| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "Config.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/StringSaver.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| |
| using namespace lld; |
| using namespace lld::elf2; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; |
| typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; |
| typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr; |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; |
| typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela; |
| Writer(SymbolTable<ELFT> &S) : Symtab(S) {} |
| void run(); |
| |
| private: |
| void copyLocalSymbols(); |
| void createSections(); |
| template <bool isRela> |
| void scanRelocs(const InputSection<ELFT> &C, |
| iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels); |
| void scanRelocs(const InputSection<ELFT> &C); |
| void assignAddresses(); |
| void openFile(StringRef OutputPath); |
| void writeHeader(); |
| void writeSections(); |
| bool needsInterpSection() const { |
| return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); |
| } |
| bool isOutputDynamic() const { |
| return !Symtab.getSharedFiles().empty() || Config->Shared; |
| } |
| uintX_t getEntryAddr() const; |
| int getPhdrsNum() const; |
| |
| OutputSection<ELFT> *getBSS(); |
| void addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms); |
| void addSharedCopySymbols(std::vector<SharedSymbol<ELFT> *> &Syms); |
| |
| std::unique_ptr<llvm::FileOutputBuffer> Buffer; |
| |
| SpecificBumpPtrAllocator<OutputSection<ELFT>> SecAlloc; |
| SpecificBumpPtrAllocator<MergeOutputSection<ELFT>> MSecAlloc; |
| BumpPtrAllocator Alloc; |
| std::vector<OutputSectionBase<ELFT> *> OutputSections; |
| unsigned getNumSections() const { return OutputSections.size() + 1; } |
| |
| void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); |
| void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, |
| uintX_t VA, uintX_t Size, uintX_t Align); |
| void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From); |
| |
| SymbolTable<ELFT> &Symtab; |
| std::vector<Elf_Phdr> Phdrs; |
| |
| uintX_t FileSize; |
| uintX_t SectionHeaderOff; |
| }; |
| } // anonymous namespace |
| |
| template <class ELFT> void lld::elf2::writeResult(SymbolTable<ELFT> *Symtab) { |
| // Initialize output sections that are handled by Writer specially. |
| // Don't reorder because the order of initialization matters. |
| InterpSection<ELFT> Interp; |
| Out<ELFT>::Interp = &Interp; |
| StringTableSection<ELFT> ShStrTab(".shstrtab", false); |
| Out<ELFT>::ShStrTab = &ShStrTab; |
| StringTableSection<ELFT> StrTab(".strtab", false); |
| if (!Config->StripAll) |
| Out<ELFT>::StrTab = &StrTab; |
| StringTableSection<ELFT> DynStrTab(".dynstr", true); |
| Out<ELFT>::DynStrTab = &DynStrTab; |
| GotSection<ELFT> Got; |
| Out<ELFT>::Got = &Got; |
| GotPltSection<ELFT> GotPlt; |
| if (Target->supportsLazyRelocations()) |
| Out<ELFT>::GotPlt = &GotPlt; |
| PltSection<ELFT> Plt; |
| Out<ELFT>::Plt = &Plt; |
| std::unique_ptr<SymbolTableSection<ELFT>> SymTab; |
| if (!Config->StripAll) { |
| SymTab.reset(new SymbolTableSection<ELFT>(*Symtab, *Out<ELFT>::StrTab)); |
| Out<ELFT>::SymTab = SymTab.get(); |
| } |
| SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab); |
| Out<ELFT>::DynSymTab = &DynSymTab; |
| HashTableSection<ELFT> HashTab; |
| if (Config->SysvHash) |
| Out<ELFT>::HashTab = &HashTab; |
| GnuHashTableSection<ELFT> GnuHashTab; |
| if (Config->GnuHash) |
| Out<ELFT>::GnuHashTab = &GnuHashTab; |
| bool IsRela = Symtab->shouldUseRela(); |
| RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); |
