|  | //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass hoists expressions from branches to a common dominator. It uses | 
|  | // GVN (global value numbering) to discover expressions computing the same | 
|  | // values. The primary goals of code-hoisting are: | 
|  | // 1. To reduce the code size. | 
|  | // 2. In some cases reduce critical path (by exposing more ILP). | 
|  | // | 
|  | // The algorithm factors out the reachability of values such that multiple | 
|  | // queries to find reachability of values are fast. This is based on finding the | 
|  | // ANTIC points in the CFG which do not change during hoisting. The ANTIC points | 
|  | // are basically the dominance-frontiers in the inverse graph. So we introduce a | 
|  | // data structure (CHI nodes) to keep track of values flowing out of a basic | 
|  | // block. We only do this for values with multiple occurrences in the function | 
|  | // as they are the potential hoistable candidates. This approach allows us to | 
|  | // hoist instructions to a basic block with more than two successors, as well as | 
|  | // deal with infinite loops in a trivial way. | 
|  | // | 
|  | // Limitations: This pass does not hoist fully redundant expressions because | 
|  | // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before | 
|  | // and after gvn-pre because gvn-pre creates opportunities for more instructions | 
|  | // to be hoisted. | 
|  | // | 
|  | // Hoisting may affect the performance in some cases. To mitigate that, hoisting | 
|  | // is disabled in the following cases. | 
|  | // 1. Scalars across calls. | 
|  | // 2. geps when corresponding load/store cannot be hoisted. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/IteratedDominanceFrontier.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "gvn-hoist" | 
|  |  | 
|  | STATISTIC(NumHoisted, "Number of instructions hoisted"); | 
|  | STATISTIC(NumRemoved, "Number of instructions removed"); | 
|  | STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); | 
|  | STATISTIC(NumLoadsRemoved, "Number of loads removed"); | 
|  | STATISTIC(NumStoresHoisted, "Number of stores hoisted"); | 
|  | STATISTIC(NumStoresRemoved, "Number of stores removed"); | 
|  | STATISTIC(NumCallsHoisted, "Number of calls hoisted"); | 
|  | STATISTIC(NumCallsRemoved, "Number of calls removed"); | 
|  |  | 
|  | static cl::opt<int> | 
|  | MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), | 
|  | cl::desc("Max number of instructions to hoist " | 
|  | "(default unlimited = -1)")); | 
|  |  | 
|  | static cl::opt<int> MaxNumberOfBBSInPath( | 
|  | "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), | 
|  | cl::desc("Max number of basic blocks on the path between " | 
|  | "hoisting locations (default = 4, unlimited = -1)")); | 
|  |  | 
|  | static cl::opt<int> MaxDepthInBB( | 
|  | "gvn-hoist-max-depth", cl::Hidden, cl::init(100), | 
|  | cl::desc("Hoist instructions from the beginning of the BB up to the " | 
|  | "maximum specified depth (default = 100, unlimited = -1)")); | 
|  |  | 
|  | static cl::opt<int> | 
|  | MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), | 
|  | cl::desc("Maximum length of dependent chains to hoist " | 
|  | "(default = 10, unlimited = -1)")); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; | 
|  | using SmallVecInsn = SmallVector<Instruction *, 4>; | 
|  | using SmallVecImplInsn = SmallVectorImpl<Instruction *>; | 
|  |  | 
|  | // Each element of a hoisting list contains the basic block where to hoist and | 
|  | // a list of instructions to be hoisted. | 
|  | using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; | 
|  |  | 
|  | using HoistingPointList = SmallVector<HoistingPointInfo, 4>; | 
|  |  | 
|  | // A map from a pair of VNs to all the instructions with those VNs. | 
|  | using VNType = std::pair<unsigned, unsigned>; | 
|  |  | 
|  | using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; | 
|  |  | 
|  | // CHI keeps information about values flowing out of a basic block.  It is | 
|  | // similar to PHI but in the inverse graph, and used for outgoing values on each | 
|  | // edge. For conciseness, it is computed only for instructions with multiple | 
|  | // occurrences in the CFG because they are the only hoistable candidates. | 
|  | //     A (CHI[{V, B, I1}, {V, C, I2}] | 
|  | //  /     \ | 
|  | // /       \ | 
|  | // B(I1)  C (I2) | 
|  | // The Value number for both I1 and I2 is V, the CHI node will save the | 
|  | // instruction as well as the edge where the value is flowing to. | 
|  | struct CHIArg { | 
|  | VNType VN; | 
|  |  | 
|  | // Edge destination (shows the direction of flow), may not be where the I is. | 
|  | BasicBlock *Dest; | 
|  |  | 
|  | // The instruction (VN) which uses the values flowing out of CHI. | 
|  | Instruction *I; | 
|  |  | 
|  | bool operator==(const CHIArg &A) { return VN == A.VN; } | 
|  | bool operator!=(const CHIArg &A) { return !(*this == A); } | 
|  | }; | 
|  |  | 
|  | using CHIIt = SmallVectorImpl<CHIArg>::iterator; | 
|  | using CHIArgs = iterator_range<CHIIt>; | 
|  | using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; | 
|  | using InValuesType = | 
|  | DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; | 
|  |  | 
|  | // An invalid value number Used when inserting a single value number into | 
|  | // VNtoInsns. | 
|  | enum : unsigned { InvalidVN = ~2U }; | 
|  |  | 
|  | // Records all scalar instructions candidate for code hoisting. | 
|  | class InsnInfo { | 
|  | VNtoInsns VNtoScalars; | 
|  |  | 
|  | public: | 
