|  | //===-- sanitizer_coverage.cc ---------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Sanitizer Coverage. | 
|  | // This file implements run-time support for a poor man's coverage tool. | 
|  | // | 
|  | // Compiler instrumentation: | 
|  | // For every interesting basic block the compiler injects the following code: | 
|  | // if (Guard < 0) { | 
|  | //    __sanitizer_cov(&Guard); | 
|  | // } | 
|  | // At the module start up time __sanitizer_cov_module_init sets the guards | 
|  | // to consecutive negative numbers (-1, -2, -3, ...). | 
|  | // It's fine to call __sanitizer_cov more than once for a given block. | 
|  | // | 
|  | // Run-time: | 
|  | //  - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC). | 
|  | //    and atomically set Guard to -Guard. | 
|  | //  - __sanitizer_cov_dump: dump the coverage data to disk. | 
|  | //  For every module of the current process that has coverage data | 
|  | //  this will create a file module_name.PID.sancov. The file format is simple: | 
|  | //  it's just a sorted sequence of 4-byte offsets in the module. | 
|  | // | 
|  | // Eventually, this coverage implementation should be obsoleted by a more | 
|  | // powerful general purpose Clang/LLVM coverage instrumentation. | 
|  | // Consider this implementation as prototype. | 
|  | // | 
|  | // FIXME: support (or at least test with) dlclose. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "sanitizer_allocator_internal.h" | 
|  | #include "sanitizer_common.h" | 
|  | #include "sanitizer_libc.h" | 
|  | #include "sanitizer_mutex.h" | 
|  | #include "sanitizer_procmaps.h" | 
|  | #include "sanitizer_stacktrace.h" | 
|  | #include "sanitizer_symbolizer.h" | 
|  | #include "sanitizer_flags.h" | 
|  |  | 
|  | static atomic_uint32_t dump_once_guard;  // Ensure that CovDump runs only once. | 
|  |  | 
|  | static atomic_uintptr_t coverage_counter; | 
|  |  | 
|  | // pc_array is the array containing the covered PCs. | 
|  | // To make the pc_array thread- and async-signal-safe it has to be large enough. | 
|  | // 128M counters "ought to be enough for anybody" (4M on 32-bit). | 
|  |  | 
|  | // With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file. | 
|  | // In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping() | 
|  | // dump current memory layout to another file. | 
|  |  | 
|  | static bool cov_sandboxed = false; | 
|  | static int cov_fd = kInvalidFd; | 
|  | static unsigned int cov_max_block_size = 0; | 
|  | static bool coverage_enabled = false; | 
|  | static const char *coverage_dir; | 
|  |  | 
|  | namespace __sanitizer { | 
|  |  | 
|  | class CoverageData { | 
|  | public: | 
|  | void Init(); | 
|  | void Enable(); | 
|  | void Disable(); | 
|  | void ReInit(); | 
|  | void BeforeFork(); | 
|  | void AfterFork(int child_pid); | 
|  | void Extend(uptr npcs); | 
|  | void Add(uptr pc, u32 *guard); | 
|  | void IndirCall(uptr caller, uptr callee, uptr callee_cache[], | 
|  | uptr cache_size); | 
|  | void DumpCallerCalleePairs(); | 
|  | void DumpTrace(); | 
|  | void DumpAsBitSet(); | 
|  | void DumpCounters(); | 
|  | void DumpOffsets(); | 
|  | void DumpAll(); | 
|  |  | 
|  | ALWAYS_INLINE | 
|  | void TraceBasicBlock(s32 *id); | 
|  |  | 
|  | void InitializeGuardArray(s32 *guards); | 
|  | void InitializeGuards(s32 *guards, uptr n, const char *module_name, | 
|  | uptr caller_pc); | 
|  | void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end); | 
|  | void InitializeCounters(u8 *counters, uptr n); | 
|  | void ReinitializeGuards(); | 
|  | uptr GetNumberOf8bitCounters(); | 
|  | uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset); | 
|  |  | 
|  | uptr *data(); | 
|  | uptr size(); | 
|  |  | 
|  | private: | 
|  | // Maximal size pc array may ever grow. | 
|  | // We MmapNoReserve this space to ensure that the array is contiguous. | 
|  | static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 27); | 
|  | // The amount file mapping for the pc array is grown by. | 
|  | static const uptr kPcArrayMmapSize = 64 * 1024; | 
|  |  | 
|  | // pc_array is allocated with MmapNoReserveOrDie and so it uses only as | 
|  | // much RAM as it really needs. | 
|  | uptr *pc_array; | 
|  | // Index of the first available pc_array slot. | 
|  | atomic_uintptr_t pc_array_index; | 
|  | // Array size. | 
|  | atomic_uintptr_t pc_array_size; | 
|  | // Current file mapped size of the pc array. | 
|  | uptr pc_array_mapped_size; | 
|  | // Descriptor of the file mapped pc array. | 
|  | int pc_fd; | 
|  |  | 
|  | // Vector of coverage guard arrays, protected by mu. | 
|  | InternalMmapVectorNoCtor<s32*> guard_array_vec; | 
|  |  | 
|  | struct NamedPcRange { | 
|  | const char *name; | 
|  | uptr beg, end; // elements [beg,end) in pc_array. | 
|  | }; | 
|  |  | 
|  | // Vector of module and compilation unit pc ranges. | 
|  | InternalMmapVectorNoCtor<NamedPcRange> comp_unit_name_vec; | 
|  | InternalMmapVectorNoCtor<NamedPcRange> module_name_vec; | 
|  |  | 
|  | struct CounterAndSize { | 
|  | u8 *counters; | 
|  | uptr n; | 
|  | }; | 
|  |  | 
|  | InternalMmapVectorNoCtor<CounterAndSize> counters_vec; | 
|  | uptr num_8bit_counters; | 
|  |  | 
|  | // Caller-Callee (cc) array, size and current index. | 
|  | static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24); | 
|  | uptr **cc_array; | 
|  | atomic_uintptr_t cc_array_index; | 
|  | atomic_uintptr_t cc_array_size; | 
|  |  | 
|  | // Tracing event array, size and current pointer. | 
|  | // We record all events (basic block entries) in a global buffer of u32 | 
|  | // values. Each such value is the index in pc_array. | 
|  | // So far the tracing is highly experimental: | 
|  | //   - not thread-safe; | 
|  | //   - does not support long traces; | 
|  | //   - not tuned for performance. | 
|  | static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30); | 
|  | u32 *tr_event_array; | 
|  | uptr tr_event_array_size; | 
|  | u32 *tr_event_pointer; | 
|  | static const uptr kTrPcArrayMaxSize    = FIRST_32_SECOND_64(1 << 22, 1 << 27); | 
|  |  | 
|  | StaticSpinMutex mu; | 
|  |  | 
|  | void DirectOpen(); | 
|  | }; | 
|  |  | 
|  | static CoverageData coverage_data; | 
|  |  | 
|  | void CovUpdateMapping(const char *path, uptr caller_pc = 0); | 
|  |  | 
|  | void CoverageData::DirectOpen() { | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw", | 
|  | coverage_dir, internal_getpid()); | 
|  | pc_fd = OpenFile(path.data(), true); | 
|  | if (internal_iserror(pc_fd)) { | 
|  | Report(" Coverage: failed to open %s for writing\n", path.data()); | 
|  | Die(); | 
|  | } | 
|  |  | 
|  | pc_array_mapped_size = 0; | 
|  | CovUpdateMapping(coverage_dir); | 
|  | } | 
|  |  | 
|  | void CoverageData::Init() { | 
|  | pc_fd = kInvalidFd; | 
|  | } | 
|  |  | 
|  | void CoverageData::Enable() { | 
|  | if (pc_array) | 
|  | return; | 
|  | pc_array = reinterpret_cast<uptr *>( | 
|  | MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit")); | 
|  | atomic_store(&pc_array_index, 0, memory_order_relaxed); | 
|  | if (common_flags()->coverage_direct) { | 
|  | atomic_store(&pc_array_size, 0, memory_order_relaxed); | 
|  | } else { | 
|  | atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed); | 
|  | } | 
|  |  | 
|  | cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie( | 
|  | sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array")); | 
|  | atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed); | 
|  | atomic_store(&cc_array_index, 0, memory_order_relaxed); | 
|  |  | 
|  | // Allocate tr_event_array with a guard page at the end. | 
|  | tr_event_array = reinterpret_cast<u32 *>(MmapNoReserveOrDie( | 
|  | sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(), | 
|  | "CovInit::tr_event_array")); | 
|  | Mprotect(reinterpret_cast<uptr>(&tr_event_array[kTrEventArrayMaxSize]), | 
|  | GetMmapGranularity()); | 
|  | tr_event_array_size = kTrEventArrayMaxSize; | 
|  | tr_event_pointer = tr_event_array; | 
|  |  | 
|  | num_8bit_counters = 0; | 
|  | } | 
|  |  | 
|  | void CoverageData::InitializeGuardArray(s32 *guards) { | 
|  | Enable();  // Make sure coverage is enabled at this point. | 
|  | s32 n = guards[0]; | 
|  | for (s32 j = 1; j <= n; j++) { | 
|  | uptr idx = atomic_fetch_add(&pc_array_index, 1, memory_order_relaxed); | 
|  | guards[j] = -static_cast<s32>(idx + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CoverageData::Disable() { | 
|  | if (pc_array) { | 
|  | internal_munmap(pc_array, sizeof(uptr) * kPcArrayMaxSize); | 
|  | pc_array = nullptr; | 
|  | } | 
|  | if (cc_array) { | 
|  | internal_munmap(cc_array, sizeof(uptr *) * kCcArrayMaxSize); | 
|  | cc_array = nullptr; | 
|  | } | 
|  | if (tr_event_array) { | 
|  | internal_munmap(tr_event_array, | 
|  | sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + | 
|  | GetMmapGranularity()); | 
|  | tr_event_array = nullptr; | 
|  | tr_event_pointer = nullptr; | 
|  | } | 
|  | if (pc_fd != kInvalidFd) { | 
|  | internal_close(pc_fd); | 
|  | pc_fd = kInvalidFd; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CoverageData::ReinitializeGuards() { | 
|  | // Assuming single thread. | 
|  | atomic_store(&pc_array_index, 0, memory_order_relaxed); | 
|  | for (uptr i = 0; i < guard_array_vec.size(); i++) | 
|  | InitializeGuardArray(guard_array_vec[i]); | 
|  | } | 
|  |  | 
|  | void CoverageData::ReInit() { | 
|  | Disable(); | 
|  | if (coverage_enabled) { | 
|  | if (common_flags()->coverage_direct) { | 
|  | // In memory-mapped mode we must extend the new file to the known array | 
|  | // size. | 
|  | uptr size = atomic_load(&pc_array_size, memory_order_relaxed); | 
|  | Enable(); | 
|  | if (size) Extend(size); | 
|  | if (coverage_enabled) CovUpdateMapping(coverage_dir); | 
|  | } else { | 
|  | Enable(); | 
|  | } | 
|  | } | 
|  | // Re-initialize the guards. | 
|  | // We are single-threaded now, no need to grab any lock. | 
|  | CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0); | 
|  | ReinitializeGuards(); | 
|  | } | 
|  |  | 
|  | void CoverageData::BeforeFork() { | 
|  | mu.Lock(); | 
|  | } | 
|  |  | 
|  | void CoverageData::AfterFork(int child_pid) { | 
|  | // We are single-threaded so it's OK to release the lock early. | 
|  | mu.Unlock(); | 
|  | if (child_pid == 0) ReInit(); | 
|  | } | 
|  |  | 
|  | // Extend coverage PC array to fit additional npcs elements. | 
|  | void CoverageData::Extend(uptr npcs) { | 
|  | if (!common_flags()->coverage_direct) return; | 
|  | SpinMutexLock l(&mu); | 
|  |  | 
|  | uptr size = atomic_load(&pc_array_size, memory_order_relaxed); | 
|  | size += npcs * sizeof(uptr); | 
|  |  | 
|  | if (coverage_enabled && size > pc_array_mapped_size) { | 
|  | if (pc_fd == kInvalidFd) DirectOpen(); | 
|  | CHECK_NE(pc_fd, kInvalidFd); | 
|  |  | 
|  | uptr new_mapped_size = pc_array_mapped_size; | 
|  | while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize; | 
|  | CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize); | 
|  |  | 
|  | // Extend the file and map the new space at the end of pc_array. | 
|  | uptr res = internal_ftruncate(pc_fd, new_mapped_size); | 
|  | int err; | 
|  | if (internal_iserror(res, &err)) { | 
|  | Printf("failed to extend raw coverage file: %d\n", err); | 
|  | Die(); | 
|  | } | 
|  |  | 
|  | uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size; | 
|  | void *p = MapWritableFileToMemory((void *)next_map_base, | 
|  | new_mapped_size - pc_array_mapped_size, | 
|  | pc_fd, pc_array_mapped_size); | 
|  | CHECK_EQ((uptr)p, next_map_base); | 
|  | pc_array_mapped_size = new_mapped_size; | 
|  | } | 
|  |  | 
|  | atomic_store(&pc_array_size, size, memory_order_release); | 
|  | } | 
|  |  | 
|  | void CoverageData::InitializeCounters(u8 *counters, uptr n) { | 
|  | if (!counters) return; | 
|  | CHECK_EQ(reinterpret_cast<uptr>(counters) % 16, 0); | 
|  | n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned. | 
|  | SpinMutexLock l(&mu); | 
|  | counters_vec.push_back({counters, n}); | 
|  | num_8bit_counters += n; | 
|  | } | 
|  |  | 
|  | void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg, | 
|  | uptr range_end) { | 
|  | auto sym = Symbolizer::GetOrInit(); | 
|  | if (!sym) | 
|  | return; | 
|  | const char *module_name = sym->GetModuleNameForPc(caller_pc); | 
|  | if (!module_name) return; | 
|  | if (module_name_vec.empty() || module_name_vec.back().name != module_name) | 
|  | module_name_vec.push_back({module_name, range_beg, range_end}); | 
|  | else | 
|  | module_name_vec.back().end = range_end; | 
|  | } | 
|  |  | 
|  | void CoverageData::InitializeGuards(s32 *guards, uptr n, | 
|  | const char *comp_unit_name, | 
|  | uptr caller_pc) { | 
|  | // The array 'guards' has n+1 elements, we use the element zero | 
|  | // to store 'n'. | 
|  | CHECK_LT(n, 1 << 30); | 
|  | guards[0] = static_cast<s32>(n); | 
|  | InitializeGuardArray(guards); | 
|  | SpinMutexLock l(&mu); | 
|  | uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed); | 
|  | uptr range_beg = range_end - n; | 
|  | comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end}); | 
|  | guard_array_vec.push_back(guards); | 
|  | UpdateModuleNameVec(caller_pc, range_beg, range_end); | 
|  | } | 
|  |  | 
|  | // If guard is negative, atomically set it to -guard and store the PC in | 
|  | // pc_array. | 
|  | void CoverageData::Add(uptr pc, u32 *guard) { | 
|  | atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard); | 
|  | s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed); | 
|  | if (guard_value >= 0) return; | 
|  |  | 
|  | atomic_store(atomic_guard, -guard_value, memory_order_relaxed); | 
|  | if (!pc_array) return; | 
|  |  | 
|  | uptr idx = -guard_value - 1; | 
|  | if (idx >= atomic_load(&pc_array_index, memory_order_acquire)) | 
|  | return;  // May happen after fork when pc_array_index becomes 0. | 
|  | CHECK_LT(idx * sizeof(uptr), | 
|  | atomic_load(&pc_array_size, memory_order_acquire)); | 
|  | pc_array[idx] = pc; | 
|  | atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed); | 
|  | } | 
|  |  | 
|  | // Registers a pair caller=>callee. | 
|  | // When a given caller is seen for the first time, the callee_cache is added | 
|  | // to the global array cc_array, callee_cache[0] is set to caller and | 
|  | // callee_cache[1] is set to cache_size. | 
|  | // Then we are trying to add callee to callee_cache [2,cache_size) if it is | 
|  | // not there yet. | 
|  | // If the cache is full we drop the callee (may want to fix this later). | 
|  | void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[], | 
|  | uptr cache_size) { | 
|  | if (!cc_array) return; | 
|  | atomic_uintptr_t *atomic_callee_cache = | 
|  | reinterpret_cast<atomic_uintptr_t *>(callee_cache); | 
|  | uptr zero = 0; | 
|  | if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller, | 
|  | memory_order_seq_cst)) { | 
|  | uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed); | 
|  | CHECK_LT(idx * sizeof(uptr), | 
|  | atomic_load(&cc_array_size, memory_order_acquire)); | 
|  | callee_cache[1] = cache_size; | 
|  | cc_array[idx] = callee_cache; | 
|  | } | 
|  | CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller); | 
|  | for (uptr i = 2; i < cache_size; i++) { | 
|  | uptr was = 0; | 
|  | if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee, | 
|  | memory_order_seq_cst)) { | 
|  | atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed); | 
|  | return; | 
|  | } | 
|  | if (was == callee)  // Already have this callee. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | uptr CoverageData::GetNumberOf8bitCounters() { | 
|  | return num_8bit_counters; | 
|  | } | 
|  |  | 
|  | // Map every 8bit counter to a 8-bit bitset and clear the counter. | 
|  | uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) { | 
|  | uptr num_new_bits = 0; | 
|  | uptr cur = 0; | 
|  | // For better speed we map 8 counters to 8 bytes of bitset at once. | 
|  | static const uptr kBatchSize = 8; | 
|  | CHECK_EQ(reinterpret_cast<uptr>(bitset) % kBatchSize, 0); | 
|  | for (uptr i = 0, len = counters_vec.size(); i < len; i++) { | 
|  | u8 *c = counters_vec[i].counters; | 
|  | uptr n = counters_vec[i].n; | 
|  | CHECK_EQ(n % 16, 0); | 
|  | CHECK_EQ(cur % kBatchSize, 0); | 
|  | CHECK_EQ(reinterpret_cast<uptr>(c) % kBatchSize, 0); | 
|  | if (!bitset) { | 
|  | internal_bzero_aligned16(c, n); | 
|  | cur += n; | 
|  | continue; | 
|  | } | 
|  | for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) { | 
|  | CHECK_LT(cur, num_8bit_counters); | 
|  | u64 *pc64 = reinterpret_cast<u64*>(c + j); | 
|  | u64 *pb64 = reinterpret_cast<u64*>(bitset + cur); | 
|  | u64 c64 = *pc64; | 
|  | u64 old_bits_64 = *pb64; | 
|  | u64 new_bits_64 = old_bits_64; | 
|  | if (c64) { | 
|  | *pc64 = 0; | 
|  | for (uptr k = 0; k < kBatchSize; k++) { | 
|  | u64 x = (c64 >> (8 * k)) & 0xff; | 
|  | if (x) { | 
|  | u64 bit = 0; | 
|  | /**/ if (x >= 128) bit = 128; | 
|  | else if (x >= 32) bit = 64; | 
|  | else if (x >= 16) bit = 32; | 
|  | else if (x >= 8) bit = 16; | 
|  | else if (x >= 4) bit = 8; | 
|  | else if (x >= 3) bit = 4; | 
|  | else if (x >= 2) bit = 2; | 
|  | else if (x >= 1) bit = 1; | 
|  | u64 mask = bit << (8 * k); | 
|  | if (!(new_bits_64 & mask)) { | 
|  | num_new_bits++; | 
|  | new_bits_64 |= mask; | 
|  | } | 
|  | } | 
|  | } | 
|  | *pb64 = new_bits_64; | 
|  | } | 
|  | } | 
|  | } | 
|  | CHECK_EQ(cur, num_8bit_counters); | 
|  | return num_new_bits; | 
|  | } | 
|  |  | 
|  | uptr *CoverageData::data() { | 
|  | return pc_array; | 
|  | } | 
|  |  | 
|  | uptr CoverageData::size() { | 
|  | return atomic_load(&pc_array_index, memory_order_relaxed); | 
|  | } | 
|  |  | 
|  | // Block layout for packed file format: header, followed by module name (no | 
|  | // trailing zero), followed by data blob. | 
|  | struct CovHeader { | 
|  | int pid; | 
|  | unsigned int module_name_length; | 
|  | unsigned int data_length; | 
|  | }; | 
|  |  | 
|  | static void CovWritePacked(int pid, const char *module, const void *blob, | 
|  | unsigned int blob_size) { | 
|  | if (cov_fd < 0) return; | 
|  | unsigned module_name_length = internal_strlen(module); | 
|  | CovHeader header = {pid, module_name_length, blob_size}; | 
|  |  | 
|  | if (cov_max_block_size == 0) { | 
|  | // Writing to a file. Just go ahead. | 
|  | internal_write(cov_fd, &header, sizeof(header)); | 
|  | internal_write(cov_fd, module, module_name_length); | 
|  | internal_write(cov_fd, blob, blob_size); | 
|  | } else { | 
|  | // Writing to a socket. We want to split the data into appropriately sized | 
|  | // blocks. | 
|  | InternalScopedBuffer<char> block(cov_max_block_size); | 
|  | CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data()); | 
|  | uptr header_size_with_module = sizeof(header) + module_name_length; | 
|  | CHECK_LT(header_size_with_module, cov_max_block_size); | 
|  | unsigned int max_payload_size = | 
|  | cov_max_block_size - header_size_with_module; | 
|  | char *block_pos = block.data(); | 
|  | internal_memcpy(block_pos, &header, sizeof(header)); | 
|  | block_pos += sizeof(header); | 
|  | internal_memcpy(block_pos, module, module_name_length); | 
|  | block_pos += module_name_length; | 
|  | char *block_data_begin = block_pos; | 
|  | const char *blob_pos = (const char *)blob; | 
|  | while (blob_size > 0) { | 
|  | unsigned int payload_size = Min(blob_size, max_payload_size); | 
|  | blob_size -= payload_size; | 
|  | internal_memcpy(block_data_begin, blob_pos, payload_size); | 
|  | blob_pos += payload_size; | 
|  | ((CovHeader *)block.data())->data_length = payload_size; | 
|  | internal_write(cov_fd, block.data(), | 
|  | header_size_with_module + payload_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If packed = false: <name>.<pid>.<sancov> (name = module name). | 
|  | // If packed = true and name == 0: <pid>.<sancov>.<packed>. | 
|  | // If packed = true and name != 0: <name>.<sancov>.<packed> (name is | 
|  | // user-supplied). | 
|  | static int CovOpenFile(InternalScopedString *path, bool packed, | 
|  | const char *name, const char *extension = "sancov") { | 
|  | path->clear(); | 
|  | if (!packed) { | 
|  | CHECK(name); | 
|  | path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(), | 
|  | extension); | 
|  | } else { | 
|  | if (!name) | 
|  | path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(), | 
|  | extension); | 
|  | else | 
|  | path->append("%s/%s.%s.packed", coverage_dir, name, extension); | 
|  | } | 
|  | uptr fd = OpenFile(path->data(), true); | 
|  | if (internal_iserror(fd)) { | 
|  | Report(" SanitizerCoverage: failed to open %s for writing\n", path->data()); | 
|  | return -1; | 
|  | } | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | // Dump trace PCs and trace events into two separate files. | 
|  | void CoverageData::DumpTrace() { | 
|  | uptr max_idx = tr_event_pointer - tr_event_array; | 
|  | if (!max_idx) return; | 
|  | auto sym = Symbolizer::GetOrInit(); | 
|  | if (!sym) | 
|  | return; | 
|  | InternalScopedString out(32 << 20); | 
|  | for (uptr i = 0, n = size(); i < n; i++) { | 
|  | const char *module_name = "<unknown>"; | 
|  | uptr module_address = 0; | 
|  | sym->GetModuleNameAndOffsetForPC(pc_array[i], &module_name, | 
|  | &module_address); | 
|  | out.append("%s 0x%zx\n", module_name, module_address); | 
|  | } | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | int fd = CovOpenFile(&path, false, "trace-points"); | 
|  | if (fd < 0) return; | 
|  | internal_write(fd, out.data(), out.length()); | 
|  | internal_close(fd); | 
|  |  | 
|  | fd = CovOpenFile(&path, false, "trace-compunits"); | 
|  | if (fd < 0) return; | 
|  | out.clear(); | 
|  | for (uptr i = 0; i < comp_unit_name_vec.size(); i++) | 
|  | out.append("%s\n", comp_unit_name_vec[i].name); | 
|  | internal_write(fd, out.data(), out.length()); | 
|  | internal_close(fd); | 
|  |  | 
|  | fd = CovOpenFile(&path, false, "trace-events"); | 
|  | if (fd < 0) return; | 
|  | uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]); | 
|  | u8 *event_bytes = reinterpret_cast<u8*>(tr_event_array); | 
|  | // The trace file could be huge, and may not be written with a single syscall. | 
|  | while (bytes_to_write) { | 
|  | uptr actually_written = internal_write(fd, event_bytes, bytes_to_write); | 
|  | if (actually_written <= bytes_to_write) { | 
|  | bytes_to_write -= actually_written; | 
|  | event_bytes += actually_written; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | internal_close(fd); | 
|  | VReport(1, " CovDump: Trace: %zd PCs written\n", size()); | 
|  | VReport(1, " CovDump: Trace: %zd Events written\n", max_idx); | 
|  | } | 
|  |  | 
|  | // This function dumps the caller=>callee pairs into a file as a sequence of | 
|  | // lines like "module_name offset". | 
|  | void CoverageData::DumpCallerCalleePairs() { | 
|  | uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed); | 
|  | if (!max_idx) return; | 
|  | auto sym = Symbolizer::GetOrInit(); | 
|  | if (!sym) | 
|  | return; | 
|  | InternalScopedString out(32 << 20); | 
|  | uptr total = 0; | 
|  | for (uptr i = 0; i < max_idx; i++) { | 
|  | uptr *cc_cache = cc_array[i]; | 
|  | CHECK(cc_cache); | 
|  | uptr caller = cc_cache[0]; | 
|  | uptr n_callees = cc_cache[1]; | 
|  | const char *caller_module_name = "<unknown>"; | 
|  | uptr caller_module_address = 0; | 
|  | sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name, | 
|  | &caller_module_address); | 
|  | for (uptr j = 2; j < n_callees; j++) { | 
|  | uptr callee = cc_cache[j]; | 
|  | if (!callee) break; | 
|  | total++; | 
|  | const char *callee_module_name = "<unknown>"; | 
|  | uptr callee_module_address = 0; | 
|  | sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name, | 
|  | &callee_module_address); | 
|  | out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name, | 
|  | caller_module_address, callee_module_name, | 
|  | callee_module_address); | 
|  | } | 
|  | } | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | int fd = CovOpenFile(&path, false, "caller-callee"); | 
|  | if (fd < 0) return; | 
|  | internal_write(fd, out.data(), out.length()); | 
|  | internal_close(fd); | 
|  | VReport(1, " CovDump: %zd caller-callee pairs written\n", total); | 
|  | } | 
|  |  | 
|  | // Record the current PC into the event buffer. | 
|  | // Every event is a u32 value (index in tr_pc_array_index) so we compute | 
|  | // it once and then cache in the provided 'cache' storage. | 
|  | // | 
|  | // This function will eventually be inlined by the compiler. | 
|  | void CoverageData::TraceBasicBlock(s32 *id) { | 
|  | // Will trap here if | 
|  | //  1. coverage is not enabled at run-time. | 
|  | //  2. The array tr_event_array is full. | 
|  | *tr_event_pointer = static_cast<u32>(*id - 1); | 
|  | tr_event_pointer++; | 
|  | } | 
|  |  | 
|  | void CoverageData::DumpCounters() { | 
|  | if (!common_flags()->coverage_counters) return; | 
|  | uptr n = coverage_data.GetNumberOf8bitCounters(); | 
|  | if (!n) return; | 
|  | InternalScopedBuffer<u8> bitset(n); | 
|  | coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data()); | 
|  | InternalScopedString path(kMaxPathLength); | 
|  |  | 
|  | for (uptr m = 0; m < module_name_vec.size(); m++) { | 
|  | auto r = module_name_vec[m]; | 
|  | CHECK(r.name); | 
|  | CHECK_LE(r.beg, r.end); | 
|  | CHECK_LE(r.end, size()); | 
|  | const char *base_name = StripModuleName(r.name); | 
|  | int fd = | 
|  | CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov"); | 
|  | if (fd < 0) return; | 
|  | internal_write(fd, bitset.data() + r.beg, r.end - r.beg); | 
|  | internal_close(fd); | 
|  | VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg, | 
|  | base_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CoverageData::DumpAsBitSet() { | 
|  | if (!common_flags()->coverage_bitset) return; | 
|  | if (!size()) return; | 
|  | InternalScopedBuffer<char> out(size()); | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | for (uptr m = 0; m < module_name_vec.size(); m++) { | 
|  | uptr n_set_bits = 0; | 
|  | auto r = module_name_vec[m]; | 
|  | CHECK(r.name); | 
|  | CHECK_LE(r.beg, r.end); | 
|  | CHECK_LE(r.end, size()); | 
|  | for (uptr i = r.beg; i < r.end; i++) { | 
|  | uptr pc = data()[i]; | 
|  | out[i] = pc ? '1' : '0'; | 
|  | if (pc) | 
|  | n_set_bits++; | 
|  | } | 
|  | const char *base_name = StripModuleName(r.name); | 
|  | int fd = CovOpenFile(&path, /* packed */ false, base_name, "bitset-sancov"); | 
|  | if (fd < 0) return; | 
|  | internal_write(fd, out.data() + r.beg, r.end - r.beg); | 
|  | internal_close(fd); | 
|  | VReport(1, | 
|  | " CovDump: bitset of %zd bits written for '%s', %zd bits are set\n", | 
|  | r.end - r.beg, base_name, n_set_bits); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CoverageData::DumpOffsets() { | 
|  | auto sym = Symbolizer::GetOrInit(); | 
|  | if (!common_flags()->coverage_pcs) return; | 
|  | CHECK_NE(sym, nullptr); | 
|  | InternalMmapVector<u32> offsets(0); | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | for (uptr m = 0; m < module_name_vec.size(); m++) { | 
|  | offsets.clear(); | 
|  | auto r = module_name_vec[m]; | 
|  | CHECK(r.name); | 
|  | CHECK_LE(r.beg, r.end); | 
|  | CHECK_LE(r.end, size()); | 
|  | const char *module_name = "<unknown>"; | 
|  | for (uptr i = r.beg; i < r.end; i++) { | 
|  | uptr pc = data()[i]; | 
|  | if (!pc) continue; // Not visited. | 
|  | uptr offset = 0; | 
|  | sym->GetModuleNameAndOffsetForPC(pc, &module_name, &offset); | 
|  | if (!offset || offset > 0xffffffffU) continue; | 
|  | offsets.push_back(static_cast<u32>(offset)); | 
|  | } | 
|  | module_name = StripModuleName(r.name); | 
|  | if (cov_sandboxed) { | 
|  | if (cov_fd >= 0) { | 
|  | CovWritePacked(internal_getpid(), module_name, offsets.data(), | 
|  | offsets.size() * sizeof(u32)); | 
|  | VReport(1, " CovDump: %zd PCs written to packed file\n", | 
|  | offsets.size()); | 
|  | } | 
|  | } else { | 
|  | // One file per module per process. | 
|  | int fd = CovOpenFile(&path, false /* packed */, module_name); | 
|  | if (fd < 0) continue; | 
|  | internal_write(fd, offsets.data(), offsets.size() * sizeof(u32)); | 
|  | internal_close(fd); | 
|  | VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), | 
|  | offsets.size()); | 
|  | } | 
|  | } | 
|  | if (cov_fd >= 0) | 
|  | internal_close(cov_fd); | 
|  | } | 
|  |  | 
|  | void CoverageData::DumpAll() { | 
|  | if (!coverage_enabled || common_flags()->coverage_direct) return; | 
|  | if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed)) | 
|  | return; | 
|  | DumpAsBitSet(); | 
|  | DumpCounters(); | 
|  | DumpTrace(); | 
|  | DumpOffsets(); | 
|  | DumpCallerCalleePairs(); | 
|  | } | 
|  |  | 
|  | void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) { | 
|  | if (!args) return; | 
|  | if (!coverage_enabled) return; | 
|  | cov_sandboxed = args->coverage_sandboxed; | 
|  | if (!cov_sandboxed) return; | 
|  | cov_fd = args->coverage_fd; | 
|  | cov_max_block_size = args->coverage_max_block_size; | 
|  | if (cov_fd < 0) { | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | // Pre-open the file now. The sandbox won't allow us to do it later. | 
|  | cov_fd = CovOpenFile(&path, true /* packed */, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | int MaybeOpenCovFile(const char *name) { | 
|  | CHECK(name); | 
|  | if (!coverage_enabled) return -1; | 
|  | InternalScopedString path(kMaxPathLength); | 
|  | return CovOpenFile(&path, true /* packed */, name); | 
|  | } | 
|  |  | 
|  | void CovBeforeFork() { | 
|  | coverage_data.BeforeFork(); | 
|  | } | 
|  |  | 
|  | void CovAfterFork(int child_pid) { | 
|  | coverage_data.AfterFork(child_pid); | 
|  | } | 
|  |  | 
|  | void InitializeCoverage(bool enabled, const char *dir) { | 
|  | if (coverage_enabled) | 
|  | return;  // May happen if two sanitizer enable coverage in the same process. | 
|  | coverage_enabled = enabled; | 
|  | coverage_dir = dir; | 
|  | coverage_data.Init(); | 
|  | if (enabled) coverage_data.Enable(); | 
|  | #if !SANITIZER_WINDOWS | 
|  | if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ReInitializeCoverage(bool enabled, const char *dir) { | 
|  | coverage_enabled = enabled; | 
|  | coverage_dir = dir; | 
|  | coverage_data.ReInit(); | 
|  | } | 
|  |  | 
|  | void CoverageUpdateMapping() { | 
|  | if (coverage_enabled) | 
|  | CovUpdateMapping(coverage_dir); | 
|  | } | 
|  |  | 
|  | }  // namespace __sanitizer | 
|  |  | 
|  | extern "C" { | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) { | 
|  | coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), | 
|  | guard); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) { | 
|  | atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard); | 
|  | if (__sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) | 
|  | __sanitizer_cov(guard); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void | 
|  | __sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) { | 
|  | coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), | 
|  | callee, callee_cache16, 16); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() { | 
|  | coverage_enabled = true; | 
|  | coverage_dir = common_flags()->coverage_dir; | 
|  | coverage_data.Init(); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { | 
|  | coverage_data.DumpAll(); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE void | 
|  | __sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters, | 
|  | const char *comp_unit_name) { | 
|  | coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC()); | 
|  | coverage_data.InitializeCounters(counters, npcs); | 
|  | if (!common_flags()->coverage_direct) return; | 
|  | if (SANITIZER_ANDROID && coverage_enabled) { | 
|  | // dlopen/dlclose interceptors do not work on Android, so we rely on | 
|  | // Extend() calls to update .sancov.map. | 
|  | CovUpdateMapping(coverage_dir, GET_CALLER_PC()); | 
|  | } | 
|  | coverage_data.Extend(npcs); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | sptr __sanitizer_maybe_open_cov_file(const char *name) { | 
|  | return MaybeOpenCovFile(name); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | uptr __sanitizer_get_total_unique_coverage() { | 
|  | return atomic_load(&coverage_counter, memory_order_relaxed); | 
|  | } | 
|  |  | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | void __sanitizer_cov_trace_func_enter(s32 *id) { | 
|  | coverage_data.TraceBasicBlock(id); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | void __sanitizer_cov_trace_basic_block(s32 *id) { | 
|  | coverage_data.TraceBasicBlock(id); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | void __sanitizer_reset_coverage() { | 
|  | coverage_data.ReinitializeGuards(); | 
|  | internal_bzero_aligned16( | 
|  | coverage_data.data(), | 
|  | RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16)); | 
|  | } | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | uptr __sanitizer_get_coverage_guards(uptr **data) { | 
|  | *data = coverage_data.data(); | 
|  | return coverage_data.size(); | 
|  | } | 
|  |  | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | uptr __sanitizer_get_number_of_counters() { | 
|  | return coverage_data.GetNumberOf8bitCounters(); | 
|  | } | 
|  |  | 
|  | SANITIZER_INTERFACE_ATTRIBUTE | 
|  | uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) { | 
|  | return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset); | 
|  | } | 
|  | }  // extern "C" |