| Out<ELFT>::RelaDyn = &RelaDyn; |
| RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); |
| if (Target->supportsLazyRelocations()) |
| Out<ELFT>::RelaPlt = &RelaPlt; |
| DynamicSection<ELFT> Dynamic(*Symtab); |
| Out<ELFT>::Dynamic = &Dynamic; |
| |
| Writer<ELFT>(*Symtab).run(); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| if (!Config->DiscardAll) |
| copyLocalSymbols(); |
| createSections(); |
| assignAddresses(); |
| openFile(Config->OutputFile); |
| writeHeader(); |
| writeSections(); |
| error(Buffer->commit()); |
| } |
| |
| namespace { |
| template <bool Is64Bits> struct SectionKey { |
| typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; |
| StringRef Name; |
| uint32_t Type; |
| uintX_t Flags; |
| uintX_t EntSize; |
| }; |
| } |
| namespace llvm { |
| template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { |
| static SectionKey<Is64Bits> getEmptyKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, |
| 0}; |
| } |
| static SectionKey<Is64Bits> getTombstoneKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, |
| 0, 0}; |
| } |
| static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { |
| return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); |
| } |
| static bool isEqual(const SectionKey<Is64Bits> &LHS, |
| const SectionKey<Is64Bits> &RHS) { |
| return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && |
| LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && |
| LHS.EntSize == RHS.EntSize; |
| } |
| }; |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| template <class ELFT> |
| template <bool isRela> |
| void Writer<ELFT>::scanRelocs( |
| const InputSection<ELFT> &C, |
| iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) { |
| typedef Elf_Rel_Impl<ELFT, isRela> RelType; |
| const ObjectFile<ELFT> &File = *C.getFile(); |
| for (const RelType &RI : Rels) { |
| uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); |
| SymbolBody *Body = File.getSymbolBody(SymIndex); |
| uint32_t Type = RI.getType(Config->Mips64EL); |
| |
| // Set "used" bit for --as-needed. |
| if (Body && Body->isUndefined() && !Body->isWeak()) |
| if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl())) |
| S->File->IsUsed = true; |
| |
| if (Body) |
| Body = Body->repl(); |
| bool NeedsGot = false; |
| bool NeedsPlt = false; |
| if (Body) { |
| if (auto *E = dyn_cast<SharedSymbol<ELFT>>(Body)) { |
| if (E->needsCopy()) |
| continue; |
| if (Target->relocNeedsCopy(Type, *Body)) |
| E->OffsetInBSS = 0; |
| } |
| NeedsPlt = Target->relocNeedsPlt(Type, *Body); |
| if (NeedsPlt) { |
| if (Body->isInPlt()) |
| continue; |
| Out<ELFT>::Plt->addEntry(Body); |
| } |
| NeedsGot = Target->relocNeedsGot(Type, *Body); |
| if (NeedsGot) { |
| if (NeedsPlt && Target->supportsLazyRelocations()) { |
| Out<ELFT>::GotPlt->addEntry(Body); |
| } else { |
| if (Body->isInGot()) |
| continue; |
| Out<ELFT>::Got->addEntry(Body); |
| } |
| } |
| } |
| |
| if (Config->EMachine == EM_MIPS && NeedsGot) { |
| // MIPS ABI has special rules to process GOT entries |
| // and doesn't require relocation entries for them. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| Body->setUsedInDynamicReloc(); |
| continue; |
| } |
| bool CBP = canBePreempted(Body, NeedsGot); |
| if (!CBP && (!Config->Shared || Target->isRelRelative(Type))) |
| continue; |
| if (CBP) |
| Body->setUsedInDynamicReloc(); |
| if (NeedsPlt && Target->supportsLazyRelocations()) |
| Out<ELFT>::RelaPlt->addReloc({C, RI}); |
| else |
| Out<ELFT>::RelaDyn->addReloc({C, RI}); |
| } |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) { |
| ObjectFile<ELFT> *File = C.getFile(); |
| ELFFile<ELFT> &EObj = File->getObj(); |
| |
| if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) |
| return; |
| |
| for (const Elf_Shdr *RelSec : C.RelocSections) { |
| if (RelSec->sh_type == SHT_RELA) |
| scanRelocs(C, EObj.relas(RelSec)); |
| else |
| scanRelocs(C, EObj.rels(RelSec)); |
| } |
| } |
| |
| template <class ELFT> |
| static void reportUndefined(const SymbolTable<ELFT> &S, const SymbolBody &Sym) { |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; |
| |
| if (Config->Shared && !Config->NoUndefined) |
| return; |
| |
| const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym; |
| ELFFileBase<ELFT> *SymFile = nullptr; |
| |
| for (const std::unique_ptr<ObjectFile<ELFT>> &File : S.getObjectFiles()) { |
| Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable()); |
| if (&SymE > Syms.begin() && &SymE < Syms.end()) |
| SymFile = File.get(); |
| } |
| |
| std::string Message = "undefined symbol: " + Sym.getName().str(); |
| if (SymFile) |
| Message += " in " + SymFile->getName().str(); |
| if (Config->NoInhibitExec) |
| warning(Message); |
| else |
| error(Message); |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { |
| for (const Elf_Sym &Sym : F->getLocalSymbols()) { |
| ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable()); |
| error(SymNameOrErr); |
| StringRef SymName = *SymNameOrErr; |
| if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym)) |
| continue; |
| if (Out<ELFT>::SymTab) |
| Out<ELFT>::SymTab->addLocalSymbol(SymName); |
| } |
| } |
| } |
| |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that |
| // we would like to make sure appear is a specific order to maximize their |
| // coverage by a single signed 16-bit offset from the TOC base pointer. |
| // Conversely, the special .tocbss section should be first among all SHT_NOBITS |
| // sections. This will put it next to the loaded special PPC64 sections (and, |
| // thus, within reach of the TOC base pointer). |
| static int getPPC64SectionRank(StringRef SectionName) { |
| return StringSwitch<int>(SectionName) |
| .Case(".tocbss", 0) |
| .Case(".branch_lt", 2) |
| .Case(".toc", 3) |
| .Case(".toc1", 4) |
| .Case(".opd", 5) |
| .Default(1); |
| } |
| |
| // Output section ordering is determined by this function. |
| template <class ELFT> |
| static bool compareOutputSections(OutputSectionBase<ELFT> *A, |
| OutputSectionBase<ELFT> *B) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| |
| uintX_t AFlags = A->getFlags(); |
| uintX_t BFlags = B->getFlags(); |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| bool AIsAlloc = AFlags & SHF_ALLOC; |
| bool BIsAlloc = BFlags & SHF_ALLOC; |
| if (AIsAlloc != BIsAlloc) |
| return AIsAlloc; |
| |
| // We don't have any special requirements for the relative order of |
| // two non allocatable sections. |
| if (!AIsAlloc) |
| return false; |
| |
| // We want the read only sections first so that they go in the PT_LOAD |
| // covering the program headers at the start of the file. |
| bool AIsWritable = AFlags & SHF_WRITE; |
| bool BIsWritable = BFlags & SHF_WRITE; |
| if (AIsWritable != BIsWritable) |
| return BIsWritable; |
| |
| // For a corresponding reason, put non exec sections first (the program |
| // header PT_LOAD is not executable). |
| bool AIsExec = AFlags & SHF_EXECINSTR; |
| bool BIsExec = BFlags & SHF_EXECINSTR; |
| if (AIsExec != BIsExec) |
| return BIsExec; |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS |
| // sections are placed here as they don't take up virtual address space in the |
| // PT_LOAD. |
| bool AIsTLS = AFlags & SHF_TLS; |
| bool BIsTLS = BFlags & SHF_TLS; |
| if (AIsTLS != BIsTLS) |
| return AIsTLS; |
| |
| // The next requirement we have is to put nobits sections last. The |
| // reason is that the only thing the dynamic linker will see about |
| // them is a p_memsz that is larger than p_filesz. Seeing that it |
| // zeros the end of the PT_LOAD, so that has to correspond to the |
| // nobits sections. |
| bool AIsNoBits = A->getType() == SHT_NOBITS; |
| bool BIsNoBits = B->getType() == SHT_NOBITS; |
| if (AIsNoBits != BIsNoBits) |
| return BIsNoBits; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (Config->EMachine == EM_PPC64) |
| return getPPC64SectionRank(A->getName()) < |
| getPPC64SectionRank(B->getName()); |
| |
| return false; |
| } |
| |
| template <class ELFT> OutputSection<ELFT> *Writer<ELFT>::getBSS() { |
| if (!Out<ELFT>::Bss) { |
| Out<ELFT>::Bss = new (SecAlloc.Allocate()) |
| OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); |
| OutputSections.push_back(Out<ELFT>::Bss); |
| } |
| return Out<ELFT>::Bss; |
| } |
| |
| // Until this function is called, common symbols do not belong to any section. |
| // This function adds them to end of BSS section. |
| template <class ELFT> |
| void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| |
| if (Syms.empty()) |
| return; |
| |
| // Sort the common symbols by alignment as an heuristic to pack them better. |
| std::stable_sort( |
| Syms.begin(), Syms.end(), |
| [](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) { |
| return A->MaxAlignment > B->MaxAlignment; |
| }); |
| |
| uintX_t Off = getBSS()->getSize(); |
| for (DefinedCommon<ELFT> *C : Syms) { |
| const Elf_Sym &Sym = C->Sym; |
| uintX_t Align = C->MaxAlignment; |
| Off = RoundUpToAlignment(Off, Align); |
| C->OffsetInBSS = Off; |
| Off += Sym.st_size; |
| } |
| |
| Out<ELFT>::Bss->setSize(Off); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addSharedCopySymbols( |
| std::vector<SharedSymbol<ELFT> *> &Syms) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; |
| |
| if (Syms.empty()) |
| return; |
| |
| uintX_t Off = getBSS()->getSize(); |
| for (SharedSymbol<ELFT> *C : Syms) { |
| const Elf_Sym &Sym = C->Sym; |
| const Elf_Shdr *Sec = C->File->getSection(Sym); |
| uintX_t SecAlign = Sec->sh_addralign; |
| uintX_t Align = Sym.st_value % SecAlign; |
| if (Align == 0) |
| Align = SecAlign; |
| Out<ELFT>::Bss->updateAlign(Align); |
| Off = RoundUpToAlignment(Off, Align); |
| C->OffsetInBSS = Off; |
| Off += Sym.st_size; |
| } |
| Out<ELFT>::Bss->setSize(Off); |
| } |
| |
| static StringRef getOutputName(StringRef S) { |
| if (S.startswith(".text.")) |
| return ".text"; |
| if (S.startswith(".rodata.")) |
| return ".rodata"; |
| if (S.startswith(".data.")) |
| return ".data"; |
| if (S.startswith(".bss.")) |
| return ".bss"; |
| return S; |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::createSections() { |
| // .interp needs to be on the first page in the output file. |
| if (needsInterpSection()) |
| OutputSections.push_back(Out<ELFT>::Interp); |
| |
| SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; |
| |
| std::vector<OutputSectionBase<ELFT> *> RegularSections; |
| |
| for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { |
| for (InputSectionBase<ELFT> *C : F->getSections()) { |
| if (!C || !C->isLive() || C == &InputSection<ELFT>::Discarded) |
| continue; |
| const Elf_Shdr *H = C->getSectionHdr(); |
| uintX_t OutFlags = H->sh_flags & ~SHF_GROUP; |
| // For SHF_MERGE we create different output sections for each sh_entsize. |
| // This makes each output section simple and keeps a single level |
| // mapping from input to output. |
| auto *IS = dyn_cast<InputSection<ELFT>>(C); |
| uintX_t EntSize = IS ? 0 : H->sh_entsize; |
| SectionKey<ELFT::Is64Bits> Key{getOutputName(C->getSectionName()), |
| H->sh_type, OutFlags, EntSize}; |
| OutputSectionBase<ELFT> *&Sec = Map[Key]; |
| if (!Sec) { |
| if (IS) |
| Sec = new (SecAlloc.Allocate()) |
| OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); |
| else |
| Sec = new (MSecAlloc.Allocate()) |
| MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); |
| OutputSections.push_back(Sec); |
| RegularSections.push_back(Sec); |
| } |
| if (IS) |
| static_cast<OutputSection<ELFT> *>(Sec)->addSection(IS); |
| else |
| static_cast<MergeOutputSection<ELFT> *>(Sec) |
| ->addSection(cast<MergeInputSection<ELFT>>(C)); |
| } |
| } |
| |
| Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>( |
| Map[{".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, 0}]); |
| |
| Out<ELFT>::Dynamic->PreInitArraySec = Map.lookup( |
| {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); |
| Out<ELFT>::Dynamic->InitArraySec = |
| Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); |
| Out<ELFT>::Dynamic->FiniArraySec = |
| Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); |
| |
| auto AddStartEnd = [&](StringRef Start, StringRef End, |
| OutputSectionBase<ELFT> *OS) { |
| if (OS) { |
| Symtab.addSyntheticSym(Start, *OS, 0); |
| Symtab.addSyntheticSym(End, *OS, OS->getSize()); |
| } else { |
| Symtab.addIgnoredSym(Start); |
| Symtab.addIgnoredSym(End); |
| } |
| }; |
| |
| AddStartEnd("__preinit_array_start", "__preinit_array_end", |
| Out<ELFT>::Dynamic->PreInitArraySec); |
| AddStartEnd("__init_array_start", "__init_array_end", |
| Out<ELFT>::Dynamic->InitArraySec); |
| AddStartEnd("__fini_array_start", "__fini_array_end", |
| Out<ELFT>::Dynamic->FiniArraySec); |
| |
| for (OutputSectionBase<ELFT> *Sec : RegularSections) |
| addStartStopSymbols(Sec); |
| |
| // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For |
| // static linking the linker is required to optimize away any references to |
| // __tls_get_addr, so it's not defined anywhere. Create a hidden definition |
| // to avoid the undefined symbol error. |
| if (!isOutputDynamic()) |
| Symtab.addIgnoredSym("__tls_get_addr"); |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. |
| for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) |
| for (InputSectionBase<ELFT> *B : F->getSections()) |
| if (auto *S = dyn_cast_or_null<InputSection<ELFT>>(B)) |
| if (S != &InputSection<ELFT>::Discarded) |
| if (S->isLive()) |
| scanRelocs(*S); |
| |
| std::vector<DefinedCommon<ELFT> *> CommonSymbols; |
| std::vector<SharedSymbol<ELFT> *> SharedCopySymbols; |
| for (auto &P : Symtab.getSymbols()) { |
| SymbolBody *Body = P.second->Body; |
| if (auto *U = dyn_cast<Undefined<ELFT>>(Body)) |
| if (!U->isWeak() && !U->canKeepUndefined()) |
| reportUndefined<ELFT>(Symtab, *Body); |
| |
| if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body)) |
| CommonSymbols.push_back(C); |
| if (auto *SC = dyn_cast<SharedSymbol<ELFT>>(Body)) |
| if (SC->needsCopy()) |
| SharedCopySymbols.push_back(SC); |
| |
| if (!includeInSymtab<ELFT>(*Body)) |
| continue; |
| if (Out<ELFT>::SymTab) |
| Out<ELFT>::SymTab->addSymbol(Body); |
| |
| if (isOutputDynamic() && includeInDynamicSymtab(*Body)) |
| Out<ELFT>::DynSymTab->addSymbol(Body); |
| } |
| addCommonSymbols(CommonSymbols); |
| addSharedCopySymbols(SharedCopySymbols); |
| |
| // This order is not the same as the final output order |
| // because we sort the sections using their attributes below. |
| if (Out<ELFT>::SymTab) |
| OutputSections.push_back(Out<ELFT>::SymTab); |
| OutputSections.push_back(Out<ELFT>::ShStrTab); |
| if (Out<ELFT>::StrTab) |
| OutputSections.push_back(Out<ELFT>::StrTab); |
| if (isOutputDynamic()) { |
| OutputSections.push_back(Out<ELFT>::DynSymTab); |
| if (Out<ELFT>::GnuHashTab) |
| OutputSections.push_back(Out<ELFT>::GnuHashTab); |
| if (Out<ELFT>::HashTab) |
| OutputSections.push_back(Out<ELFT>::HashTab); |
| OutputSections.push_back(Out<ELFT>::Dynamic); |
| OutputSections.push_back(Out<ELFT>::DynStrTab); |
| if (Out<ELFT>::RelaDyn->hasRelocs()) |
| OutputSections.push_back(Out<ELFT>::RelaDyn); |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) |
| OutputSections.push_back(Out<ELFT>::RelaPlt); |
| } |
| if (!Out<ELFT>::Got->empty()) |
| OutputSections.push_back(Out<ELFT>::Got); |
| if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) |
| OutputSections.push_back(Out<ELFT>::GotPlt); |
| if (!Out<ELFT>::Plt->empty()) |
| OutputSections.push_back(Out<ELFT>::Plt); |
| |
| std::stable_sort(OutputSections.begin(), OutputSections.end(), |
| compareOutputSections<ELFT>); |
| |
| for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) |
| OutputSections[I]->SectionIndex = I + 1; |
| |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| Out<ELFT>::ShStrTab->add(Sec->getName()); |
| |
| // Finalizers fix each section's size. |
| // .dynamic section's finalizer may add strings to .dynstr, |
| // so finalize that early. |
| // Likewise, .dynsym is finalized early since that may fill up .gnu.hash. |
| Out<ELFT>::Dynamic->finalize(); |
| if (isOutputDynamic()) |
| Out<ELFT>::DynSymTab->finalize(); |
| |
| // Fill other section headers. |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| Sec->finalize(); |
| |
| // If we have a .opd section (used under PPC64 for function descriptors), |
| // store a pointer to it here so that we can use it later when processing |
| // relocations. |
| Out<ELFT>::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0}); |
| } |
| |
| static bool isAlpha(char C) { |
| return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; |
| } |
| |
| static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } |
| |
| // Returns true if S is valid as a C language identifier. |
| static bool isValidCIdentifier(StringRef S) { |
| if (S.empty() || !isAlpha(S[0])) |
| return false; |
| return std::all_of(S.begin() + 1, S.end(), isAlnum); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { |
| StringRef S = Sec->getName(); |
| if (!isValidCIdentifier(S)) |
| return; |
| StringSaver Saver(Alloc); |
| StringRef Start = Saver.save("__start_" + S); |
| StringRef Stop = Saver.save("__stop_" + S); |
| if (Symtab.isUndefined(Start)) |
| Symtab.addSyntheticSym(Start, *Sec, 0); |
| if (Symtab.isUndefined(Stop)) |
| Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize()); |
| } |
| |
| template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) { |
| return Sec->getFlags() & SHF_ALLOC; |
| } |
| |
| static uint32_t toPhdrFlags(uint64_t Flags) { |
| uint32_t Ret = PF_R; |
| if (Flags & SHF_WRITE) |
| Ret |= PF_W; |
| if (Flags & SHF_EXECINSTR) |
| Ret |= PF_X; |
| return Ret; |
| } |
| |
| // Visits all sections to create PHDRs and to assign incremental, |
| // non-overlapping addresses to output sections. |
| template <class ELFT> void Writer<ELFT>::assignAddresses() { |
| uintX_t VA = Target->getVAStart() + sizeof(Elf_Ehdr); |
| uintX_t FileOff = sizeof(Elf_Ehdr); |
| |
| // Calculate and reserve the space for the program header first so that |
| // the first section can start right after the program header. |
| Phdrs.resize(getPhdrsNum()); |
| size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); |
| |
| // The first phdr entry is PT_PHDR which describes the program header itself. |
| setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8); |
| FileOff += PhdrSize; |
| VA += PhdrSize; |
| |
| // PT_INTERP must be the second entry if exists. |
| int PhdrIdx = 0; |
| Elf_Phdr *Interp = nullptr; |
| if (needsInterpSection()) |
| Interp = &Phdrs[++PhdrIdx]; |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, Target->getVAStart(), FileOff, |
| Target->getPageSize()); |
| |
| Elf_Phdr TlsPhdr{}; |
| uintX_t ThreadBSSOffset = 0; |
| // Create phdrs as we assign VAs and file offsets to all output sections. |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| if (needsPhdr<ELFT>(Sec)) { |
| uintX_t Flags = toPhdrFlags(Sec->getFlags()); |
| if (Phdrs[PhdrIdx].p_flags != Flags) { |
| // Flags changed. Create a new PT_LOAD. |
| VA = RoundUpToAlignment(VA, Target->getPageSize()); |
| FileOff = RoundUpToAlignment(FileOff, Target->getPageSize()); |
| Elf_Phdr *PH = &Phdrs[++PhdrIdx]; |
| setPhdr(PH, PT_LOAD, Flags, FileOff, VA, 0, Target->getPageSize()); |
| } |
| |
| if (Sec->getFlags() & SHF_TLS) { |
| if (!TlsPhdr.p_vaddr) |
| setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign()); |
| if (Sec->getType() != SHT_NOBITS) |
| VA = RoundUpToAlignment(VA, Sec->getAlign()); |
| uintX_t TVA = RoundUpToAlignment(VA + ThreadBSSOffset, Sec->getAlign()); |
| Sec->setVA(TVA); |
| TlsPhdr.p_memsz += Sec->getSize(); |
| if (Sec->getType() == SHT_NOBITS) { |
| ThreadBSSOffset = TVA - VA + Sec->getSize(); |
| } else { |
| TlsPhdr.p_filesz += Sec->getSize(); |
| VA += Sec->getSize(); |
| } |
| TlsPhdr.p_align = std::max<uintX_t>(TlsPhdr.p_align, Sec->getAlign()); |
| } else { |
| VA = RoundUpToAlignment(VA, Sec->getAlign()); |
| Sec->setVA(VA); |
| VA += Sec->getSize(); |
| } |
| } |
| |
| FileOff = RoundUpToAlignment(FileOff, Sec->getAlign()); |
| Sec->setFileOffset(FileOff); |
| if (Sec->getType() != SHT_NOBITS) |
| FileOff += Sec->getSize(); |
| if (needsPhdr<ELFT>(Sec)) { |
| Elf_Phdr *Cur = &Phdrs[PhdrIdx]; |
| Cur->p_filesz = FileOff - Cur->p_offset; |
| Cur->p_memsz = VA - Cur->p_vaddr; |
| } |
| } |
| |
| if (TlsPhdr.p_vaddr) { |
| // The TLS pointer goes after PT_TLS. At least glibc will align it, |
| // so round up the size to make sure the offsets are correct. |
| TlsPhdr.p_memsz = RoundUpToAlignment(TlsPhdr.p_memsz, TlsPhdr.p_align); |
| Phdrs[++PhdrIdx] = TlsPhdr; |
| Out<ELFT>::TlsPhdr = &Phdrs[PhdrIdx]; |
| } |
| |
| // Add an entry for .dynamic. |
| if (isOutputDynamic()) { |
| Elf_Phdr *PH = &Phdrs[++PhdrIdx]; |
| PH->p_type = PT_DYNAMIC; |
| copyPhdr(PH, Out<ELFT>::Dynamic); |
| } |
| |
| // Fix up PT_INTERP as we now know the address of .interp section. |
| if (Interp) { |
| Interp->p_type = PT_INTERP; |
| copyPhdr(Interp, Out<ELFT>::Interp); |
| } |
| |
| // Add space for section headers. |
| SectionHeaderOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4); |
| FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); |
| |
| // Update MIPS _gp absolute symbol so that it points to the static data. |
| if (Config->EMachine == EM_MIPS) |
| DefinedAbsolute<ELFT>::MipsGp.st_value = getMipsGpAddr<ELFT>(); |
| } |
| |
| // Returns the number of PHDR entries. |
| template <class ELFT> int Writer<ELFT>::getPhdrsNum() const { |
| bool Tls = false; |
| int I = 2; // 2 for PT_PHDR and the first PT_LOAD |
| if (needsInterpSection()) |
| ++I; |
| if (isOutputDynamic()) |
| ++I; |
| uintX_t Last = PF_R; |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| if (!needsPhdr<ELFT>(Sec)) |
| continue; |
| if (Sec->getFlags() & SHF_TLS) |
| Tls = true; |
| uintX_t Flags = toPhdrFlags(Sec->getFlags()); |
| if (Last != Flags) { |
| Last = Flags; |
| ++I; |
| } |
| } |
| if (Tls) |
| ++I; |
| return I; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| memcpy(Buf, "\177ELF", 4); |
| |
| // Write the ELF header. |
| auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); |
| EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little |
| ? ELFDATA2LSB |
| : ELFDATA2MSB; |
| EHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| |
| auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); |
| EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); |
| |
| EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; |
| EHdr->e_machine = FirstObj.getEMachine(); |
| EHdr->e_version = EV_CURRENT; |
| EHdr->e_entry = getEntryAddr(); |
| EHdr->e_phoff = sizeof(Elf_Ehdr); |
| EHdr->e_shoff = SectionHeaderOff; |
| EHdr->e_ehsize = sizeof(Elf_Ehdr); |
| EHdr->e_phentsize = sizeof(Elf_Phdr); |
| EHdr->e_phnum = Phdrs.size(); |
| EHdr->e_shentsize = sizeof(Elf_Shdr); |
| EHdr->e_shnum = getNumSections(); |
| EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; |
| |
| // Write the program header table. |
| memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); |
| |
| // Write the section header table. Note that the first table entry is null. |
| auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| Sec->writeHeaderTo(++SHdrs); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) { |
| ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); |
| error(BufferOrErr, Twine("failed to open ") + Path); |
| Buffer = std::move(*BufferOrErr); |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| |
| // PPC64 needs to process relocations in the .opd section before processing |
| // relocations in code-containing sections. |
| if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { |
| Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); |
| Sec->writeTo(Buf + Sec->getFileOff()); |
| } |
| |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| if (Sec != Out<ELFT>::Opd) |
| Sec->writeTo(Buf + Sec->getFileOff()); |
| } |
| |
| template <class ELFT> |
| typename ELFFile<ELFT>::uintX_t Writer<ELFT>::getEntryAddr() const { |
| if (Config->EntrySym) { |
| if (auto *E = dyn_cast<ELFSymbolBody<ELFT>>(Config->EntrySym->repl())) |
| return getSymVA<ELFT>(*E); |
| return 0; |
| } |
| if (Config->EntryAddr != uint64_t(-1)) |
| return Config->EntryAddr; |
| return 0; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, |
| uintX_t FileOff, uintX_t VA, uintX_t Size, |
| uintX_t Align) { |
| PH->p_type = Type; |
| PH->p_flags = Flags; |
| PH->p_offset = FileOff; |
| PH->p_vaddr = VA; |
| PH->p_paddr = VA; |
| PH->p_filesz = Size; |
| PH->p_memsz = Size; |
| PH->p_align = Align; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) { |
| PH->p_flags = toPhdrFlags(From->getFlags()); |
| PH->p_offset = From->getFileOff(); |
| PH->p_vaddr = From->getVA(); |
| PH->p_paddr = From->getVA(); |
| PH->p_filesz = From->getSize(); |
| PH->p_memsz = From->getSize(); |
| PH->p_align = From->getAlign(); |
| } |
| |
| template void lld::elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); |
| template void lld::elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); |
| template void lld::elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); |
| template void lld::elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); |