|  | // Inserts I and its value number in VNtoScalars. | 
|  | void insert(Instruction *I, GVN::ValueTable &VN) { | 
|  | // Scalar instruction. | 
|  | unsigned V = VN.lookupOrAdd(I); | 
|  | VNtoScalars[{V, InvalidVN}].push_back(I); | 
|  | } | 
|  |  | 
|  | const VNtoInsns &getVNTable() const { return VNtoScalars; } | 
|  | }; | 
|  |  | 
|  | // Records all load instructions candidate for code hoisting. | 
|  | class LoadInfo { | 
|  | VNtoInsns VNtoLoads; | 
|  |  | 
|  | public: | 
|  | // Insert Load and the value number of its memory address in VNtoLoads. | 
|  | void insert(LoadInst *Load, GVN::ValueTable &VN) { | 
|  | if (Load->isSimple()) { | 
|  | unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); | 
|  | VNtoLoads[{V, InvalidVN}].push_back(Load); | 
|  | } | 
|  | } | 
|  |  | 
|  | const VNtoInsns &getVNTable() const { return VNtoLoads; } | 
|  | }; | 
|  |  | 
|  | // Records all store instructions candidate for code hoisting. | 
|  | class StoreInfo { | 
|  | VNtoInsns VNtoStores; | 
|  |  | 
|  | public: | 
|  | // Insert the Store and a hash number of the store address and the stored | 
|  | // value in VNtoStores. | 
|  | void insert(StoreInst *Store, GVN::ValueTable &VN) { | 
|  | if (!Store->isSimple()) | 
|  | return; | 
|  | // Hash the store address and the stored value. | 
|  | Value *Ptr = Store->getPointerOperand(); | 
|  | Value *Val = Store->getValueOperand(); | 
|  | VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); | 
|  | } | 
|  |  | 
|  | const VNtoInsns &getVNTable() const { return VNtoStores; } | 
|  | }; | 
|  |  | 
|  | // Records all call instructions candidate for code hoisting. | 
|  | class CallInfo { | 
|  | VNtoInsns VNtoCallsScalars; | 
|  | VNtoInsns VNtoCallsLoads; | 
|  | VNtoInsns VNtoCallsStores; | 
|  |  | 
|  | public: | 
|  | // Insert Call and its value numbering in one of the VNtoCalls* containers. | 
|  | void insert(CallInst *Call, GVN::ValueTable &VN) { | 
|  | // A call that doesNotAccessMemory is handled as a Scalar, | 
|  | // onlyReadsMemory will be handled as a Load instruction, | 
|  | // all other calls will be handled as stores. | 
|  | unsigned V = VN.lookupOrAdd(Call); | 
|  | auto Entry = std::make_pair(V, InvalidVN); | 
|  |  | 
|  | if (Call->doesNotAccessMemory()) | 
|  | VNtoCallsScalars[Entry].push_back(Call); | 
|  | else if (Call->onlyReadsMemory()) | 
|  | VNtoCallsLoads[Entry].push_back(Call); | 
|  | else | 
|  | VNtoCallsStores[Entry].push_back(Call); | 
|  | } | 
|  |  | 
|  | const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } | 
|  | const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } | 
|  | const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } | 
|  | }; | 
|  |  | 
|  | static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { | 
|  | static const unsigned KnownIDs[] = { | 
|  | LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias,        LLVMContext::MD_range, | 
|  | LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load, | 
|  | LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; | 
|  | combineMetadata(ReplInst, I, KnownIDs, true); | 
|  | } | 
|  |  | 
|  | // This pass hoists common computations across branches sharing common | 
|  | // dominator. The primary goal is to reduce the code size, and in some | 
|  | // cases reduce critical path (by exposing more ILP). | 
|  | class GVNHoist { | 
|  | public: | 
|  | GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, | 
|  | MemoryDependenceResults *MD, MemorySSA *MSSA) | 
|  | : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), | 
|  | MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} | 
|  |  | 
|  | bool run(Function &F) { | 
|  | NumFuncArgs = F.arg_size(); | 
|  | VN.setDomTree(DT); | 
|  | VN.setAliasAnalysis(AA); | 
|  | VN.setMemDep(MD); | 
|  | bool Res = false; | 
|  | // Perform DFS Numbering of instructions. | 
|  | unsigned BBI = 0; | 
|  | for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { | 
|  | DFSNumber[BB] = ++BBI; | 
|  | unsigned I = 0; | 
|  | for (auto &Inst : *BB) | 
|  | DFSNumber[&Inst] = ++I; | 
|  | } | 
|  |  | 
|  | int ChainLength = 0; | 
|  |  | 
|  | // FIXME: use lazy evaluation of VN to avoid the fix-point computation. | 
|  | while (true) { | 
|  | if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) | 
|  | return Res; | 
|  |  | 
|  | auto HoistStat = hoistExpressions(F); | 
|  | if (HoistStat.first + HoistStat.second == 0) | 
|  | return Res; | 
|  |  | 
|  | if (HoistStat.second > 0) | 
|  | // To address a limitation of the current GVN, we need to rerun the | 
|  | // hoisting after we hoisted loads or stores in order to be able to | 
|  | // hoist all scalars dependent on the hoisted ld/st. | 
|  | VN.clear(); | 
|  |  | 
|  | Res = true; | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Copied from NewGVN.cpp | 
|  | // This function provides global ranking of operations so that we can place | 
|  | // them in a canonical order.  Note that rank alone is not necessarily enough | 
|  | // for a complete ordering, as constants all have the same rank.  However, | 
|  | // generally, we will simplify an operation with all constants so that it | 
|  | // doesn't matter what order they appear in. | 
|  | unsigned int rank(const Value *V) const { | 
|  | // Prefer constants to undef to anything else | 
|  | // Undef is a constant, have to check it first. | 
|  | // Prefer smaller constants to constantexprs | 
|  | if (isa<ConstantExpr>(V)) | 
|  | return 2; | 
|  | if (isa<UndefValue>(V)) | 
|  | return 1; | 
|  | if (isa<Constant>(V)) | 
|  | return 0; | 
|  | else if (auto *A = dyn_cast<Argument>(V)) | 
|  | return 3 + A->getArgNo(); | 
|  |  | 
|  | // Need to shift the instruction DFS by number of arguments + 3 to account | 
|  | // for the constant and argument ranking above. | 
|  | auto Result = DFSNumber.lookup(V); | 
|  | if (Result > 0) | 
|  | return 4 + NumFuncArgs + Result; | 
|  | // Unreachable or something else, just return a really large number. | 
|  | return ~0; | 
|  | } | 
|  |  | 
|  | private: | 
|  | GVN::ValueTable VN; | 
|  | DominatorTree *DT; | 
|  | PostDominatorTree *PDT; | 
|  | AliasAnalysis *AA; | 
|  | MemoryDependenceResults *MD; | 
|  | MemorySSA *MSSA; | 
|  | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; | 
|  | DenseMap<const Value *, unsigned> DFSNumber; | 
|  | BBSideEffectsSet BBSideEffects; | 
|  | DenseSet<const BasicBlock *> HoistBarrier; | 
|  | SmallVector<BasicBlock *, 32> IDFBlocks; | 
|  | unsigned NumFuncArgs; | 
|  | const bool HoistingGeps = false; | 
|  |  | 
|  | enum InsKind { Unknown, Scalar, Load, Store }; | 
|  |  | 
|  | // Return true when there are exception handling in BB. | 
|  | bool hasEH(const BasicBlock *BB) { | 
|  | auto It = BBSideEffects.find(BB); | 
|  | if (It != BBSideEffects.end()) | 
|  | return It->second; | 
|  |  | 
|  | if (BB->isEHPad() || BB->hasAddressTaken()) { | 
|  | BBSideEffects[BB] = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (BB->getTerminator()->mayThrow()) { | 
|  | BBSideEffects[BB] = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BBSideEffects[BB] = false; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when a successor of BB dominates A. | 
|  | bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { | 
|  | for (const BasicBlock *Succ : successors(BB)) | 
|  | if (DT->dominates(Succ, A)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when I1 appears before I2 in the instructions of BB. | 
|  | bool firstInBB(const Instruction *I1, const Instruction *I2) { | 
|  | assert(I1->getParent() == I2->getParent()); | 
|  | unsigned I1DFS = DFSNumber.lookup(I1); | 
|  | unsigned I2DFS = DFSNumber.lookup(I2); | 
|  | assert(I1DFS && I2DFS); | 
|  | return I1DFS < I2DFS; | 
|  | } | 
|  |  | 
|  | // Return true when there are memory uses of Def in BB. | 
|  | bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, | 
|  | const BasicBlock *BB) { | 
|  | const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); | 
|  | if (!Acc) | 
|  | return false; | 
|  |  | 
|  | Instruction *OldPt = Def->getMemoryInst(); | 
|  | const BasicBlock *OldBB = OldPt->getParent(); | 
|  | const BasicBlock *NewBB = NewPt->getParent(); | 
|  | bool ReachedNewPt = false; | 
|  |  | 
|  | for (const MemoryAccess &MA : *Acc) | 
|  | if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { | 
|  | Instruction *Insn = MU->getMemoryInst(); | 
|  |  | 
|  | // Do not check whether MU aliases Def when MU occurs after OldPt. | 
|  | if (BB == OldBB && firstInBB(OldPt, Insn)) | 
|  | break; | 
|  |  | 
|  | // Do not check whether MU aliases Def when MU occurs before NewPt. | 
|  | if (BB == NewBB) { | 
|  | if (!ReachedNewPt) { | 
|  | if (firstInBB(Insn, NewPt)) | 
|  | continue; | 
|  | ReachedNewPt = true; | 
|  | } | 
|  | } | 
|  | if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, | 
|  | int &NBBsOnAllPaths) { | 
|  | // Stop walk once the limit is reached. | 
|  | if (NBBsOnAllPaths == 0) | 
|  | return true; | 
|  |  | 
|  | // Impossible to hoist with exceptions on the path. | 
|  | if (hasEH(BB)) | 
|  | return true; | 
|  |  | 
|  | // No such instruction after HoistBarrier in a basic block was | 
|  | // selected for hoisting so instructions selected within basic block with | 
|  | // a hoist barrier can be hoisted. | 
|  | if ((BB != SrcBB) && HoistBarrier.count(BB)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when there are exception handling or loads of memory Def | 
|  | // between Def and NewPt.  This function is only called for stores: Def is | 
|  | // the MemoryDef of the store to be hoisted. | 
|  |  | 
|  | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and | 
|  | // return true when the counter NBBsOnAllPaths reaces 0, except when it is | 
|  | // initialized to -1 which is unlimited. | 
|  | bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, | 
|  | int &NBBsOnAllPaths) { | 
|  | const BasicBlock *NewBB = NewPt->getParent(); | 
|  | const BasicBlock *OldBB = Def->getBlock(); | 
|  | assert(DT->dominates(NewBB, OldBB) && "invalid path"); | 
|  | assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && | 
|  | "def does not dominate new hoisting point"); | 
|  |  | 
|  | // Walk all basic blocks reachable in depth-first iteration on the inverse | 
|  | // CFG from OldBB to NewBB. These blocks are all the blocks that may be | 
|  | // executed between the execution of NewBB and OldBB. Hoisting an expression | 
|  | // from OldBB into NewBB has to be safe on all execution paths. | 
|  | for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { | 
|  | const BasicBlock *BB = *I; | 
|  | if (BB == NewBB) { | 
|  | // Stop traversal when reaching HoistPt. | 
|  | I.skipChildren(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) | 
|  | return true; | 
|  |  | 
|  | // Check that we do not move a store past loads. | 
|  | if (hasMemoryUse(NewPt, Def, BB)) | 
|  | return true; | 
|  |  | 
|  | // -1 is unlimited number of blocks on all paths. | 
|  | if (NBBsOnAllPaths != -1) | 
|  | --NBBsOnAllPaths; | 
