *R2 = RHS->getOperand(1); | 
|  | Value *R11, *R12; | 
|  | bool Ok = false; | 
|  | if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { | 
|  | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { | 
|  | A = R11; | 
|  | D = R12; | 
|  | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { | 
|  | A = R12; | 
|  | D = R11; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | E = R2; | 
|  | R1 = nullptr; | 
|  | Ok = true; | 
|  | } else { | 
|  | if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { | 
|  | // As before, model no mask as a trivial mask if it'll let us do an | 
|  | // optimization. | 
|  | R11 = R1; | 
|  | R12 = Constant::getAllOnesValue(R1->getType()); | 
|  | } | 
|  |  | 
|  | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { | 
|  | A = R11; | 
|  | D = R12; | 
|  | E = R2; | 
|  | Ok = true; | 
|  | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { | 
|  | A = R12; | 
|  | D = R11; | 
|  | E = R2; | 
|  | Ok = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bail if RHS was a icmp that can't be decomposed into an equality. | 
|  | if (!ICmpInst::isEquality(PredR)) | 
|  | return 0; | 
|  |  | 
|  | // Look for ANDs on the right side of the RHS icmp. | 
|  | if (!Ok) { | 
|  | if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { | 
|  | R11 = R2; | 
|  | R12 = Constant::getAllOnesValue(R2->getType()); | 
|  | } | 
|  |  | 
|  | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { | 
|  | A = R11; | 
|  | D = R12; | 
|  | E = R1; | 
|  | Ok = true; | 
|  | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { | 
|  | A = R12; | 
|  | D = R11; | 
|  | E = R1; | 
|  | Ok = true; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (!Ok) | 
|  | return 0; | 
|  |  | 
|  | if (L11 == A) { | 
|  | B = L12; | 
|  | C = L2; | 
|  | } else if (L12 == A) { | 
|  | B = L11; | 
|  | C = L2; | 
|  | } else if (L21 == A) { | 
|  | B = L22; | 
|  | C = L1; | 
|  | } else if (L22 == A) { | 
|  | B = L21; | 
|  | C = L1; | 
|  | } | 
|  |  | 
|  | unsigned LeftType = getMaskedICmpType(A, B, C, PredL); | 
|  | unsigned RightType = getMaskedICmpType(A, D, E, PredR); | 
|  | return LeftType & RightType; | 
|  | } | 
|  |  | 
|  | /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) | 
|  | /// into a single (icmp(A & X) ==/!= Y). | 
|  | static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, | 
|  | llvm::InstCombiner::BuilderTy &Builder) { | 
|  | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; | 
|  | ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); | 
|  | unsigned Mask = | 
|  | getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); | 
|  | if (Mask == 0) | 
|  | return nullptr; | 
|  |  | 
|  | assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && | 
|  | "Expected equality predicates for masked type of icmps."); | 
|  |  | 
|  | // In full generality: | 
|  | //     (icmp (A & B) Op C) | (icmp (A & D) Op E) | 
|  | // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] | 
|  | // | 
|  | // If the latter can be converted into (icmp (A & X) Op Y) then the former is | 
|  | // equivalent to (icmp (A & X) !Op Y). | 
|  | // | 
|  | // Therefore, we can pretend for the rest of this function that we're dealing | 
|  | // with the conjunction, provided we flip the sense of any comparisons (both | 
|  | // input and output). | 
|  |  | 
|  | // In most cases we're going to produce an EQ for the "&&" case. | 
|  | ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; | 
|  | if (!IsAnd) { | 
|  | // Convert the masking analysis into its equivalent with negated | 
|  | // comparisons. | 
|  | Mask = conjugateICmpMask(Mask); | 
|  | } | 
|  |  | 
|  | if (Mask & Mask_AllZeros) { | 
|  | // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) | 
|  | // -> (icmp eq (A & (B|D)), 0) | 
|  | Value *NewOr = Builder.CreateOr(B, D); | 
|  | Value *NewAnd = Builder.CreateAnd(A, NewOr); | 
|  | // We can't use C as zero because we might actually handle | 
|  | //   (icmp ne (A & B), B) & (icmp ne (A & D), D) | 
|  | // with B and D, having a single bit set. | 
|  | Value *Zero = Constant::getNullValue(A->getType()); | 
|  | return Builder.CreateICmp(NewCC, NewAnd, Zero); | 
|  | } | 
|  | if (Mask & BMask_AllOnes) { | 
|  | // (icmp eq (A & B), B) & (icmp eq (A & D), D) | 
|  | // -> (icmp eq (A & (B|D)), (B|D)) | 
|  | Value *NewOr = Builder.CreateOr(B, D); | 
|  | Value *NewAnd = Builder.CreateAnd(A, NewOr); | 
|  | return Builder.CreateICmp(NewCC, NewAnd, NewOr); | 
|  | } | 
|  | if (Mask & AMask_AllOnes) { | 
|  | // (icmp eq (A & B), A) & (icmp eq (A & D), A) | 
|  | // -> (icmp eq (A & (B&D)), A) | 
|  | Value *NewAnd1 = Builder.CreateAnd(B, D); | 
|  | Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); | 
|  | return Builder.CreateICmp(NewCC, NewAnd2, A); | 
|  | } | 
|  |  | 
|  | // Remaining cases assume at least that B and D are constant, and depend on | 
|  | // their actual values. This isn't strictly necessary, just a "handle the | 
|  | // easy cases for now" decision. | 
|  | ConstantInt *BCst = dyn_cast<ConstantInt>(B); | 
|  | if (!BCst) | 
|  | return nullptr; | 
|  | ConstantInt *DCst = dyn_cast<ConstantInt>(D); | 
|  | if (!DCst) | 
|  | return nullptr; | 
|  |  | 
|  | if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { | 
|  | // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and | 
|  | // (icmp ne (A & B), B) & (icmp ne (A & D), D) | 
|  | //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) | 
|  | // Only valid if one of the masks is a superset of the other (check "B&D" is | 
|  | // the same as either B or D). | 
|  | APInt NewMask = BCst->getValue() & DCst->getValue(); | 
|  |  | 
|  | if (NewMask == BCst->getValue()) | 
|  | return LHS; | 
|  | else if (NewMask == DCst->getValue()) | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | if (Mask & AMask_NotAllOnes) { | 
|  | // (icmp ne (A & B), B) & (icmp ne (A & D), D) | 
|  | //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A) | 
|  | // Only valid if one of the masks is a superset of the other (check "B|D" is | 
|  | // the same as either B or D). | 
|  | APInt NewMask = BCst->getValue() | DCst->getValue(); | 
|  |  | 
|  | if (NewMask == BCst->getValue()) | 
|  | return LHS; | 
|  | else if (NewMask == DCst->getValue()) | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | if (Mask & BMask_Mixed) { | 
|  | // (icmp eq (A & B), C) & (icmp eq (A & D), E) | 
|  | // We already know that B & C == C && D & E == E. | 
|  | // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of | 
|  | // C and E, which are shared by both the mask B and the mask D, don't | 
|  | // contradict, then we can transform to | 
|  | // -> (icmp eq (A & (B|D)), (C|E)) | 
|  | // Currently, we only handle the case of B, C, D, and E being constant. | 
|  | // We can't simply use C and E because we might actually handle | 
|  | //   (icmp ne (A & B), B) & (icmp eq (A & D), D) | 
|  | // with B and D, having a single bit set. | 
|  | ConstantInt *CCst = dyn_cast<ConstantInt>(C); | 
|  | if (!CCst) | 
|  | return nullptr; | 
|  | ConstantInt *ECst = dyn_cast<ConstantInt>(E); | 
|  | if (!ECst) | 
|  | return nullptr; | 
|  | if (PredL != NewCC) | 
|  | CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); | 
|  | if (PredR != NewCC) | 
|  | ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); | 
|  |  | 
|  | // If there is a conflict, we should actually return a false for the | 
|  | // whole construct. | 
|  | if (((BCst->getValue() & DCst->getValue()) & | 
|  | (CCst->getValue() ^ ECst->getValue())).getBoolValue()) | 
|  | return ConstantInt::get(LHS->getType(), !IsAnd); | 
|  |  | 
|  | Value *NewOr1 = Builder.CreateOr(B, D); | 
|  | Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); | 
|  | Value *NewAnd = Builder.CreateAnd(A, NewOr1); | 
|  | return Builder.CreateICmp(NewCC, NewAnd, NewOr2); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. | 
|  | /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n | 
|  | /// If \p Inverted is true then the check is for the inverted range, e.g. | 
|  | /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n | 
|  | Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, | 
|  | bool Inverted) { | 
|  | // Check the lower range comparison, e.g. x >= 0 | 
|  | // InstCombine already ensured that if there is a constant it's on the RHS. | 
|  | ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); | 
|  | if (!RangeStart) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : | 
|  | Cmp0->getPredicate()); | 
|  |  | 
|  | // Accept x > -1 or x >= 0 (after potentially inverting the predicate). | 
|  | if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || | 
|  | (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : | 
|  | Cmp1->getPredicate()); | 
|  |  | 
|  | Value *Input = Cmp0->getOperand(0); | 
|  | Value *RangeEnd; | 
|  | if (Cmp1->getOperand(0) == Input) { | 
|  | // For the upper range compare we have: icmp x, n | 
|  | RangeEnd = Cmp1->getOperand(1); | 
|  | } else if (Cmp1->getOperand(1) == Input) { | 
|  | // For the upper range compare we have: icmp n, x | 
|  | RangeEnd = Cmp1->getOperand(0); | 
|  | Pred1 = ICmpInst::getSwappedPredicate(Pred1); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check the upper range comparison, e.g. x < n | 
|  | ICmpInst::Predicate NewPred; | 
|  | switch (Pred1) { | 
|  | case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; | 
|  | case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; | 
|  | default: return nullptr; | 
|  | } | 
|  |  | 
|  | // This simplification is only valid if the upper range is not negative. | 
|  | KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); | 
|  | if (!Known.isNonNegative()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Inverted) | 
