|  | //===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Nick Lewycky and is distributed under the | 
|  | // University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Path-sensitive optimizer. In a branch where x == y, replace uses of | 
|  | // x with y. Permits further optimization, such as the elimination of | 
|  | // the unreachable call: | 
|  | // | 
|  | // void test(int *p, int *q) | 
|  | // { | 
|  | //   if (p != q) | 
|  | //     return; | 
|  | // | 
|  | //   if (*p != *q) | 
|  | //     foo(); // unreachable | 
|  | // } | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The InequalityGraph focusses on four properties; equals, not equals, | 
|  | // less-than and less-than-or-equals-to. The greater-than forms are also held | 
|  | // just to allow walking from a lesser node to a greater one. These properties | 
|  | // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT. | 
|  | // | 
|  | // These relationships define a graph between values of the same type. Each | 
|  | // Value is stored in a map table that retrieves the associated Node. This | 
|  | // is how EQ relationships are stored; the map contains pointers from equal | 
|  | // Value to the same node. The node contains a most canonical Value* form | 
|  | // and the list of known relationships with other nodes. | 
|  | // | 
|  | // If two nodes are known to be inequal, then they will contain pointers to | 
|  | // each other with an "NE" relationship. If node getNode(%x) is less than | 
|  | // getNode(%y), then the %x node will contain <%y, GT> and %y will contain | 
|  | // <%x, LT>. This allows us to tie nodes together into a graph like this: | 
|  | // | 
|  | //   %a < %b < %c < %d | 
|  | // | 
|  | // with four nodes representing the properties. The InequalityGraph provides | 
|  | // querying with "isRelatedBy" and mutators "addEquality" and "addInequality". | 
|  | // To find a relationship, we start with one of the nodes any binary search | 
|  | // through its list to find where the relationships with the second node start. | 
|  | // Then we iterate through those to find the first relationship that dominates | 
|  | // our context node. | 
|  | // | 
|  | // To create these properties, we wait until a branch or switch instruction | 
|  | // implies that a particular value is true (or false). The VRPSolver is | 
|  | // responsible for analyzing the variable and seeing what new inferences | 
|  | // can be made from each property. For example: | 
|  | // | 
|  | //   %P = icmp ne i32* %ptr, null | 
|  | //   %a = and i1 %P, %Q | 
|  | //   br i1 %a label %cond_true, label %cond_false | 
|  | // | 
|  | // For the true branch, the VRPSolver will start with %a EQ true and look at | 
|  | // the definition of %a and find that it can infer that %P and %Q are both | 
|  | // true. From %P being true, it can infer that %ptr NE null. For the false | 
|  | // branch it can't infer anything from the "and" instruction. | 
|  | // | 
|  | // Besides branches, we can also infer properties from instruction that may | 
|  | // have undefined behaviour in certain cases. For example, the dividend of | 
|  | // a division may never be zero. After the division instruction, we may assume | 
|  | // that the dividend is not equal to zero. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The ValueRanges class stores the known integer bounds of a Value. When we | 
|  | // encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and | 
|  | // %b = [0, 254]. | 
|  | // | 
|  | // It never stores an empty range, because that means that the code is | 
|  | // unreachable. It never stores a single-element range since that's an equality | 
|  | // relationship and better stored in the InequalityGraph, nor an empty range | 
|  | // since that is better stored in UnreachableBlocks. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "predsimplify" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ConstantRange.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | #include <deque> | 
|  | #include <sstream> | 
|  | #include <stack> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumVarsReplaced, "Number of argument substitutions"); | 
|  | STATISTIC(NumInstruction , "Number of instructions removed"); | 
|  | STATISTIC(NumSimple      , "Number of simple replacements"); | 
|  | STATISTIC(NumBlocks      , "Number of blocks marked unreachable"); | 
|  | STATISTIC(NumSnuggle     , "Number of comparisons snuggled"); | 
|  |  | 
|  | namespace { | 
|  | class DomTreeDFS { | 
|  | public: | 
|  | class Node { | 
|  | friend class DomTreeDFS; | 
|  | public: | 
|  | typedef std::vector<Node *>::iterator       iterator; | 
|  | typedef std::vector<Node *>::const_iterator const_iterator; | 
|  |  | 
|  | unsigned getDFSNumIn()  const { return DFSin;  } | 
|  | unsigned getDFSNumOut() const { return DFSout; } | 
|  |  | 
|  | BasicBlock *getBlock() const { return BB; } | 
|  |  | 
|  | iterator begin() { return Children.begin(); } | 
|  | iterator end()   { return Children.end();   } | 
|  |  | 
|  | const_iterator begin() const { return Children.begin(); } | 
|  | const_iterator end()   const { return Children.end();   } | 
|  |  | 
|  | bool dominates(const Node *N) const { | 
|  | return DFSin <= N->DFSin && DFSout >= N->DFSout; | 
|  | } | 
|  |  | 
|  | bool DominatedBy(const Node *N) const { | 
|  | return N->dominates(this); | 
|  | } | 
|  |  | 
|  | /// Sorts by the number of descendants. With this, you can iterate | 
|  | /// through a sorted list and the first matching entry is the most | 
|  | /// specific match for your basic block. The order provided is stable; | 
|  | /// DomTreeDFS::Nodes with the same number of descendants are sorted by | 
|  | /// DFS in number. | 
|  | bool operator<(const Node &N) const { | 
|  | unsigned   spread =   DFSout -   DFSin; | 
|  | unsigned N_spread = N.DFSout - N.DFSin; | 
|  | if (spread == N_spread) return DFSin < N.DFSin; | 
|  | return spread < N_spread; | 
|  | } | 
|  | bool operator>(const Node &N) const { return N < *this; } | 
|  |  | 
|  | private: | 
|  | unsigned DFSin, DFSout; | 
|  | BasicBlock *BB; | 
|  |  | 
|  | std::vector<Node *> Children; | 
|  | }; | 
|  |  | 
|  | // XXX: this may be slow. Instead of using "new" for each node, consider | 
|  | // putting them in a vector to keep them contiguous. | 
|  | explicit DomTreeDFS(DominatorTree *DT) { | 
|  | std::stack<std::pair<Node *, DomTreeNode *> > S; | 
|  |  | 
|  | Entry = new Node; | 
|  | Entry->BB = DT->getRootNode()->getBlock(); | 
|  | S.push(std::make_pair(Entry, DT->getRootNode())); | 
|  |  | 
|  | NodeMap[Entry->BB] = Entry; | 
|  |  | 
|  | while (!S.empty()) { | 
|  | std::pair<Node *, DomTreeNode *> &Pair = S.top(); | 
|  | Node *N = Pair.first; | 
|  | DomTreeNode *DTNode = Pair.second; | 
|  | S.pop(); | 
|  |  | 
|  | for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end(); | 
|  | I != E; ++I) { | 
|  | Node *NewNode = new Node; | 
|  | NewNode->BB = (*I)->getBlock(); | 
|  | N->Children.push_back(NewNode); | 
|  | S.push(std::make_pair(NewNode, *I)); | 
|  |  | 
|  | NodeMap[NewNode->BB] = NewNode; | 
|  | } | 
|  | } | 
|  |  | 
|  | renumber(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | DEBUG(dump()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | virtual | 
|  | #endif | 
|  | ~DomTreeDFS() { | 
|  | std::stack<Node *> S; | 
|  |  | 
|  | S.push(Entry); | 
|  | while (!S.empty()) { | 
|  | Node *N = S.top(); S.pop(); | 
|  |  | 
|  | for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) | 
|  | S.push(*I); | 
|  |  | 
|  | delete N; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getRootNode - This returns the entry node for the CFG of the function. | 
|  | Node *getRootNode() const { return Entry; } | 
|  |  | 
|  | /// getNodeForBlock - return the node for the specified basic block. | 
|  | Node *getNodeForBlock(BasicBlock *BB) const { | 
|  | if (!NodeMap.count(BB)) return 0; | 
|  | return const_cast<DomTreeDFS*>(this)->NodeMap[BB]; | 
|  | } | 
|  |  | 
|  | /// dominates - returns true if the basic block for I1 dominates that of | 
|  | /// the basic block for I2. If the instructions belong to the same basic | 
|  | /// block, the instruction first instruction sequentially in the block is | 
|  | /// considered dominating. | 
|  | bool dominates(Instruction *I1, Instruction *I2) { | 
|  | BasicBlock *BB1 = I1->getParent(), | 
|  | *BB2 = I2->getParent(); | 
|  | if (BB1 == BB2) { | 
|  | if (isa<TerminatorInst>(I1)) return false; | 
|  | if (isa<TerminatorInst>(I2)) return true; | 
|  | if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true; | 
|  | if (!isa<PHINode>(I1) &&  isa<PHINode>(I2)) return false; | 
|  |  | 
|  | for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end(); | 
|  | I != E; ++I) { | 
|  | if (&*I == I1) return true; | 
|  | else if (&*I == I2) return false; | 
|  | } | 
|  | assert(!"Instructions not found in parent BasicBlock?"); | 
|  | } else { | 
|  | Node *Node1 = getNodeForBlock(BB1), | 
|  | *Node2 = getNodeForBlock(BB2); | 
|  | return Node1 && Node2 && Node1->dominates(Node2); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// renumber - calculates the depth first search numberings and applies | 
|  | /// them onto the nodes. | 
|  | void renumber() { | 
|  | std::stack<std::pair<Node *, Node::iterator> > S; | 
|  | unsigned n = 0; | 
|  |  | 
|  | Entry->DFSin = ++n; | 
|  | S.push(std::make_pair(Entry, Entry->begin())); | 
|  |  | 
|  | while (!S.empty()) { | 
|  | std::pair<Node *, Node::iterator> &Pair = S.top(); | 
|  | Node *N = Pair.first; | 
|  | Node::iterator &I = Pair.second; | 
|  |  | 
|  | if (I == N->end()) { | 
|  | N->DFSout = ++n; | 
|  | S.pop(); | 
|  | } else { | 
|  | Node *Next = *I++; | 
|  | Next->DFSin = ++n; | 
|  | S.push(std::make_pair(Next, Next->begin())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | virtual void dump() const { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  |  | 
|  | void dump(std::ostream &os) const { | 
|  | os << "Predicate simplifier DomTreeDFS: \n"; | 
|  | dump(Entry, 0, os); | 
|  | os << "\n\n"; | 
|  | } | 
|  |  | 
|  | void dump(Node *N, int depth, std::ostream &os) const { | 
|  | ++depth; | 
|  | for (int i = 0; i < depth; ++i) { os << " "; } | 
|  | os << "[" << depth << "] "; | 
|  |  | 
|  | os << N->getBlock()->getName() << " (" << N->getDFSNumIn() | 
|  | << ", " << N->getDFSNumOut() << ")\n"; | 
|  |  | 
|  | for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) | 
|  | dump(*I, depth, os); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | Node *Entry; | 
|  | std::map<BasicBlock *, Node *> NodeMap; | 
|  | }; | 
|  |  | 
|  | // SLT SGT ULT UGT EQ | 
|  | //   0   1   0   1  0 -- GT                  10 | 
|  | //   0   1   0   1  1 -- GE                  11 | 
|  | //   0   1   1   0  0 -- SGTULT              12 | 
|  | //   0   1   1   0  1 -- SGEULE              13 | 
|  | //   0   1   1   1  0 -- SGT                 14 | 
|  | //   0   1   1   1  1 -- SGE                 15 | 
|  | //   1   0   0   1  0 -- SLTUGT              18 | 
|  | //   1   0   0   1  1 -- SLEUGE              19 | 
|  | //   1   0   1   0  0 -- LT                  20 | 
|  | //   1   0   1   0  1 -- LE                  21 | 
|  | //   1   0   1   1  0 -- SLT                 22 | 
|  | //   1   0   1   1  1 -- SLE                 23 | 
|  | //   1   1   0   1  0 -- UGT                 26 | 
|  | //   1   1   0   1  1 -- UGE                 27 | 
|  | //   1   1   1   0  0 -- ULT                 28 | 
|  | //   1   1   1   0  1 -- ULE                 29 | 
|  | //   1   1   1   1  0 -- NE                  30 | 
|  | enum LatticeBits { | 
|  | EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16 | 
|  | }; | 
|  | enum LatticeVal { | 
|  | GT = SGT_BIT | UGT_BIT, | 
|  | GE = GT | EQ_BIT, | 
|  | LT = SLT_BIT | ULT_BIT, | 
|  | LE = LT | EQ_BIT, | 
|  | NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT, | 
|  | SGTULT = SGT_BIT | ULT_BIT, | 
|  | SGEULE = SGTULT | EQ_BIT, | 
|  | SLTUGT = SLT_BIT | UGT_BIT, | 
|  | SLEUGE = SLTUGT | EQ_BIT, | 
|  | ULT = SLT_BIT | SGT_BIT | ULT_BIT, | 
|  | UGT = SLT_BIT | SGT_BIT | UGT_BIT, | 
|  | SLT = SLT_BIT | ULT_BIT | UGT_BIT, | 
|  | SGT = SGT_BIT | ULT_BIT | UGT_BIT, | 
|  | SLE = SLT | EQ_BIT, | 
|  | SGE = SGT | EQ_BIT, | 
|  | ULE = ULT | EQ_BIT, | 
|  | UGE = UGT | EQ_BIT | 
|  | }; | 
|  |  | 
|  | /// validPredicate - determines whether a given value is actually a lattice | 
|  | /// value. Only used in assertions or debugging. | 
|  | static bool validPredicate(LatticeVal LV) { | 
|  | switch (LV) { | 
|  | case GT: case GE: case LT: case LE: case NE: | 
|  | case SGTULT: case SGT: case SGEULE: | 
|  | case SLTUGT: case SLT: case SLEUGE: | 
|  | case ULT: case UGT: | 
|  | case SLE: case SGE: case ULE: case UGE: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// reversePredicate - reverse the direction of the inequality | 
|  | static LatticeVal reversePredicate(LatticeVal LV) { | 
|  | unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT | 
|  |  | 
|  | if ((reverse & (SLT_BIT|SGT_BIT)) == 0) | 
|  | reverse |= (SLT_BIT|SGT_BIT); | 
|  |  | 
|  | if ((reverse & (ULT_BIT|UGT_BIT)) == 0) | 
|  | reverse |= (ULT_BIT|UGT_BIT); | 
|  |  | 
|  | LatticeVal Rev = static_cast<LatticeVal>(reverse); | 
|  | assert(validPredicate(Rev) && "Failed reversing predicate."); | 
|  | return Rev; | 
|  | } | 
|  |  | 
|  | /// ValueNumbering stores the scope-specific value numbers for a given Value. | 
|  | class VISIBILITY_HIDDEN ValueNumbering { | 
|  |  | 
|  | /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It | 
|  | /// includes the comparison operators necessary to allow you to store it | 
|  | /// in a sorted vector. | 
|  | class VISIBILITY_HIDDEN VNPair { | 
|  | public: | 
|  | Value *V; | 
|  | unsigned index; | 
|  | DomTreeDFS::Node *Subtree; | 
|  |  | 
|  | VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree) | 
|  | : V(V), index(index), Subtree(Subtree) {} | 
|  |  | 
|  | bool operator==(const VNPair &RHS) const { | 
|  | return V == RHS.V && Subtree == RHS.Subtree; | 
|  | } | 
|  |  | 
|  | bool operator<(const VNPair &RHS) const { | 
|  | if (V != RHS.V) return V < RHS.V; | 
|  | return *Subtree < *RHS.Subtree; | 
|  | } | 
|  |  | 
|  | bool operator<(Value *RHS) const { | 
|  | return V < RHS; | 
|  | } | 
|  |  | 
|  | bool operator>(Value *RHS) const { | 
|  | return V > RHS; | 
|  | } | 
|  |  | 
|  | friend bool operator<(Value *RHS, const VNPair &pair) { | 
|  | return pair.operator>(RHS); | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<VNPair> VNMapType; | 
|  | VNMapType VNMap; | 
|  |  | 
|  | /// The canonical choice for value number at index. | 
|  | std::vector<Value *> Values; | 
|  |  | 
|  | DomTreeDFS *DTDFS; | 
|  |  | 
|  | public: | 
|  | #ifndef NDEBUG | 
|  | virtual ~ValueNumbering() {} | 
|  | virtual void dump() { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  |  | 
|  | void dump(std::ostream &os) { | 
|  | for (unsigned i = 1; i <= Values.size(); ++i) { | 
|  | os << i << " = "; | 
|  | WriteAsOperand(os, Values[i-1]); | 
|  | os << " {"; | 
|  | for (unsigned j = 0; j < VNMap.size(); ++j) { | 
|  | if (VNMap[j].index == i) { | 
|  | WriteAsOperand(os, VNMap[j].V); | 
|  | os << " (" << VNMap[j].Subtree->getDFSNumIn() << ")  "; | 
|  | } | 
|  | } | 
|  | os << "}\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// compare - returns true if V1 is a better canonical value than V2. | 
|  | bool compare(Value *V1, Value *V2) const { | 
|  | if (isa<Constant>(V1)) | 
|  | return !isa<Constant>(V2); | 
|  | else if (isa<Constant>(V2)) | 
|  | return false; | 
|  | else if (isa<Argument>(V1)) | 
|  | return !isa<Argument>(V2); | 
|  | else if (isa<Argument>(V2)) | 
|  | return false; | 
|  |  | 
|  | Instruction *I1 = dyn_cast<Instruction>(V1); | 
|  | Instruction *I2 = dyn_cast<Instruction>(V2); | 
|  |  | 
|  | if (!I1 || !I2) | 
|  | return V1->getNumUses() < V2->getNumUses(); | 
|  |  | 
|  | return DTDFS->dominates(I1, I2); | 
|  | } | 
|  |  | 
|  | ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {} | 
|  |  | 
|  | /// valueNumber - finds the value number for V under the Subtree. If | 
|  | /// there is no value number, returns zero. | 
|  | unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) { | 
|  | if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) | 
|  | || V->getType() == Type::VoidTy) return 0; | 
|  |  | 
|  | VNMapType::iterator E = VNMap.end(); | 
|  | VNPair pair(V, 0, Subtree); | 
|  | VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair); | 
|  | while (I != E && I->V == V) { | 
|  | if (I->Subtree->dominates(Subtree)) | 
|  | return I->index; | 
|  | ++I; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getOrInsertVN - always returns a value number, creating it if necessary. | 
|  | unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) { | 
|  | if (unsigned n = valueNumber(V, Subtree)) | 
|  | return n; | 
|  | else | 
|  | return newVN(V); | 
|  | } | 
|  |  | 
|  | /// newVN - creates a new value number. Value V must not already have a | 
|  | /// value number assigned. | 
|  | unsigned newVN(Value *V) { | 
|  | assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && | 
|  | "Bad Value for value numbering."); | 
|  | assert(V->getType() != Type::VoidTy && "Won't value number a void value"); | 
|  |  | 
|  | Values.push_back(V); | 
|  |  | 
|  | VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode()); | 
|  | VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair); | 
|  | assert((I == VNMap.end() || value(I->index) != V) && | 
|  | "Attempt to create a duplicate value number."); | 
|  | VNMap.insert(I, pair); | 
|  |  | 
|  | return Values.size(); | 
|  | } | 
|  |  | 
|  | /// value - returns the Value associated with a value number. | 
|  | Value *value(unsigned index) const { | 
|  | assert(index != 0 && "Zero index is reserved for not found."); | 
|  | assert(index <= Values.size() && "Index out of range."); | 
|  | return Values[index-1]; | 
|  | } | 
|  |  | 
|  | /// canonicalize - return a Value that is equal to V under Subtree. | 
|  | Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) { | 
|  | if (isa<Constant>(V)) return V; | 
|  |  | 
|  | if (unsigned n = valueNumber(V, Subtree)) | 
|  | return value(n); | 
|  | else | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// addEquality - adds that value V belongs to the set of equivalent | 
|  | /// values defined by value number n under Subtree. | 
|  | void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) { | 
|  | assert(canonicalize(value(n), Subtree) == value(n) && | 
|  | "Node's 'canonical' choice isn't best within this subtree."); | 
|  |  | 
|  | // Suppose that we are given "%x -> node #1 (%y)". The problem is that | 
|  | // we may already have "%z -> node #2 (%x)" somewhere above us in the | 
|  | // graph. We need to find those edges and add "%z -> node #1 (%y)" | 
|  | // to keep the lookups canonical. | 
|  |  | 
|  | std::vector<Value *> ToRepoint(1, V); | 
|  |  | 
|  | if (unsigned Conflict = valueNumber(V, Subtree)) { | 
|  | for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end(); | 
|  | I != E; ++I) { | 
|  | if (I->index == Conflict && I->Subtree->dominates(Subtree)) | 
|  | ToRepoint.push_back(I->V); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (std::vector<Value *>::iterator VI = ToRepoint.begin(), | 
|  | VE = ToRepoint.end(); VI != VE; ++VI) { | 
|  | Value *V = *VI; | 
|  |  | 
|  | VNPair pair(V, n, Subtree); | 
|  | VNMapType::iterator B = VNMap.begin(), E = VNMap.end(); | 
|  | VNMapType::iterator I = std::lower_bound(B, E, pair); | 
|  | if (I != E && I->V == V && I->Subtree == Subtree) | 
|  | I->index = n; // Update best choice | 
|  | else | 
|  | VNMap.insert(I, pair); // New Value | 
|  |  | 
|  | // XXX: we currently don't have to worry about updating values with | 
|  | // more specific Subtrees, but we will need to for PHI node support. | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Value *V_n = value(n); | 
|  | if (isa<Constant>(V) && isa<Constant>(V_n)) { | 
|  | assert(V == V_n && "Constant equals different constant?"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /// remove - removes all references to value V. | 
|  | void remove(Value *V) { | 
|  | VNMapType::iterator B = VNMap.begin(), E = VNMap.end(); | 
|  | VNPair pair(V, 0, DTDFS->getRootNode()); | 
|  | VNMapType::iterator J = std::upper_bound(B, E, pair); | 
|  | VNMapType::iterator I = J; | 
|  |  | 
|  | while (I != B && (I == E || I->V == V)) --I; | 
|  |  | 
|  | VNMap.erase(I, J); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// The InequalityGraph stores the relationships between values. | 
|  | /// Each Value in the graph is assigned to a Node. Nodes are pointer | 
|  | /// comparable for equality. The caller is expected to maintain the logical | 
|  | /// consistency of the system. | 
|  | /// | 
|  | /// The InequalityGraph class may invalidate Node*s after any mutator call. | 
|  | /// @brief The InequalityGraph stores the relationships between values. | 
|  | class VISIBILITY_HIDDEN InequalityGraph { | 
|  | ValueNumbering &VN; | 
|  | DomTreeDFS::Node *TreeRoot; | 
|  |  | 
|  | InequalityGraph();                  // DO NOT IMPLEMENT | 
|  | InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT | 
|  | public: | 
|  | InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot) | 
|  | : VN(VN), TreeRoot(TreeRoot) {} | 
|  |  | 
|  | class Node; | 
|  |  | 
|  | /// An Edge is contained inside a Node making one end of the edge implicit | 
|  | /// and contains a pointer to the other end. The edge contains a lattice | 
|  | /// value specifying the relationship and an DomTreeDFS::Node specifying | 
|  | /// the root in the dominator tree to which this edge applies. | 
|  | class VISIBILITY_HIDDEN Edge { | 
|  | public: | 
|  | Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST) | 
|  | : To(T), LV(V), Subtree(ST) {} | 
|  |  | 
|  | unsigned To; | 
|  | LatticeVal LV; | 
|  | DomTreeDFS::Node *Subtree; | 
|  |  | 
|  | bool operator<(const Edge &edge) const { | 
|  | if (To != edge.To) return To < edge.To; | 
|  | return *Subtree < *edge.Subtree; | 
|  | } | 
|  |  | 
|  | bool operator<(unsigned to) const { | 
|  | return To < to; | 
|  | } | 
|  |  | 
|  | bool operator>(unsigned to) const { | 
|  | return To > to; | 
|  | } | 
|  |  | 
|  | friend bool operator<(unsigned to, const Edge &edge) { | 
|  | return edge.operator>(to); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A single node in the InequalityGraph. This stores the canonical Value | 
|  | /// for the node, as well as the relationships with the neighbours. | 
|  | /// | 
|  | /// @brief A single node in the InequalityGraph. | 
|  | class VISIBILITY_HIDDEN Node { | 
|  | friend class InequalityGraph; | 
|  |  | 
|  | typedef SmallVector<Edge, 4> RelationsType; | 
|  | RelationsType Relations; | 
|  |  | 
|  | // TODO: can this idea improve performance? | 
|  | //friend class std::vector<Node>; | 
|  | //Node(Node &N) { RelationsType.swap(N.RelationsType); } | 
|  |  | 
|  | public: | 
|  | typedef RelationsType::iterator       iterator; | 
|  | typedef RelationsType::const_iterator const_iterator; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | virtual ~Node() {} | 
|  | virtual void dump() const { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  | private: | 
|  | void dump(std::ostream &os) const { | 
|  | static const std::string names[32] = | 
|  | { "000000", "000001", "000002", "000003", "000004", "000005", | 
|  | "000006", "000007", "000008", "000009", "     >", "    >=", | 
|  | "  s>u<", "s>=u<=", "    s>", "   s>=", "000016", "000017", | 
|  | "  s<u>", "s<=u>=", "     <", "    <=", "    s<", "   s<=", | 
|  | "000024", "000025", "    u>", "   u>=", "    u<", "   u<=", | 
|  | "    !=", "000031" }; | 
|  | for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) { | 
|  | os << names[NI->LV] << " " << NI->To | 
|  | << " (" << NI->Subtree->getDFSNumIn() << "), "; | 
|  | } | 
|  | } | 
|  | public: | 
|  | #endif | 
|  |  | 
|  | iterator begin()             { return Relations.begin(); } | 
|  | iterator end()               { return Relations.end();   } | 
|  | const_iterator begin() const { return Relations.begin(); } | 
|  | const_iterator end()   const { return Relations.end();   } | 
|  |  | 
|  | iterator find(unsigned n, DomTreeDFS::Node *Subtree) { | 
|  | iterator E = end(); | 
|  | for (iterator I = std::lower_bound(begin(), E, n); | 
|  | I != E && I->To == n; ++I) { | 
|  | if (Subtree->DominatedBy(I->Subtree)) | 
|  | return I; | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const { | 
|  | const_iterator E = end(); | 
|  | for (const_iterator I = std::lower_bound(begin(), E, n); | 
|  | I != E && I->To == n; ++I) { | 
|  | if (Subtree->DominatedBy(I->Subtree)) | 
|  | return I; | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | /// update - updates the lattice value for a given node, creating a new | 
|  | /// entry if one doesn't exist. The new lattice value must not be | 
|  | /// inconsistent with any previously existing value. | 
|  | void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) { | 
|  | assert(validPredicate(R) && "Invalid predicate."); | 
|  |  | 
|  | Edge edge(n, R, Subtree); | 
|  | iterator B = begin(), E = end(); | 
|  | iterator I = std::lower_bound(B, E, edge); | 
|  |  | 
|  | iterator J = I; | 
|  | while (J != E && J->To == n) { | 
|  | if (Subtree->DominatedBy(J->Subtree)) | 
|  | break; | 
|  | ++J; | 
|  | } | 
|  |  | 
|  | if (J != E && J->To == n) { | 
|  | edge.LV = static_cast<LatticeVal>(J->LV & R); | 
|  | assert(validPredicate(edge.LV) && "Invalid union of lattice values."); | 
|  |  | 
|  | if (edge.LV == J->LV) | 
|  | return; // This update adds nothing new. | 
|  | } | 
|  |  | 
|  | if (I != B) { | 
|  | // We also have to tighten any edge beneath our update. | 
|  | for (iterator K = I - 1; K->To == n; --K) { | 
|  | if (K->Subtree->DominatedBy(Subtree)) { | 
|  | LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV); | 
|  | assert(validPredicate(LV) && "Invalid union of lattice values"); | 
|  | K->LV = LV; | 
|  | } | 
|  | if (K == B) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert new edge at Subtree if it isn't already there. | 
|  | if (I == E || I->To != n || Subtree != I->Subtree) | 
|  | Relations.insert(I, edge); | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  |  | 
|  | std::vector<Node> Nodes; | 
|  |  | 
|  | public: | 
|  | /// node - returns the node object at a given value number. The pointer | 
|  | /// returned may be invalidated on the next call to node(). | 
|  | Node *node(unsigned index) { | 
|  | assert(VN.value(index)); // This triggers the necessary checks. | 
|  | if (Nodes.size() < index) Nodes.resize(index); | 
|  | return &Nodes[index-1]; | 
|  | } | 
|  |  | 
|  | /// isRelatedBy - true iff n1 op n2 | 
|  | bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, | 
|  | LatticeVal LV) { | 
|  | if (n1 == n2) return LV & EQ_BIT; | 
|  |  | 
|  | Node *N1 = node(n1); | 
|  | Node::iterator I = N1->find(n2, Subtree), E = N1->end(); | 
|  | if (I != E) return (I->LV & LV) == I->LV; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The add* methods assume that your input is logically valid and may | 
|  | // assertion-fail or infinitely loop if you attempt a contradiction. | 
|  |  | 
|  | /// addInequality - Sets n1 op n2. | 
|  | /// It is also an error to call this on an inequality that is already true. | 
|  | void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, | 
|  | LatticeVal LV1) { | 
|  | assert(n1 != n2 && "A node can't be inequal to itself."); | 
|  |  | 
|  | if (LV1 != NE) | 
|  | assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) && | 
|  | "Contradictory inequality."); | 
|  |  | 
|  | // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and | 
|  | // add %a < %n2 too. This keeps the graph fully connected. | 
|  | if (LV1 != NE) { | 
|  | // Break up the relationship into signed and unsigned comparison parts. | 
|  | // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and | 
|  | // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship | 
|  | // should have the EQ_BIT iff it's set for both op1 and op2. | 
|  |  | 
|  | unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT); | 
|  | unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT); | 
|  |  | 
|  | for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) { | 
|  | if (I->LV != NE && I->To != n2) { | 
|  |  | 
|  | DomTreeDFS::Node *Local_Subtree = NULL; | 
|  | if (Subtree->DominatedBy(I->Subtree)) | 
|  | Local_Subtree = Subtree; | 
|  | else if (I->Subtree->DominatedBy(Subtree)) | 
|  | Local_Subtree = I->Subtree; | 
|  |  | 
|  | if (Local_Subtree) { | 
|  | unsigned new_relationship = 0; | 
|  | LatticeVal ILV = reversePredicate(I->LV); | 
|  | unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT); | 
|  | unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT); | 
|  |  | 
|  | if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) | 
|  | new_relationship |= ILV_s; | 
|  | if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) | 
|  | new_relationship |= ILV_u; | 
|  |  | 
|  | if (new_relationship) { | 
|  | if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) | 
|  | new_relationship |= (SLT_BIT|SGT_BIT); | 
|  | if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) | 
|  | new_relationship |= (ULT_BIT|UGT_BIT); | 
|  | if ((LV1 & EQ_BIT) && (ILV & EQ_BIT)) | 
|  | new_relationship |= EQ_BIT; | 
|  |  | 
|  | LatticeVal NewLV = static_cast<LatticeVal>(new_relationship); | 
|  |  | 
|  | node(I->To)->update(n2, NewLV, Local_Subtree); | 
|  | node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) { | 
|  | if (I->LV != NE && I->To != n1) { | 
|  | DomTreeDFS::Node *Local_Subtree = NULL; | 
|  | if (Subtree->DominatedBy(I->Subtree)) | 
|  | Local_Subtree = Subtree; | 
|  | else if (I->Subtree->DominatedBy(Subtree)) | 
|  | Local_Subtree = I->Subtree; | 
|  |  | 
|  | if (Local_Subtree) { | 
|  | unsigned new_relationship = 0; | 
|  | unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT); | 
|  | unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT); | 
|  |  | 
|  | if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) | 
|  | new_relationship |= ILV_s; | 
|  |  | 
|  | if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) | 
|  | new_relationship |= ILV_u; | 
|  |  | 
|  | if (new_relationship) { | 
|  | if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) | 
|  | new_relationship |= (SLT_BIT|SGT_BIT); | 
|  | if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) | 
|  | new_relationship |= (ULT_BIT|UGT_BIT); | 
|  | if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT)) | 
|  | new_relationship |= EQ_BIT; | 
|  |  | 
|  | LatticeVal NewLV = static_cast<LatticeVal>(new_relationship); | 
|  |  | 
|  | node(n1)->update(I->To, NewLV, Local_Subtree); | 
|  | node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | node(n1)->update(n2, LV1, Subtree); | 
|  | node(n2)->update(n1, reversePredicate(LV1), Subtree); | 
|  | } | 
|  |  | 
|  | /// remove - removes a node from the graph by removing all references to | 
|  | /// and from it. | 
|  | void remove(unsigned n) { | 
|  | Node *N = node(n); | 
|  | for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) { | 
|  | Node::iterator Iter = node(NI->To)->find(n, TreeRoot); | 
|  | do { | 
|  | node(NI->To)->Relations.erase(Iter); | 
|  | Iter = node(NI->To)->find(n, TreeRoot); | 
|  | } while (Iter != node(NI->To)->end()); | 
|  | } | 
|  | N->Relations.clear(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | virtual ~InequalityGraph() {} | 
|  | virtual void dump() { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  |  | 
|  | void dump(std::ostream &os) { | 
|  | for (unsigned i = 1; i <= Nodes.size(); ++i) { | 
|  | os << i << " = {"; | 
|  | node(i)->dump(os); | 
|  | os << "}\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | class VRPSolver; | 
|  |  | 
|  | /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes | 
|  | /// in the InequalityGraph. | 
|  | class VISIBILITY_HIDDEN ValueRanges { | 
|  | ValueNumbering &VN; | 
|  | TargetData *TD; | 
|  |  | 
|  | class VISIBILITY_HIDDEN ScopedRange { | 
|  | typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> > | 
|  | RangeListType; | 
|  | RangeListType RangeList; | 
|  |  | 
|  | static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS, | 
|  | const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) { | 
|  | return *LHS.first < *RHS.first; | 
|  | } | 
|  |  | 
|  | public: | 
|  | #ifndef NDEBUG | 
|  | virtual ~ScopedRange() {} | 
|  | virtual void dump() const { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  |  | 
|  | void dump(std::ostream &os) const { | 
|  | os << "{"; | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) { | 
|  | os << I->second << " (" << I->first->getDFSNumIn() << "), "; | 
|  | } | 
|  | os << "}"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | typedef RangeListType::iterator       iterator; | 
|  | typedef RangeListType::const_iterator const_iterator; | 
|  |  | 
|  | iterator begin() { return RangeList.begin(); } | 
|  | iterator end()   { return RangeList.end(); } | 
|  | const_iterator begin() const { return RangeList.begin(); } | 
|  | const_iterator end()   const { return RangeList.end(); } | 
|  |  | 
|  | iterator find(DomTreeDFS::Node *Subtree) { | 
|  | static ConstantRange empty(1, false); | 
|  | iterator E = end(); | 
|  | iterator I = std::lower_bound(begin(), E, | 
|  | std::make_pair(Subtree, empty), swo); | 
|  |  | 
|  | while (I != E && !I->first->dominates(Subtree)) ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | const_iterator find(DomTreeDFS::Node *Subtree) const { | 
|  | static const ConstantRange empty(1, false); | 
|  | const_iterator E = end(); | 
|  | const_iterator I = std::lower_bound(begin(), E, | 
|  | std::make_pair(Subtree, empty), swo); | 
|  |  | 
|  | while (I != E && !I->first->dominates(Subtree)) ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) { | 
|  | assert(!CR.isEmptySet() && "Empty ConstantRange."); | 
|  | assert(!CR.isSingleElement() && "Refusing to store single element."); | 
|  |  | 
|  | static ConstantRange empty(1, false); | 
|  | iterator E = end(); | 
|  | iterator I = | 
|  | std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo); | 
|  |  | 
|  | if (I != end() && I->first == Subtree) { | 
|  | ConstantRange CR2 = I->second.maximalIntersectWith(CR); | 
|  | assert(!CR2.isEmptySet() && !CR2.isSingleElement() && | 
|  | "Invalid union of ranges."); | 
|  | I->second = CR2; | 
|  | } else | 
|  | RangeList.insert(I, std::make_pair(Subtree, CR)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | std::vector<ScopedRange> Ranges; | 
|  |  | 
|  | void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){ | 
|  | if (CR.isFullSet()) return; | 
|  | if (Ranges.size() < n) Ranges.resize(n); | 
|  | Ranges[n-1].update(CR, Subtree); | 
|  | } | 
|  |  | 
|  | /// create - Creates a ConstantRange that matches the given LatticeVal | 
|  | /// relation with a given integer. | 
|  | ConstantRange create(LatticeVal LV, const ConstantRange &CR) { | 
|  | assert(!CR.isEmptySet() && "Can't deal with empty set."); | 
|  |  | 
|  | if (LV == NE) | 
|  | return makeConstantRange(ICmpInst::ICMP_NE, CR); | 
|  |  | 
|  | unsigned LV_s = LV & (SGT_BIT|SLT_BIT); | 
|  | unsigned LV_u = LV & (UGT_BIT|ULT_BIT); | 
|  | bool hasEQ = LV & EQ_BIT; | 
|  |  | 
|  | ConstantRange Range(CR.getBitWidth()); | 
|  |  | 
|  | if (LV_s == SGT_BIT) { | 
|  | Range = Range.maximalIntersectWith(makeConstantRange( | 
|  | hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR)); | 
|  | } else if (LV_s == SLT_BIT) { | 
|  | Range = Range.maximalIntersectWith(makeConstantRange( | 
|  | hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR)); | 
|  | } | 
|  |  | 
|  | if (LV_u == UGT_BIT) { | 
|  | Range = Range.maximalIntersectWith(makeConstantRange( | 
|  | hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR)); | 
|  | } else if (LV_u == ULT_BIT) { | 
|  | Range = Range.maximalIntersectWith(makeConstantRange( | 
|  | hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR)); | 
|  | } | 
|  |  | 
|  | return Range; | 
|  | } | 
|  |  | 
|  | /// makeConstantRange - Creates a ConstantRange representing the set of all | 
|  | /// value that match the ICmpInst::Predicate with any of the values in CR. | 
|  | ConstantRange makeConstantRange(ICmpInst::Predicate ICmpOpcode, | 
|  | const ConstantRange &CR) { | 
|  | uint32_t W = CR.getBitWidth(); | 
|  | switch (ICmpOpcode) { | 
|  | default: assert(!"Invalid ICmp opcode to makeConstantRange()"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | return ConstantRange(CR.getLower(), CR.getUpper()); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (CR.isSingleElement()) | 
|  | return ConstantRange(CR.getUpper(), CR.getLower()); | 
|  | return ConstantRange(W); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax()); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax()); | 
|  | case ICmpInst::ICMP_ULE: { | 
|  | APInt UMax(CR.getUnsignedMax()); | 
|  | if (UMax.isMaxValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getMinValue(W), UMax + 1); | 
|  | } | 
|  | case ICmpInst::ICMP_SLE: { | 
|  | APInt SMax(CR.getSignedMax()); | 
|  | if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); | 
|  | } | 
|  | case ICmpInst::ICMP_UGT: | 
|  | return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W)); | 
|  | case ICmpInst::ICMP_SGT: | 
|  | return ConstantRange(CR.getSignedMin() + 1, | 
|  | APInt::getSignedMinValue(W)); | 
|  | case ICmpInst::ICMP_UGE: { | 
|  | APInt UMin(CR.getUnsignedMin()); | 
|  | if (UMin.isMinValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(UMin, APInt::getNullValue(W)); | 
|  | } | 
|  | case ICmpInst::ICMP_SGE: { | 
|  | APInt SMin(CR.getSignedMin()); | 
|  | if (SMin.isMinSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(SMin, APInt::getSignedMinValue(W)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) { | 
|  | return V == VN.canonicalize(V, Subtree); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | public: | 
|  |  | 
|  | ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {} | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | virtual ~ValueRanges() {} | 
|  |  | 
|  | virtual void dump() const { | 
|  | dump(*cerr.stream()); | 
|  | } | 
|  |  | 
|  | void dump(std::ostream &os) const { | 
|  | for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { | 
|  | os << (i+1) << " = "; | 
|  | Ranges[i].dump(os); | 
|  | os << "\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// range - looks up the ConstantRange associated with a value number. | 
|  | ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) { | 
|  | assert(VN.value(n)); // performs range checks | 
|  |  | 
|  | if (n <= Ranges.size()) { | 
|  | ScopedRange::iterator I = Ranges[n-1].find(Subtree); | 
|  | if (I != Ranges[n-1].end()) return I->second; | 
|  | } | 
|  |  | 
|  | Value *V = VN.value(n); | 
|  | ConstantRange CR = range(V); | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | /// range - determine a range from a Value without performing any lookups. | 
|  | ConstantRange range(Value *V) const { | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
|  | return ConstantRange(C->getValue()); | 
|  | else if (isa<ConstantPointerNull>(V)) | 
|  | return ConstantRange(APInt::getNullValue(typeToWidth(V->getType()))); | 
|  | else | 
|  | return typeToWidth(V->getType()); | 
|  | } | 
|  |  | 
|  | // typeToWidth - returns the number of bits necessary to store a value of | 
|  | // this type, or zero if unknown. | 
|  | uint32_t typeToWidth(const Type *Ty) const { | 
|  | if (TD) | 
|  | return TD->getTypeSizeInBits(Ty); | 
|  |  | 
|  | if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ITy->getBitWidth(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2, | 
|  | LatticeVal LV) { | 
|  | switch (LV) { | 
|  | default: assert(!"Impossible lattice value!"); | 
|  | case NE: | 
|  | return CR1.maximalIntersectWith(CR2).isEmptySet(); | 
|  | case ULT: | 
|  | return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()); | 
|  | case ULE: | 
|  | return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()); | 
|  | case UGT: | 
|  | return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()); | 
|  | case UGE: | 
|  | return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()); | 
|  | case SLT: | 
|  | return CR1.getSignedMax().slt(CR2.getSignedMin()); | 
|  | case SLE: | 
|  | return CR1.getSignedMax().sle(CR2.getSignedMin()); | 
|  | case SGT: | 
|  | return CR1.getSignedMin().sgt(CR2.getSignedMax()); | 
|  | case SGE: | 
|  | return CR1.getSignedMin().sge(CR2.getSignedMax()); | 
|  | case LT: | 
|  | return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) && | 
|  | CR1.getSignedMax().slt(CR2.getUnsignedMin()); | 
|  | case LE: | 
|  | return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) && | 
|  | CR1.getSignedMax().sle(CR2.getUnsignedMin()); | 
|  | case GT: | 
|  | return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) && | 
|  | CR1.getSignedMin().sgt(CR2.getSignedMax()); | 
|  | case GE: | 
|  | return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) && | 
|  | CR1.getSignedMin().sge(CR2.getSignedMax()); | 
|  | case SLTUGT: | 
|  | return CR1.getSignedMax().slt(CR2.getSignedMin()) && | 
|  | CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()); | 
|  | case SLEUGE: | 
|  | return CR1.getSignedMax().sle(CR2.getSignedMin()) && | 
|  | CR1.getUnsignedMin().uge(CR2.getUnsignedMax()); | 
|  | case SGTULT: | 
|  | return CR1.getSignedMin().sgt(CR2.getSignedMax()) && | 
|  | CR1.getUnsignedMax().ult(CR2.getUnsignedMin()); | 
|  | case SGEULE: | 
|  | return CR1.getSignedMin().sge(CR2.getSignedMax()) && | 
|  | CR1.getUnsignedMax().ule(CR2.getUnsignedMin()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, | 
|  | LatticeVal LV) { | 
|  | ConstantRange CR1 = range(n1, Subtree); | 
|  | ConstantRange CR2 = range(n2, Subtree); | 
|  |  | 
|  | // True iff all values in CR1 are LV to all values in CR2. | 
|  | return isRelatedBy(CR1, CR2, LV); | 
|  | } | 
|  |  | 
|  | void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred, | 
|  | VRPSolver *VRP); | 
|  | void markBlock(VRPSolver *VRP); | 
|  |  | 
|  | void mergeInto(Value **I, unsigned n, unsigned New, | 
|  | DomTreeDFS::Node *Subtree, VRPSolver *VRP) { | 
|  | ConstantRange CR_New = range(New, Subtree); | 
|  | ConstantRange Merged = CR_New; | 
|  |  | 
|  | for (; n != 0; ++I, --n) { | 
|  | unsigned i = VN.valueNumber(*I, Subtree); | 
|  | ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I); | 
|  | if (CR_Kill.isFullSet()) continue; | 
|  | Merged = Merged.maximalIntersectWith(CR_Kill); | 
|  | } | 
|  |  | 
|  | if (Merged.isFullSet() || Merged == CR_New) return; | 
|  |  | 
|  | applyRange(New, Merged, Subtree, VRP); | 
|  | } | 
|  |  | 
|  | void applyRange(unsigned n, const ConstantRange &CR, | 
|  | DomTreeDFS::Node *Subtree, VRPSolver *VRP) { | 
|  | ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree)); | 
|  | if (Merged.isEmptySet()) { | 
|  | markBlock(VRP); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const APInt *I = Merged.getSingleElement()) { | 
|  | Value *V = VN.value(n); // XXX: redesign worklist. | 
|  | const Type *Ty = V->getType(); | 
|  | if (Ty->isInteger()) { | 
|  | addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP); | 
|  | return; | 
|  | } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { | 
|  | assert(*I == 0 && "Pointer is null but not zero?"); | 
|  | addToWorklist(V, ConstantPointerNull::get(PTy), | 
|  | ICmpInst::ICMP_EQ, VRP); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | update(n, Merged, Subtree); | 
|  | } | 
|  |  | 
|  | void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, | 
|  | VRPSolver *VRP) { | 
|  | ConstantRange CR1 = range(n1, Subtree); | 
|  | ConstantRange CR2 = range(n2, Subtree); | 
|  |  | 
|  | uint32_t W = CR1.getBitWidth(); | 
|  |  | 
|  | if (const APInt *I = CR1.getSingleElement()) { | 
|  | if (CR2.isFullSet()) { | 
|  | ConstantRange NewCR2(CR1.getUpper(), CR1.getLower()); | 
|  | applyRange(n2, NewCR2, Subtree, VRP); | 
|  | } else if (*I == CR2.getLower()) { | 
|  | APInt NewLower(CR2.getLower() + 1), | 
|  | NewUpper(CR2.getUpper()); | 
|  | if (NewLower == NewUpper) | 
|  | NewLower = NewUpper = APInt::getMinValue(W); | 
|  |  | 
|  | ConstantRange NewCR2(NewLower, NewUpper); | 
|  | applyRange(n2, NewCR2, Subtree, VRP); | 
|  | } else if (*I == CR2.getUpper() - 1) { | 
|  | APInt NewLower(CR2.getLower()), | 
|  | NewUpper(CR2.getUpper() - 1); | 
|  | if (NewLower == NewUpper) | 
|  | NewLower = NewUpper = APInt::getMinValue(W); | 
|  |  | 
|  | ConstantRange NewCR2(NewLower, NewUpper); | 
|  | applyRange(n2, NewCR2, Subtree, VRP); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const APInt *I = CR2.getSingleElement()) { | 
|  | if (CR1.isFullSet()) { | 
|  | ConstantRange NewCR1(CR2.getUpper(), CR2.getLower()); | 
|  | applyRange(n1, NewCR1, Subtree, VRP); | 
|  | } else if (*I == CR1.getLower()) { | 
|  | APInt NewLower(CR1.getLower() + 1), | 
|  | NewUpper(CR1.getUpper()); | 
|  | if (NewLower == NewUpper) | 
|  | NewLower = NewUpper = APInt::getMinValue(W); | 
|  |  | 
|  | ConstantRange NewCR1(NewLower, NewUpper); | 
|  | applyRange(n1, NewCR1, Subtree, VRP); | 
|  | } else if (*I == CR1.getUpper() - 1) { | 
|  | APInt NewLower(CR1.getLower()), | 
|  | NewUpper(CR1.getUpper() - 1); | 
|  | if (NewLower == NewUpper) | 
|  | NewLower = NewUpper = APInt::getMinValue(W); | 
|  |  | 
|  | ConstantRange NewCR1(NewLower, NewUpper); | 
|  | applyRange(n1, NewCR1, Subtree, VRP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, | 
|  | LatticeVal LV, VRPSolver *VRP) { | 
|  | assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work."); | 
|  |  | 
|  | if (LV == NE) { | 
|  | addNotEquals(n1, n2, Subtree, VRP); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ConstantRange CR1 = range(n1, Subtree); | 
|  | ConstantRange CR2 = range(n2, Subtree); | 
|  |  | 
|  | if (!CR1.isSingleElement()) { | 
|  | ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2)); | 
|  | if (NewCR1 != CR1) | 
|  | applyRange(n1, NewCR1, Subtree, VRP); | 
|  | } | 
|  |  | 
|  | if (!CR2.isSingleElement()) { | 
|  | ConstantRange NewCR2 = CR2.maximalIntersectWith( | 
|  | create(reversePredicate(LV), CR1)); | 
|  | if (NewCR2 != CR2) | 
|  | applyRange(n2, NewCR2, Subtree, VRP); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// UnreachableBlocks keeps tracks of blocks that are for one reason or | 
|  | /// another discovered to be unreachable. This is used to cull the graph when | 
|  | /// analyzing instructions, and to mark blocks with the "unreachable" | 
|  | /// terminator instruction after the function has executed. | 
|  | class VISIBILITY_HIDDEN UnreachableBlocks { | 
|  | private: | 
|  | std::vector<BasicBlock *> DeadBlocks; | 
|  |  | 
|  | public: | 
|  | /// mark - mark a block as dead | 
|  | void mark(BasicBlock *BB) { | 
|  | std::vector<BasicBlock *>::iterator E = DeadBlocks.end(); | 
|  | std::vector<BasicBlock *>::iterator I = | 
|  | std::lower_bound(DeadBlocks.begin(), E, BB); | 
|  |  | 
|  | if (I == E || *I != BB) DeadBlocks.insert(I, BB); | 
|  | } | 
|  |  | 
|  | /// isDead - returns whether a block is known to be dead already | 
|  | bool isDead(BasicBlock *BB) { | 
|  | std::vector<BasicBlock *>::iterator E = DeadBlocks.end(); | 
|  | std::vector<BasicBlock *>::iterator I = | 
|  | std::lower_bound(DeadBlocks.begin(), E, BB); | 
|  |  | 
|  | return I != E && *I == BB; | 
|  | } | 
|  |  | 
|  | /// kill - replace the dead blocks' terminator with an UnreachableInst. | 
|  | bool kill() { | 
|  | bool modified = false; | 
|  | for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(), | 
|  | E = DeadBlocks.end(); I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  |  | 
|  | DOUT << "unreachable block: " << BB->getName() << "\n"; | 
|  |  | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); | 
|  | SI != SE; ++SI) { | 
|  | BasicBlock *Succ = *SI; | 
|  | Succ->removePredecessor(BB); | 
|  | } | 
|  |  | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | TI->replaceAllUsesWith(UndefValue::get(TI->getType())); | 
|  | TI->eraseFromParent(); | 
|  | new UnreachableInst(BB); | 
|  | ++NumBlocks; | 
|  | modified = true; | 
|  | } | 
|  | DeadBlocks.clear(); | 
|  | return modified; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// VRPSolver keeps track of how changes to one variable affect other | 
|  | /// variables, and forwards changes along to the InequalityGraph. It | 
|  | /// also maintains the correct choice for "canonical" in the IG. | 
|  | /// @brief VRPSolver calculates inferences from a new relationship. | 
|  | class VISIBILITY_HIDDEN VRPSolver { | 
|  | private: | 
|  | friend class ValueRanges; | 
|  |  | 
|  | struct Operation { | 
|  | Value *LHS, *RHS; | 
|  | ICmpInst::Predicate Op; | 
|  |  | 
|  | BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead | 
|  | Instruction *ContextInst; | 
|  | }; | 
|  | std::deque<Operation> WorkList; | 
|  |  | 
|  | ValueNumbering &VN; | 
|  | InequalityGraph &IG; | 
|  | UnreachableBlocks &UB; | 
|  | ValueRanges &VR; | 
|  | DomTreeDFS *DTDFS; | 
|  | DomTreeDFS::Node *Top; | 
|  | BasicBlock *TopBB; | 
|  | Instruction *TopInst; | 
|  | bool &modified; | 
|  |  | 
|  | typedef InequalityGraph::Node Node; | 
|  |  | 
|  | // below - true if the Instruction is dominated by the current context | 
|  | // block or instruction | 
|  | bool below(Instruction *I) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  | if (TopInst && TopInst->getParent() == BB) { | 
|  | if (isa<TerminatorInst>(TopInst)) return false; | 
|  | if (isa<TerminatorInst>(I)) return true; | 
|  | if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true; | 
|  | if (!isa<PHINode>(TopInst) &&  isa<PHINode>(I)) return false; | 
|  |  | 
|  | for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end(); | 
|  | Iter != E; ++Iter) { | 
|  | if (&*Iter == TopInst) return true; | 
|  | else if (&*Iter == I) return false; | 
|  | } | 
|  | assert(!"Instructions not found in parent BasicBlock?"); | 
|  | } else { | 
|  | DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB); | 
|  | if (!Node) return false; | 
|  | return Top->dominates(Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | // aboveOrBelow - true if the Instruction either dominates or is dominated | 
|  | // by the current context block or instruction | 
|  | bool aboveOrBelow(Instruction *I) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  | DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB); | 
|  | if (!Node) return false; | 
|  |  | 
|  | return Top == Node || Top->dominates(Node) || Node->dominates(Top); | 
|  | } | 
|  |  | 
|  | bool makeEqual(Value *V1, Value *V2) { | 
|  | DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n"; | 
|  | DOUT << "context is "; | 
|  | if (TopInst) DOUT << "I: " << *TopInst << "\n"; | 
|  | else DOUT << "BB: " << TopBB->getName() | 
|  | << "(" << Top->getDFSNumIn() << ")\n"; | 
|  |  | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Can't make two values with different types equal."); | 
|  |  | 
|  | if (V1 == V2) return true; | 
|  |  | 
|  | if (isa<Constant>(V1) && isa<Constant>(V2)) | 
|  | return false; | 
|  |  | 
|  | unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top); | 
|  |  | 
|  | if (n1 && n2) { | 
|  | if (n1 == n2) return true; | 
|  | if (IG.isRelatedBy(n1, n2, Top, NE)) return false; | 
|  | } | 
|  |  | 
|  | if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical."); | 
|  | if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical."); | 
|  |  | 
|  | assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual."); | 
|  |  | 
|  | assert(!isa<Constant>(V2) && "Tried to remove a constant."); | 
|  |  | 
|  | SetVector<unsigned> Remove; | 
|  | if (n2) Remove.insert(n2); | 
|  |  | 
|  | if (n1 && n2) { | 
|  | // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z. | 
|  | // We can't just merge %x and %y because the relationship with %z would | 
|  | // be EQ and that's invalid. What we're doing is looking for any nodes | 
|  | // %z such that %x <= %z and %y >= %z, and vice versa. | 
|  |  | 
|  | Node::iterator end = IG.node(n2)->end(); | 
|  |  | 
|  | // Find the intersection between N1 and N2 which is dominated by | 
|  | // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to | 
|  | // Remove. | 
|  | for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end(); | 
|  | I != E; ++I) { | 
|  | if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue; | 
|  |  | 
|  | unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT); | 
|  | unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT); | 
|  | Node::iterator NI = IG.node(n2)->find(I->To, Top); | 
|  | if (NI != end) { | 
|  | LatticeVal NILV = reversePredicate(NI->LV); | 
|  | unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT); | 
|  | unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT); | 
|  |  | 
|  | if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) || | 
|  | (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u)) | 
|  | Remove.insert(I->To); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if one of the nodes about to be removed is actually a better | 
|  | // canonical choice than n1. | 
|  | unsigned orig_n1 = n1; | 
|  | SetVector<unsigned>::iterator DontRemove = Remove.end(); | 
|  | for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */, | 
|  | E = Remove.end(); I != E; ++I) { | 
|  | unsigned n = *I; | 
|  | Value *V = VN.value(n); | 
|  | if (VN.compare(V, V1)) { | 
|  | V1 = V; | 
|  | n1 = n; | 
|  | DontRemove = I; | 
|  | } | 
|  | } | 
|  | if (DontRemove != Remove.end()) { | 
|  | unsigned n = *DontRemove; | 
|  | Remove.remove(n); | 
|  | Remove.insert(orig_n1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We'd like to allow makeEqual on two values to perform a simple | 
|  | // substitution without every creating nodes in the IG whenever possible. | 
|  | // | 
|  | // The first iteration through this loop operates on V2 before going | 
|  | // through the Remove list and operating on those too. If all of the | 
|  | // iterations performed simple replacements then we exit early. | 
|  | bool mergeIGNode = false; | 
|  | unsigned i = 0; | 
|  | for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { | 
|  | if (i) R = VN.value(Remove[i]); // skip n2. | 
|  |  | 
|  | // Try to replace the whole instruction. If we can, we're done. | 
|  | Instruction *I2 = dyn_cast<Instruction>(R); | 
|  | if (I2 && below(I2)) { | 
|  | std::vector<Instruction *> ToNotify; | 
|  | for (Value::use_iterator UI = R->use_begin(), UE = R->use_end(); | 
|  | UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) | 
|  | ToNotify.push_back(I); | 
|  | } | 
|  |  | 
|  | DOUT << "Simply removing " << *I2 | 
|  | << ", replacing with " << *V1 << "\n"; | 
|  | I2->replaceAllUsesWith(V1); | 
|  | // leave it dead; it'll get erased later. | 
|  | ++NumInstruction; | 
|  | modified = true; | 
|  |  | 
|  | for (std::vector<Instruction *>::iterator II = ToNotify.begin(), | 
|  | IE = ToNotify.end(); II != IE; ++II) { | 
|  | opsToDef(*II); | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, replace all dominated uses. | 
|  | for (Value::use_iterator UI = R->use_begin(), UE = R->use_end(); | 
|  | UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { | 
|  | if (below(I)) { | 
|  | TheUse.set(V1); | 
|  | modified = true; | 
|  | ++NumVarsReplaced; | 
|  | opsToDef(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If that killed the instruction, stop here. | 
|  | if (I2 && isInstructionTriviallyDead(I2)) { | 
|  | DOUT << "Killed all uses of " << *I2 | 
|  | << ", replacing with " << *V1 << "\n"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we make it to here, then we will need to create a node for N1. | 
|  | // Otherwise, we can skip out early! | 
|  | mergeIGNode = true; | 
|  | } | 
|  |  | 
|  | if (!isa<Constant>(V1)) { | 
|  | if (Remove.empty()) { | 
|  | VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this); | 
|  | } else { | 
|  | std::vector<Value*> RemoveVals; | 
|  | RemoveVals.reserve(Remove.size()); | 
|  |  | 
|  | for (SetVector<unsigned>::iterator I = Remove.begin(), | 
|  | E = Remove.end(); I != E; ++I) { | 
|  | Value *V = VN.value(*I); | 
|  | if (!V->use_empty()) | 
|  | RemoveVals.push_back(V); | 
|  | } | 
|  | VR.mergeInto(&RemoveVals[0], RemoveVals.size(), | 
|  | VN.getOrInsertVN(V1, Top), Top, this); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mergeIGNode) { | 
|  | // Create N1. | 
|  | if (!n1) n1 = VN.getOrInsertVN(V1, Top); | 
|  |  | 
|  | // Migrate relationships from removed nodes to N1. | 
|  | for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end(); | 
|  | I != E; ++I) { | 
|  | unsigned n = *I; | 
|  | for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end(); | 
|  | NI != NE; ++NI) { | 
|  | if (NI->Subtree->DominatedBy(Top)) { | 
|  | if (NI->To == n1) { | 
|  | assert((NI->LV & EQ_BIT) && "Node inequal to itself."); | 
|  | continue; | 
|  | } | 
|  | if (Remove.count(NI->To)) | 
|  | continue; | 
|  |  | 
|  | IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top); | 
|  | IG.node(n1)->update(NI->To, NI->LV, Top); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Point V2 (and all items in Remove) to N1. | 
|  | if (!n2) | 
|  | VN.addEquality(n1, V2, Top); | 
|  | else { | 
|  | for (SetVector<unsigned>::iterator I = Remove.begin(), | 
|  | E = Remove.end(); I != E; ++I) { | 
|  | VN.addEquality(n1, VN.value(*I), Top); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If !Remove.empty() then V2 = Remove[0]->getValue(). | 
|  | // Even when Remove is empty, we still want to process V2. | 
|  | i = 0; | 
|  | for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { | 
|  | if (i) R = VN.value(Remove[i]); // skip n2. | 
|  |  | 
|  | if (Instruction *I2 = dyn_cast<Instruction>(R)) { | 
|  | if (aboveOrBelow(I2)) | 
|  | defToOps(I2); | 
|  | } | 
|  | for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end(); | 
|  | UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { | 
|  | if (aboveOrBelow(I)) | 
|  | opsToDef(I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // re-opsToDef all dominated users of V1. | 
|  | if (Instruction *I = dyn_cast<Instruction>(V1)) { | 
|  | for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); | 
|  | UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | Value *V = TheUse.getUser(); | 
|  | if (!V->use_empty()) { | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (aboveOrBelow(Inst)) | 
|  | opsToDef(Inst); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value | 
|  | /// Requires that the lattice value be valid; does not accept ICMP_EQ. | 
|  | static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_EQ: | 
|  | assert(!"No matching lattice value."); | 
|  | return static_cast<LatticeVal>(EQ_BIT); | 
|  | default: | 
|  | assert(!"Invalid 'icmp' predicate."); | 
|  | case ICmpInst::ICMP_NE: | 
|  | return NE; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | return UGT; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | return UGE; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | return ULT; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | return ULE; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | return SGT; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | return SGE; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | return SLT; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return SLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | public: | 
|  | VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB, | 
|  | ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified, | 
|  | BasicBlock *TopBB) | 
|  | : VN(VN), | 
|  | IG(IG), | 
|  | UB(UB), | 
|  | VR(VR), | 
|  | DTDFS(DTDFS), | 
|  | Top(DTDFS->getNodeForBlock(TopBB)), | 
|  | TopBB(TopBB), | 
|  | TopInst(NULL), | 
|  | modified(modified) | 
|  | { | 
|  | assert(Top && "VRPSolver created for unreachable basic block."); | 
|  | } | 
|  |  | 
|  | VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB, | 
|  | ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified, | 
|  | Instruction *TopInst) | 
|  | : VN(VN), | 
|  | IG(IG), | 
|  | UB(UB), | 
|  | VR(VR), | 
|  | DTDFS(DTDFS), | 
|  | Top(DTDFS->getNodeForBlock(TopInst->getParent())), | 
|  | TopBB(TopInst->getParent()), | 
|  | TopInst(TopInst), | 
|  | modified(modified) | 
|  | { | 
|  | assert(Top && "VRPSolver created for unreachable basic block."); | 
|  | assert(Top->getBlock() == TopInst->getParent() && "Context mismatch."); | 
|  | } | 
|  |  | 
|  | bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const { | 
|  | if (Constant *C1 = dyn_cast<Constant>(V1)) | 
|  | if (Constant *C2 = dyn_cast<Constant>(V2)) | 
|  | return ConstantExpr::getCompare(Pred, C1, C2) == | 
|  | ConstantInt::getTrue(); | 
|  |  | 
|  | unsigned n1 = VN.valueNumber(V1, Top); | 
|  | unsigned n2 = VN.valueNumber(V2, Top); | 
|  |  | 
|  | if (n1 && n2) { | 
|  | if (n1 == n2) return Pred == ICmpInst::ICMP_EQ || | 
|  | Pred == ICmpInst::ICMP_ULE || | 
|  | Pred == ICmpInst::ICMP_UGE || | 
|  | Pred == ICmpInst::ICMP_SLE || | 
|  | Pred == ICmpInst::ICMP_SGE; | 
|  | if (Pred == ICmpInst::ICMP_EQ) return false; | 
|  | if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true; | 
|  | if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true; | 
|  | } | 
|  |  | 
|  | if ((n1 && !n2 && isa<Constant>(V2)) || | 
|  | (n2 && !n1 && isa<Constant>(V1))) { | 
|  | ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1); | 
|  | ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return CR1.isSingleElement() && | 
|  | CR1.getSingleElement() == CR2.getSingleElement(); | 
|  |  | 
|  | return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred)); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_EQ) return V1 == V2; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// add - adds a new property to the work queue | 
|  | void add(Value *V1, Value *V2, ICmpInst::Predicate Pred, | 
|  | Instruction *I = NULL) { | 
|  | DOUT << "adding " << *V1 << " " << Pred << " " << *V2; | 
|  | if (I) DOUT << " context: " << *I; | 
|  | else DOUT << " default context (" << Top->getDFSNumIn() << ")"; | 
|  | DOUT << "\n"; | 
|  |  | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Can't relate two values with different types."); | 
|  |  | 
|  | WorkList.push_back(Operation()); | 
|  | Operation &O = WorkList.back(); | 
|  | O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I; | 
|  | O.ContextBB = I ? I->getParent() : TopBB; | 
|  | } | 
|  |  | 
|  | /// defToOps - Given an instruction definition that we've learned something | 
|  | /// new about, find any new relationships between its operands. | 
|  | void defToOps(Instruction *I) { | 
|  | Instruction *NewContext = below(I) ? I : TopInst; | 
|  | Value *Canonical = VN.canonicalize(I, Top); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | const Type *Ty = BO->getType(); | 
|  | assert(!Ty->isFPOrFPVector() && "Float in work queue!"); | 
|  |  | 
|  | Value *Op0 = VN.canonicalize(BO->getOperand(0), Top); | 
|  | Value *Op1 = VN.canonicalize(BO->getOperand(1), Top); | 
|  |  | 
|  | // TODO: "and i32 -1, %x" EQ %y then %x EQ %y. | 
|  |  | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::And: { | 
|  | // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1 | 
|  | ConstantInt *CI = ConstantInt::getAllOnesValue(Ty); | 
|  | if (Canonical == CI) { | 
|  | add(CI, Op0, ICmpInst::ICMP_EQ, NewContext); | 
|  | add(CI, Op1, ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | } break; | 
|  | case Instruction::Or: { | 
|  | // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0 | 
|  | Constant *Zero = Constant::getNullValue(Ty); | 
|  | if (Canonical == Zero) { | 
|  | add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext); | 
|  | add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | } break; | 
|  | case Instruction::Xor: { | 
|  | // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b | 
|  | // "xor i32 %c, %a" EQ %c then %a EQ 0 | 
|  | // "xor i32 %c, %a" NE %c then %a NE 0 | 
|  | // Repeat the above, with order of operands reversed. | 
|  | Value *LHS = Op0; | 
|  | Value *RHS = Op1; | 
|  | if (!isa<Constant>(LHS)) std::swap(LHS, RHS); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) { | 
|  | if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) { | 
|  | add(RHS, ConstantInt::get(CI->getValue() ^ Arg->getValue()), | 
|  | ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | } | 
|  | if (Canonical == LHS) { | 
|  | if (isa<ConstantInt>(Canonical)) | 
|  | add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, | 
|  | NewContext); | 
|  | } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) { | 
|  | add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE, | 
|  | NewContext); | 
|  | } | 
|  | } break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) { | 
|  | // "icmp ult i32 %a, %y" EQ true then %a u< y | 
|  | // etc. | 
|  |  | 
|  | if (Canonical == ConstantInt::getTrue()) { | 
|  | add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(), | 
|  | NewContext); | 
|  | } else if (Canonical == ConstantInt::getFalse()) { | 
|  | add(IC->getOperand(0), IC->getOperand(1), | 
|  | ICmpInst::getInversePredicate(IC->getPredicate()), NewContext); | 
|  | } | 
|  | } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { | 
|  | if (I->getType()->isFPOrFPVector()) return; | 
|  |  | 
|  | // Given: "%a = select i1 %x, i32 %b, i32 %c" | 
|  | // %a EQ %b and %b NE %c then %x EQ true | 
|  | // %a EQ %c and %b NE %c then %x EQ false | 
|  |  | 
|  | Value *True  = SI->getTrueValue(); | 
|  | Value *False = SI->getFalseValue(); | 
|  | if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) { | 
|  | if (Canonical == VN.canonicalize(True, Top) || | 
|  | isRelatedBy(Canonical, False, ICmpInst::ICMP_NE)) | 
|  | add(SI->getCondition(), ConstantInt::getTrue(), | 
|  | ICmpInst::ICMP_EQ, NewContext); | 
|  | else if (Canonical == VN.canonicalize(False, Top) || | 
|  | isRelatedBy(Canonical, True, ICmpInst::ICMP_NE)) | 
|  | add(SI->getCondition(), ConstantInt::getFalse(), | 
|  | ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { | 
|  | for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(), | 
|  | OE = GEPI->idx_end(); OI != OE; ++OI) { | 
|  | ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top)); | 
|  | if (!Op || !Op->isZero()) return; | 
|  | } | 
|  | // TODO: The GEPI indices are all zero. Copy from definition to operand, | 
|  | // jumping the type plane as needed. | 
|  | if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()), | 
|  | ICmpInst::ICMP_NE)) { | 
|  | Value *Ptr = GEPI->getPointerOperand(); | 
|  | add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE, | 
|  | NewContext); | 
|  | } | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | const Type *SrcTy = CI->getSrcTy(); | 
|  |  | 
|  | unsigned ci = VN.getOrInsertVN(CI, Top); | 
|  | uint32_t W = VR.typeToWidth(SrcTy); | 
|  | if (!W) return; | 
|  | ConstantRange CR = VR.range(ci, Top); | 
|  |  | 
|  | if (CR.isFullSet()) return; | 
|  |  | 
|  | switch (CI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top), | 
|  | CR.truncate(W), Top, this); | 
|  | break; | 
|  | case Instruction::BitCast: | 
|  | VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top), | 
|  | CR, Top, this); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// opsToDef - A new relationship was discovered involving one of this | 
|  | /// instruction's operands. Find any new relationship involving the | 
|  | /// definition, or another operand. | 
|  | void opsToDef(Instruction *I) { | 
|  | Instruction *NewContext = below(I) ? I : TopInst; | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | Value *Op0 = VN.canonicalize(BO->getOperand(0), Top); | 
|  | Value *Op1 = VN.canonicalize(BO->getOperand(1), Top); | 
|  |  | 
|  | if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) | 
|  | if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) { | 
|  | add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1), | 
|  | ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // "%y = and i1 true, %x" then %x EQ %y | 
|  | // "%y = or i1 false, %x" then %x EQ %y | 
|  | // "%x = add i32 %y, 0" then %x EQ %y | 
|  | // "%x = mul i32 %y, 0" then %x EQ 0 | 
|  |  | 
|  | Instruction::BinaryOps Opcode = BO->getOpcode(); | 
|  | const Type *Ty = BO->getType(); | 
|  | assert(!Ty->isFPOrFPVector() && "Float in work queue!"); | 
|  |  | 
|  | Constant *Zero = Constant::getNullValue(Ty); | 
|  | ConstantInt *AllOnes = ConstantInt::getAllOnesValue(Ty); | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | case Instruction::Sub: | 
|  | if (Op1 == Zero) { | 
|  | add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (Op0 == AllOnes || Op1 == AllOnes) { | 
|  | add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } // fall-through | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | if (Op0 == Zero) { | 
|  | add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } else if (Op1 == Zero) { | 
|  | add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (Op0 == AllOnes) { | 
|  | add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } else if (Op1 == AllOnes) { | 
|  | add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } | 
|  | // fall-through | 
|  | case Instruction::Mul: | 
|  | if (Op0 == Zero || Op1 == Zero) { | 
|  | add(BO, Zero, ICmpInst::ICMP_EQ, NewContext); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0 | 
|  | // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0 | 
|  | // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0 | 
|  | // "%x = udiv i32 %y, %z" and %x EQ %y then %z EQ 1 | 
|  |  | 
|  | Value *Known = Op0, *Unknown = Op1, | 
|  | *TheBO = VN.canonicalize(BO, Top); | 
|  | if (Known != TheBO) std::swap(Known, Unknown); | 
|  | if (Known == TheBO) { | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break; | 
|  | // otherwise, fall-through. | 
|  | case Instruction::Sub: | 
|  | if (Unknown == Op0) break; | 
|  | // otherwise, fall-through. | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | if (Unknown == Op1) break; | 
|  | if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) { | 
|  | Constant *One = ConstantInt::get(Ty, 1); | 
|  | add(Unknown, One, ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z. | 
|  |  | 
|  | } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) { | 
|  | // "%a = icmp ult i32 %b, %c" and %b u<  %c then %a EQ true | 
|  | // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false | 
|  | // etc. | 
|  |  | 
|  | Value *Op0 = VN.canonicalize(IC->getOperand(0), Top); | 
|  | Value *Op1 = VN.canonicalize(IC->getOperand(1), Top); | 
|  |  | 
|  | ICmpInst::Predicate Pred = IC->getPredicate(); | 
|  | if (isRelatedBy(Op0, Op1, Pred)) | 
|  | add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext); | 
|  | else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) | 
|  | add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext); | 
|  |  | 
|  | } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { | 
|  | if (I->getType()->isFPOrFPVector()) return; | 
|  |  | 
|  | // Given: "%a = select i1 %x, i32 %b, i32 %c" | 
|  | // %x EQ true  then %a EQ %b | 
|  | // %x EQ false then %a EQ %c | 
|  | // %b EQ %c then %a EQ %b | 
|  |  | 
|  | Value *Canonical = VN.canonicalize(SI->getCondition(), Top); | 
|  | if (Canonical == ConstantInt::getTrue()) { | 
|  | add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); | 
|  | } else if (Canonical == ConstantInt::getFalse()) { | 
|  | add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext); | 
|  | } else if (VN.canonicalize(SI->getTrueValue(), Top) == | 
|  | VN.canonicalize(SI->getFalseValue(), Top)) { | 
|  | add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | const Type *DestTy = CI->getDestTy(); | 
|  | if (DestTy->isFPOrFPVector()) return; | 
|  |  | 
|  | Value *Op = VN.canonicalize(CI->getOperand(0), Top); | 
|  | Instruction::CastOps Opcode = CI->getOpcode(); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Op)) { | 
|  | add(CI, ConstantExpr::getCast(Opcode, C, DestTy), | 
|  | ICmpInst::ICMP_EQ, NewContext); | 
|  | } | 
|  |  | 
|  | uint32_t W = VR.typeToWidth(DestTy); | 
|  | unsigned ci = VN.getOrInsertVN(CI, Top); | 
|  | ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top); | 
|  |  | 
|  | if (!CR.isFullSet()) { | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::ZExt: | 
|  | VR.applyRange(ci, CR.zeroExtend(W), Top, this); | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | VR.applyRange(ci, CR.signExtend(W), Top, this); | 
|  | break; | 
|  | case Instruction::Trunc: { | 
|  | ConstantRange Result = CR.truncate(W); | 
|  | if (!Result.isFullSet()) | 
|  | VR.applyRange(ci, Result, Top, this); | 
|  | } break; | 
|  | case Instruction::BitCast: | 
|  | VR.applyRange(ci, CR, Top, this); | 
|  | break; | 
|  | // TODO: other casts? | 
|  | } | 
|  | } | 
|  | } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { | 
|  | for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(), | 
|  | OE = GEPI->idx_end(); OI != OE; ++OI) { | 
|  | ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top)); | 
|  | if (!Op || !Op->isZero()) return; | 
|  | } | 
|  | // TODO: The GEPI indices are all zero. Copy from operand to definition, | 
|  | // jumping the type plane as needed. | 
|  | Value *Ptr = GEPI->getPointerOperand(); | 
|  | if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()), | 
|  | ICmpInst::ICMP_NE)) { | 
|  | add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE, | 
|  | NewContext); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// solve - process the work queue | 
|  | void solve() { | 
|  | //DOUT << "WorkList entry, size: " << WorkList.size() << "\n"; | 
|  | while (!WorkList.empty()) { | 
|  | //DOUT << "WorkList size: " << WorkList.size() << "\n"; | 
|  |  | 
|  | Operation &O = WorkList.front(); | 
|  | TopInst = O.ContextInst; | 
|  | TopBB = O.ContextBB; | 
|  | Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context | 
|  |  | 
|  | O.LHS = VN.canonicalize(O.LHS, Top); | 
|  | O.RHS = VN.canonicalize(O.RHS, Top); | 
|  |  | 
|  | assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't."); | 
|  | assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't."); | 
|  |  | 
|  | DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS; | 
|  | if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst; | 
|  | else DOUT << " context block: " << O.ContextBB->getName(); | 
|  | DOUT << "\n"; | 
|  |  | 
|  | DEBUG(VN.dump()); | 
|  | DEBUG(IG.dump()); | 
|  | DEBUG(VR.dump()); | 
|  |  | 
|  | // If they're both Constant, skip it. Check for contradiction and mark | 
|  | // the BB as unreachable if so. | 
|  | if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) { | 
|  | if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) { | 
|  | if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) == | 
|  | ConstantInt::getFalse()) | 
|  | UB.mark(TopBB); | 
|  |  | 
|  | WorkList.pop_front(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VN.compare(O.LHS, O.RHS)) { | 
|  | std::swap(O.LHS, O.RHS); | 
|  | O.Op = ICmpInst::getSwappedPredicate(O.Op); | 
|  | } | 
|  |  | 
|  | if (O.Op == ICmpInst::ICMP_EQ) { | 
|  | if (!makeEqual(O.RHS, O.LHS)) | 
|  | UB.mark(TopBB); | 
|  | } else { | 
|  | LatticeVal LV = cmpInstToLattice(O.Op); | 
|  |  | 
|  | if ((LV & EQ_BIT) && | 
|  | isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) { | 
|  | if (!makeEqual(O.RHS, O.LHS)) | 
|  | UB.mark(TopBB); | 
|  | } else { | 
|  | if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){ | 
|  | UB.mark(TopBB); | 
|  | WorkList.pop_front(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned n1 = VN.getOrInsertVN(O.LHS, Top); | 
|  | unsigned n2 = VN.getOrInsertVN(O.RHS, Top); | 
|  |  | 
|  | if (n1 == n2) { | 
|  | if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE && | 
|  | O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE) | 
|  | UB.mark(TopBB); | 
|  |  | 
|  | WorkList.pop_front(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (VR.isRelatedBy(n1, n2, Top, LV) || | 
|  | IG.isRelatedBy(n1, n2, Top, LV)) { | 
|  | WorkList.pop_front(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VR.addInequality(n1, n2, Top, LV, this); | 
|  | if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) || | 
|  | LV == NE) | 
|  | IG.addInequality(n1, n2, Top, LV); | 
|  |  | 
|  | if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) { | 
|  | if (aboveOrBelow(I1)) | 
|  | defToOps(I1); | 
|  | } | 
|  | if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) { | 
|  | for (Value::use_iterator UI = O.LHS->use_begin(), | 
|  | UE = O.LHS->use_end(); UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { | 
|  | if (aboveOrBelow(I)) | 
|  | opsToDef(I); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) { | 
|  | if (aboveOrBelow(I2)) | 
|  | defToOps(I2); | 
|  | } | 
|  | if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) { | 
|  | for (Value::use_iterator UI = O.RHS->use_begin(), | 
|  | UE = O.RHS->use_end(); UI != UE;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | ++UI; | 
|  | if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { | 
|  | if (aboveOrBelow(I)) | 
|  | opsToDef(I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | WorkList.pop_front(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | void ValueRanges::addToWorklist(Value *V, Constant *C, | 
|  | ICmpInst::Predicate Pred, VRPSolver *VRP) { | 
|  | VRP->add(V, C, Pred, VRP->TopInst); | 
|  | } | 
|  |  | 
|  | void ValueRanges::markBlock(VRPSolver *VRP) { | 
|  | VRP->UB.mark(VRP->TopBB); | 
|  | } | 
|  |  | 
|  | /// PredicateSimplifier - This class is a simplifier that replaces | 
|  | /// one equivalent variable with another. It also tracks what | 
|  | /// can't be equal and will solve setcc instructions when possible. | 
|  | /// @brief Root of the predicate simplifier optimization. | 
|  | class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass { | 
|  | DomTreeDFS *DTDFS; | 
|  | bool modified; | 
|  | ValueNumbering *VN; | 
|  | InequalityGraph *IG; | 
|  | UnreachableBlocks UB; | 
|  | ValueRanges *VR; | 
|  |  | 
|  | std::vector<DomTreeDFS::Node *> WorkList; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | PredicateSimplifier() : FunctionPass((intptr_t)&ID) {} | 
|  |  | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequiredID(BreakCriticalEdgesID); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<TargetData>(); | 
|  | AU.addPreserved<TargetData>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Forwards - Adds new properties to VRPSolver and uses them to | 
|  | /// simplify instructions. Because new properties sometimes apply to | 
|  | /// a transition from one BasicBlock to another, this will use the | 
|  | /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the | 
|  | /// basic block. | 
|  | /// @brief Performs abstract execution of the program. | 
|  | class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> { | 
|  | friend class InstVisitor<Forwards>; | 
|  | PredicateSimplifier *PS; | 
|  | DomTreeDFS::Node *DTNode; | 
|  |  | 
|  | public: | 
|  | ValueNumbering &VN; | 
|  | InequalityGraph &IG; | 
|  | UnreachableBlocks &UB; | 
|  | ValueRanges &VR; | 
|  |  | 
|  | Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode) | 
|  | : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB), | 
|  | VR(*PS->VR) {} | 
|  |  | 
|  | void visitTerminatorInst(TerminatorInst &TI); | 
|  | void visitBranchInst(BranchInst &BI); | 
|  | void visitSwitchInst(SwitchInst &SI); | 
|  |  | 
|  | void visitAllocaInst(AllocaInst &AI); | 
|  | void visitLoadInst(LoadInst &LI); | 
|  | void visitStoreInst(StoreInst &SI); | 
|  |  | 
|  | void visitSExtInst(SExtInst &SI); | 
|  | void visitZExtInst(ZExtInst &ZI); | 
|  |  | 
|  | void visitBinaryOperator(BinaryOperator &BO); | 
|  | void visitICmpInst(ICmpInst &IC); | 
|  | }; | 
|  |  | 
|  | // Used by terminator instructions to proceed from the current basic | 
|  | // block to the next. Verifies that "current" dominates "next", | 
|  | // then calls visitBasicBlock. | 
|  | void proceedToSuccessors(DomTreeDFS::Node *Current) { | 
|  | for (DomTreeDFS::Node::iterator I = Current->begin(), | 
|  | E = Current->end(); I != E; ++I) { | 
|  | WorkList.push_back(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void proceedToSuccessor(DomTreeDFS::Node *Next) { | 
|  | WorkList.push_back(Next); | 
|  | } | 
|  |  | 
|  | // Visits each instruction in the basic block. | 
|  | void visitBasicBlock(DomTreeDFS::Node *Node) { | 
|  | BasicBlock *BB = Node->getBlock(); | 
|  | DOUT << "Entering Basic Block: " << BB->getName() | 
|  | << " (" << Node->getDFSNumIn() << ")\n"; | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { | 
|  | visitInstruction(I++, Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tries to simplify each Instruction and add new properties. | 
|  | void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) { | 
|  | DOUT << "Considering instruction " << *I << "\n"; | 
|  | DEBUG(VN->dump()); | 
|  | DEBUG(IG->dump()); | 
|  | DEBUG(VR->dump()); | 
|  |  | 
|  | // Sometimes instructions are killed in earlier analysis. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | ++NumSimple; | 
|  | modified = true; | 
|  | if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode())) | 
|  | if (VN->value(n) == I) IG->remove(n); | 
|  | VN->remove(I); | 
|  | I->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Try to replace the whole instruction. | 
|  | Value *V = VN->canonicalize(I, DT); | 
|  | assert(V == I && "Late instruction canonicalization."); | 
|  | if (V != I) { | 
|  | modified = true; | 
|  | ++NumInstruction; | 
|  | DOUT << "Removing " << *I << ", replacing with " << *V << "\n"; | 
|  | if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode())) | 
|  | if (VN->value(n) == I) IG->remove(n); | 
|  | VN->remove(I); | 
|  | I->replaceAllUsesWith(V); | 
|  | I->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Try to substitute operands. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | Value *Oper = I->getOperand(i); | 
|  | Value *V = VN->canonicalize(Oper, DT); | 
|  | assert(V == Oper && "Late operand canonicalization."); | 
|  | if (V != Oper) { | 
|  | modified = true; | 
|  | ++NumVarsReplaced; | 
|  | DOUT << "Resolving " << *I; | 
|  | I->setOperand(i, V); | 
|  | DOUT << " into " << *I; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::string name = I->getParent()->getName(); | 
|  | DOUT << "push (%" << name << ")\n"; | 
|  | Forwards visit(this, DT); | 
|  | visit.visit(*I); | 
|  | DOUT << "pop (%" << name << ")\n"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool PredicateSimplifier::runOnFunction(Function &F) { | 
|  | DominatorTree *DT = &getAnalysis<DominatorTree>(); | 
|  | DTDFS = new DomTreeDFS(DT); | 
|  | TargetData *TD = &getAnalysis<TargetData>(); | 
|  |  | 
|  | DOUT << "Entering Function: " << F.getName() << "\n"; | 
|  |  | 
|  | modified = false; | 
|  | DomTreeDFS::Node *Root = DTDFS->getRootNode(); | 
|  | VN = new ValueNumbering(DTDFS); | 
|  | IG = new InequalityGraph(*VN, Root); | 
|  | VR = new ValueRanges(*VN, TD); | 
|  | WorkList.push_back(Root); | 
|  |  | 
|  | do { | 
|  | DomTreeDFS::Node *DTNode = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode); | 
|  | } while (!WorkList.empty()); | 
|  |  | 
|  | delete DTDFS; | 
|  | delete VR; | 
|  | delete IG; | 
|  |  | 
|  | modified |= UB.kill(); | 
|  |  | 
|  | return modified; | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) { | 
|  | PS->proceedToSuccessors(DTNode); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) { | 
|  | if (BI.isUnconditional()) { | 
|  | PS->proceedToSuccessors(DTNode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Value *Condition = BI.getCondition(); | 
|  | BasicBlock *TrueDest  = BI.getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI.getSuccessor(1); | 
|  |  | 
|  | if (isa<Constant>(Condition) || TrueDest == FalseDest) { | 
|  | PS->proceedToSuccessors(DTNode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end(); | 
|  | I != E; ++I) { | 
|  | BasicBlock *Dest = (*I)->getBlock(); | 
|  | DOUT << "Branch thinking about %" << Dest->getName() | 
|  | << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n"; | 
|  |  | 
|  | if (Dest == TrueDest) { | 
|  | DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n"; | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest); | 
|  | VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ); | 
|  | VRP.solve(); | 
|  | DEBUG(VN.dump()); | 
|  | DEBUG(IG.dump()); | 
|  | DEBUG(VR.dump()); | 
|  | } else if (Dest == FalseDest) { | 
|  | DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n"; | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest); | 
|  | VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ); | 
|  | VRP.solve(); | 
|  | DEBUG(VN.dump()); | 
|  | DEBUG(IG.dump()); | 
|  | DEBUG(VR.dump()); | 
|  | } | 
|  |  | 
|  | PS->proceedToSuccessor(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) { | 
|  | Value *Condition = SI.getCondition(); | 
|  |  | 
|  | // Set the EQProperty in each of the cases BBs, and the NEProperties | 
|  | // in the default BB. | 
|  |  | 
|  | for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end(); | 
|  | I != E; ++I) { | 
|  | BasicBlock *BB = (*I)->getBlock(); | 
|  | DOUT << "Switch thinking about BB %" << BB->getName() | 
|  | << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n"; | 
|  |  | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB); | 
|  | if (BB == SI.getDefaultDest()) { | 
|  | for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i) | 
|  | if (SI.getSuccessor(i) != BB) | 
|  | VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE); | 
|  | VRP.solve(); | 
|  | } else if (ConstantInt *CI = SI.findCaseDest(BB)) { | 
|  | VRP.add(Condition, CI, ICmpInst::ICMP_EQ); | 
|  | VRP.solve(); | 
|  | } | 
|  | PS->proceedToSuccessor(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI); | 
|  | VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE); | 
|  | VRP.solve(); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) { | 
|  | Value *Ptr = LI.getPointerOperand(); | 
|  | // avoid "load uint* null" -> null NE null. | 
|  | if (isa<Constant>(Ptr)) return; | 
|  |  | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI); | 
|  | VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE); | 
|  | VRP.solve(); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) { | 
|  | Value *Ptr = SI.getPointerOperand(); | 
|  | if (isa<Constant>(Ptr)) return; | 
|  |  | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI); | 
|  | VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE); | 
|  | VRP.solve(); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI); | 
|  | uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth(); | 
|  | uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth(); | 
|  | APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1)); | 
|  | APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1)); | 
|  | VRP.add(ConstantInt::get(Min), &SI, ICmpInst::ICMP_SLE); | 
|  | VRP.add(ConstantInt::get(Max), &SI, ICmpInst::ICMP_SGE); | 
|  | VRP.solve(); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI); | 
|  | uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth(); | 
|  | uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth(); | 
|  | APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth)); | 
|  | VRP.add(ConstantInt::get(Max), &ZI, ICmpInst::ICMP_UGE); | 
|  | VRP.solve(); | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) { | 
|  | Instruction::BinaryOps ops = BO.getOpcode(); | 
|  |  | 
|  | switch (ops) { | 
|  | default: break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: { | 
|  | Value *Divisor = BO.getOperand(1); | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(Constant::getNullValue(Divisor->getType()), Divisor, | 
|  | ICmpInst::ICMP_NE); | 
|  | VRP.solve(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (ops) { | 
|  | default: break; | 
|  | case Instruction::Shl: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | case Instruction::AShr: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | case Instruction::LShr: | 
|  | case Instruction::UDiv: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | case Instruction::URem: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | case Instruction::And: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE); | 
|  | VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | case Instruction::Or: { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); | 
|  | VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE); | 
|  | VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE); | 
|  | VRP.solve(); | 
|  | } break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) { | 
|  | // If possible, squeeze the ICmp predicate into something simpler. | 
|  | // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change | 
|  | // the predicate to eq. | 
|  |  | 
|  | // XXX: once we do full PHI handling, modifying the instruction in the | 
|  | // Forwards visitor will cause missed optimizations. | 
|  |  | 
|  | ICmpInst::Predicate Pred = IC.getPredicate(); | 
|  |  | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break; | 
|  | case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break; | 
|  | case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break; | 
|  | case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break; | 
|  | } | 
|  | if (Pred != IC.getPredicate()) { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC); | 
|  | if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0), | 
|  | ICmpInst::ICMP_NE)) { | 
|  | ++NumSnuggle; | 
|  | PS->modified = true; | 
|  | IC.setPredicate(Pred); | 
|  | } | 
|  | } | 
|  |  | 
|  | Pred = IC.getPredicate(); | 
|  |  | 
|  | if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) { | 
|  | ConstantInt *NextVal = 0; | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (Op1->getValue() != 0) | 
|  | NextVal = ConstantInt::get(Op1->getValue()-1); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | if (!Op1->getValue().isAllOnesValue()) | 
|  | NextVal = ConstantInt::get(Op1->getValue()+1); | 
|  | break; | 
|  |  | 
|  | } | 
|  | if (NextVal) { | 
|  | VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC); | 
|  | if (VRP.isRelatedBy(IC.getOperand(0), NextVal, | 
|  | ICmpInst::getInversePredicate(Pred))) { | 
|  | ICmpInst *NewIC = new ICmpInst(ICmpInst::ICMP_EQ, IC.getOperand(0), | 
|  | NextVal, "", &IC); | 
|  | NewIC->takeName(&IC); | 
|  | IC.replaceAllUsesWith(NewIC); | 
|  |  | 
|  | // XXX: prove this isn't necessary | 
|  | if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode())) | 
|  | if (VN.value(n) == &IC) IG.remove(n); | 
|  | VN.remove(&IC); | 
|  |  | 
|  | IC.eraseFromParent(); | 
|  | ++NumSnuggle; | 
|  | PS->modified = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | char PredicateSimplifier::ID = 0; | 
|  | RegisterPass<PredicateSimplifier> X("predsimplify", | 
|  | "Predicate Simplifier"); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createPredicateSimplifierPass() { | 
|  | return new PredicateSimplifier(); | 
|  | } |