|  |  | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when there are exception handling between HoistPt and BB. | 
|  | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and | 
|  | // return true when the counter NBBsOnAllPaths reaches 0, except when it is | 
|  | // initialized to -1 which is unlimited. | 
|  | bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, | 
|  | int &NBBsOnAllPaths) { | 
|  | assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); | 
|  |  | 
|  | // Walk all basic blocks reachable in depth-first iteration on | 
|  | // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the | 
|  | // blocks that may be executed between the execution of NewHoistPt and | 
|  | // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe | 
|  | // on all execution paths. | 
|  | for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { | 
|  | const BasicBlock *BB = *I; | 
|  | if (BB == HoistPt) { | 
|  | // Stop traversal when reaching NewHoistPt. | 
|  | I.skipChildren(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) | 
|  | return true; | 
|  |  | 
|  | // -1 is unlimited number of blocks on all paths. | 
|  | if (NBBsOnAllPaths != -1) | 
|  | --NBBsOnAllPaths; | 
|  |  | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when it is safe to hoist a memory load or store U from OldPt | 
|  | // to NewPt. | 
|  | bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, | 
|  | MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { | 
|  | // In place hoisting is safe. | 
|  | if (NewPt == OldPt) | 
|  | return true; | 
|  |  | 
|  | const BasicBlock *NewBB = NewPt->getParent(); | 
|  | const BasicBlock *OldBB = OldPt->getParent(); | 
|  | const BasicBlock *UBB = U->getBlock(); | 
|  |  | 
|  | // Check for dependences on the Memory SSA. | 
|  | MemoryAccess *D = U->getDefiningAccess(); | 
|  | BasicBlock *DBB = D->getBlock(); | 
|  | if (DT->properlyDominates(NewBB, DBB)) | 
|  | // Cannot move the load or store to NewBB above its definition in DBB. | 
|  | return false; | 
|  |  | 
|  | if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) | 
|  | if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) | 
|  | if (!firstInBB(UD->getMemoryInst(), NewPt)) | 
|  | // Cannot move the load or store to NewPt above its definition in D. | 
|  | return false; | 
|  |  | 
|  | // Check for unsafe hoistings due to side effects. | 
|  | if (K == InsKind::Store) { | 
|  | if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) | 
|  | return false; | 
|  | } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) | 
|  | return false; | 
|  |  | 
|  | if (UBB == NewBB) { | 
|  | if (DT->properlyDominates(DBB, NewBB)) | 
|  | return true; | 
|  | assert(UBB == DBB); | 
|  | assert(MSSA->locallyDominates(D, U)); | 
|  | } | 
|  |  | 
|  | // No side effects: it is safe to hoist. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return true when it is safe to hoist scalar instructions from all blocks in | 
|  | // WL to HoistBB. | 
|  | bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, | 
|  | int &NBBsOnAllPaths) { | 
|  | return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); | 
|  | } | 
|  |  | 
|  | // In the inverse CFG, the dominance frontier of basic block (BB) is the | 
|  | // point where ANTIC needs to be computed for instructions which are going | 
|  | // to be hoisted. Since this point does not change during gvn-hoist, | 
|  | // we compute it only once (on demand). | 
|  | // The ides is inspired from: | 
|  | // "Partial Redundancy Elimination in SSA Form" | 
|  | // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW | 
|  | // They use similar idea in the forward graph to find fully redundant and | 
|  | // partially redundant expressions, here it is used in the inverse graph to | 
|  | // find fully anticipable instructions at merge point (post-dominator in | 
|  | // the inverse CFG). | 
|  | // Returns the edge via which an instruction in BB will get the values from. | 
|  |  | 
|  | // Returns true when the values are flowing out to each edge. | 
|  | bool valueAnticipable(CHIArgs C, Instruction *TI) const { | 
|  | if (TI->getNumSuccessors() > (unsigned)size(C)) | 
|  | return false; // Not enough args in this CHI. | 
|  |  | 
|  | for (auto CHI : C) { | 
|  | BasicBlock *Dest = CHI.Dest; | 
|  | // Find if all the edges have values flowing out of BB. | 
|  | bool Found = llvm::any_of( | 
|  | successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; }); | 
|  | if (!Found) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if it is safe to hoist values tracked by CHI in the range | 
|  | // [Begin, End) and accumulate them in Safe. | 
|  | void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, | 
|  | SmallVectorImpl<CHIArg> &Safe) { | 
|  | int NumBBsOnAllPaths = MaxNumberOfBBSInPath; | 
|  | for (auto CHI : C) { | 
|  | Instruction *Insn = CHI.I; | 
|  | if (!Insn) // No instruction was inserted in this CHI. | 
|  | continue; | 
|  | if (K == InsKind::Scalar) { | 
|  | if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) | 
|  | Safe.push_back(CHI); | 
|  | } else { | 
|  | MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); | 
|  | if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) | 
|  | Safe.push_back(CHI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; | 
|  |  | 
|  | // Push all the VNs corresponding to BB into RenameStack. | 
|  | void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, | 
|  | RenameStackType &RenameStack) { | 
|  | auto it1 = ValueBBs.find(BB); | 
|  | if (it1 != ValueBBs.end()) { | 
|  | // Iterate in reverse order to keep lower ranked values on the top. | 
|  | for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { | 
|  | // Get the value of instruction I | 
|  | LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); | 
|  | RenameStack[VI.first].push_back(VI.second); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, | 
|  | RenameStackType &RenameStack) { | 
|  | // For each *predecessor* (because Post-DOM) of BB check if it has a CHI | 
|  | for (auto Pred : predecessors(BB)) { | 
|  | auto P = CHIBBs.find(Pred); | 
|  | if (P == CHIBBs.end()) { | 
|  | continue; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); | 
|  | // A CHI is found (BB -> Pred is an edge in the CFG) | 
|  | // Pop the stack until Top(V) = Ve. | 
|  | auto &VCHI = P->second; | 
|  | for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { | 
|  | CHIArg &C = *It; | 
|  | if (!C.Dest) { | 
|  | auto si = RenameStack.find(C.VN); | 
|  | // The Basic Block where CHI is must dominate the value we want to | 
|  | // track in a CHI. In the PDom walk, there can be values in the | 
|  | // stack which are not control dependent e.g., nested loop. | 
|  | if (si != RenameStack.end() && si->second.size() && | 
|  | DT->properlyDominates(Pred, si->second.back()->getParent())) { | 
|  | C.Dest = BB;                     // Assign the edge | 
|  | C.I = si->second.pop_back_val(); // Assign the argument | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I | 
|  | << ", VN: " << C.VN.first << ", " << C.VN.second); | 
|  | } | 
|  | // Move to next CHI of a different value | 
|  | It = std::find_if(It, VCHI.end(), | 
|  | [It](CHIArg &A) { return A != *It; }); | 
|  | } else | 
|  | ++It; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk the post-dominator tree top-down and use a stack for each value to | 
|  | // store the last value you see. When you hit a CHI from a given edge, the | 
|  | // value to use as the argument is at the top of the stack, add the value to | 
|  | // CHI and pop. | 
|  | void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { | 
|  | auto Root = PDT->getNode(nullptr); | 
|  | if (!Root) | 
|  | return; | 
|  | // Depth first walk on PDom tree to fill the CHIargs at each PDF. | 
|  | RenameStackType RenameStack; | 
|  | for (auto Node : depth_first(Root)) { | 
|  | BasicBlock *BB = Node->getBlock(); | 
|  | if (!BB) | 
|  | continue; | 
|  |  | 
|  | // Collect all values in BB and push to stack. | 
|  | fillRenameStack(BB, ValueBBs, RenameStack); | 
|  |  | 
|  | // Fill outgoing values in each CHI corresponding to BB. | 
|  | fillChiArgs(BB, CHIBBs, RenameStack); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk all the CHI-nodes to find ones which have a empty-entry and remove | 
|  | // them Then collect all the instructions which are safe to hoist and see if | 
|  | // they form a list of anticipable values. OutValues contains CHIs | 
|  | // corresponding to each basic block. | 
|  | void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, | 
|  | HoistingPointList &HPL) { | 
|  | auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; | 
|  |  | 
|  | // CHIArgs now have the outgoing values, so check for anticipability and | 
|  | // accumulate hoistable candidates in HPL. | 
|  | for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { | 
|  | BasicBlock *BB = A.first; | 
|  | SmallVectorImpl<CHIArg> &CHIs = A.second; | 
|  | // Vector of PHIs contains PHIs for different instructions. | 
|  | // Sort the args according to their VNs, such that identical | 
|  | // instructions are together. | 
|  | std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN); | 
|  | auto TI = BB->getTerminator(); | 
|  | auto B = CHIs.begin(); | 
|  | // [PreIt, PHIIt) form a range of CHIs which have identical VNs. | 
|  | auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), | 
|  | [B](CHIArg &A) { return A != *B; }); | 
|  | auto PrevIt = CHIs.begin(); | 
|  | while (PrevIt != PHIIt) { | 
|  | // Collect values which satisfy safety checks. | 
|  | SmallVector<CHIArg, 2> Safe; | 
|  | // We check for safety first because there might be multiple values in | 
|  | // the same path, some of which are not safe to be hoisted, but overall | 
|  | // each edge has at least one value which can be hoisted, making the | 
|  | // value anticipable along that path. | 
|  | checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); | 
|  |  | 
|  | // List of safe values should be anticipable at TI. | 
|  | if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { | 
|  | HPL.push_back({BB, SmallVecInsn()}); | 
|  | SmallVecInsn &V = HPL.back().second; | 
|  | for (auto B : Safe) | 
|  | V.push_back(B.I); | 
|  | } | 
|  |  | 
|  | // Check other VNs | 
|  | PrevIt = PHIIt; | 
|  | PHIIt = std::find_if(PrevIt, CHIs.end(), | 
|  | [PrevIt](CHIArg &A) { return A != *PrevIt; }); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute insertion points for each values which can be fully anticipated at | 
|  | // a dominator. HPL contains all such values. | 
|  | void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, | 
|  | InsKind K) { | 
|  | // Sort VNs based on their rankings | 
|  | std::vector<VNType> Ranks; | 
|  | for (const auto &Entry : Map) { | 
|  | Ranks.push_back(Entry.first); | 
|  | } | 
|  |  | 
|  | // TODO: Remove fully-redundant expressions. | 
|  | // Get instruction from the Map, assume that all the Instructions | 
|  | // with same VNs have same rank (this is an approximation). | 
|  | llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { | 
|  | return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); | 
|  | }); | 
|  |  | 
|  | // - Sort VNs according to their rank, and start with lowest ranked VN | 
|  | // - Take a VN and for each instruction with same VN | 
|  | //   - Find the dominance frontier in the inverse graph (PDF) | 
|  | //   - Insert the chi-node at PDF | 
|  | // - Remove the chi-nodes with missing entries | 
|  | // - Remove values from CHI-nodes which do not truly flow out, e.g., | 
|  | //   modified along the path. | 
|  | // - Collect the remaining values that are still anticipable | 
|  | SmallVector<BasicBlock *, 2> IDFBlocks; | 
|  | ReverseIDFCalculator IDFs(*PDT); | 
|  | OutValuesType OutValue; | 
|  | InValuesType InValue; | 
|  | for (const auto &R : Ranks) { | 
|  | const SmallVecInsn &V = Map.lookup(R); | 
|  | if (V.size() < 2) | 
|  | continue; | 
|  | const VNType &VN = R; | 
|  | SmallPtrSet<BasicBlock *, 2> VNBlocks; | 
|  | for (auto &I : V) { | 
|  | BasicBlock *BBI = I->getParent(); | 
|  | if (!hasEH(BBI)) | 
|  | VNBlocks.insert(BBI); | 
|  | } | 
|  | // Compute the Post Dominance Frontiers of each basic block | 
|  | // The dominance frontier of a live block X in the reverse | 
|  | // control graph is the set of blocks upon which X is control | 
|  | // dependent. The following sequence computes the set of blocks | 
|  | // which currently have dead terminators that are control | 
|  | // dependence sources of a block which is in NewLiveBlocks. | 
|  | IDFs.setDefiningBlocks(VNBlocks); | 
|  | IDFBlocks.clear(); | 
|  | IDFs.calculate(IDFBlocks); | 
|  |  | 
|  | // Make a map of BB vs instructions to be hoisted. | 
|  | for (unsigned i = 0; i < V.size(); ++i) { | 
|  | InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); | 
|  | } | 
|  | // Insert empty CHI node for this VN. This is used to factor out | 
|  | // basic blocks where the ANTIC can potentially change. | 
|  | for (auto IDFB : IDFBlocks) { | 
|  | for (unsigned i = 0; i < V.size(); ++i) { | 
|  | CHIArg C = {VN, nullptr, nullptr}; | 
|  | // Ignore spurious PDFs. | 
|  | if (DT->properlyDominates(IDFB, V[i]->getParent())) { | 
|  | OutValue[IDFB].push_back(C); | 
|  | LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() | 
|  | << ", for Insn: " << *V[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert CHI args at each PDF to iterate on factored graph of | 
|  | // control dependence. | 
|  | insertCHI(InValue, OutValue); | 
|  | // Using the CHI args inserted at each PDF, find fully anticipable values. | 
|  | findHoistableCandidates(OutValue, K, HPL); | 
|  | } | 
|  |  | 
|  | // Return true when all operands of Instr are available at insertion point | 
|  | // HoistPt. When limiting the number of hoisted expressions, one could hoist | 
|  | // a load without hoisting its access function. So before hoisting any | 
|  | // expression, make sure that all its operands are available at insert point. | 
|  | bool allOperandsAvailable(const Instruction *I, | 
|  | const BasicBlock *HoistPt) const { | 
|  | for (const Use &Op : I->operands()) | 
|  | if (const auto *Inst = dyn_cast<Instruction>(&Op)) | 
|  | if (!DT->dominates(Inst->getParent(), HoistPt)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Same as allOperandsAvailable with recursive check for GEP operands. | 
|  | bool allGepOperandsAvailable(const Instruction *I, | 
|  | const BasicBlock *HoistPt) const { | 
|  | for (const Use &Op : I->operands()) | 
|  | if (const auto *Inst = dyn_cast<Instruction>(&Op)) | 
|  | if (!DT->dominates(Inst->getParent(), HoistPt)) { | 
|  | if (const GetElementPtrInst *GepOp = | 
|  | dyn_cast<GetElementPtrInst>(Inst)) { | 
|  | if (!allGepOperandsAvailable(GepOp, HoistPt)) | 
|  | return false; | 
|  | // Gep is available if all operands of GepOp are available. | 
|  | } else { | 
|  | // Gep is not available if it has operands other than GEPs that are | 
|  | // defined in blocks not dominating HoistPt. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Make all operands of the GEP available. | 
|  | void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, | 
|  | const SmallVecInsn &InstructionsToHoist, | 
|  | Instruction *Gep) const { | 
|  | assert(allGepOperandsAvailable(Gep, HoistPt) && | 
|  | "GEP operands not available"); | 
|  |  | 
|  | Instruction *ClonedGep = Gep->clone(); | 
|  | for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { | 
|  | // Check whether the operand is already available. | 
|  | if (DT->dominates(Op->getParent(), HoistPt)) | 
|  | continue; | 
|  |  | 
|  | // As a GEP can refer to other GEPs, recursively make all the operands | 
|  | // of this GEP available at HoistPt. | 
|  | if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) | 
|  | makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); | 
|  | } | 
|  |  | 
|  | // Copy Gep and replace its uses in Repl with ClonedGep. | 
|  | ClonedGep->insertBefore(HoistPt->getTerminator()); | 
|  |  | 
|  | // Conservatively discard any optimization hints, they may differ on the | 
|  | // other paths. | 
|  | ClonedGep->dropUnknownNonDebugMetadata(); | 
|  |  | 
|  | // If we have optimization hints which agree with each other along different | 
|  | // paths, preserve them. | 
|  | for (const Instruction *OtherInst : InstructionsToHoist) { | 
|  | const GetElementPtrInst *OtherGep; | 
|  | if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) | 
|  | OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); | 
|  | else | 
|  | OtherGep = cast<GetElementPtrInst>( | 
|  | cast<StoreInst>(OtherInst)->getPointerOperand()); | 
|  | ClonedGep->andIRFlags(OtherGep); | 
|  | } | 
|  |  | 
|  | // Replace uses of Gep with ClonedGep in Repl. | 
|  | Repl->replaceUsesOfWith(Gep, ClonedGep); | 
|  | } | 
|  |  | 
|  | void updateAlignment(Instruction *I, Instruction *Repl) { | 
|  | if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { | 
|  | ReplacementLoad->setAlignment( | 
|  | std::min(ReplacementLoad->getAlignment(), | 
|  | cast<LoadInst>(I)->getAlignment())); | 
|  | ++NumLoadsRemoved; | 
|  | } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { | 
|  | ReplacementStore->setAlignment( | 
|  | std::min(ReplacementStore->getAlignment(), | 
|  | cast<StoreInst>(I)->getAlignment())); | 
|  | ++NumStoresRemoved; | 
|  | } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { | 
|  | ReplacementAlloca->setAlignment( | 
|  | std::max(ReplacementAlloca->getAlignment(), | 
|  | cast<AllocaInst>(I)->getAlignment())); | 
|  | } else if (isa<CallInst>(Repl)) { | 
|  | ++NumCallsRemoved; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove all the instructions in Candidates and replace their usage with Repl. | 
|  | // Returns the number of instructions removed. | 
|  | unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, | 
|  | MemoryUseOrDef *NewMemAcc) { | 
|  | unsigned NR = 0; | 
|  | for (Instruction *I : Candidates) { | 
|  | if (I != Repl) { | 
|  | ++NR; | 
|  | updateAlignment(I, Repl); | 
|  | if (NewMemAcc) { | 
|  | // Update the uses of the old MSSA access with NewMemAcc. | 
|  | MemoryAccess *OldMA = MSSA->getMemoryAccess(I); | 
|  | OldMA->replaceAllUsesWith(NewMemAcc); | 
|  | MSSAUpdater->removeMemoryAccess(OldMA); | 
|  | } | 
|  |  | 
|  | Repl->andIRFlags(I); | 
|  | combineKnownMetadata(Repl, I); | 
|  | I->replaceAllUsesWith(Repl); | 
|  | // Also invalidate the Alias Analysis cache. | 
|  | MD->removeInstruction(I); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | return NR; | 
|  | } | 
|  |  | 
|  | // Replace all Memory PHI usage with NewMemAcc. | 
|  | void raMPHIuw(MemoryUseOrDef *NewMemAcc) { | 
|  | SmallPtrSet<MemoryPhi *, 4> UsePhis; | 
|  | for (User *U : NewMemAcc->users()) | 
|  | if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) | 
|  | UsePhis.insert(Phi); | 
|  |  | 
|  | for (MemoryPhi *Phi : UsePhis) { | 
|  | auto In = Phi->incoming_values(); | 
|  | if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { | 
|  | Phi->replaceAllUsesWith(NewMemAcc); | 
|  | MSSAUpdater->removeMemoryAccess(Phi); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove all other instructions and replace them with Repl. | 
|  | unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, | 
|  | BasicBlock *DestBB, bool MoveAccess) { | 
|  | MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); | 
|  | if (MoveAccess && NewMemAcc) { | 
|  | // The definition of this ld/st will not change: ld/st hoisting is | 
|  | // legal when the ld/st is not moved past its current definition. | 
|  | MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End); | 
|  | } | 
|  |  | 
|  | // Replace all other instructions with Repl with memory access NewMemAcc. | 
|  | unsigned NR = rauw(Candidates, Repl, NewMemAcc); | 
|  |  | 
|  | // Remove MemorySSA phi nodes with the same arguments. | 
|  | if (NewMemAcc) | 
|  | raMPHIuw(NewMemAcc); | 
|  | return NR; | 
|  | } | 
|  |  | 
|  | // In the case Repl is a load or a store, we make all their GEPs | 
|  | // available: GEPs are not hoisted by default to avoid the address | 
|  | // computations to be hoisted without the associated load or store. | 
|  | bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, | 
|  | const SmallVecInsn &InstructionsToHoist) const { | 
|  | // Check whether the GEP of a ld/st can be synthesized at HoistPt. | 
|  | GetElementPtrInst *Gep = nullptr; | 
|  | Instruction *Val = nullptr; | 
|  | if (auto *Ld = dyn_cast<LoadInst>(Repl)) { | 
|  | Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); | 
|  | } else if (auto *St = dyn_cast<StoreInst>(Repl)) { | 
|  | Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); | 
|  | Val = dyn_cast<Instruction>(St->getValueOperand()); | 
|  | // Check that the stored value is available. | 
|  | if (Val) { | 
|  | if (isa<GetElementPtrInst>(Val)) { | 
|  | // Check whether we can compute the GEP at HoistPt. | 
|  | if (!allGepOperandsAvailable(Val, HoistPt)) | 
|  | return false; | 
|  | } else if (!DT->dominates(Val->getParent(), HoistPt)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether we can compute the Gep at HoistPt. | 
|  | if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) | 
|  | return false; | 
|  |  | 
|  | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); | 
|  |  | 
|  | if (Val && isa<GetElementPtrInst>(Val)) | 
|  | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { | 
|  | unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; | 
|  | for (const HoistingPointInfo &HP : HPL) { | 
|  | // Find out whether we already have one of the instructions in HoistPt, | 
|  | // in which case we do not have to move it. | 
|  | BasicBlock *DestBB = HP.first; | 
|  | const SmallVecInsn &InstructionsToHoist = HP.second; | 
|  | Instruction *Repl = nullptr; | 
|  | for (Instruction *I : InstructionsToHoist) | 
|  | if (I->getParent() == DestBB) | 
|  | // If there are two instructions in HoistPt to be hoisted in place: | 
|  | // update Repl to be the first one, such that we can rename the uses | 
|  | // of the second based on the first. | 
|  | if (!Repl || firstInBB(I, Repl)) | 
|  | Repl = I; | 
|  |  | 
|  | // Keep track of whether we moved the instruction so we know whether we | 
|  | // should move the MemoryAccess. | 
|  | bool MoveAccess = true; | 
|  | if (Repl) { | 
|  | // Repl is already in HoistPt: it remains in place. | 
|  | assert(allOperandsAvailable(Repl, DestBB) && | 
|  | "instruction depends on operands that are not available"); | 
|  | MoveAccess = false; | 
|  | } else { | 
|  | // When we do not find Repl in HoistPt, select the first in the list | 
|  | // and move it to HoistPt. | 
|  | Repl = InstructionsToHoist.front(); | 
|  |  | 
|  | // We can move Repl in HoistPt only when all operands are available. | 
|  | // The order in which hoistings are done may influence the availability | 
|  | // of operands. | 
|  | if (!allOperandsAvailable(Repl, DestBB)) { | 
|  | // When HoistingGeps there is nothing more we can do to make the | 
|  | // operands available: just continue. | 
|  | if (HoistingGeps) | 
|  | continue; | 
|  |  | 
|  | // When not HoistingGeps we need to copy the GEPs. | 
|  | if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Move the instruction at the end of HoistPt. | 
|  | Instruction *Last = DestBB->getTerminator(); | 
|  | MD->removeInstruction(Repl); | 
|  | Repl->moveBefore(Last); | 
|  |  | 
|  | DFSNumber[Repl] = DFSNumber[Last]++; | 
|  | } | 
|  |  | 
|  | NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); | 
|  |  | 
|  | if (isa<LoadInst>(Repl)) | 
|  | ++NL; | 
|  | else if (isa<StoreInst>(Repl)) | 
|  | ++NS; | 
|  | else if (isa<CallInst>(Repl)) | 
|  | ++NC; | 
|  | else // Scalar | 
|  | ++NI; | 
|  | } | 
|  |  | 
|  | NumHoisted += NL + NS + NC + NI; | 
|  | NumRemoved += NR; | 
|  | NumLoadsHoisted += NL; | 
|  | NumStoresHoisted += NS; | 
|  | NumCallsHoisted += NC; | 
|  | return {NI, NL + NC + NS}; | 
|  | } | 
|  |  | 
|  | // Hoist all expressions. Returns Number of scalars hoisted | 
|  | // and number of non-scalars hoisted. | 
|  | std::pair<unsigned, unsigned> hoistExpressions(Function &F) { | 
|  | InsnInfo II; | 
|  | LoadInfo LI; | 
|  | StoreInfo SI; | 
|  | CallInfo CI; | 
|  | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { | 
|  | int InstructionNb = 0; | 
|  | for (Instruction &I1 : *BB) { | 
|  | // If I1 cannot guarantee progress, subsequent instructions | 
|  | // in BB cannot be hoisted anyways. | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { | 
|  | HoistBarrier.insert(BB); | 
|  | break; | 
|  | } | 
|  | // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting | 
|  | // deeper may increase the register pressure and compilation time. | 
|  | if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) | 
|  | break; | 
|  |  | 
|  | // Do not value number terminator instructions. | 
|  | if (I1.isTerminator()) | 
|  | break; | 
|  |  | 
|  | if (auto *Load = dyn_cast<LoadInst>(&I1)) | 
|  | LI.insert(Load, VN); | 
|  | else if (auto *Store = dyn_cast<StoreInst>(&I1)) | 
|  | SI.insert(Store, VN); | 
|  | else if (auto *Call = dyn_cast<CallInst>(&I1)) { | 
|  | if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { | 
|  | if (isa<DbgInfoIntrinsic>(Intr) || | 
|  | Intr->getIntrinsicID() == Intrinsic::assume || | 
|  | Intr->getIntrinsicID() == Intrinsic::sideeffect) | 
|  | continue; | 
|  | } | 
|  | if (Call->mayHaveSideEffects()) | 
|  | break; | 
|  |  | 
|  | if (Call->isConvergent()) | 
|  | break; | 
|  |  | 
|  | CI.insert(Call, VN); | 
|  | } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) | 
|  | // Do not hoist scalars past calls that may write to memory because | 
|  | // that could result in spills later. geps are handled separately. | 
|  | // TODO: We can relax this for targets like AArch64 as they have more | 
|  | // registers than X86. | 
|  | II.insert(&I1, VN); | 
|  | } | 
|  | } | 
|  |  | 
|  | HoistingPointList HPL; | 
|  | computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); | 
|  | computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); | 
|  | computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); | 
|  | computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); | 
|  | computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); | 
|  | computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); | 
|  | return hoist(HPL); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class GVNHoistLegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | GVNHoistLegacyPass() : FunctionPass(ID) { | 
|  | initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); | 
|  | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); | 
|  | auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); | 
|  |  | 
|  | GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); | 
|  | return G.run(F); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<PostDominatorTreeWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MemoryDependenceWrapperPass>(); | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); | 
|  | AliasAnalysis &AA = AM.getResult<AAManager>(F); | 
|  | MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); | 
|  | MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); | 
|  | GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); | 
|  | if (!G.run(F)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | char GVNHoistLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", | 
|  | "Early GVN Hoisting of Expressions", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", | 
|  | "Early GVN Hoisting of Expressions", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } |