|  | //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements the WebAssemblyTargetLowering class. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "WebAssemblyISelLowering.h" | 
|  | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" | 
|  | #include "WebAssemblyMachineFunctionInfo.h" | 
|  | #include "WebAssemblySubtarget.h" | 
|  | #include "WebAssemblyTargetMachine.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/WasmEHFuncInfo.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/DiagnosticPrinter.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "wasm-lower" | 
|  |  | 
|  | WebAssemblyTargetLowering::WebAssemblyTargetLowering( | 
|  | const TargetMachine &TM, const WebAssemblySubtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(&STI) { | 
|  | auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | // Booleans always contain 0 or 1. | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | // Except in SIMD vectors | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  | // WebAssembly does not produce floating-point exceptions on normal floating | 
|  | // point operations. | 
|  | setHasFloatingPointExceptions(false); | 
|  | // We don't know the microarchitecture here, so just reduce register pressure. | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | // Tell ISel that we have a stack pointer. | 
|  | setStackPointerRegisterToSaveRestore( | 
|  | Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); | 
|  | addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); | 
|  | addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); | 
|  | addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); | 
|  | if (Subtarget->hasSIMD128()) { | 
|  | addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); | 
|  | addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); | 
|  | addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); | 
|  | addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); | 
|  | } | 
|  | if (Subtarget->hasUnimplementedSIMD128()) { | 
|  | addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); | 
|  | addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); | 
|  | } | 
|  | // Compute derived properties from the register classes. | 
|  | computeRegisterProperties(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); | 
|  | setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); | 
|  | setOperationAction(ISD::JumpTable, MVTPtr, Custom); | 
|  | setOperationAction(ISD::BlockAddress, MVTPtr, Custom); | 
|  | setOperationAction(ISD::BRIND, MVT::Other, Custom); | 
|  |  | 
|  | // Take the default expansion for va_arg, va_copy, and va_end. There is no | 
|  | // default action for va_start, so we do that custom. | 
|  | setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY, MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND, MVT::Other, Expand); | 
|  |  | 
|  | for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { | 
|  | // Don't expand the floating-point types to constant pools. | 
|  | setOperationAction(ISD::ConstantFP, T, Legal); | 
|  | // Expand floating-point comparisons. | 
|  | for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, | 
|  | ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) | 
|  | setCondCodeAction(CC, T, Expand); | 
|  | // Expand floating-point library function operators. | 
|  | for (auto Op : | 
|  | {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | // Note supported floating-point library function operators that otherwise | 
|  | // default to expand. | 
|  | for (auto Op : | 
|  | {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) | 
|  | setOperationAction(Op, T, Legal); | 
|  | // Support minimum and maximum, which otherwise default to expand. | 
|  | setOperationAction(ISD::FMINIMUM, T, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, T, Legal); | 
|  | // WebAssembly currently has no builtin f16 support. | 
|  | setOperationAction(ISD::FP16_TO_FP, T, Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16, T, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); | 
|  | setTruncStoreAction(T, MVT::f16, Expand); | 
|  | } | 
|  |  | 
|  | // Expand unavailable integer operations. | 
|  | for (auto Op : | 
|  | {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, | 
|  | ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, | 
|  | ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { | 
|  | for (auto T : {MVT::i32, MVT::i64}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | if (Subtarget->hasSIMD128()) | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | setOperationAction(Op, MVT::v2i64, Expand); | 
|  | } | 
|  |  | 
|  | // SIMD-specific configuration | 
|  | if (Subtarget->hasSIMD128()) { | 
|  | // Support saturating add for i8x16 and i16x8 | 
|  | for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16}) | 
|  | setOperationAction(Op, T, Legal); | 
|  |  | 
|  | // Custom lower BUILD_VECTORs to minimize number of replace_lanes | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) | 
|  | setOperationAction(ISD::BUILD_VECTOR, T, Custom); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | for (auto T : {MVT::v2i64, MVT::v2f64}) | 
|  | setOperationAction(ISD::BUILD_VECTOR, T, Custom); | 
|  |  | 
|  | // We have custom shuffle lowering to expose the shuffle mask | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | for (auto T: {MVT::v2i64, MVT::v2f64}) | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); | 
|  |  | 
|  | // Custom lowering since wasm shifts must have a scalar shift amount | 
|  | for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) | 
|  | setOperationAction(Op, T, Custom); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | setOperationAction(Op, MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // Custom lower lane accesses to expand out variable indices | 
|  | for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) | 
|  | setOperationAction(Op, T, Custom); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | for (auto T : {MVT::v2i64, MVT::v2f64}) | 
|  | setOperationAction(Op, T, Custom); | 
|  | } | 
|  |  | 
|  | // There is no i64x2.mul instruction | 
|  | setOperationAction(ISD::MUL, MVT::v2i64, Expand); | 
|  |  | 
|  | // There are no vector select instructions | 
|  | for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | for (auto T : {MVT::v2i64, MVT::v2f64}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | } | 
|  |  | 
|  | // Expand integer operations supported for scalars but not SIMD | 
|  | for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, | 
|  | ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) | 
|  | setOperationAction(Op, T, Expand); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | setOperationAction(Op, MVT::v2i64, Expand); | 
|  | } | 
|  |  | 
|  | // Expand float operations supported for scalars but not SIMD | 
|  | for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, | 
|  | ISD::FCOPYSIGN}) { | 
|  | setOperationAction(Op, MVT::v4f32, Expand); | 
|  | if (Subtarget->hasUnimplementedSIMD128()) | 
|  | setOperationAction(Op, MVT::v2f64, Expand); | 
|  | } | 
|  |  | 
|  | // Expand additional SIMD ops that V8 hasn't implemented yet | 
|  | if (!Subtarget->hasUnimplementedSIMD128()) { | 
|  | setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); | 
|  | setOperationAction(ISD::FDIV, MVT::v4f32, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // As a special case, these operators use the type to mean the type to | 
|  | // sign-extend from. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  | if (!Subtarget->hasSignExt()) { | 
|  | // Sign extends are legal only when extending a vector extract | 
|  | auto Action = Subtarget->hasSIMD128() ? Custom : Expand; | 
|  | for (auto T : {MVT::i8, MVT::i16, MVT::i32}) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); | 
|  | } | 
|  | for (auto T : MVT::integer_vector_valuetypes()) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); | 
|  |  | 
|  | // Dynamic stack allocation: use the default expansion. | 
|  | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FrameIndex, MVT::i32, Custom); | 
|  | setOperationAction(ISD::CopyToReg, MVT::Other, Custom); | 
|  |  | 
|  | // Expand these forms; we pattern-match the forms that we can handle in isel. | 
|  | for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) | 
|  | for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) | 
|  | setOperationAction(Op, T, Expand); | 
|  |  | 
|  | // We have custom switch handling. | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Custom); | 
|  |  | 
|  | // WebAssembly doesn't have: | 
|  | //  - Floating-point extending loads. | 
|  | //  - Floating-point truncating stores. | 
|  | //  - i1 extending loads. | 
|  | //  - extending/truncating SIMD loads/stores | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  | for (auto T : MVT::integer_valuetypes()) | 
|  | for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) | 
|  | setLoadExtAction(Ext, T, MVT::i1, Promote); | 
|  | if (Subtarget->hasSIMD128()) { | 
|  | for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, | 
|  | MVT::v2f64}) { | 
|  | for (auto MemT : MVT::vector_valuetypes()) { | 
|  | if (MVT(T) != MemT) { | 
|  | setTruncStoreAction(T, MemT, Expand); | 
|  | for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) | 
|  | setLoadExtAction(Ext, T, MemT, Expand); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't do anything clever with build_pairs | 
|  | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | 
|  |  | 
|  | // Trap lowers to wasm unreachable | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // Exception handling intrinsics | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  |  | 
|  | setMaxAtomicSizeInBitsSupported(64); | 
|  |  | 
|  | if (Subtarget->hasBulkMemory()) { | 
|  | // Use memory.copy and friends over multiple loads and stores | 
|  | MaxStoresPerMemcpy = 1; | 
|  | MaxStoresPerMemcpyOptSize = 1; | 
|  | MaxStoresPerMemmove = 1; | 
|  | MaxStoresPerMemmoveOptSize = 1; | 
|  | MaxStoresPerMemset = 1; | 
|  | MaxStoresPerMemsetOptSize = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | TargetLowering::AtomicExpansionKind | 
|  | WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { | 
|  | // We have wasm instructions for these | 
|  | switch (AI->getOperation()) { | 
|  | case AtomicRMWInst::Add: | 
|  | case AtomicRMWInst::Sub: | 
|  | case AtomicRMWInst::And: | 
|  | case AtomicRMWInst::Or: | 
|  | case AtomicRMWInst::Xor: | 
|  | case AtomicRMWInst::Xchg: | 
|  | return AtomicExpansionKind::None; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return AtomicExpansionKind::CmpXChg; | 
|  | } | 
|  |  | 
|  | FastISel *WebAssemblyTargetLowering::createFastISel( | 
|  | FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { | 
|  | return WebAssembly::createFastISel(FuncInfo, LibInfo); | 
|  | } | 
|  |  | 
|  | MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, | 
|  | EVT VT) const { | 
|  | unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); | 
|  | if (BitWidth > 1 && BitWidth < 8) | 
|  | BitWidth = 8; | 
|  |  | 
|  | if (BitWidth > 64) { | 
|  | // The shift will be lowered to a libcall, and compiler-rt libcalls expect | 
|  | // the count to be an i32. | 
|  | BitWidth = 32; | 
|  | assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && | 
|  | "32-bit shift counts ought to be enough for anyone"); | 
|  | } | 
|  |  | 
|  | MVT Result = MVT::getIntegerVT(BitWidth); | 
|  | assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && | 
|  | "Unable to represent scalar shift amount type"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Lower an fp-to-int conversion operator from the LLVM opcode, which has an | 
|  | // undefined result on invalid/overflow, to the WebAssembly opcode, which | 
|  | // traps on invalid/overflow. | 
|  | static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, | 
|  | MachineBasicBlock *BB, | 
|  | const TargetInstrInfo &TII, | 
|  | bool IsUnsigned, bool Int64, | 
|  | bool Float64, unsigned LoweredOpcode) { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  |  | 
|  | unsigned OutReg = MI.getOperand(0).getReg(); | 
|  | unsigned InReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; | 
|  | unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; | 
|  | unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; | 
|  | unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; | 
|  | unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; | 
|  | unsigned Eqz = WebAssembly::EQZ_I32; | 
|  | unsigned And = WebAssembly::AND_I32; | 
|  | int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; | 
|  | int64_t Substitute = IsUnsigned ? 0 : Limit; | 
|  | double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; | 
|  | auto &Context = BB->getParent()->getFunction().getContext(); | 
|  | Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); | 
|  |  | 
|  | const BasicBlock *LLVMBB = BB->getBasicBlock(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); | 
|  | MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); | 
|  | MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); | 
|  |  | 
|  | MachineFunction::iterator It = ++BB->getIterator(); | 
|  | F->insert(It, FalseMBB); | 
|  | F->insert(It, TrueMBB); | 
|  | F->insert(It, DoneMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to DoneMBB. | 
|  | DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); | 
|  | DoneMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | BB->addSuccessor(TrueMBB); | 
|  | BB->addSuccessor(FalseMBB); | 
|  | TrueMBB->addSuccessor(DoneMBB); | 
|  | FalseMBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; | 
|  | Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); | 
|  | Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); | 
|  | CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); | 
|  | EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); | 
|  | FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); | 
|  | TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | // For signed numbers, we can do a single comparison to determine whether | 
|  | // fabs(x) is within range. | 
|  | if (IsUnsigned) { | 
|  | Tmp0 = InReg; | 
|  | } else { | 
|  | BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); | 
|  | } | 
|  | BuildMI(BB, DL, TII.get(FConst), Tmp1) | 
|  | .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); | 
|  | BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); | 
|  |  | 
|  | // For unsigned numbers, we have to do a separate comparison with zero. | 
|  | if (IsUnsigned) { | 
|  | Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); | 
|  | unsigned SecondCmpReg = | 
|  | MRI.createVirtualRegister(&WebAssembly::I32RegClass); | 
|  | unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); | 
|  | BuildMI(BB, DL, TII.get(FConst), Tmp1) | 
|  | .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); | 
|  | BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); | 
|  | BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); | 
|  | CmpReg = AndReg; | 
|  | } | 
|  |  | 
|  | BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); | 
|  |  | 
|  | // Create the CFG diamond to select between doing the conversion or using | 
|  | // the substitute value. | 
|  | BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); | 
|  | BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); | 
|  | BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); | 
|  | BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); | 
|  | BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) | 
|  | .addReg(FalseReg) | 
|  | .addMBB(FalseMBB) | 
|  | .addReg(TrueReg) | 
|  | .addMBB(TrueMBB); | 
|  |  | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr &MI, MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected instr type to insert"); | 
|  | case WebAssembly::FP_TO_SINT_I32_F32: | 
|  | return LowerFPToInt(MI, DL, BB, TII, false, false, false, | 
|  | WebAssembly::I32_TRUNC_S_F32); | 
|  | case WebAssembly::FP_TO_UINT_I32_F32: | 
|  | return LowerFPToInt(MI, DL, BB, TII, true, false, false, | 
|  | WebAssembly::I32_TRUNC_U_F32); | 
|  | case WebAssembly::FP_TO_SINT_I64_F32: | 
|  | return LowerFPToInt(MI, DL, BB, TII, false, true, false, | 
|  | WebAssembly::I64_TRUNC_S_F32); | 
|  | case WebAssembly::FP_TO_UINT_I64_F32: | 
|  | return LowerFPToInt(MI, DL, BB, TII, true, true, false, | 
|  | WebAssembly::I64_TRUNC_U_F32); | 
|  | case WebAssembly::FP_TO_SINT_I32_F64: | 
|  | return LowerFPToInt(MI, DL, BB, TII, false, false, true, | 
|  | WebAssembly::I32_TRUNC_S_F64); | 
|  | case WebAssembly::FP_TO_UINT_I32_F64: | 
|  | return LowerFPToInt(MI, DL, BB, TII, true, false, true, | 
|  | WebAssembly::I32_TRUNC_U_F64); | 
|  | case WebAssembly::FP_TO_SINT_I64_F64: | 
|  | return LowerFPToInt(MI, DL, BB, TII, false, true, true, | 
|  | WebAssembly::I64_TRUNC_S_F64); | 
|  | case WebAssembly::FP_TO_UINT_I64_F64: | 
|  | return LowerFPToInt(MI, DL, BB, TII, true, true, true, | 
|  | WebAssembly::I64_TRUNC_U_F64); | 
|  | llvm_unreachable("Unexpected instruction to emit with custom inserter"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char * | 
|  | WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { | 
|  | case WebAssemblyISD::FIRST_NUMBER: | 
|  | break; | 
|  | #define HANDLE_NODETYPE(NODE)                                                  \ | 
|  | case WebAssemblyISD::NODE:                                                   \ | 
|  | return "WebAssemblyISD::" #NODE; | 
|  | #include "WebAssemblyISD.def" | 
|  | #undef HANDLE_NODETYPE | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | WebAssemblyTargetLowering::getRegForInlineAsmConstraint( | 
|  | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { | 
|  | // First, see if this is a constraint that directly corresponds to a | 
|  | // WebAssembly register class. | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'r': | 
|  | assert(VT != MVT::iPTR && "Pointer MVT not expected here"); | 
|  | if (Subtarget->hasSIMD128() && VT.isVector()) { | 
|  | if (VT.getSizeInBits() == 128) | 
|  | return std::make_pair(0U, &WebAssembly::V128RegClass); | 
|  | } | 
|  | if (VT.isInteger() && !VT.isVector()) { | 
|  | if (VT.getSizeInBits() <= 32) | 
|  | return std::make_pair(0U, &WebAssembly::I32RegClass); | 
|  | if (VT.getSizeInBits() <= 64) | 
|  | return std::make_pair(0U, &WebAssembly::I64RegClass); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { | 
|  | // Assume ctz is a relatively cheap operation. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { | 
|  | // Assume clz is a relatively cheap operation. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, | 
|  | Type *Ty, unsigned AS, | 
|  | Instruction *I) const { | 
|  | // WebAssembly offsets are added as unsigned without wrapping. The | 
|  | // isLegalAddressingMode gives us no way to determine if wrapping could be | 
|  | // happening, so we approximate this by accepting only non-negative offsets. | 
|  | if (AM.BaseOffs < 0) | 
|  | return false; | 
|  |  | 
|  | // WebAssembly has no scale register operands. | 
|  | if (AM.Scale != 0) | 
|  | return false; | 
|  |  | 
|  | // Everything else is legal. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( | 
|  | EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { | 
|  | // WebAssembly supports unaligned accesses, though it should be declared | 
|  | // with the p2align attribute on loads and stores which do so, and there | 
|  | // may be a performance impact. We tell LLVM they're "fast" because | 
|  | // for the kinds of things that LLVM uses this for (merging adjacent stores | 
|  | // of constants, etc.), WebAssembly implementations will either want the | 
|  | // unaligned access or they'll split anyway. | 
|  | if (Fast) | 
|  | *Fast = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, | 
|  | AttributeList Attr) const { | 
|  | // The current thinking is that wasm engines will perform this optimization, | 
|  | // so we can save on code size. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, | 
|  | LLVMContext &C, | 
|  | EVT VT) const { | 
|  | if (VT.isVector()) | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  |  | 
|  | return TargetLowering::getSetCCResultType(DL, C, VT); | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &I, | 
|  | MachineFunction &MF, | 
|  | unsigned Intrinsic) const { | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::wasm_atomic_notify: | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::i32; | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = 4; | 
|  | // atomic.notify instruction does not really load the memory specified with | 
|  | // this argument, but MachineMemOperand should either be load or store, so | 
|  | // we set this to a load. | 
|  | // FIXME Volatile isn't really correct, but currently all LLVM atomic | 
|  | // instructions are treated as volatiles in the backend, so we should be | 
|  | // consistent. The same applies for wasm_atomic_wait intrinsics too. | 
|  | Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; | 
|  | return true; | 
|  | case Intrinsic::wasm_atomic_wait_i32: | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::i32; | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = 4; | 
|  | Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; | 
|  | return true; | 
|  | case Intrinsic::wasm_atomic_wait_i64: | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::i64; | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = 8; | 
|  | Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // WebAssembly Lowering private implementation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | DAG.getContext()->diagnose( | 
|  | DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); | 
|  | } | 
|  |  | 
|  | // Test whether the given calling convention is supported. | 
|  | static bool callingConvSupported(CallingConv::ID CallConv) { | 
|  | // We currently support the language-independent target-independent | 
|  | // conventions. We don't yet have a way to annotate calls with properties like | 
|  | // "cold", and we don't have any call-clobbered registers, so these are mostly | 
|  | // all handled the same. | 
|  | return CallConv == CallingConv::C || CallConv == CallingConv::Fast || | 
|  | CallConv == CallingConv::Cold || | 
|  | CallConv == CallingConv::PreserveMost || | 
|  | CallConv == CallingConv::PreserveAll || | 
|  | CallConv == CallingConv::CXX_FAST_TLS; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | SDLoc DL = CLI.DL; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto Layout = MF.getDataLayout(); | 
|  |  | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | if (!callingConvSupported(CallConv)) | 
|  | fail(DL, DAG, | 
|  | "WebAssembly doesn't support language-specific or target-specific " | 
|  | "calling conventions yet"); | 
|  | if (CLI.IsPatchPoint) | 
|  | fail(DL, DAG, "WebAssembly doesn't support patch point yet"); | 
|  |  | 
|  | // WebAssembly doesn't currently support explicit tail calls. If they are | 
|  | // required, fail. Otherwise, just disable them. | 
|  | if ((CallConv == CallingConv::Fast && CLI.IsTailCall && | 
|  | MF.getTarget().Options.GuaranteedTailCallOpt) || | 
|  | (CLI.CS && CLI.CS.isMustTailCall())) | 
|  | fail(DL, DAG, "WebAssembly doesn't support tail call yet"); | 
|  | CLI.IsTailCall = false; | 
|  |  | 
|  | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; | 
|  | if (Ins.size() > 1) | 
|  | fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); | 
|  |  | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; | 
|  | unsigned NumFixedArgs = 0; | 
|  | for (unsigned I = 0; I < Outs.size(); ++I) { | 
|  | const ISD::OutputArg &Out = Outs[I]; | 
|  | SDValue &OutVal = OutVals[I]; | 
|  | if (Out.Flags.isNest()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); | 
|  | if (Out.Flags.isInAlloca()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); | 
|  | if (Out.Flags.isInConsecutiveRegs()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); | 
|  | if (Out.Flags.isInConsecutiveRegsLast()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); | 
|  | if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), | 
|  | Out.Flags.getByValAlign(), | 
|  | /*isSS=*/false); | 
|  | SDValue SizeNode = | 
|  | DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); | 
|  | SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); | 
|  | Chain = DAG.getMemcpy( | 
|  | Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), | 
|  | /*isVolatile*/ false, /*AlwaysInline=*/false, | 
|  | /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); | 
|  | OutVal = FINode; | 
|  | } | 
|  | // Count the number of fixed args *after* legalization. | 
|  | NumFixedArgs += Out.IsFixed; | 
|  | } | 
|  |  | 
|  | bool IsVarArg = CLI.IsVarArg; | 
|  | auto PtrVT = getPointerTy(Layout); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | if (IsVarArg) { | 
|  | // Outgoing non-fixed arguments are placed in a buffer. First | 
|  | // compute their offsets and the total amount of buffer space needed. | 
|  | for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { | 
|  | const ISD::OutputArg &Out = Outs[I]; | 
|  | SDValue &Arg = OutVals[I]; | 
|  | EVT VT = Arg.getValueType(); | 
|  | assert(VT != MVT::iPTR && "Legalized args should be concrete"); | 
|  | Type *Ty = VT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned Align = std::max(Out.Flags.getOrigAlign(), | 
|  | Layout.getABITypeAlignment(Ty)); | 
|  | unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), | 
|  | Align); | 
|  | CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), | 
|  | Offset, VT.getSimpleVT(), | 
|  | CCValAssign::Full)); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); | 
|  |  | 
|  | SDValue FINode; | 
|  | if (IsVarArg && NumBytes) { | 
|  | // For non-fixed arguments, next emit stores to store the argument values | 
|  | // to the stack buffer at the offsets computed above. | 
|  | int FI = MF.getFrameInfo().CreateStackObject(NumBytes, | 
|  | Layout.getStackAlignment(), | 
|  | /*isSS=*/false); | 
|  | unsigned ValNo = 0; | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | for (SDValue Arg : | 
|  | make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { | 
|  | assert(ArgLocs[ValNo].getValNo() == ValNo && | 
|  | "ArgLocs should remain in order and only hold varargs args"); | 
|  | unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); | 
|  | FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, | 
|  | DAG.getConstant(Offset, DL, PtrVT)); | 
|  | Chains.push_back( | 
|  | DAG.getStore(Chain, DL, Arg, Add, | 
|  | MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); | 
|  | } | 
|  | if (!Chains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | } else if (IsVarArg) { | 
|  | FINode = DAG.getIntPtrConstant(0, DL); | 
|  | } | 
|  |  | 
|  | // Compute the operands for the CALLn node. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs | 
|  | // isn't reliable. | 
|  | Ops.append(OutVals.begin(), | 
|  | IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); | 
|  | // Add a pointer to the vararg buffer. | 
|  | if (IsVarArg) | 
|  | Ops.push_back(FINode); | 
|  |  | 
|  | SmallVector<EVT, 8> InTys; | 
|  | for (const auto &In : Ins) { | 
|  | assert(!In.Flags.isByVal() && "byval is not valid for return values"); | 
|  | assert(!In.Flags.isNest() && "nest is not valid for return values"); | 
|  | if (In.Flags.isInAlloca()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); | 
|  | if (In.Flags.isInConsecutiveRegs()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); | 
|  | if (In.Flags.isInConsecutiveRegsLast()) | 
|  | fail(DL, DAG, | 
|  | "WebAssembly hasn't implemented cons regs last return values"); | 
|  | // Ignore In.getOrigAlign() because all our arguments are passed in | 
|  | // registers. | 
|  | InTys.push_back(In.VT); | 
|  | } | 
|  | InTys.push_back(MVT::Other); | 
|  | SDVTList InTyList = DAG.getVTList(InTys); | 
|  | SDValue Res = | 
|  | DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, | 
|  | DL, InTyList, Ops); | 
|  | if (Ins.empty()) { | 
|  | Chain = Res; | 
|  | } else { | 
|  | InVals.push_back(Res); | 
|  | Chain = Res.getValue(1); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | bool WebAssemblyTargetLowering::CanLowerReturn( | 
|  | CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext & /*Context*/) const { | 
|  | // WebAssembly can't currently handle returning tuples. | 
|  | return Outs.size() <= 1; | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerReturn( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); | 
|  | if (!callingConvSupported(CallConv)) | 
|  | fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); | 
|  |  | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  | RetOps.append(OutVals.begin(), OutVals.end()); | 
|  | Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); | 
|  |  | 
|  | // Record the number and types of the return values. | 
|  | for (const ISD::OutputArg &Out : Outs) { | 
|  | assert(!Out.Flags.isByVal() && "byval is not valid for return values"); | 
|  | assert(!Out.Flags.isNest() && "nest is not valid for return values"); | 
|  | assert(Out.IsFixed && "non-fixed return value is not valid"); | 
|  | if (Out.Flags.isInAlloca()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); | 
|  | if (Out.Flags.isInConsecutiveRegs()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); | 
|  | if (Out.Flags.isInConsecutiveRegsLast()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | if (!callingConvSupported(CallConv)) | 
|  | fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); | 
|  |  | 
|  | // Set up the incoming ARGUMENTS value, which serves to represent the liveness | 
|  | // of the incoming values before they're represented by virtual registers. | 
|  | MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); | 
|  |  | 
|  | for (const ISD::InputArg &In : Ins) { | 
|  | if (In.Flags.isInAlloca()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); | 
|  | if (In.Flags.isNest()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); | 
|  | if (In.Flags.isInConsecutiveRegs()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); | 
|  | if (In.Flags.isInConsecutiveRegsLast()) | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); | 
|  | // Ignore In.getOrigAlign() because all our arguments are passed in | 
|  | // registers. | 
|  | InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, | 
|  | DAG.getTargetConstant(InVals.size(), | 
|  | DL, MVT::i32)) | 
|  | : DAG.getUNDEF(In.VT)); | 
|  |  | 
|  | // Record the number and types of arguments. | 
|  | MFI->addParam(In.VT); | 
|  | } | 
|  |  | 
|  | // Varargs are copied into a buffer allocated by the caller, and a pointer to | 
|  | // the buffer is passed as an argument. | 
|  | if (IsVarArg) { | 
|  | MVT PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | unsigned VarargVreg = | 
|  | MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); | 
|  | MFI->setVarargBufferVreg(VarargVreg); | 
|  | Chain = DAG.getCopyToReg( | 
|  | Chain, DL, VarargVreg, | 
|  | DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, | 
|  | DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); | 
|  | MFI->addParam(PtrVT); | 
|  | } | 
|  |  | 
|  | // Record the number and types of arguments and results. | 
|  | SmallVector<MVT, 4> Params; | 
|  | SmallVector<MVT, 4> Results; | 
|  | computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), | 
|  | DAG.getTarget(), Params, Results); | 
|  | for (MVT VT : Results) | 
|  | MFI->addResult(VT); | 
|  | // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify | 
|  | // the param logic here with ComputeSignatureVTs | 
|  | assert(MFI->getParams().size() == Params.size() && | 
|  | std::equal(MFI->getParams().begin(), MFI->getParams().end(), | 
|  | Params.begin())); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Custom lowering hooks. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("unimplemented operation lowering"); | 
|  | return SDValue(); | 
|  | case ISD::FrameIndex: | 
|  | return LowerFrameIndex(Op, DAG); | 
|  | case ISD::GlobalAddress: | 
|  | return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol: | 
|  | return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::JumpTable: | 
|  | return LowerJumpTable(Op, DAG); | 
|  | case ISD::BR_JT: | 
|  | return LowerBR_JT(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG); | 
|  | case ISD::BlockAddress: | 
|  | case ISD::BRIND: | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); | 
|  | return SDValue(); | 
|  | case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. | 
|  | fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); | 
|  | return SDValue(); | 
|  | case ISD::FRAMEADDR: | 
|  | return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::CopyToReg: | 
|  | return LowerCopyToReg(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return LowerAccessVectorElement(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | return LowerIntrinsic(Op, DAG); | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return LowerSIGN_EXTEND_INREG(Op, DAG); | 
|  | case ISD::BUILD_VECTOR: | 
|  | return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | return LowerShift(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Src = Op.getOperand(2); | 
|  | if (isa<FrameIndexSDNode>(Src.getNode())) { | 
|  | // CopyToReg nodes don't support FrameIndex operands. Other targets select | 
|  | // the FI to some LEA-like instruction, but since we don't have that, we | 
|  | // need to insert some kind of instruction that can take an FI operand and | 
|  | // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy | 
|  | // local.copy between Op and its FI operand. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDLoc DL(Op); | 
|  | unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); | 
|  | EVT VT = Src.getValueType(); | 
|  | SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 | 
|  | : WebAssembly::COPY_I64, | 
|  | DL, VT, Src), | 
|  | 0); | 
|  | return Op.getNode()->getNumValues() == 1 | 
|  | ? DAG.getCopyToReg(Chain, DL, Reg, Copy) | 
|  | : DAG.getCopyToReg(Chain, DL, Reg, Copy, | 
|  | Op.getNumOperands() == 4 ? Op.getOperand(3) | 
|  | : SDValue()); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | int FI = cast<FrameIndexSDNode>(Op)->getIndex(); | 
|  | return DAG.getTargetFrameIndex(FI, Op.getValueType()); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Non-zero depths are not supported by WebAssembly currently. Use the | 
|  | // legalizer's default expansion, which is to return 0 (what this function is | 
|  | // documented to do). | 
|  | if (Op.getConstantOperandVal(0) > 0) | 
|  | return SDValue(); | 
|  |  | 
|  | DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned FP = | 
|  | Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | const auto *GA = cast<GlobalAddressSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(GA->getTargetFlags() == 0 && | 
|  | "Unexpected target flags on generic GlobalAddressSDNode"); | 
|  | if (GA->getAddressSpace() != 0) | 
|  | fail(DL, DAG, "WebAssembly only expects the 0 address space"); | 
|  | return DAG.getNode( | 
|  | WebAssemblyISD::Wrapper, DL, VT, | 
|  | DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | const auto *ES = cast<ExternalSymbolSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(ES->getTargetFlags() == 0 && | 
|  | "Unexpected target flags on generic ExternalSymbolSDNode"); | 
|  | // Set the TargetFlags to MO_SYMBOL_FUNCTION which indicates that this is a | 
|  | // "function" symbol rather than a data symbol. We do this unconditionally | 
|  | // even though we don't know anything about the symbol other than its name, | 
|  | // because all external symbols used in target-independent SelectionDAG code | 
|  | // are for functions. | 
|  | return DAG.getNode( | 
|  | WebAssemblyISD::Wrapper, DL, VT, | 
|  | DAG.getTargetExternalSymbol(ES->getSymbol(), VT, | 
|  | WebAssemblyII::MO_SYMBOL_FUNCTION)); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // There's no need for a Wrapper node because we always incorporate a jump | 
|  | // table operand into a BR_TABLE instruction, rather than ever | 
|  | // materializing it in a register. | 
|  | const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  | return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), | 
|  | JT->getTargetFlags()); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); | 
|  | SDValue Index = Op.getOperand(2); | 
|  | assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Index); | 
|  |  | 
|  | MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); | 
|  | const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; | 
|  |  | 
|  | // Add an operand for each case. | 
|  | for (auto MBB : MBBs) | 
|  | Ops.push_back(DAG.getBasicBlock(MBB)); | 
|  |  | 
|  | // TODO: For now, we just pick something arbitrary for a default case for now. | 
|  | // We really want to sniff out the guard and put in the real default case (and | 
|  | // delete the guard). | 
|  | Ops.push_back(DAG.getBasicBlock(MBBs[0])); | 
|  |  | 
|  | return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); | 
|  |  | 
|  | auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  |  | 
|  | SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, | 
|  | MFI->getVarargBufferVreg(), PtrVT); | 
|  | return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), 0); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned IntNo; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid intrinsic"); | 
|  | } | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | switch (IntNo) { | 
|  | default: | 
|  | return SDValue(); // Don't custom lower most intrinsics. | 
|  |  | 
|  | case Intrinsic::wasm_lsda: { | 
|  | EVT VT = Op.getValueType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | auto &Context = MF.getMMI().getContext(); | 
|  | MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + | 
|  | Twine(MF.getFunctionNumber())); | 
|  | return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, | 
|  | DAG.getMCSymbol(S, PtrVT)); | 
|  | } | 
|  |  | 
|  | case Intrinsic::wasm_throw: { | 
|  | // We only support C++ exceptions for now | 
|  | int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); | 
|  | if (Tag != CPP_EXCEPTION) | 
|  | llvm_unreachable("Invalid tag!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | const char *SymName = MF.createExternalSymbolName("__cpp_exception"); | 
|  | SDValue SymNode = | 
|  | DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, | 
|  | DAG.getTargetExternalSymbol( | 
|  | SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); | 
|  | return DAG.getNode(WebAssemblyISD::THROW, DL, | 
|  | MVT::Other, // outchain type | 
|  | { | 
|  | Op.getOperand(0), // inchain | 
|  | SymNode,          // exception symbol | 
|  | Op.getOperand(3)  // thrown value | 
|  | }); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // If sign extension operations are disabled, allow sext_inreg only if operand | 
|  | // is a vector extract. SIMD does not depend on sign extension operations, but | 
|  | // allowing sext_inreg in this context lets us have simple patterns to select | 
|  | // extract_lane_s instructions. Expanding sext_inreg everywhere would be | 
|  | // simpler in this file, but would necessitate large and brittle patterns to | 
|  | // undo the expansion and select extract_lane_s instructions. | 
|  | assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); | 
|  | if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) | 
|  | return Op; | 
|  | // Otherwise expand | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | const EVT VecT = Op.getValueType(); | 
|  | const EVT LaneT = Op.getOperand(0).getValueType(); | 
|  | const size_t Lanes = Op.getNumOperands(); | 
|  | auto IsConstant = [](const SDValue &V) { | 
|  | return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; | 
|  | }; | 
|  |  | 
|  | // Find the most common operand, which is approximately the best to splat | 
|  | using Entry = std::pair<SDValue, size_t>; | 
|  | SmallVector<Entry, 16> ValueCounts; | 
|  | size_t NumConst = 0, NumDynamic = 0; | 
|  | for (const SDValue &Lane : Op->op_values()) { | 
|  | if (Lane.isUndef()) { | 
|  | continue; | 
|  | } else if (IsConstant(Lane)) { | 
|  | NumConst++; | 
|  | } else { | 
|  | NumDynamic++; | 
|  | } | 
|  | auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), | 
|  | [&Lane](Entry A) { return A.first == Lane; }); | 
|  | if (CountIt == ValueCounts.end()) { | 
|  | ValueCounts.emplace_back(Lane, 1); | 
|  | } else { | 
|  | CountIt->second++; | 
|  | } | 
|  | } | 
|  | auto CommonIt = | 
|  | std::max_element(ValueCounts.begin(), ValueCounts.end(), | 
|  | [](Entry A, Entry B) { return A.second < B.second; }); | 
|  | assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); | 
|  | SDValue SplatValue = CommonIt->first; | 
|  | size_t NumCommon = CommonIt->second; | 
|  |  | 
|  | // If v128.const is available, consider using it instead of a splat | 
|  | if (Subtarget->hasUnimplementedSIMD128()) { | 
|  | // {i32,i64,f32,f64}.const opcode, and value | 
|  | const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); | 
|  | // SIMD prefix and opcode | 
|  | const size_t SplatBytes = 2; | 
|  | const size_t SplatConstBytes = SplatBytes + ConstBytes; | 
|  | // SIMD prefix, opcode, and lane index | 
|  | const size_t ReplaceBytes = 3; | 
|  | const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; | 
|  | // SIMD prefix, v128.const opcode, and 128-bit value | 
|  | const size_t VecConstBytes = 18; | 
|  | // Initial v128.const and a replace_lane for each non-const operand | 
|  | const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; | 
|  | // Initial splat and all necessary replace_lanes | 
|  | const size_t SplatInitBytes = | 
|  | IsConstant(SplatValue) | 
|  | // Initial constant splat | 
|  | ? (SplatConstBytes + | 
|  | // Constant replace_lanes | 
|  | (NumConst - NumCommon) * ReplaceConstBytes + | 
|  | // Dynamic replace_lanes | 
|  | (NumDynamic * ReplaceBytes)) | 
|  | // Initial dynamic splat | 
|  | : (SplatBytes + | 
|  | // Constant replace_lanes | 
|  | (NumConst * ReplaceConstBytes) + | 
|  | // Dynamic replace_lanes | 
|  | (NumDynamic - NumCommon) * ReplaceBytes); | 
|  | if (ConstInitBytes < SplatInitBytes) { | 
|  | // Create build_vector that will lower to initial v128.const | 
|  | SmallVector<SDValue, 16> ConstLanes; | 
|  | for (const SDValue &Lane : Op->op_values()) { | 
|  | if (IsConstant(Lane)) { | 
|  | ConstLanes.push_back(Lane); | 
|  | } else if (LaneT.isFloatingPoint()) { | 
|  | ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); | 
|  | } else { | 
|  | ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); | 
|  | } | 
|  | } | 
|  | SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); | 
|  | // Add replace_lane instructions for non-const lanes | 
|  | for (size_t I = 0; I < Lanes; ++I) { | 
|  | const SDValue &Lane = Op->getOperand(I); | 
|  | if (!Lane.isUndef() && !IsConstant(Lane)) | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, | 
|  | DAG.getConstant(I, DL, MVT::i32)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | // Use a splat for the initial vector | 
|  | SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); | 
|  | // Add replace_lane instructions for other values | 
|  | for (size_t I = 0; I < Lanes; ++I) { | 
|  | const SDValue &Lane = Op->getOperand(I); | 
|  | if (Lane != SplatValue) | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, | 
|  | DAG.getConstant(I, DL, MVT::i32)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); | 
|  | MVT VecType = Op.getOperand(0).getSimpleValueType(); | 
|  | assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); | 
|  | size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; | 
|  |  | 
|  | // Space for two vector args and sixteen mask indices | 
|  | SDValue Ops[18]; | 
|  | size_t OpIdx = 0; | 
|  | Ops[OpIdx++] = Op.getOperand(0); | 
|  | Ops[OpIdx++] = Op.getOperand(1); | 
|  |  | 
|  | // Expand mask indices to byte indices and materialize them as operands | 
|  | for (int M : Mask) { | 
|  | for (size_t J = 0; J < LaneBytes; ++J) { | 
|  | // Lower undefs (represented by -1 in mask) to zero | 
|  | uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; | 
|  | Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Allow constant lane indices, expand variable lane indices | 
|  | SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); | 
|  | if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) | 
|  | return Op; | 
|  | else | 
|  | // Perform default expansion | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT LaneT = Op.getSimpleValueType().getVectorElementType(); | 
|  | // 32-bit and 64-bit unrolled shifts will have proper semantics | 
|  | if (LaneT.bitsGE(MVT::i32)) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | // Otherwise mask the shift value to get proper semantics from 32-bit shift | 
|  | SDLoc DL(Op); | 
|  | SDValue ShiftVal = Op.getOperand(1); | 
|  | uint64_t MaskVal = LaneT.getSizeInBits() - 1; | 
|  | SDValue MaskedShiftVal = DAG.getNode( | 
|  | ISD::AND,                    // mask opcode | 
|  | DL, ShiftVal.getValueType(), // masked value type | 
|  | ShiftVal,                    // original shift value operand | 
|  | DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand | 
|  | ); | 
|  |  | 
|  | return DAG.UnrollVectorOp( | 
|  | DAG.getNode(Op.getOpcode(),        // original shift opcode | 
|  | DL, Op.getValueType(), // original return type | 
|  | Op.getOperand(0),      // original vector operand, | 
|  | MaskedShiftVal         // new masked shift value operand | 
|  | ) | 
|  | .getNode()); | 
|  | } | 
|  |  | 
|  | SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Only manually lower vector shifts | 
|  | assert(Op.getSimpleValueType().isVector()); | 
|  |  | 
|  | // Expand all vector shifts until V8 fixes its implementation | 
|  | // TODO: remove this once V8 is fixed | 
|  | if (!Subtarget->hasUnimplementedSIMD128()) | 
|  | return unrollVectorShift(Op, DAG); | 
|  |  | 
|  | // Unroll non-splat vector shifts | 
|  | BuildVectorSDNode *ShiftVec; | 
|  | SDValue SplatVal; | 
|  | if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || | 
|  | !(SplatVal = ShiftVec->getSplatValue())) | 
|  | return unrollVectorShift(Op, DAG); | 
|  |  | 
|  | // All splats except i64x2 const splats are handled by patterns | 
|  | auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); | 
|  | if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) | 
|  | return Op; | 
|  |  | 
|  | // i64x2 const splats are custom lowered to avoid unnecessary wraps | 
|  | unsigned Opcode; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SHL: | 
|  | Opcode = WebAssemblyISD::VEC_SHL; | 
|  | break; | 
|  | case ISD::SRA: | 
|  | Opcode = WebAssemblyISD::VEC_SHR_S; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | Opcode = WebAssemblyISD::VEC_SHR_U; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unexpected opcode"); | 
|  | } | 
|  | APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); | 
|  | return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), | 
|  | DAG.getConstant(Shift, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          WebAssembly Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// |