|  | NewPred = ICmpInst::getInversePredicate(NewPred); | 
|  |  | 
|  | return Builder.CreateICmp(NewPred, Input, RangeEnd); | 
|  | } | 
|  |  | 
|  | static Value * | 
|  | foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, | 
|  | bool JoinedByAnd, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *X = LHS->getOperand(0); | 
|  | if (X != RHS->getOperand(0)) | 
|  | return nullptr; | 
|  |  | 
|  | const APInt *C1, *C2; | 
|  | if (!match(LHS->getOperand(1), m_APInt(C1)) || | 
|  | !match(RHS->getOperand(1), m_APInt(C2))) | 
|  | return nullptr; | 
|  |  | 
|  | // We only handle (X != C1 && X != C2) and (X == C1 || X == C2). | 
|  | ICmpInst::Predicate Pred = LHS->getPredicate(); | 
|  | if (Pred !=  RHS->getPredicate()) | 
|  | return nullptr; | 
|  | if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) | 
|  | return nullptr; | 
|  | if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) | 
|  | return nullptr; | 
|  |  | 
|  | // The larger unsigned constant goes on the right. | 
|  | if (C1->ugt(*C2)) | 
|  | std::swap(C1, C2); | 
|  |  | 
|  | APInt Xor = *C1 ^ *C2; | 
|  | if (Xor.isPowerOf2()) { | 
|  | // If LHSC and RHSC differ by only one bit, then set that bit in X and | 
|  | // compare against the larger constant: | 
|  | // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2 | 
|  | // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2 | 
|  | // We choose an 'or' with a Pow2 constant rather than the inverse mask with | 
|  | // 'and' because that may lead to smaller codegen from a smaller constant. | 
|  | Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor)); | 
|  | return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2)); | 
|  | } | 
|  |  | 
|  | // Special case: get the ordering right when the values wrap around zero. | 
|  | // Ie, we assumed the constants were unsigned when swapping earlier. | 
|  | if (C1->isNullValue() && C2->isAllOnesValue()) | 
|  | std::swap(C1, C2); | 
|  |  | 
|  | if (*C1 == *C2 - 1) { | 
|  | // (X == 13 || X == 14) --> X - 13 <=u 1 | 
|  | // (X != 13 && X != 14) --> X - 13  >u 1 | 
|  | // An 'add' is the canonical IR form, so favor that over a 'sub'. | 
|  | Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1))); | 
|  | auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; | 
|  | return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) | 
|  | // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) | 
|  | Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, | 
|  | bool JoinedByAnd, | 
|  | Instruction &CxtI) { | 
|  | ICmpInst::Predicate Pred = LHS->getPredicate(); | 
|  | if (Pred != RHS->getPredicate()) | 
|  | return nullptr; | 
|  | if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) | 
|  | return nullptr; | 
|  | if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO support vector splats | 
|  | ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); | 
|  | ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); | 
|  | if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *A, *B, *C, *D; | 
|  | if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) && | 
|  | match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) { | 
|  | if (A == D || B == D) | 
|  | std::swap(C, D); | 
|  | if (B == C) | 
|  | std::swap(A, B); | 
|  |  | 
|  | if (A == C && | 
|  | isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) && | 
|  | isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) { | 
|  | Value *Mask = Builder.CreateOr(B, D); | 
|  | Value *Masked = Builder.CreateAnd(A, Mask); | 
|  | auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; | 
|  | return Builder.CreateICmp(NewPred, Masked, Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold (icmp)&(icmp) if possible. | 
|  | Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, | 
|  | Instruction &CxtI) { | 
|  | // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2) | 
|  | // if K1 and K2 are a one-bit mask. | 
|  | if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI)) | 
|  | return V; | 
|  |  | 
|  | ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); | 
|  |  | 
|  | // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (PredicatesFoldable(PredL, PredR)) { | 
|  | if (LHS->getOperand(0) == RHS->getOperand(1) && | 
|  | LHS->getOperand(1) == RHS->getOperand(0)) | 
|  | LHS->swapOperands(); | 
|  | if (LHS->getOperand(0) == RHS->getOperand(0) && | 
|  | LHS->getOperand(1) == RHS->getOperand(1)) { | 
|  | Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); | 
|  | unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); | 
|  | bool isSigned = LHS->isSigned() || RHS->isSigned(); | 
|  | return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E) | 
|  | if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) | 
|  | return V; | 
|  |  | 
|  | // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n | 
|  | if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) | 
|  | return V; | 
|  |  | 
|  | // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n | 
|  | if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder)) | 
|  | return V; | 
|  |  | 
|  | // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). | 
|  | Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); | 
|  | ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); | 
|  | ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); | 
|  | if (!LHSC || !RHSC) | 
|  | return nullptr; | 
|  |  | 
|  | if (LHSC == RHSC && PredL == PredR) { | 
|  | // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) | 
|  | // where C is a power of 2 or | 
|  | // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) | 
|  | if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) || | 
|  | (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) { | 
|  | Value *NewOr = Builder.CreateOr(LHS0, RHS0); | 
|  | return Builder.CreateICmp(PredL, NewOr, LHSC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 | 
|  | // where CMAX is the all ones value for the truncated type, | 
|  | // iff the lower bits of C2 and CA are zero. | 
|  | if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() && | 
|  | RHS->hasOneUse()) { | 
|  | Value *V; | 
|  | ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr; | 
|  |  | 
|  | // (trunc x) == C1 & (and x, CA) == C2 | 
|  | // (and x, CA) == C2 & (trunc x) == C1 | 
|  | if (match(RHS0, m_Trunc(m_Value(V))) && | 
|  | match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { | 
|  | SmallC = RHSC; | 
|  | BigC = LHSC; | 
|  | } else if (match(LHS0, m_Trunc(m_Value(V))) && | 
|  | match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { | 
|  | SmallC = LHSC; | 
|  | BigC = RHSC; | 
|  | } | 
|  |  | 
|  | if (SmallC && BigC) { | 
|  | unsigned BigBitSize = BigC->getType()->getBitWidth(); | 
|  | unsigned SmallBitSize = SmallC->getType()->getBitWidth(); | 
|  |  | 
|  | // Check that the low bits are zero. | 
|  | APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); | 
|  | if ((Low & AndC->getValue()).isNullValue() && | 
|  | (Low & BigC->getValue()).isNullValue()) { | 
|  | Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue()); | 
|  | APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); | 
|  | Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); | 
|  | return Builder.CreateICmp(PredL, NewAnd, NewVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // From here on, we only handle: | 
|  | //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. | 
|  | if (LHS0 != RHS0) | 
|  | return nullptr; | 
|  |  | 
|  | // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. | 
|  | if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || | 
|  | PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || | 
|  | PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || | 
|  | PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) | 
|  | return nullptr; | 
|  |  | 
|  | // We can't fold (ugt x, C) & (sgt x, C2). | 
|  | if (!PredicatesFoldable(PredL, PredR)) | 
|  | return nullptr; | 
|  |  | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | bool ShouldSwap; | 
|  | if (CmpInst::isSigned(PredL) || | 
|  | (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) | 
|  | ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); | 
|  | else | 
|  | ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); | 
|  |  | 
|  | if (ShouldSwap) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSC, RHSC); | 
|  | std::swap(PredL, PredR); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have two icmp instructions | 
|  | // comparing a value against two constants and and'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know | 
|  | // (from the icmp folding check above), that the two constants | 
|  | // are not equal and that the larger constant is on the RHS | 
|  | assert(LHSC != RHSC && "Compares not folded above?"); | 
|  |  | 
|  | switch (PredL) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_NE: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13 | 
|  | return Builder.CreateICmpULT(LHS0, LHSC); | 
|  | if (LHSC->isZero()) // (X !=  0 & X u< 14) -> X-1 u< 13 | 
|  | return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), | 
|  | false, true); | 
|  | break; // (X != 13 & X u< 15) -> no change | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13 | 
|  | return Builder.CreateICmpSLT(LHS0, LHSC); | 
|  | break;                 // (X != 13 & X s< 15) -> no change | 
|  | case ICmpInst::ICMP_NE: | 
|  | // Potential folds for this case should already be handled. | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14 | 
|  | return Builder.CreateICmp(PredL, LHS0, RHSC); | 
|  | break;                 // (X u> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 | 
|  | return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), | 
|  | false, true); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14 | 
|  | return Builder.CreateICmp(PredL, LHS0, RHSC); | 
|  | break;                 // (X s> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 | 
|  | return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true, | 
|  | true); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { | 
|  | Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); | 
|  | Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); | 
|  | FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); | 
|  |  | 
|  | if (LHS0 == RHS1 && RHS0 == LHS1) { | 
|  | // Swap RHS operands to match LHS. | 
|  | PredR = FCmpInst::getSwappedPredicate(PredR); | 
|  | std::swap(RHS0, RHS1); | 
|  | } | 
|  |  | 
|  | // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). | 
|  | // Suppose the relation between x and y is R, where R is one of | 
|  | // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for | 
|  | // testing the desired relations. | 
|  | // | 
|  | // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: | 
|  | //    bool(R & CC0) && bool(R & CC1) | 
|  | //  = bool((R & CC0) & (R & CC1)) | 
|  | //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency | 
|  | // | 
|  | // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: | 
|  | //    bool(R & CC0) || bool(R & CC1) | 
|  | //  = bool((R & CC0) | (R & CC1)) | 
|  | //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) | 
|  | if (LHS0 == RHS0 && LHS1 == RHS1) { | 
|  | unsigned FCmpCodeL = getFCmpCode(PredL); | 
|  | unsigned FCmpCodeR = getFCmpCode(PredR); | 
|  | unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; | 
|  | return getFCmpValue(NewPred, LHS0, LHS1, Builder); | 
|  | } | 
|  |  | 
|  | if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || | 
|  | (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { | 
|  | if (LHS0->getType() != RHS0->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | // FCmp canonicalization ensures that (fcmp ord/uno X, X) and | 
|  | // (fcmp ord/uno X, C) will be transformed to (fcmp X, 0.0). | 
|  | if (match(LHS1, m_Zero()) && LHS1 == RHS1) | 
|  | // Ignore the constants because they are obviously not NANs: | 
|  | // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y) | 
|  | // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y) | 
|  | return Builder.CreateFCmp(PredL, LHS0, RHS0); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Match De Morgan's Laws: | 
|  | /// (~A & ~B) == (~(A | B)) | 
|  | /// (~A | ~B) == (~(A & B)) | 
|  | static Instruction *matchDeMorgansLaws(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto Opcode = I.getOpcode(); | 
|  | assert((Opcode == Instruction::And || Opcode == Instruction::Or) && | 
|  | "Trying to match De Morgan's Laws with something other than and/or"); | 
|  |  | 
|  | // Flip the logic operation. | 
|  | Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; | 
|  |  | 
|  | Value *A, *B; | 
|  | if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) && | 
|  | match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) && | 
|  | !IsFreeToInvert(A, A->hasOneUse()) && | 
|  | !IsFreeToInvert(B, B->hasOneUse())) { | 
|  | Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan"); | 
|  | return BinaryOperator::CreateNot(AndOr); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool InstCombiner::shouldOptimizeCast(CastInst *CI) { | 
|  | Value *CastSrc = CI->getOperand(0); | 
|  |  | 
|  | // Noop casts and casts of constants should be eliminated trivially. | 
|  | if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) | 
|  | return false; | 
|  |  | 
|  | // If this cast is paired with another cast that can be eliminated, we prefer | 
|  | // to have it eliminated. | 
|  | if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) | 
|  | if (isEliminableCastPair(PrecedingCI, CI)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Fold {and,or,xor} (cast X), C. | 
|  | static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | auto LogicOpc = Logic.getOpcode(); | 
|  | Type *DestTy = Logic.getType(); | 
|  | Type *SrcTy = Cast->getSrcTy(); | 
|  |  | 
|  | // Move the logic operation ahead of a zext or sext if the constant is | 
|  | // unchanged in the smaller source type. Performing the logic in a smaller | 
|  | // type may provide more information to later folds, and the smaller logic | 
|  | // instruction may be cheaper (particularly in the case of vectors). | 
|  | Value *X; | 
|  | if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { | 
|  | Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); | 
|  | Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); | 
|  | if (ZextTruncC == C) { | 
|  | // LogicOpc (zext X), C --> zext (LogicOpc X, C) | 
|  | Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); | 
|  | return new ZExtInst(NewOp, DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { | 
|  | Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); | 
|  | Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); | 
|  | if (SextTruncC == C) { | 
|  | // LogicOpc (sext X), C --> sext (LogicOpc X, C) | 
|  | Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); | 
|  | return new SExtInst(NewOp, DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold {and,or,xor} (cast X), Y. | 
|  | Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) { | 
|  | auto LogicOpc = I.getOpcode(); | 
|  | assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | CastInst *Cast0 = dyn_cast<CastInst>(Op0); | 
|  | if (!Cast0) | 
|  | return nullptr; | 
|  |  | 
|  | // This must be a cast from an integer or integer vector source type to allow | 
|  | // transformation of the logic operation to the source type. | 
|  | Type *DestTy = I.getType(); | 
|  | Type *SrcTy = Cast0->getSrcTy(); | 
|  | if (!SrcTy->isIntOrIntVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) | 
|  | return Ret; | 
|  |  | 
|  | CastInst *Cast1 = dyn_cast<CastInst>(Op1); | 
|  | if (!Cast1) | 
|  | return nullptr; | 
|  |  | 
|  | // Both operands of the logic operation are casts. The casts must be of the | 
|  | // same type for reduction. | 
|  | auto CastOpcode = Cast0->getOpcode(); | 
|  | if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Cast0Src = Cast0->getOperand(0); | 
|  | Value *Cast1Src = Cast1->getOperand(0); | 
|  |  | 
|  | // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) | 
|  | if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { | 
|  | Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, | 
|  | I.getName()); | 
|  | return CastInst::Create(CastOpcode, NewOp, DestTy); | 
|  | } | 
|  |  | 
|  | // For now, only 'and'/'or' have optimizations after this. | 
|  | if (LogicOpc == Instruction::Xor) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the | 
|  | // cast is otherwise not optimizable.  This happens for vector sexts. | 
|  | ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); | 
|  | ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); | 
|  | if (ICmp0 && ICmp1) { | 
|  | Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I) | 
|  | : foldOrOfICmps(ICmp0, ICmp1, I); | 
|  | if (Res) | 
|  | return CastInst::Create(CastOpcode, Res, DestTy); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the | 
|  | // cast is otherwise not optimizable.  This happens for vector sexts. | 
|  | FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); | 
|  | FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); | 
|  | if (FCmp0 && FCmp1) | 
|  | if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) | 
|  | return CastInst::Create(CastOpcode, R, DestTy); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *foldAndToXor(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert(I.getOpcode() == Instruction::And); | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  | Value *A, *B; | 
|  |  | 
|  | // Operand complexity canonicalization guarantees that the 'or' is Op0. | 
|  | // (A | B) & ~(A & B) --> A ^ B | 
|  | // (A | B) & ~(B & A) --> A ^ B | 
|  | if (match(Op0, m_Or(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  |  | 
|  | // (A | ~B) & (~A | B) --> ~(A ^ B) | 
|  | // (A | ~B) & (B | ~A) --> ~(A ^ B) | 
|  | // (~B | A) & (~A | B) --> ~(A ^ B) | 
|  | // (~B | A) & (B | ~A) --> ~(A ^ B) | 
|  | if (Op0->hasOneUse() || Op1->hasOneUse()) | 
|  | if (match(Op0, m_c_Or(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_c_Or(m_Not(m_Specific(A)), m_Specific(B)))) | 
|  | return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *foldOrToXor(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert(I.getOpcode() == Instruction::Or); | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  | Value *A, *B; | 
|  |  | 
|  | // Operand complexity canonicalization guarantees that the 'and' is Op0. | 
|  | // (A & B) | ~(A | B) --> ~(A ^ B) | 
|  | // (A & B) | ~(B | A) --> ~(A ^ B) | 
|  | if (Op0->hasOneUse() || Op1->hasOneUse()) | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) | 
|  | return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); | 
|  |  | 
|  | // (A & ~B) | (~A & B) --> A ^ B | 
|  | // (A & ~B) | (B & ~A) --> A ^ B | 
|  | // (~B & A) | (~A & B) --> A ^ B | 
|  | // (~B & A) | (B & ~A) --> A ^ B | 
|  | if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if a constant shift amount is always less than the specified | 
|  | /// bit-width. If not, the shift could create poison in the narrower type. | 
|  | static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { | 
|  | if (auto *ScalarC = dyn_cast<ConstantInt>(C)) | 
|  | return ScalarC->getZExtValue() < BitWidth; | 
|  |  | 
|  | if (C->getType()->isVectorTy()) { | 
|  | // Check each element of a constant vector. | 
|  | unsigned NumElts = C->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (!Elt) | 
|  | return false; | 
|  | if (isa<UndefValue>(Elt)) | 
|  | continue; | 
|  | auto *CI = dyn_cast<ConstantInt>(Elt); | 
|  | if (!CI || CI->getZExtValue() >= BitWidth) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The constant is a constant expression or unknown. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and | 
|  | /// a common zext operand: and (binop (zext X), C), (zext X). | 
|  | Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) { | 
|  | // This transform could also apply to {or, and, xor}, but there are better | 
|  | // folds for those cases, so we don't expect those patterns here. AShr is not | 
|  | // handled because it should always be transformed to LShr in this sequence. | 
|  | // The subtract transform is different because it has a constant on the left. | 
|  | // Add/mul commute the constant to RHS; sub with constant RHS becomes add. | 
|  | Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); | 
|  | Constant *C; | 
|  | if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && | 
|  | !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && | 
|  | !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && | 
|  | !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && | 
|  | !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X; | 
|  | if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) | 
|  | return nullptr; | 
|  |  | 
|  | Type *Ty = And.getType(); | 
|  | if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | // If we're narrowing a shift, the shift amount must be safe (less than the | 
|  | // width) in the narrower type. If the shift amount is greater, instsimplify | 
|  | // usually handles that case, but we can't guarantee/assert it. | 
|  | Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); | 
|  | if (Opc == Instruction::LShr || Opc == Instruction::Shl) | 
|  | if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) | 
|  | return nullptr; | 
|  |  | 
|  | // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) | 
|  | // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) | 
|  | Value *NewC = ConstantExpr::getTrunc(C, X->getType()); | 
|  | Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) | 
|  | : Builder.CreateBinOp(Opc, X, NewC); | 
|  | return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); | 
|  | } | 
|  |  | 
|  | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches | 
|  | // here. We should standardize that construct where it is needed or choose some | 
|  | // other way to ensure that commutated variants of patterns are not missed. | 
|  | Instruction *InstCombiner::visitAnd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyAndInst(Op0, Op1, SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // Do this before using distributive laws to catch simple and/or/not patterns. | 
|  | if (Instruction *Xor = foldAndToXor(I, Builder)) | 
|  | return Xor; | 
|  |  | 
|  | // (A|B)&(A|C) -> A|(B&C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyBSwap(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | const APInt *C; | 
|  | if (match(Op1, m_APInt(C))) { | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && | 
|  | C->isOneValue()) { | 
|  | // (1 << X) & 1 --> zext(X == 0) | 
|  | // (1 >> X) & 1 --> zext(X == 0) | 
|  | Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0)); | 
|  | return new ZExtInst(IsZero, I.getType()); | 
|  | } | 
|  |  | 
|  | const APInt *XorC; | 
|  | if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { | 
|  | // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) | 
|  | Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC); | 
|  | Value *And = Builder.CreateAnd(X, Op1); | 
|  | And->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(And, NewC); | 
|  | } | 
|  |  | 
|  | const APInt *OrC; | 
|  | if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { | 
|  | // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) | 
|  | // NOTE: This reduces the number of bits set in the & mask, which | 
|  | // can expose opportunities for store narrowing for scalars. | 
|  | // NOTE: SimplifyDemandedBits should have already removed bits from C1 | 
|  | // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in | 
|  | // above, but this feels safer. | 
|  | APInt Together = *C & *OrC; | 
|  | Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), | 
|  | Together ^ *C)); | 
|  | And->takeName(Op0); | 
|  | return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(), | 
|  | Together)); | 
|  | } | 
|  |  | 
|  | // If the mask is only needed on one incoming arm, push the 'and' op up. | 
|  | if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || | 
|  | match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { | 
|  | APInt NotAndMask(~(*C)); | 
|  | BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); | 
|  | if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { | 
|  | // Not masking anything out for the LHS, move mask to RHS. | 
|  | // and ({x}or X, Y), C --> {x}or X, (and Y, C) | 
|  | Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); | 
|  | return BinaryOperator::Create(BinOp, X, NewRHS); | 
|  | } | 
|  | if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { | 
|  | // Not masking anything out for the RHS, move mask to LHS. | 
|  | // and ({x}or X, Y), C --> {x}or (and X, C), Y | 
|  | Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); | 
|  | return BinaryOperator::Create(BinOp, NewLHS, Y); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | const APInt &AndRHSMask = AndRHS->getValue(); | 
|  |  | 
|  | // Optimize a variety of ((val OP C1) & C2) combinations... | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth | 
|  | // of X and OP behaves well when given trunc(C1) and X. | 
|  | switch (Op0I->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | case Instruction::Or: | 
|  | case Instruction::Mul: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | Value *X; | 
|  | ConstantInt *C1; | 
|  | if (match(Op0I, m_c_BinOp(m_ZExt(m_Value(X)), m_ConstantInt(C1)))) { | 
|  | if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) { | 
|  | auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType()); | 
|  | Value *BinOp; | 
|  | Value *Op0LHS = Op0I->getOperand(0); | 
|  | if (isa<ZExtInst>(Op0LHS)) | 
|  | BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1); | 
|  | else | 
|  | BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X); | 
|  | auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType()); | 
|  | auto *And = Builder.CreateAnd(BinOp, TruncC2); | 
|  | return new ZExtInst(And, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) | 
|  | if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // If this is an integer truncation, and if the source is an 'and' with | 
|  | // immediate, transform it.  This frequently occurs for bitfield accesses. | 
|  | { | 
|  | Value *X = nullptr; ConstantInt *YC = nullptr; | 
|  | if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { | 
|  | // Change: and (trunc (and X, YC) to T), C2 | 
|  | // into  : and (trunc X to T), trunc(YC) & C2 | 
|  | // This will fold the two constants together, which may allow | 
|  | // other simplifications. | 
|  | Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk"); | 
|  | Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); | 
|  | C3 = ConstantExpr::getAnd(C3, AndRHS); | 
|  | return BinaryOperator::CreateAnd(NewCast, C3); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *Z = narrowMaskedBinOp(I)) | 
|  | return Z; | 
|  |  | 
|  | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedLogic; | 
|  |  | 
|  | if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) | 
|  | return DeMorgan; | 
|  |  | 
|  | { | 
|  | Value *A = nullptr, *B = nullptr, *C = nullptr; | 
|  | // A&(A^B) => A & ~B | 
|  | { | 
|  | Value *tmpOp0 = Op0; | 
|  | Value *tmpOp1 = Op1; | 
|  | if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) { | 
|  | if (A == Op1 || B == Op1 ) { | 
|  | tmpOp1 = Op0; | 
|  | tmpOp0 = Op1; | 
|  | // Simplify below | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(tmpOp1, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) { | 
|  | if (B == tmpOp0) { | 
|  | std::swap(A, B); | 
|  | } | 
|  | // Notice that the pattern (A&(~B)) is actually (A&(-1^B)), so if | 
|  | // A is originally -1 (or a vector of -1 and undefs), then we enter | 
|  | // an endless loop. By checking that A is non-constant we ensure that | 
|  | // we will never get to the loop. | 
|  | if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B | 
|  | return BinaryOperator::CreateAnd(A, Builder.CreateNot(B)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) | 
|  | if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) | 
|  | if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse())) | 
|  | return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); | 
|  |  | 
|  | // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C | 
|  | if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) | 
|  | if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) | 
|  | if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse())) | 
|  | return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); | 
|  |  | 
|  | // (A | B) & ((~A) ^ B) -> (A & B) | 
|  | // (A | B) & (B ^ (~A)) -> (A & B) | 
|  | // (B | A) & ((~A) ^ B) -> (A & B) | 
|  | // (B | A) & (B ^ (~A)) -> (A & B) | 
|  | if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && | 
|  | match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateAnd(A, B); | 
|  |  | 
|  | // ((~A) ^ B) & (A | B) -> (A & B) | 
|  | // ((~A) ^ B) & (B | A) -> (A & B) | 
|  | // (B ^ (~A)) & (A | B) -> (A & B) | 
|  | // (B ^ (~A)) & (B | A) -> (A & B) | 
|  | if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateAnd(A, B); | 
|  | } | 
|  |  | 
|  | { | 
|  | ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); | 
|  | ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); | 
|  | if (LHS && RHS) | 
|  | if (Value *Res = foldAndOfICmps(LHS, RHS, I)) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | // TODO: Make this recursive; it's a little tricky because an arbitrary | 
|  | // number of 'and' instructions might have to be created. | 
|  | Value *X, *Y; | 
|  | if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(X)) | 
|  | if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(Y)) | 
|  | if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); | 
|  | } | 
|  | if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(X)) | 
|  | if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(Y)) | 
|  | if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) | 
|  | if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) | 
|  | if (Value *Res = foldLogicOfFCmps(LHS, RHS, true)) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) | 
|  | return CastedAnd; | 
|  |  | 
|  | // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. | 
|  | Value *A; | 
|  | if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && | 
|  | A->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType())); | 
|  | if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && | 
|  | A->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | /// Given an OR instruction, check to see if this is a bswap idiom. If so, | 
|  | /// insert the new intrinsic and return it. | 
|  | Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Look through zero extends. | 
|  | if (Instruction *Ext = dyn_cast<ZExtInst>(Op0)) | 
|  | Op0 = Ext->getOperand(0); | 
|  |  | 
|  | if (Instruction *Ext = dyn_cast<ZExtInst>(Op1)) | 
|  | Op1 = Ext->getOperand(0); | 
|  |  | 
|  | // (A | B) | C  and  A | (B | C)                  -> bswap if possible. | 
|  | bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || | 
|  | match(Op1, m_Or(m_Value(), m_Value())); | 
|  |  | 
|  | // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible. | 
|  | bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && | 
|  | match(Op1, m_LogicalShift(m_Value(), m_Value())); | 
|  |  | 
|  | // (A & B) | (C & D)                              -> bswap if possible. | 
|  | bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && | 
|  | match(Op1, m_And(m_Value(), m_Value())); | 
|  |  | 
|  | if (!OrOfOrs && !OrOfShifts && !OrOfAnds) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Instruction*, 4> Insts; | 
|  | if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts)) | 
|  | return nullptr; | 
|  | Instruction *LastInst = Insts.pop_back_val(); | 
|  | LastInst->removeFromParent(); | 
|  |  | 
|  | for (auto *Inst : Insts) | 
|  | Worklist.Add(Inst); | 
|  | return LastInst; | 
|  | } | 
|  |  | 
|  | /// If all elements of two constant vectors are 0/-1 and inverses, return true. | 
|  | static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { | 
|  | unsigned NumElts = C1->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *EltC1 = C1->getAggregateElement(i); | 
|  | Constant *EltC2 = C2->getAggregateElement(i); | 
|  | if (!EltC1 || !EltC2) | 
|  | return false; | 
|  |  | 
|  | // One element must be all ones, and the other must be all zeros. | 
|  | // FIXME: Allow undef elements. | 
|  | if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || | 
|  | (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We have an expression of the form (A & C) | (B & D). If A is a scalar or | 
|  | /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of | 
|  | /// B, it can be used as the condition operand of a select instruction. | 
|  | static Value *getSelectCondition(Value *A, Value *B, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // If these are scalars or vectors of i1, A can be used directly. | 
|  | Type *Ty = A->getType(); | 
|  | if (match(A, m_Not(m_Specific(B))) && Ty->isIntOrIntVectorTy(1)) | 
|  | return A; | 
|  |  | 
|  | // If A and B are sign-extended, look through the sexts to find the booleans. | 
|  | Value *Cond; | 
|  | Value *NotB; | 
|  | if (match(A, m_SExt(m_Value(Cond))) && | 
|  | Cond->getType()->isIntOrIntVectorTy(1) && | 
|  | match(B, m_OneUse(m_Not(m_Value(NotB))))) { | 
|  | NotB = peekThroughBitcast(NotB, true); | 
|  | if (match(NotB, m_SExt(m_Specific(Cond)))) | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // All scalar (and most vector) possibilities should be handled now. | 
|  | // Try more matches that only apply to non-splat constant vectors. | 
|  | if (!Ty->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | // If both operands are constants, see if the constants are inverse bitmasks. | 
|  | Constant *AC, *BC; | 
|  | if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) && | 
|  | areInverseVectorBitmasks(AC, BC)) { | 
|  | return Builder.CreateZExtOrTrunc(AC, CmpInst::makeCmpResultType(Ty)); | 
|  | } | 
|  |  | 
|  | // If both operands are xor'd with constants using the same sexted boolean | 
|  | // operand, see if the constants are inverse bitmasks. | 
|  | if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) && | 
|  | match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) && | 
|  | Cond->getType()->isIntOrIntVectorTy(1) && | 
|  | areInverseVectorBitmasks(AC, BC)) { | 
|  | AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty)); | 
|  | return Builder.CreateXor(Cond, AC); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// We have an expression of the form (A & C) | (B & D). Try to simplify this | 
|  | /// to "A' ? C : D", where A' is a boolean or vector of booleans. | 
|  | static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // The potential condition of the select may be bitcasted. In that case, look | 
|  | // through its bitcast and the corresponding bitcast of the 'not' condition. | 
|  | Type *OrigType = A->getType(); | 
|  | A = peekThroughBitcast(A, true); | 
|  | B = peekThroughBitcast(B, true); | 
|  |  | 
|  | if (Value *Cond = getSelectCondition(A, B, Builder)) { | 
|  | // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) | 
|  | // The bitcasts will either all exist or all not exist. The builder will | 
|  | // not create unnecessary casts if the types already match. | 
|  | Value *BitcastC = Builder.CreateBitCast(C, A->getType()); | 
|  | Value *BitcastD = Builder.CreateBitCast(D, A->getType()); | 
|  | Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); | 
|  | return Builder.CreateBitCast(Select, OrigType); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold (icmp)|(icmp) if possible. | 
|  | Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, | 
|  | Instruction &CxtI) { | 
|  | // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2) | 
|  | // if K1 and K2 are a one-bit mask. | 
|  | if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI)) | 
|  | return V; | 
|  |  | 
|  | ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); | 
|  |  | 
|  | ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); | 
|  | ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); | 
|  |  | 
|  | // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) | 
|  | //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) | 
|  | // The original condition actually refers to the following two ranges: | 
|  | // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] | 
|  | // We can fold these two ranges if: | 
|  | // 1) C1 and C2 is unsigned greater than C3. | 
|  | // 2) The two ranges are separated. | 
|  | // 3) C1 ^ C2 is one-bit mask. | 
|  | // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. | 
|  | // This implies all values in the two ranges differ by exactly one bit. | 
|  |  | 
|  | if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) && | 
|  | PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() && | 
|  | LHSC->getType() == RHSC->getType() && | 
|  | LHSC->getValue() == (RHSC->getValue())) { | 
|  |  | 
|  | Value *LAdd = LHS->getOperand(0); | 
|  | Value *RAdd = RHS->getOperand(0); | 
|  |  | 
|  | Value *LAddOpnd, *RAddOpnd; | 
|  | ConstantInt *LAddC, *RAddC; | 
|  | if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) && | 
|  | match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) && | 
|  | LAddC->getValue().ugt(LHSC->getValue()) && | 
|  | RAddC->getValue().ugt(LHSC->getValue())) { | 
|  |  | 
|  | APInt DiffC = LAddC->getValue() ^ RAddC->getValue(); | 
|  | if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) { | 
|  | ConstantInt *MaxAddC = nullptr; | 
|  | if (LAddC->getValue().ult(RAddC->getValue())) | 
|  | MaxAddC = RAddC; | 
|  | else | 
|  | MaxAddC = LAddC; | 
|  |  | 
|  | APInt RRangeLow = -RAddC->getValue(); | 
|  | APInt RRangeHigh = RRangeLow + LHSC->getValue(); | 
|  | APInt LRangeLow = -LAddC->getValue(); | 
|  | APInt LRangeHigh = LRangeLow + LHSC->getValue(); | 
|  | APInt LowRangeDiff = RRangeLow ^ LRangeLow; | 
|  | APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; | 
|  | APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow | 
|  | : RRangeLow - LRangeLow; | 
|  |  | 
|  | if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && | 
|  | RangeDiff.ugt(LHSC->getValue())) { | 
|  | Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC); | 
|  |  | 
|  | Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC); | 
|  | Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC); | 
|  | return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (PredicatesFoldable(PredL, PredR)) { | 
|  | if (LHS->getOperand(0) == RHS->getOperand(1) && | 
|  | LHS->getOperand(1) == RHS->getOperand(0)) | 
|  | LHS->swapOperands(); | 
|  | if (LHS->getOperand(0) == RHS->getOperand(0) && | 
|  | LHS->getOperand(1) == RHS->getOperand(1)) { | 
|  | Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); | 
|  | unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); | 
|  | bool isSigned = LHS->isSigned() || RHS->isSigned(); | 
|  | return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | // handle (roughly): | 
|  | // (icmp ne (A & B), C) | (icmp ne (A & D), E) | 
|  | if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) | 
|  | return V; | 
|  |  | 
|  | Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); | 
|  | if (LHS->hasOneUse() || RHS->hasOneUse()) { | 
|  | // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) | 
|  | // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) | 
|  | Value *A = nullptr, *B = nullptr; | 
|  | if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) { | 
|  | B = LHS0; | 
|  | if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1)) | 
|  | A = RHS0; | 
|  | else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0) | 
|  | A = RHS->getOperand(1); | 
|  | } | 
|  | // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) | 
|  | // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) | 
|  | else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) { | 
|  | B = RHS0; | 
|  | if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1)) | 
|  | A = LHS0; | 
|  | else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0) | 
|  | A = LHS->getOperand(1); | 
|  | } | 
|  | if (A && B) | 
|  | return Builder.CreateICmp( | 
|  | ICmpInst::ICMP_UGE, | 
|  | Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); | 
|  | } | 
|  |  | 
|  | // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n | 
|  | if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) | 
|  | return V; | 
|  |  | 
|  | // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n | 
|  | if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder)) | 
|  | return V; | 
|  |  | 
|  | // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). | 
|  | if (!LHSC || !RHSC) | 
|  | return nullptr; | 
|  |  | 
|  | if (LHSC == RHSC && PredL == PredR) { | 
|  | // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) | 
|  | if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) { | 
|  | Value *NewOr = Builder.CreateOr(LHS0, RHS0); | 
|  | return Builder.CreateICmp(PredL, NewOr, LHSC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) | 
|  | //   iff C2 + CA == C1. | 
|  | if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) { | 
|  | ConstantInt *AddC; | 
|  | if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC)))) | 
|  | if (RHSC->getValue() + AddC->getValue() == LHSC->getValue()) | 
|  | return Builder.CreateICmpULE(LHS0, LHSC); | 
|  | } | 
|  |  | 
|  | // From here on, we only handle: | 
|  | //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. | 
|  | if (LHS0 != RHS0) | 
|  | return nullptr; | 
|  |  | 
|  | // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. | 
|  | if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || | 
|  | PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || | 
|  | PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || | 
|  | PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) | 
|  | return nullptr; | 
|  |  | 
|  | // We can't fold (ugt x, C) | (sgt x, C2). | 
|  | if (!PredicatesFoldable(PredL, PredR)) | 
|  | return nullptr; | 
|  |  | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | bool ShouldSwap; | 
|  | if (CmpInst::isSigned(PredL) || | 
|  | (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) | 
|  | ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); | 
|  | else | 
|  | ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); | 
|  |  | 
|  | if (ShouldSwap) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSC, RHSC); | 
|  | std::swap(PredL, PredR); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have two icmp instructions | 
|  | // comparing a value against two constants and or'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the | 
|  | // icmp folding check above), that the two constants are not | 
|  | // equal. | 
|  | assert(LHSC != RHSC && "Compares not folded above?"); | 
|  |  | 
|  | switch (PredL) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | // Potential folds for this case should already be handled. | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change | 
|  | case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 | 
|  | assert(!RHSC->isMaxValue(false) && "Missed icmp simplification"); | 
|  | return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, | 
|  | false, false); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (PredR) { | 
|  | default: | 
|  | llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 | 
|  | assert(!RHSC->isMaxValue(true) && "Missed icmp simplification"); | 
|  | return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true, | 
|  | false); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches | 
|  | // here. We should standardize that construct where it is needed or choose some | 
|  | // other way to ensure that commutated variants of patterns are not missed. | 
|  | Instruction *InstCombiner::visitOr(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyOrInst(Op0, Op1, SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // Do this before using distributive laws to catch simple and/or/not patterns. | 
|  | if (Instruction *Xor = foldOrToXor(I, Builder)) | 
|  | return Xor; | 
|  |  | 
|  | // (A&B)|(A&C) -> A&(B|C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyBSwap(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedLogic; | 
|  |  | 
|  | // Given an OR instruction, check to see if this is a bswap. | 
|  | if (Instruction *BSwap = MatchBSwap(I)) | 
|  | return BSwap; | 
|  |  | 
|  | { | 
|  | Value *A; | 
|  | const APInt *C; | 
|  | // (X^C)|Y -> (X|Y)^C iff Y&C == 0 | 
|  | if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) && | 
|  | MaskedValueIsZero(Op1, *C, 0, &I)) { | 
|  | Value *NOr = Builder.CreateOr(A, Op1); | 
|  | NOr->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(NOr, | 
|  | ConstantInt::get(NOr->getType(), *C)); | 
|  | } | 
|  |  | 
|  | // Y|(X^C) -> (X|Y)^C iff Y&C == 0 | 
|  | if (match(Op1, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) && | 
|  | MaskedValueIsZero(Op0, *C, 0, &I)) { | 
|  | Value *NOr = Builder.CreateOr(A, Op0); | 
|  | NOr->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(NOr, | 
|  | ConstantInt::get(NOr->getType(), *C)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *A, *B; | 
|  |  | 
|  | // (A & C)|(B & D) | 
|  | Value *C = nullptr, *D = nullptr; | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(C))) && | 
|  | match(Op1, m_And(m_Value(B), m_Value(D)))) { | 
|  | ConstantInt *C1 = dyn_cast<ConstantInt>(C); | 
|  | ConstantInt *C2 = dyn_cast<ConstantInt>(D); | 
|  | if (C1 && C2) {  // (A & C1)|(B & C2) | 
|  | Value *V1 = nullptr, *V2 = nullptr; | 
|  | if ((C1->getValue() & C2->getValue()).isNullValue()) { | 
|  | // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) | 
|  | // iff (C1&C2) == 0 and (N&~C1) == 0 | 
|  | if (match(A, m_Or(m_Value(V1), m_Value(V2))) && | 
|  | ((V1 == B && | 
|  | MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) | 
|  | (V2 == B && | 
|  | MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V) | 
|  | return BinaryOperator::CreateAnd(A, | 
|  | Builder.getInt(C1->getValue()|C2->getValue())); | 
|  | // Or commutes, try both ways. | 
|  | if (match(B, m_Or(m_Value(V1), m_Value(V2))) && | 
|  | ((V1 == A && | 
|  | MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) | 
|  | (V2 == A && | 
|  | MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V) | 
|  | return BinaryOperator::CreateAnd(B, | 
|  | Builder.getInt(C1->getValue()|C2->getValue())); | 
|  |  | 
|  | // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) | 
|  | // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. | 
|  | ConstantInt *C3 = nullptr, *C4 = nullptr; | 
|  | if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && | 
|  | (C3->getValue() & ~C1->getValue()).isNullValue() && | 
|  | match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && | 
|  | (C4->getValue() & ~C2->getValue()).isNullValue()) { | 
|  | V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); | 
|  | return BinaryOperator::CreateAnd(V2, | 
|  | Builder.getInt(C1->getValue()|C2->getValue())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C1->getValue() == ~C2->getValue()) { | 
|  | Value *X; | 
|  |  | 
|  | // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2 | 
|  | if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) | 
|  | return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B); | 
|  | // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2 | 
|  | if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) | 
|  | return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A); | 
|  |  | 
|  | // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2 | 
|  | if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) | 
|  | return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B); | 
|  | // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2 | 
|  | if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) | 
|  | return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't try to form a select if it's unlikely that we'll get rid of at | 
|  | // least one of the operands. A select is generally more expensive than the | 
|  | // 'or' that it is replacing. | 
|  | if (Op0->hasOneUse() || Op1->hasOneUse()) { | 
|  | // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. | 
|  | if (Value *V = matchSelectFromAndOr(A, C, B, D, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(A, C, D, B, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(C, A, B, D, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(C, A, D, B, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(B, D, A, C, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(B, D, C, A, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(D, B, A, C, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | if (Value *V = matchSelectFromAndOr(D, B, C, A, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) | 
|  | if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) | 
|  | return BinaryOperator::CreateOr(Op0, C); | 
|  |  | 
|  | // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C | 
|  | if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) | 
|  | if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) | 
|  | return BinaryOperator::CreateOr(Op1, C); | 
|  |  | 
|  | // ((B | C) & A) | B -> B | (A & C) | 
|  | if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) | 
|  | return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); | 
|  |  | 
|  | if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) | 
|  | return DeMorgan; | 
|  |  | 
|  | // Canonicalize xor to the RHS. | 
|  | bool SwappedForXor = false; | 
|  | if (match(Op0, m_Xor(m_Value(), m_Value()))) { | 
|  | std::swap(Op0, Op1); | 
|  | SwappedForXor = true; | 
|  | } | 
|  |  | 
|  | // A | ( A ^ B) -> A |  B | 
|  | // A | (~A ^ B) -> A | ~B | 
|  | // (A & B) | (A ^ B) | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (Op0 == A || Op0 == B) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  |  | 
|  | if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || | 
|  | match(Op0, m_And(m_Specific(B), m_Specific(A)))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  |  | 
|  | if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { | 
|  | Value *Not = Builder.CreateNot(B, B->getName() + ".not"); | 
|  | return BinaryOperator::CreateOr(Not, Op0); | 
|  | } | 
|  | if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { | 
|  | Value *Not = Builder.CreateNot(A, A->getName() + ".not"); | 
|  | return BinaryOperator::CreateOr(Not, Op0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A | ~(A | B) -> A | ~B | 
|  | // A | ~(A ^ B) -> A | ~B | 
|  | if (match(Op1, m_Not(m_Value(A)))) | 
|  | if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) | 
|  | if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && | 
|  | Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || | 
|  | B->getOpcode() == Instruction::Xor)) { | 
|  | Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : | 
|  | B->getOperand(0); | 
|  | Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); | 
|  | return BinaryOperator::CreateOr(Not, Op0); | 
|  | } | 
|  |  | 
|  | if (SwappedForXor) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | { | 
|  | ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); | 
|  | ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); | 
|  | if (LHS && RHS) | 
|  | if (Value *Res = foldOrOfICmps(LHS, RHS, I)) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | // TODO: Make this recursive; it's a little tricky because an arbitrary | 
|  | // number of 'or' instructions might have to be created. | 
|  | Value *X, *Y; | 
|  | if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(X)) | 
|  | if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(Y)) | 
|  | if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); | 
|  | } | 
|  | if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(X)) | 
|  | if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); | 
|  | if (auto *Cmp = dyn_cast<ICmpInst>(Y)) | 
|  | if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) | 
|  | return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) | 
|  | if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) | 
|  | if (Value *Res = foldLogicOfFCmps(LHS, RHS, false)) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) | 
|  | return CastedOr; | 
|  |  | 
|  | // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. | 
|  | if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && | 
|  | A->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); | 
|  | if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && | 
|  | A->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); | 
|  |  | 
|  | // Note: If we've gotten to the point of visiting the outer OR, then the | 
|  | // inner one couldn't be simplified.  If it was a constant, then it won't | 
|  | // be simplified by a later pass either, so we try swapping the inner/outer | 
|  | // ORs in the hopes that we'll be able to simplify it this way. | 
|  | // (X|C) | V --> (X|V) | C | 
|  | ConstantInt *C1; | 
|  | if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && | 
|  | match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) { | 
|  | Value *Inner = Builder.CreateOr(A, Op1); | 
|  | Inner->takeName(Op0); | 
|  | return BinaryOperator::CreateOr(Inner, C1); | 
|  | } | 
|  |  | 
|  | // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) | 
|  | // Since this OR statement hasn't been optimized further yet, we hope | 
|  | // that this transformation will allow the new ORs to be optimized. | 
|  | { | 
|  | Value *X = nullptr, *Y = nullptr; | 
|  | if (Op0->hasOneUse() && Op1->hasOneUse() && | 
|  | match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { | 
|  | Value *orTrue = Builder.CreateOr(A, C); | 
|  | Value *orFalse = Builder.CreateOr(B, D); | 
|  | return SelectInst::Create(X, orTrue, orFalse); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | /// A ^ B can be specified using other logic ops in a variety of patterns. We | 
|  | /// can fold these early and efficiently by morphing an existing instruction. | 
|  | static Instruction *foldXorToXor(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert(I.getOpcode() == Instruction::Xor); | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  | Value *A, *B; | 
|  |  | 
|  | // There are 4 commuted variants for each of the basic patterns. | 
|  |  | 
|  | // (A & B) ^ (A | B) -> A ^ B | 
|  | // (A & B) ^ (B | A) -> A ^ B | 
|  | // (A | B) ^ (A & B) -> A ^ B | 
|  | // (A | B) ^ (B & A) -> A ^ B | 
|  | if ((match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) || | 
|  | (match(Op0, m_Or(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_And(m_Specific(A), m_Specific(B))))) { | 
|  | I.setOperand(0, A); | 
|  | I.setOperand(1, B); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // (A | ~B) ^ (~A | B) -> A ^ B | 
|  | // (~B | A) ^ (~A | B) -> A ^ B | 
|  | // (~A | B) ^ (A | ~B) -> A ^ B | 
|  | // (B | ~A) ^ (A | ~B) -> A ^ B | 
|  | if ((match(Op0, m_Or(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_c_Or(m_Not(m_Specific(A)), m_Specific(B)))) || | 
|  | (match(Op0, m_Or(m_Not(m_Value(A)), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Not(m_Specific(B)))))) { | 
|  | I.setOperand(0, A); | 
|  | I.setOperand(1, B); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // (A & ~B) ^ (~A & B) -> A ^ B | 
|  | // (~B & A) ^ (~A & B) -> A ^ B | 
|  | // (~A & B) ^ (A & ~B) -> A ^ B | 
|  | // (B & ~A) ^ (A & ~B) -> A ^ B | 
|  | if ((match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) || | 
|  | (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) && | 
|  | match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))))) { | 
|  | I.setOperand(0, A); | 
|  | I.setOperand(1, B); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // For the remaining cases we need to get rid of one of the operands. | 
|  | if (!Op0->hasOneUse() && !Op1->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // (A | B) ^ ~(A & B) -> ~(A ^ B) | 
|  | // (A | B) ^ ~(B & A) -> ~(A ^ B) | 
|  | // (A & B) ^ ~(A | B) -> ~(A ^ B) | 
|  | // (A & B) ^ ~(B | A) -> ~(A ^ B) | 
|  | // Complexity sorting ensures the not will be on the right side. | 
|  | if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || | 
|  | (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) | 
|  | return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) { | 
|  | if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { | 
|  | if (LHS->getOperand(0) == RHS->getOperand(1) && | 
|  | LHS->getOperand(1) == RHS->getOperand(0)) | 
|  | LHS->swapOperands(); | 
|  | if (LHS->getOperand(0) == RHS->getOperand(0) && | 
|  | LHS->getOperand(1) == RHS->getOperand(1)) { | 
|  | // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) | 
|  | Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); | 
|  | unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); | 
|  | bool isSigned = LHS->isSigned() || RHS->isSigned(); | 
|  | return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instead of trying to imitate the folds for and/or, decompose this 'xor' | 
|  | // into those logic ops. That is, try to turn this into an and-of-icmps | 
|  | // because we have many folds for that pattern. | 
|  | // | 
|  | // This is based on a truth table definition of xor: | 
|  | // X ^ Y --> (X | Y) & !(X & Y) | 
|  | if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { | 
|  | // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). | 
|  | // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). | 
|  | if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) { | 
|  | // TODO: Independently handle cases where the 'and' side is a constant. | 
|  | if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) { | 
|  | // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS | 
|  | RHS->setPredicate(RHS->getInversePredicate()); | 
|  | return Builder.CreateAnd(LHS, RHS); | 
|  | } | 
|  | if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) { | 
|  | // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS | 
|  | LHS->setPredicate(LHS->getInversePredicate()); | 
|  | return Builder.CreateAnd(LHS, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches | 
|  | // here. We should standardize that construct where it is needed or choose some | 
|  | // other way to ensure that commutated variants of patterns are not missed. | 
|  | Instruction *InstCombiner::visitXor(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyXorInst(Op0, Op1, SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *NewXor = foldXorToXor(I, Builder)) | 
|  | return NewXor; | 
|  |  | 
|  | // (A&B)^(A&C) -> A&(B^C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | if (Value *V = SimplifyBSwap(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. | 
|  | Value *X, *Y; | 
|  |  | 
|  | // We must eliminate the and/or (one-use) for these transforms to not increase | 
|  | // the instruction count. | 
|  | // ~(~X & Y) --> (X | ~Y) | 
|  | // ~(Y & ~X) --> (X | ~Y) | 
|  | if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) { | 
|  | Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); | 
|  | return BinaryOperator::CreateOr(X, NotY); | 
|  | } | 
|  | // ~(~X | Y) --> (X & ~Y) | 
|  | // ~(Y | ~X) --> (X & ~Y) | 
|  | if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) { | 
|  | Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); | 
|  | return BinaryOperator::CreateAnd(X, NotY); | 
|  | } | 
|  |  | 
|  | // Is this a 'not' (~) fed by a binary operator? | 
|  | BinaryOperator *NotVal; | 
|  | if (match(&I, m_Not(m_BinOp(NotVal)))) { | 
|  | if (NotVal->getOpcode() == Instruction::And || | 
|  | NotVal->getOpcode() == Instruction::Or) { | 
|  | // Apply DeMorgan's Law when inverts are free: | 
|  | // ~(X & Y) --> (~X | ~Y) | 
|  | // ~(X | Y) --> (~X & ~Y) | 
|  | if (IsFreeToInvert(NotVal->getOperand(0), | 
|  | NotVal->getOperand(0)->hasOneUse()) && | 
|  | IsFreeToInvert(NotVal->getOperand(1), | 
|  | NotVal->getOperand(1)->hasOneUse())) { | 
|  | Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs"); | 
|  | Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs"); | 
|  | if (NotVal->getOpcode() == Instruction::And) | 
|  | return BinaryOperator::CreateOr(NotX, NotY); | 
|  | return BinaryOperator::CreateAnd(NotX, NotY); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ~(~X >>s Y) --> (X >>s Y) | 
|  | if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) | 
|  | return BinaryOperator::CreateAShr(X, Y); | 
|  |  | 
|  | // If we are inverting a right-shifted constant, we may be able to eliminate | 
|  | // the 'not' by inverting the constant and using the opposite shift type. | 
|  | // Canonicalization rules ensure that only a negative constant uses 'ashr', | 
|  | // but we must check that in case that transform has not fired yet. | 
|  | Constant *C; | 
|  | if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && | 
|  | match(C, m_Negative())) { | 
|  | // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) | 
|  | Constant *NotC = ConstantExpr::getNot(C); | 
|  | return BinaryOperator::CreateLShr(NotC, Y); | 
|  | } | 
|  |  | 
|  | if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && | 
|  | match(C, m_NonNegative())) { | 
|  | // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) | 
|  | Constant *NotC = ConstantExpr::getNot(C); | 
|  | return BinaryOperator::CreateAShr(NotC, Y); | 
|  | } | 
|  | } | 
|  |  | 
|  | // not (cmp A, B) = !cmp A, B | 
|  | CmpInst::Predicate Pred; | 
|  | if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) { | 
|  | cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred)); | 
|  | return replaceInstUsesWith(I, Op0); | 
|  | } | 
|  |  | 
|  | { | 
|  | const APInt *RHSC; | 
|  | if (match(Op1, m_APInt(RHSC))) { | 
|  | Value *X; | 
|  | const APInt *C; | 
|  | if (match(Op0, m_Sub(m_APInt(C), m_Value(X)))) { | 
|  | // ~(c-X) == X-c-1 == X+(-c-1) | 
|  | if (RHSC->isAllOnesValue()) { | 
|  | Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1); | 
|  | return BinaryOperator::CreateAdd(X, NewC); | 
|  | } | 
|  | if (RHSC->isSignMask()) { | 
|  | // (C - X) ^ signmask -> (C + signmask - X) | 
|  | Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); | 
|  | return BinaryOperator::CreateSub(NewC, X); | 
|  | } | 
|  | } else if (match(Op0, m_Add(m_Value(X), m_APInt(C)))) { | 
|  | // ~(X-c) --> (-c-1)-X | 
|  | if (RHSC->isAllOnesValue()) { | 
|  | Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1); | 
|  | return BinaryOperator::CreateSub(NewC, X); | 
|  | } | 
|  | if (RHSC->isSignMask()) { | 
|  | // (X + C) ^ signmask -> (X + C + signmask) | 
|  | Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); | 
|  | return BinaryOperator::CreateAdd(X, NewC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0 | 
|  | if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && | 
|  | MaskedValueIsZero(X, *C, 0, &I)) { | 
|  | Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC); | 
|  | Worklist.Add(cast<Instruction>(Op0)); | 
|  | I.setOperand(0, X); | 
|  | I.setOperand(1, NewC); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { | 
|  | if (Op0I->getOpcode() == Instruction::LShr) { | 
|  | // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) | 
|  | // E1 = "X ^ C1" | 
|  | BinaryOperator *E1; | 
|  | ConstantInt *C1; | 
|  | if (Op0I->hasOneUse() && | 
|  | (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && | 
|  | E1->getOpcode() == Instruction::Xor && | 
|  | (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { | 
|  | // fold (C1 >> C2) ^ C3 | 
|  | ConstantInt *C2 = Op0CI, *C3 = RHSC; | 
|  | APInt FoldConst = C1->getValue().lshr(C2->getValue()); | 
|  | FoldConst ^= C3->getValue(); | 
|  | // Prepare the two operands. | 
|  | Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2); | 
|  | Opnd0->takeName(Op0I); | 
|  | cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); | 
|  | Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); | 
|  |  | 
|  | return BinaryOperator::CreateXor(Opnd0, FoldVal); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedLogic; | 
|  |  | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op1, m_OneUse(m_Or(m_Value(A), m_Value(B))))) { | 
|  | if (A == Op0) {                                      // A^(A|B) == A^(B|A) | 
|  | cast<BinaryOperator>(Op1)->swapOperands(); | 
|  | std::swap(A, B); | 
|  | } | 
|  | if (B == Op0) {                                      // A^(B|A) == (B|A)^A | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } else if (match(Op1, m_OneUse(m_And(m_Value(A), m_Value(B))))) { | 
|  | if (A == Op0) {                                      // A^(A&B) -> A^(B&A) | 
|  | cast<BinaryOperator>(Op1)->swapOperands(); | 
|  | std::swap(A, B); | 
|  | } | 
|  | if (B == Op0) {                                      // A^(B&A) -> (B&A)^A | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B))))) { | 
|  | if (A == Op1)                                  // (B|A)^B == (A|B)^B | 
|  | std::swap(A, B); | 
|  | if (B == Op1)                                  // (A|B)^B == A & ~B | 
|  | return BinaryOperator::CreateAnd(A, Builder.CreateNot(Op1)); | 
|  | } else if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B))))) { | 
|  | if (A == Op1)                                        // (A&B)^A -> (B&A)^A | 
|  | std::swap(A, B); | 
|  | const APInt *C; | 
|  | if (B == Op1 &&                                      // (B&A)^A == ~B & A | 
|  | !match(Op1, m_APInt(C))) {  // Canonical form is (B&C)^C | 
|  | return BinaryOperator::CreateAnd(Builder.CreateNot(A), Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *A, *B, *C, *D; | 
|  | // (A ^ C)^(A | B) -> ((~A) & B) ^ C | 
|  | if (match(Op0, m_Xor(m_Value(D), m_Value(C))) && | 
|  | match(Op1, m_Or(m_Value(A), m_Value(B)))) { | 
|  | if (D == A) | 
|  | return BinaryOperator::CreateXor( | 
|  | Builder.CreateAnd(Builder.CreateNot(A), B), C); | 
|  | if (D == B) | 
|  | return BinaryOperator::CreateXor( | 
|  | Builder.CreateAnd(Builder.CreateNot(B), A), C); | 
|  | } | 
|  | // (A | B)^(A ^ C) -> ((~A) & B) ^ C | 
|  | if (match(Op0, m_Or(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_Xor(m_Value(D), m_Value(C)))) { | 
|  | if (D == A) | 
|  | return BinaryOperator::CreateXor( | 
|  | Builder.CreateAnd(Builder.CreateNot(A), B), C); | 
|  | if (D == B) | 
|  | return BinaryOperator::CreateXor( | 
|  | Builder.CreateAnd(Builder.CreateNot(B), A), C); | 
|  | } | 
|  | // (A & B) ^ (A ^ B) -> (A | B) | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  | // (A ^ B) ^ (A & B) -> (A | B) | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  | } | 
|  |  | 
|  | // (A & ~B) ^ ~A -> ~(A & B) | 
|  | // (~B & A) ^ ~A -> ~(A & B) | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && | 
|  | match(Op1, m_Not(m_Specific(A)))) | 
|  | return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); | 
|  |  | 
|  | if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) | 
|  | if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) | 
|  | if (Value *V = foldXorOfICmps(LHS, RHS)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) | 
|  | return CastedXor; | 
|  |  | 
|  | // Canonicalize the shifty way to code absolute value to the common pattern. | 
|  | // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. | 
|  | // We're relying on the fact that we only do this transform when the shift has | 
|  | // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase | 
|  | // instructions). | 
|  | if (Op0->hasNUses(2)) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | const APInt *ShAmt; | 
|  | Type *Ty = I.getType(); | 
|  | if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && | 
|  | Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && | 
|  | match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { | 
|  | // B = ashr i32 A, 31 ; smear the sign bit | 
|  | // xor (add A, B), B  ; add -1 and flip bits if negative | 
|  | // --> (A < 0) ? -A : A | 
|  | Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); | 
|  | return SelectInst::Create(Cmp, Builder.CreateNeg(A), A); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } |