|  | //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run | 
|  | // both before and after the DAG is legalized. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "dagcombine" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetFrameInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NodesCombined   , "Number of dag nodes combined"); | 
|  | STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | 
|  | STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | 
|  |  | 
|  | namespace { | 
|  | static cl::opt<bool> | 
|  | CombinerAA("combiner-alias-analysis", cl::Hidden, | 
|  | cl::desc("Turn on alias analysis during testing")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | 
|  | cl::desc("Include global information in alias analysis")); | 
|  |  | 
|  | //------------------------------ DAGCombiner ---------------------------------// | 
|  |  | 
|  | class VISIBILITY_HIDDEN DAGCombiner { | 
|  | SelectionDAG &DAG; | 
|  | TargetLowering &TLI; | 
|  | bool AfterLegalize; | 
|  | bool Fast; | 
|  |  | 
|  | // Worklist of all of the nodes that need to be simplified. | 
|  | std::vector<SDNode*> WorkList; | 
|  |  | 
|  | // AA - Used for DAG load/store alias analysis. | 
|  | AliasAnalysis &AA; | 
|  |  | 
|  | /// AddUsersToWorkList - When an instruction is simplified, add all users of | 
|  | /// the instruction to the work lists because they might get more simplified | 
|  | /// now. | 
|  | /// | 
|  | void AddUsersToWorkList(SDNode *N) { | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) | 
|  | AddToWorkList(*UI); | 
|  | } | 
|  |  | 
|  | /// visit - call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. | 
|  | SDValue visit(SDNode *N); | 
|  |  | 
|  | public: | 
|  | /// AddToWorkList - Add to the work list making sure it's instance is at the | 
|  | /// the back (next to be processed.) | 
|  | void AddToWorkList(SDNode *N) { | 
|  | removeFromWorkList(N); | 
|  | WorkList.push_back(N); | 
|  | } | 
|  |  | 
|  | /// removeFromWorkList - remove all instances of N from the worklist. | 
|  | /// | 
|  | void removeFromWorkList(SDNode *N) { | 
|  | WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), | 
|  | WorkList.end()); | 
|  | } | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo = true); | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | 
|  | return CombineTo(N, &Res, 1, AddTo); | 
|  | } | 
|  |  | 
|  | SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | 
|  | bool AddTo = true) { | 
|  | SDValue To[] = { Res0, Res1 }; | 
|  | return CombineTo(N, To, 2, AddTo); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// SimplifyDemandedBits - Check the specified integer node value to see if | 
|  | /// it can be simplified or if things it uses can be simplified by bit | 
|  | /// propagation.  If so, return true. | 
|  | bool SimplifyDemandedBits(SDValue Op) { | 
|  | APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits()); | 
|  | return SimplifyDemandedBits(Op, Demanded); | 
|  | } | 
|  |  | 
|  | bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); | 
|  |  | 
|  | bool CombineToPreIndexedLoadStore(SDNode *N); | 
|  | bool CombineToPostIndexedLoadStore(SDNode *N); | 
|  |  | 
|  |  | 
|  | /// combine - call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. If that doesn't do anything, try the | 
|  | /// target-specific DAG combines. | 
|  | SDValue combine(SDNode *N); | 
|  |  | 
|  | // Visitation implementation - Implement dag node combining for different | 
|  | // node types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //   SDValue.getNode() == 0 - No change was made | 
|  | //   SDValue.getNode() == N - N was replaced, is dead and has been handled. | 
|  | //   otherwise              - N should be replaced by the returned Operand. | 
|  | // | 
|  | SDValue visitTokenFactor(SDNode *N); | 
|  | SDValue visitMERGE_VALUES(SDNode *N); | 
|  | SDValue visitADD(SDNode *N); | 
|  | SDValue visitSUB(SDNode *N); | 
|  | SDValue visitADDC(SDNode *N); | 
|  | SDValue visitADDE(SDNode *N); | 
|  | SDValue visitMUL(SDNode *N); | 
|  | SDValue visitSDIV(SDNode *N); | 
|  | SDValue visitUDIV(SDNode *N); | 
|  | SDValue visitSREM(SDNode *N); | 
|  | SDValue visitUREM(SDNode *N); | 
|  | SDValue visitMULHU(SDNode *N); | 
|  | SDValue visitMULHS(SDNode *N); | 
|  | SDValue visitSMUL_LOHI(SDNode *N); | 
|  | SDValue visitUMUL_LOHI(SDNode *N); | 
|  | SDValue visitSDIVREM(SDNode *N); | 
|  | SDValue visitUDIVREM(SDNode *N); | 
|  | SDValue visitAND(SDNode *N); | 
|  | SDValue visitOR(SDNode *N); | 
|  | SDValue visitXOR(SDNode *N); | 
|  | SDValue SimplifyVBinOp(SDNode *N); | 
|  | SDValue visitSHL(SDNode *N); | 
|  | SDValue visitSRA(SDNode *N); | 
|  | SDValue visitSRL(SDNode *N); | 
|  | SDValue visitCTLZ(SDNode *N); | 
|  | SDValue visitCTTZ(SDNode *N); | 
|  | SDValue visitCTPOP(SDNode *N); | 
|  | SDValue visitSELECT(SDNode *N); | 
|  | SDValue visitSELECT_CC(SDNode *N); | 
|  | SDValue visitSETCC(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND(SDNode *N); | 
|  | SDValue visitZERO_EXTEND(SDNode *N); | 
|  | SDValue visitANY_EXTEND(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_INREG(SDNode *N); | 
|  | SDValue visitTRUNCATE(SDNode *N); | 
|  | SDValue visitBIT_CONVERT(SDNode *N); | 
|  | SDValue visitBUILD_PAIR(SDNode *N); | 
|  | SDValue visitFADD(SDNode *N); | 
|  | SDValue visitFSUB(SDNode *N); | 
|  | SDValue visitFMUL(SDNode *N); | 
|  | SDValue visitFDIV(SDNode *N); | 
|  | SDValue visitFREM(SDNode *N); | 
|  | SDValue visitFCOPYSIGN(SDNode *N); | 
|  | SDValue visitSINT_TO_FP(SDNode *N); | 
|  | SDValue visitUINT_TO_FP(SDNode *N); | 
|  | SDValue visitFP_TO_SINT(SDNode *N); | 
|  | SDValue visitFP_TO_UINT(SDNode *N); | 
|  | SDValue visitFP_ROUND(SDNode *N); | 
|  | SDValue visitFP_ROUND_INREG(SDNode *N); | 
|  | SDValue visitFP_EXTEND(SDNode *N); | 
|  | SDValue visitFNEG(SDNode *N); | 
|  | SDValue visitFABS(SDNode *N); | 
|  | SDValue visitBRCOND(SDNode *N); | 
|  | SDValue visitBR_CC(SDNode *N); | 
|  | SDValue visitLOAD(SDNode *N); | 
|  | SDValue visitSTORE(SDNode *N); | 
|  | SDValue visitINSERT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitBUILD_VECTOR(SDNode *N); | 
|  | SDValue visitCONCAT_VECTORS(SDNode *N); | 
|  | SDValue visitVECTOR_SHUFFLE(SDNode *N); | 
|  |  | 
|  | SDValue XformToShuffleWithZero(SDNode *N); | 
|  | SDValue ReassociateOps(unsigned Opc, SDValue LHS, SDValue RHS); | 
|  |  | 
|  | SDValue visitShiftByConstant(SDNode *N, unsigned Amt); | 
|  |  | 
|  | bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | 
|  | SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); | 
|  | SDValue SimplifySelect(SDValue N0, SDValue N1, SDValue N2); | 
|  | SDValue SimplifySelectCC(SDValue N0, SDValue N1, SDValue N2, | 
|  | SDValue N3, ISD::CondCode CC, | 
|  | bool NotExtCompare = false); | 
|  | SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, bool foldBooleans = true); | 
|  | SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp); | 
|  | SDValue CombineConsecutiveLoads(SDNode *N, MVT VT); | 
|  | SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT); | 
|  | SDValue BuildSDIV(SDNode *N); | 
|  | SDValue BuildUDIV(SDNode *N); | 
|  | SDNode *MatchRotate(SDValue LHS, SDValue RHS); | 
|  | SDValue ReduceLoadWidth(SDNode *N); | 
|  |  | 
|  | SDValue GetDemandedBits(SDValue V, const APInt &Mask); | 
|  |  | 
|  | /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVector<SDValue, 8> &Aliases); | 
|  |  | 
|  | /// isAlias - Return true if there is any possibility that the two addresses | 
|  | /// overlap. | 
|  | bool isAlias(SDValue Ptr1, int64_t Size1, | 
|  | const Value *SrcValue1, int SrcValueOffset1, | 
|  | SDValue Ptr2, int64_t Size2, | 
|  | const Value *SrcValue2, int SrcValueOffset2); | 
|  |  | 
|  | /// FindAliasInfo - Extracts the relevant alias information from the memory | 
|  | /// node.  Returns true if the operand was a load. | 
|  | bool FindAliasInfo(SDNode *N, | 
|  | SDValue &Ptr, int64_t &Size, | 
|  | const Value *&SrcValue, int &SrcValueOffset); | 
|  |  | 
|  | /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for a better chain (aliasing node.) | 
|  | SDValue FindBetterChain(SDNode *N, SDValue Chain); | 
|  |  | 
|  | public: | 
|  | DAGCombiner(SelectionDAG &D, AliasAnalysis &A, bool fast) | 
|  | : DAG(D), | 
|  | TLI(D.getTargetLoweringInfo()), | 
|  | AfterLegalize(false), | 
|  | Fast(fast), | 
|  | AA(A) {} | 
|  |  | 
|  | /// Run - runs the dag combiner on all nodes in the work list | 
|  | void Run(bool RunningAfterLegalize); | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted | 
|  | /// nodes from the worklist. | 
|  | class VISIBILITY_HIDDEN WorkListRemover : | 
|  | public SelectionDAG::DAGUpdateListener { | 
|  | DAGCombiner &DC; | 
|  | public: | 
|  | explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {} | 
|  |  | 
|  | virtual void NodeDeleted(SDNode *N, SDNode *E) { | 
|  | DC.removeFromWorkList(N); | 
|  | } | 
|  |  | 
|  | virtual void NodeUpdated(SDNode *N) { | 
|  | // Ignore updates. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetLowering::DAGCombinerInfo implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->AddToWorkList(N); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, const std::vector<SDValue> &To) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size()); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res0, SDValue Res1) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isNegatibleForFree - Return 1 if we can compute the negated form of the | 
|  | /// specified expression for the same cost as the expression itself, or 2 if we | 
|  | /// can compute the negated form more cheaply than the expression itself. | 
|  | static char isNegatibleForFree(SDValue Op, bool AfterLegalize, | 
|  | unsigned Depth = 0) { | 
|  | // No compile time optimizations on this type. | 
|  | if (Op.getValueType() == MVT::ppcf128) | 
|  | return 0; | 
|  |  | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return 2; | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | if (!Op.hasOneUse()) return 0; | 
|  |  | 
|  | // Don't recurse exponentially. | 
|  | if (Depth > 6) return 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: return false; | 
|  | case ISD::ConstantFP: | 
|  | // Don't invert constant FP values after legalize.  The negated constant | 
|  | // isn't necessarily legal. | 
|  | return AfterLegalize ? 0 : 1; | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | if (!UnsafeFPMath) return 0; | 
|  |  | 
|  | // -(A+B) -> -A - B | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) | 
|  | return V; | 
|  | // -(A+B) -> -B - A | 
|  | return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | if (!UnsafeFPMath) return 0; | 
|  |  | 
|  | // -(A-B) -> B-A | 
|  | return 1; | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | if (HonorSignDependentRoundingFPMath()) return 0; | 
|  |  | 
|  | // -(X*Y) -> (-X * Y) or (X*-Y) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) | 
|  | return V; | 
|  |  | 
|  | return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FSIN: | 
|  | return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetNegatedExpression - If isNegatibleForFree returns true, this function | 
|  | /// returns the newly negated expression. | 
|  | static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, | 
|  | bool AfterLegalize, unsigned Depth = 0) { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | assert(Op.hasOneUse() && "Unknown reuse!"); | 
|  |  | 
|  | assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Unknown code"); | 
|  | case ISD::ConstantFP: { | 
|  | APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | return DAG.getConstantFP(V, Op.getValueType()); | 
|  | } | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | assert(UnsafeFPMath); | 
|  |  | 
|  | // -(A+B) -> -A - B | 
|  | if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) | 
|  | return DAG.getNode(ISD::FSUB, Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | AfterLegalize, Depth+1), | 
|  | Op.getOperand(1)); | 
|  | // -(A+B) -> -B - A | 
|  | return DAG.getNode(ISD::FSUB, Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | AfterLegalize, Depth+1), | 
|  | Op.getOperand(0)); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | assert(UnsafeFPMath); | 
|  |  | 
|  | // -(0-B) -> B | 
|  | if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) | 
|  | if (N0CFP->getValueAPF().isZero()) | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | // -(A-B) -> B-A | 
|  | return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | assert(!HonorSignDependentRoundingFPMath()); | 
|  |  | 
|  | // -(X*Y) -> -X * Y | 
|  | if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) | 
|  | return DAG.getNode(Op.getOpcode(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | AfterLegalize, Depth+1), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | // -(X*Y) -> X * -Y | 
|  | return DAG.getNode(Op.getOpcode(), Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | AfterLegalize, Depth+1)); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(Op.getOpcode(), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | AfterLegalize, Depth+1)); | 
|  | case ISD::FP_ROUND: | 
|  | return DAG.getNode(ISD::FP_ROUND, Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | AfterLegalize, Depth+1), | 
|  | Op.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc | 
|  | // that selects between the values 1 and 0, making it equivalent to a setcc. | 
|  | // Also, set the incoming LHS, RHS, and CC references to the appropriate | 
|  | // nodes based on the type of node we are checking.  This simplifies life a | 
|  | // bit for the callers. | 
|  | static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) { | 
|  | if (N.getOpcode() == ISD::SETCC) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(2); | 
|  | return true; | 
|  | } | 
|  | if (N.getOpcode() == ISD::SELECT_CC && | 
|  | N.getOperand(2).getOpcode() == ISD::Constant && | 
|  | N.getOperand(3).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 && | 
|  | cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(4); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only | 
|  | // one use.  If this is true, it allows the users to invert the operation for | 
|  | // free when it is profitable to do so. | 
|  | static bool isOneUseSetCC(SDValue N) { | 
|  | SDValue N0, N1, N2; | 
|  | if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDValue N0, SDValue N1){ | 
|  | MVT VT = N0.getValueType(); | 
|  | // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use | 
|  | // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) | 
|  | if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | if (isa<ConstantSDNode>(N1)) { | 
|  | SDValue OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); | 
|  | } else if (N0.hasOneUse()) { | 
|  | SDValue OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  | // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use | 
|  | // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) | 
|  | if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { | 
|  | if (isa<ConstantSDNode>(N0)) { | 
|  | SDValue OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); | 
|  | } else if (N1.hasOneUse()) { | 
|  | SDValue OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); | 
|  | AddToWorkList(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo) { | 
|  | assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | 
|  | ++NodesCombined; | 
|  | DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG)); | 
|  | DOUT << " and " << NumTo-1 << " other values\n"; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesWith(N, To, &DeadNodes); | 
|  |  | 
|  | if (AddTo) { | 
|  | // Push the new nodes and any users onto the worklist | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) { | 
|  | AddToWorkList(To[i].getNode()); | 
|  | AddUsersToWorkList(To[i].getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nodes can be reintroduced into the worklist.  Make sure we do not | 
|  | // process a node that has been replaced. | 
|  | removeFromWorkList(N); | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | /// SimplifyDemandedBits - Check the specified integer node value to see if | 
|  | /// it can be simplified or if things it uses can be simplified by bit | 
|  | /// propagation.  If so, return true. | 
|  | bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize); | 
|  | APInt KnownZero, KnownOne; | 
|  | if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) | 
|  | return false; | 
|  |  | 
|  | // Revisit the node. | 
|  | AddToWorkList(Op.getNode()); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | ++NodesCombined; | 
|  | DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG)); | 
|  | DOUT << '\n'; | 
|  |  | 
|  | // Replace all uses.  If any nodes become isomorphic to other nodes and | 
|  | // are deleted, make sure to remove them from our worklist. | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); | 
|  |  | 
|  | // Push the new node and any (possibly new) users onto the worklist. | 
|  | AddToWorkList(TLO.New.getNode()); | 
|  | AddUsersToWorkList(TLO.New.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (TLO.Old.getNode()->use_empty()) { | 
|  | removeFromWorkList(TLO.Old.getNode()); | 
|  |  | 
|  | // If the operands of this node are only used by the node, they will now | 
|  | // be dead.  Make sure to visit them first to delete dead nodes early. | 
|  | for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i) | 
|  | if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse()) | 
|  | AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode()); | 
|  |  | 
|  | DAG.DeleteNode(TLO.Old.getNode()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Main DAG Combiner implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::Run(bool RunningAfterLegalize) { | 
|  | // set the instance variable, so that the various visit routines may use it. | 
|  | AfterLegalize = RunningAfterLegalize; | 
|  |  | 
|  | // Add all the dag nodes to the worklist. | 
|  | WorkList.reserve(DAG.allnodes_size()); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = DAG.allnodes_end(); I != E; ++I) | 
|  | WorkList.push_back(I); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds a reference | 
|  | // to the root node, preventing it from being deleted, and tracking any | 
|  | // changes of the root. | 
|  | HandleSDNode Dummy(DAG.getRoot()); | 
|  |  | 
|  | // The root of the dag may dangle to deleted nodes until the dag combiner is | 
|  | // done.  Set it to null to avoid confusion. | 
|  | DAG.setRoot(SDValue()); | 
|  |  | 
|  | // while the worklist isn't empty, inspect the node on the end of it and | 
|  | // try and combine it. | 
|  | while (!WorkList.empty()) { | 
|  | SDNode *N = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // If N has no uses, it is dead.  Make sure to revisit all N's operands once | 
|  | // N is deleted from the DAG, since they too may now be dead or may have a | 
|  | // reduced number of uses, allowing other xforms. | 
|  | if (N->use_empty() && N != &Dummy) { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | AddToWorkList(N->getOperand(i).getNode()); | 
|  |  | 
|  | DAG.DeleteNode(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue RV = combine(N); | 
|  |  | 
|  | if (RV.getNode() == 0) | 
|  | continue; | 
|  |  | 
|  | ++NodesCombined; | 
|  |  | 
|  | // If we get back the same node we passed in, rather than a new node or | 
|  | // zero, we know that the node must have defined multiple values and | 
|  | // CombineTo was used.  Since CombineTo takes care of the worklist | 
|  | // mechanics for us, we have no work to do in this case. | 
|  | if (RV.getNode() == N) | 
|  | continue; | 
|  |  | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | RV.getNode()->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned new node!"); | 
|  |  | 
|  | DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG)); | 
|  | DOUT << '\n'; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (N->getNumValues() == RV.getNode()->getNumValues()) | 
|  | DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes); | 
|  | else { | 
|  | assert(N->getValueType(0) == RV.getValueType() && | 
|  | N->getNumValues() == 1 && "Type mismatch"); | 
|  | SDValue OpV = RV; | 
|  | DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Push the new node and any users onto the worklist | 
|  | AddToWorkList(RV.getNode()); | 
|  | AddUsersToWorkList(RV.getNode()); | 
|  |  | 
|  | // Add any uses of the old node to the worklist in case this node is the | 
|  | // last one that uses them.  They may become dead after this node is | 
|  | // deleted. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | AddToWorkList(N->getOperand(i).getNode()); | 
|  |  | 
|  | // Nodes can be reintroduced into the worklist.  Make sure we do not | 
|  | // process a node that has been replaced. | 
|  | removeFromWorkList(N); | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  |  | 
|  | // If the root changed (e.g. it was a dead load, update the root). | 
|  | DAG.setRoot(Dummy.getValue()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visit(SDNode *N) { | 
|  | switch(N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::TokenFactor:        return visitTokenFactor(N); | 
|  | case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); | 
|  | case ISD::ADD:                return visitADD(N); | 
|  | case ISD::SUB:                return visitSUB(N); | 
|  | case ISD::ADDC:               return visitADDC(N); | 
|  | case ISD::ADDE:               return visitADDE(N); | 
|  | case ISD::MUL:                return visitMUL(N); | 
|  | case ISD::SDIV:               return visitSDIV(N); | 
|  | case ISD::UDIV:               return visitUDIV(N); | 
|  | case ISD::SREM:               return visitSREM(N); | 
|  | case ISD::UREM:               return visitUREM(N); | 
|  | case ISD::MULHU:              return visitMULHU(N); | 
|  | case ISD::MULHS:              return visitMULHS(N); | 
|  | case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); | 
|  | case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); | 
|  | case ISD::SDIVREM:            return visitSDIVREM(N); | 
|  | case ISD::UDIVREM:            return visitUDIVREM(N); | 
|  | case ISD::AND:                return visitAND(N); | 
|  | case ISD::OR:                 return visitOR(N); | 
|  | case ISD::XOR:                return visitXOR(N); | 
|  | case ISD::SHL:                return visitSHL(N); | 
|  | case ISD::SRA:                return visitSRA(N); | 
|  | case ISD::SRL:                return visitSRL(N); | 
|  | case ISD::CTLZ:               return visitCTLZ(N); | 
|  | case ISD::CTTZ:               return visitCTTZ(N); | 
|  | case ISD::CTPOP:              return visitCTPOP(N); | 
|  | case ISD::SELECT:             return visitSELECT(N); | 
|  | case ISD::SELECT_CC:          return visitSELECT_CC(N); | 
|  | case ISD::SETCC:              return visitSETCC(N); | 
|  | case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); | 
|  | case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); | 
|  | case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); | 
|  | case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); | 
|  | case ISD::TRUNCATE:           return visitTRUNCATE(N); | 
|  | case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N); | 
|  | case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); | 
|  | case ISD::FADD:               return visitFADD(N); | 
|  | case ISD::FSUB:               return visitFSUB(N); | 
|  | case ISD::FMUL:               return visitFMUL(N); | 
|  | case ISD::FDIV:               return visitFDIV(N); | 
|  | case ISD::FREM:               return visitFREM(N); | 
|  | case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); | 
|  | case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); | 
|  | case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); | 
|  | case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); | 
|  | case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); | 
|  | case ISD::FP_ROUND:           return visitFP_ROUND(N); | 
|  | case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N); | 
|  | case ISD::FP_EXTEND:          return visitFP_EXTEND(N); | 
|  | case ISD::FNEG:               return visitFNEG(N); | 
|  | case ISD::FABS:               return visitFABS(N); | 
|  | case ISD::BRCOND:             return visitBRCOND(N); | 
|  | case ISD::BR_CC:              return visitBR_CC(N); | 
|  | case ISD::LOAD:               return visitLOAD(N); | 
|  | case ISD::STORE:              return visitSTORE(N); | 
|  | case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | 
|  | case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); | 
|  | case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); | 
|  | case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::combine(SDNode *N) { | 
|  |  | 
|  | SDValue RV = visit(N); | 
|  |  | 
|  | // If nothing happened, try a target-specific DAG combine. | 
|  | if (RV.getNode() == 0) { | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned NULL!"); | 
|  |  | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner impls. | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, !AfterLegalize, false, this); | 
|  |  | 
|  | RV = TLI.PerformDAGCombine(N, DagCombineInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If N is a commutative binary node, try commuting it to enable more | 
|  | // sdisel CSE. | 
|  | if (RV.getNode() == 0 && | 
|  | SelectionDAG::isCommutativeBinOp(N->getOpcode()) && | 
|  | N->getNumValues() == 1) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | // Constant operands are canonicalized to RHS. | 
|  | if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { | 
|  | SDValue Ops[] = { N1, N0 }; | 
|  | SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), | 
|  | Ops, 2); | 
|  | if (CSENode) | 
|  | return SDValue(CSENode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | /// getInputChainForNode - Given a node, return its input chain if it has one, | 
|  | /// otherwise return a null sd operand. | 
|  | static SDValue getInputChainForNode(SDNode *N) { | 
|  | if (unsigned NumOps = N->getNumOperands()) { | 
|  | if (N->getOperand(0).getValueType() == MVT::Other) | 
|  | return N->getOperand(0); | 
|  | else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | return N->getOperand(NumOps-1); | 
|  | for (unsigned i = 1; i < NumOps-1; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | return N->getOperand(i); | 
|  | } | 
|  | return SDValue(0, 0); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | 
|  | // If N has two operands, where one has an input chain equal to the other, | 
|  | // the 'other' chain is redundant. | 
|  | if (N->getNumOperands() == 2) { | 
|  | if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | 
|  | return N->getOperand(0); | 
|  | if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | 
|  | return N->getOperand(1); | 
|  | } | 
|  |  | 
|  | SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. | 
|  | SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor. | 
|  | SmallPtrSet<SDNode*, 16> SeenOps; | 
|  | bool Changed = false;             // If we should replace this token factor. | 
|  |  | 
|  | // Start out with this token factor. | 
|  | TFs.push_back(N); | 
|  |  | 
|  | // Iterate through token factors.  The TFs grows when new token factors are | 
|  | // encountered. | 
|  | for (unsigned i = 0; i < TFs.size(); ++i) { | 
|  | SDNode *TF = TFs[i]; | 
|  |  | 
|  | // Check each of the operands. | 
|  | for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { | 
|  | SDValue Op = TF->getOperand(i); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry tokens don't need to be added to the list. They are | 
|  | // rededundant. | 
|  | Changed = true; | 
|  | break; | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | if ((CombinerAA || Op.hasOneUse()) && | 
|  | std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { | 
|  | // Queue up for processing. | 
|  | TFs.push_back(Op.getNode()); | 
|  | // Clean up in case the token factor is removed. | 
|  | AddToWorkList(Op.getNode()); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | // Fall thru | 
|  |  | 
|  | default: | 
|  | // Only add if it isn't already in the list. | 
|  | if (SeenOps.insert(Op.getNode())) | 
|  | Ops.push_back(Op); | 
|  | else | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Result; | 
|  |  | 
|  | // If we've change things around then replace token factor. | 
|  | if (Changed) { | 
|  | if (Ops.empty()) { | 
|  | // The entry token is the only possible outcome. | 
|  | Result = DAG.getEntryNode(); | 
|  | } else { | 
|  | // New and improved token factor. | 
|  | Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(N, Result, false); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// MERGE_VALUES can always be eliminated. | 
|  | SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | 
|  | WorkListRemover DeadNodes(*this); | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | SDValue combineShlAddConstant(SDValue N0, SDValue N1, SelectionDAG &DAG) { | 
|  | MVT VT = N0.getValueType(); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01); | 
|  | if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N00.getOperand(1))) { | 
|  | N0 = DAG.getNode(ISD::ADD, VT, | 
|  | DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01), | 
|  | DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01)); | 
|  | return DAG.getNode(ISD::ADD, VT, N0, N1); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = N->getValueType(0); | 
|  | unsigned Opc = N->getOpcode(); | 
|  | bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; | 
|  | SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); | 
|  | SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); | 
|  | ISD::CondCode CC = ISD::SETCC_INVALID; | 
|  | if (isSlctCC) | 
|  | CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); | 
|  | else { | 
|  | SDValue CCOp = Slct.getOperand(0); | 
|  | if (CCOp.getOpcode() == ISD::SETCC) | 
|  | CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); | 
|  | } | 
|  |  | 
|  | bool DoXform = false; | 
|  | bool InvCC = false; | 
|  | assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && | 
|  | "Bad input!"); | 
|  | if (LHS.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(LHS)->isNullValue()) | 
|  | DoXform = true; | 
|  | else if (CC != ISD::SETCC_INVALID && | 
|  | RHS.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(RHS)->isNullValue()) { | 
|  | std::swap(LHS, RHS); | 
|  | SDValue Op0 = Slct.getOperand(0); | 
|  | bool isInt = (isSlctCC ? Op0.getValueType() : | 
|  | Op0.getOperand(0).getValueType()).isInteger(); | 
|  | CC = ISD::getSetCCInverse(CC, isInt); | 
|  | DoXform = true; | 
|  | InvCC = true; | 
|  | } | 
|  |  | 
|  | if (DoXform) { | 
|  | SDValue Result = DAG.getNode(Opc, VT, OtherOp, RHS); | 
|  | if (isSlctCC) | 
|  | return DAG.getSelectCC(OtherOp, Result, | 
|  | Slct.getOperand(0), Slct.getOperand(1), CC); | 
|  | SDValue CCOp = Slct.getOperand(0); | 
|  | if (InvCC) | 
|  | CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0), | 
|  | CCOp.getOperand(1), CC); | 
|  | return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (add x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | // fold (add c1, c2) -> c1+c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getConstant(N0C->getAPIntValue() + N1C->getAPIntValue(), VT); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADD, VT, N1, N0); | 
|  | // fold (add x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold ((c1-A)+c2) -> (c1+c2)-A | 
|  | if (N1C && N0.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, VT, | 
|  | DAG.getConstant(N1C->getAPIntValue()+ | 
|  | N0C->getAPIntValue(), VT), | 
|  | N0.getOperand(1)); | 
|  | // reassociate add | 
|  | SDValue RADD = ReassociateOps(ISD::ADD, N0, N1); | 
|  | if (RADD.getNode() != 0) | 
|  | return RADD; | 
|  | // fold ((0-A) + B) -> B-A | 
|  | if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && | 
|  | cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) | 
|  | return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); | 
|  | // fold (A + (0-B)) -> A-B | 
|  | if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && | 
|  | cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) | 
|  | return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); | 
|  | // fold (A+(B-A)) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) | 
|  | return N1.getOperand(0); | 
|  |  | 
|  | if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (a+b) -> (a|b) iff a and b share no bits. | 
|  | if (VT.isInteger() && !VT.isVector()) { | 
|  | APInt LHSZero, LHSOne; | 
|  | APInt RHSZero, RHSOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); | 
|  | if (LHSZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); | 
|  |  | 
|  | // If all possibly-set bits on the LHS are clear on the RHS, return an OR. | 
|  | // If all possibly-set bits on the RHS are clear on the LHS, return an OR. | 
|  | if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || | 
|  | (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) | 
|  | return DAG.getNode(ISD::OR, VT, N0, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) | 
|  | if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineShlAddConstant(N0, N1, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  | if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineShlAddConstant(N1, N0, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  |  | 
|  | // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) | 
|  | if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineSelectAndUse(N, N0, N1, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  | if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineSelectAndUse(N, N1, N0, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // If the flag result is dead, turn this into an ADD. | 
|  | if (N->hasNUsesOfValue(0, 1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0), | 
|  | DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); | 
|  |  | 
|  | // canonicalize constant to RHS. | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDC, N->getVTList(), N1, N0); | 
|  |  | 
|  | // fold (addc x, 0) -> x + no carry out | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); | 
|  |  | 
|  | // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. | 
|  | APInt LHSZero, LHSOne; | 
|  | APInt RHSZero, RHSOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); | 
|  | if (LHSZero.getBoolValue()) { | 
|  | DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); | 
|  |  | 
|  | // If all possibly-set bits on the LHS are clear on the RHS, return an OR. | 
|  | // If all possibly-set bits on the RHS are clear on the LHS, return an OR. | 
|  | if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || | 
|  | (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) | 
|  | return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | //MVT VT = N0.getValueType(); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDE, N->getVTList(), N1, N0, CarryIn); | 
|  |  | 
|  | // fold (adde x, y, false) -> (addc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::ADDC, N->getVTList(), N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (sub x, x) -> 0 | 
|  | if (N0 == N1) | 
|  | return DAG.getConstant(0, N->getValueType(0)); | 
|  | // fold (sub c1, c2) -> c1-c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::SUB, VT, N0, N1); | 
|  | // fold (sub x, c) -> (add x, -c) | 
|  | if (N1C) | 
|  | return DAG.getNode(ISD::ADD, VT, N0, | 
|  | DAG.getConstant(-N1C->getAPIntValue(), VT)); | 
|  | // fold (A+B)-A -> B | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | 
|  | return N0.getOperand(1); | 
|  | // fold (A+B)-B -> A | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | 
|  | return N0.getOperand(0); | 
|  | // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) | 
|  | if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { | 
|  | SDValue Result = combineSelectAndUse(N, N1, N0, DAG); | 
|  | if (Result.getNode()) return Result; | 
|  | } | 
|  | // If either operand of a sub is undef, the result is undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (mul x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (mul c1, c2) -> c1*c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::MUL, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::MUL, VT, N1, N0); | 
|  | // fold (mul x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mul x, -1) -> 0-x | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); | 
|  | // fold (mul x, (1 << c)) -> x << c | 
|  | if (N1C && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::SHL, VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue().logBase2(), | 
|  | TLI.getShiftAmountTy())); | 
|  | // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | 
|  | if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { | 
|  | // FIXME: If the input is something that is easily negated (e.g. a | 
|  | // single-use add), we should put the negate there. | 
|  | return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), | 
|  | DAG.getNode(ISD::SHL, VT, N0, | 
|  | DAG.getConstant(Log2_64(-N1C->getSignExtended()), | 
|  | TLI.getShiftAmountTy()))); | 
|  | } | 
|  |  | 
|  | // (mul (shl X, c1), c2) -> (mul X, c2 << c1) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | SDValue C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1)); | 
|  | AddToWorkList(C3.getNode()); | 
|  | return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3); | 
|  | } | 
|  |  | 
|  | // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | 
|  | // use. | 
|  | { | 
|  | SDValue Sh(0,0), Y(0,0); | 
|  | // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). | 
|  | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | Sh = N0; Y = N1; | 
|  | } else if (N1.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N1.getOperand(1)) && | 
|  | N1.getNode()->hasOneUse()) { | 
|  | Sh = N1; Y = N0; | 
|  | } | 
|  | if (Sh.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y); | 
|  | return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1)); | 
|  | } | 
|  | } | 
|  | // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | 
|  | if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | return DAG.getNode(ISD::ADD, VT, | 
|  | DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1), | 
|  | DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1)); | 
|  | } | 
|  |  | 
|  | // reassociate mul | 
|  | SDValue RMUL = ReassociateOps(ISD::MUL, N0, N1); | 
|  | if (RMUL.getNode() != 0) | 
|  | return RMUL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (sdiv c1, c2) -> c1/c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.getNode(ISD::SDIV, VT, N0, N1); | 
|  | // fold (sdiv X, 1) -> X | 
|  | if (N1C && N1C->getSignExtended() == 1LL) | 
|  | return N0; | 
|  | // fold (sdiv X, -1) -> 0-X | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); | 
|  | } | 
|  | // fold (sdiv X, pow2) -> simple ops after legalize | 
|  | if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() && | 
|  | (isPowerOf2_64(N1C->getSignExtended()) || | 
|  | isPowerOf2_64(-N1C->getSignExtended()))) { | 
|  | // If dividing by powers of two is cheap, then don't perform the following | 
|  | // fold. | 
|  | if (TLI.isPow2DivCheap()) | 
|  | return SDValue(); | 
|  | int64_t pow2 = N1C->getSignExtended(); | 
|  | int64_t abs2 = pow2 > 0 ? pow2 : -pow2; | 
|  | unsigned lg2 = Log2_64(abs2); | 
|  | // Splat the sign bit into the register | 
|  | SDValue SGN = DAG.getNode(ISD::SRA, VT, N0, | 
|  | DAG.getConstant(VT.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | AddToWorkList(SGN.getNode()); | 
|  | // Add (N0 < 0) ? abs2 - 1 : 0; | 
|  | SDValue SRL = DAG.getNode(ISD::SRL, VT, SGN, | 
|  | DAG.getConstant(VT.getSizeInBits()-lg2, | 
|  | TLI.getShiftAmountTy())); | 
|  | SDValue ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); | 
|  | AddToWorkList(SRL.getNode()); | 
|  | AddToWorkList(ADD.getNode());    // Divide by pow2 | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, VT, ADD, | 
|  | DAG.getConstant(lg2, TLI.getShiftAmountTy())); | 
|  | // If we're dividing by a positive value, we're done.  Otherwise, we must | 
|  | // negate the result. | 
|  | if (pow2 > 0) | 
|  | return SRA; | 
|  | AddToWorkList(SRA.getNode()); | 
|  | return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); | 
|  | } | 
|  | // if integer divide is expensive and we satisfy the requirements, emit an | 
|  | // alternate sequence. | 
|  | if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && | 
|  | !TLI.isIntDivCheap()) { | 
|  | SDValue Op = BuildSDIV(N); | 
|  | if (Op.getNode()) return Op; | 
|  | } | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (udiv c1, c2) -> c1/c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.getNode(ISD::UDIV, VT, N0, N1); | 
|  | // fold (udiv x, (1 << c)) -> x >>u c | 
|  | if (N1C && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::SRL, VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue().logBase2(), | 
|  | TLI.getShiftAmountTy())); | 
|  | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | MVT ADDVT = N1.getOperand(1).getValueType(); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), | 
|  | DAG.getConstant(SHC->getAPIntValue() | 
|  | .logBase2(), | 
|  | ADDVT)); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::SRL, VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  | // fold (udiv x, c) -> alternate | 
|  | if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { | 
|  | SDValue Op = BuildUDIV(N); | 
|  | if (Op.getNode()) return Op; | 
|  | } | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (srem c1, c2) -> c1%c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.getNode(ISD::SREM, VT, N0, N1); | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UREM, VT, N0, N1); | 
|  | } | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | if (N1C && !N1C->isNullValue()) { | 
|  | SDValue Div = DAG.getNode(ISD::SDIV, VT, N0, N1); | 
|  | AddToWorkList(Div.getNode()); | 
|  | SDValue OptimizedDiv = combine(Div.getNode()); | 
|  | if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); | 
|  | AddToWorkList(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // undef % X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X % undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (urem c1, c2) -> c1%c2 | 
|  | if (N0C && N1C && !N1C->isNullValue()) | 
|  | return DAG.getNode(ISD::UREM, VT, N0, N1); | 
|  | // fold (urem x, pow2) -> (and x, pow2-1) | 
|  | if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::AND, VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue()-1,VT)); | 
|  | // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | SDValue Add = | 
|  | DAG.getNode(ISD::ADD, VT, N1, | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), | 
|  | VT)); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::AND, VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | if (N1C && !N1C->isNullValue()) { | 
|  | SDValue Div = DAG.getNode(ISD::UDIV, VT, N0, N1); | 
|  | AddToWorkList(Div.getNode()); | 
|  | SDValue OptimizedDiv = combine(Div.getNode()); | 
|  | if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); | 
|  | AddToWorkList(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // undef % X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // X % undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (mulhs x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mulhs x, 1) -> (sra x, size(x)-1) | 
|  | if (N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::SRA, N0.getValueType(), N0, | 
|  | DAG.getConstant(N0.getValueType().getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | // fold (mulhs x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHU(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (mulhu x, 0) -> 0 | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N1; | 
|  | // fold (mulhu x, 1) -> 0 | 
|  | if (N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getConstant(0, N0.getValueType()); | 
|  | // fold (mulhu x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that | 
|  | /// compute two values. LoOp and HiOp give the opcodes for the two computations | 
|  | /// that are being performed. Return true if a simplification was made. | 
|  | /// | 
|  | SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp) { | 
|  | // If the high half is not needed, just compute the low half. | 
|  | bool HiExists = N->hasAnyUseOfValue(1); | 
|  | if (!HiExists && | 
|  | (!AfterLegalize || | 
|  | TLI.isOperationLegal(LoOp, N->getValueType(0)))) { | 
|  | SDValue Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(), | 
|  | N->getNumOperands()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If the low half is not needed, just compute the high half. | 
|  | bool LoExists = N->hasAnyUseOfValue(0); | 
|  | if (!LoExists && | 
|  | (!AfterLegalize || | 
|  | TLI.isOperationLegal(HiOp, N->getValueType(1)))) { | 
|  | SDValue Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(), | 
|  | N->getNumOperands()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If both halves are used, return as it is. | 
|  | if (LoExists && HiExists) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the two computed results can be simplified separately, separate them. | 
|  | if (LoExists) { | 
|  | SDValue Lo = DAG.getNode(LoOp, N->getValueType(0), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | AddToWorkList(Lo.getNode()); | 
|  | SDValue LoOpt = combine(Lo.getNode()); | 
|  | if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | 
|  | (!AfterLegalize || | 
|  | TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) | 
|  | return CombineTo(N, LoOpt, LoOpt); | 
|  | } | 
|  |  | 
|  | if (HiExists) { | 
|  | SDValue Hi = DAG.getNode(HiOp, N->getValueType(1), | 
|  | N->op_begin(), N->getNumOperands()); | 
|  | AddToWorkList(Hi.getNode()); | 
|  | SDValue HiOpt = combine(Hi.getNode()); | 
|  | if (HiOpt.getNode() && HiOpt != Hi && | 
|  | (!AfterLegalize || | 
|  | TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) | 
|  | return CombineTo(N, HiOpt, HiOpt); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIVREM(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIVREM(SDNode *N) { | 
|  | SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); | 
|  | if (Res.getNode()) return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with | 
|  | /// two operands of the same opcode, try to simplify it. | 
|  | SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  | MVT VT = N0.getValueType(); | 
|  | assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); | 
|  |  | 
|  | // For each of OP in AND/OR/XOR: | 
|  | // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) | 
|  | // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) | 
|  | // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) | 
|  | // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) | 
|  | if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND|| | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) && | 
|  | N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), VT, ORNode); | 
|  | } | 
|  |  | 
|  | // For each of OP in SHL/SRL/SRA/AND... | 
|  | //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) | 
|  | //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z) | 
|  | //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || | 
|  | N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && | 
|  | N0.getOperand(1) == N1.getOperand(1)) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitAND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N1.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (and x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (and c1, c2) -> c1&c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::AND, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::AND, VT, N1, N0); | 
|  | // fold (and x, -1) -> x | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return N0; | 
|  | // if (and x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(BitWidth))) | 
|  | return DAG.getConstant(0, VT); | 
|  | // reassociate and | 
|  | SDValue RAND = ReassociateOps(ISD::AND, N0, N1); | 
|  | if (RAND.getNode() != 0) | 
|  | return RAND; | 
|  | // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF | 
|  | if (N1C && N0.getOpcode() == ISD::OR) | 
|  | if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) | 
|  | return N1; | 
|  | // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | APInt Mask = ~N1C->getAPIntValue(); | 
|  | Mask.trunc(N0Op0.getValueSizeInBits()); | 
|  | if (DAG.MaskedValueIsZero(N0Op0, Mask)) { | 
|  | SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), | 
|  | N0Op0); | 
|  |  | 
|  | // Replace uses of the AND with uses of the Zero extend node. | 
|  | CombineTo(N, Zext); | 
|  |  | 
|  | // We actually want to replace all uses of the any_extend with the | 
|  | // zero_extend, to avoid duplicating things.  This will later cause this | 
|  | // AND to be folded. | 
|  | CombineTo(N0.getNode(), Zext); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && | 
|  | LL.getValueType().isInteger()) { | 
|  | // fold (X == 0) & (Y == 0) -> (X|Y == 0) | 
|  | if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(VT, ORNode, LR, Op1); | 
|  | } | 
|  | // fold (X == -1) & (Y == -1) -> (X&Y == -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ANDNode.getNode()); | 
|  | return DAG.getSetCC(VT, ANDNode, LR, Op1); | 
|  | } | 
|  | // fold (X >  -1) & (Y >  -1) -> (X|Y > -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(VT, ORNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID) | 
|  | return DAG.getSetCC(N0.getValueType(), LL, LR, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify: and (op x...), (op y...)  -> (op (and x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | 
|  | // fold (and (sra)) -> (and (srl)) when possible. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  | // fold (zext_inreg (extload x)) -> (zextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT EVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - EVT.getSizeInBits())) && | 
|  | ((!AfterLegalize && !LN0->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | 
|  | if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT EVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - EVT.getSizeInBits())) && | 
|  | ((!AfterLegalize && !LN0->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (load x), 255) -> (zextload x, i8) | 
|  | // fold (and (extload x, i16), 255) -> (zextload x, i8) | 
|  | if (N1C && N0.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD && | 
|  | LN0->isUnindexed() && N0.hasOneUse() && | 
|  | // Do not change the width of a volatile load. | 
|  | !LN0->isVolatile()) { | 
|  | MVT EVT = MVT::Other; | 
|  | uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); | 
|  | if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())) | 
|  | EVT = MVT::getIntegerVT(ActiveBits); | 
|  |  | 
|  | MVT LoadedVT = LN0->getMemoryVT(); | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() && | 
|  | (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { | 
|  | MVT PtrType = N0.getOperand(1).getValueType(); | 
|  | // For big endian targets, we need to add an offset to the pointer to | 
|  | // load the correct bytes.  For little endian systems, we merely need to | 
|  | // read fewer bytes from the same pointer. | 
|  | unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8; | 
|  | unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8; | 
|  | unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; | 
|  | unsigned Alignment = LN0->getAlignment(); | 
|  | SDValue NewPtr = LN0->getBasePtr(); | 
|  | if (TLI.isBigEndian()) { | 
|  | NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, | 
|  | DAG.getConstant(PtrOff, PtrType)); | 
|  | Alignment = MinAlign(Alignment, PtrOff); | 
|  | } | 
|  | AddToWorkList(NewPtr.getNode()); | 
|  | SDValue Load = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr, | 
|  | LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), Alignment); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), Load, Load.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N1.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (or x, undef) -> -1 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(~0ULL, VT); | 
|  | // fold (or c1, c2) -> c1|c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::OR, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::OR, VT, N1, N0); | 
|  | // fold (or x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (or x, -1) -> -1 | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return N1; | 
|  | // fold (or x, c) -> c iff (x & ~c) == 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | 
|  | return N1; | 
|  | // reassociate or | 
|  | SDValue ROR = ReassociateOps(ISD::OR, N0, N1); | 
|  | if (ROR.getNode() != 0) | 
|  | return ROR; | 
|  | // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | 
|  | if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), | 
|  | N1), | 
|  | DAG.getConstant(N1C->getAPIntValue() | | 
|  | C1->getAPIntValue(), VT)); | 
|  | } | 
|  | // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && | 
|  | LL.getValueType().isInteger()) { | 
|  | // fold (X != 0) | (Y != 0) -> (X|Y != 0) | 
|  | // fold (X <  0) | (Y <  0) -> (X|Y < 0) | 
|  | if (cast<ConstantSDNode>(LR)->isNullValue() && | 
|  | (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ORNode.getNode()); | 
|  | return DAG.getSetCC(VT, ORNode, LR, Op1); | 
|  | } | 
|  | // fold (X != -1) | (Y != -1) -> (X&Y != -1) | 
|  | // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1) | 
|  | if (cast<ConstantSDNode>(LR)->isAllOnesValue() && | 
|  | (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); | 
|  | AddToWorkList(ANDNode.getNode()); | 
|  | return DAG.getSetCC(VT, ANDNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID) | 
|  | return DAG.getSetCC(N0.getValueType(), LL, LR, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify: or (op x...), (op y...)  -> (op (or x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N1.getOpcode() == ISD::AND && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | N1.getOperand(1).getOpcode() == ISD::Constant && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | // We can only do this xform if we know that bits from X that are set in C2 | 
|  | // but not in C1 are already zero.  Likewise for Y. | 
|  | const APInt &LHSMask = | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | const APInt &RHSMask = | 
|  | cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue(); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | 
|  | DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | 
|  | SDValue X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // See if this is some rotate idiom. | 
|  | if (SDNode *Rot = MatchRotate(N0, N1)) | 
|  | return SDValue(Rot, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { | 
|  | if (Op.getOpcode() == ISD::AND) { | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Mask = Op.getOperand(1); | 
|  | Op = Op.getOperand(0); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | 
|  | Shift = Op; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // MatchRotate - Handle an 'or' of two operands.  If this is one of the many | 
|  | // idioms for rotate, and if the target supports rotation instructions, generate | 
|  | // a rot[lr]. | 
|  | SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS) { | 
|  | // Must be a legal type.  Expanded 'n promoted things won't work with rotates. | 
|  | MVT VT = LHS.getValueType(); | 
|  | if (!TLI.isTypeLegal(VT)) return 0; | 
|  |  | 
|  | // The target must have at least one rotate flavor. | 
|  | bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT); | 
|  | bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT); | 
|  | if (!HasROTL && !HasROTR) return 0; | 
|  |  | 
|  | // Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | SDValue LHSShift;   // The shift. | 
|  | SDValue LHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) | 
|  | return 0; // Not part of a rotate. | 
|  |  | 
|  | SDValue RHSShift;   // The shift. | 
|  | SDValue RHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) | 
|  | return 0; // Not part of a rotate. | 
|  |  | 
|  | if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) | 
|  | return 0;   // Not shifting the same value. | 
|  |  | 
|  | if (LHSShift.getOpcode() == RHSShift.getOpcode()) | 
|  | return 0;   // Shifts must disagree. | 
|  |  | 
|  | // Canonicalize shl to left side in a shl/srl pair. | 
|  | if (RHSShift.getOpcode() == ISD::SHL) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSShift, RHSShift); | 
|  | std::swap(LHSMask , RHSMask ); | 
|  | } | 
|  |  | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  | SDValue LHSShiftArg = LHSShift.getOperand(0); | 
|  | SDValue LHSShiftAmt = LHSShift.getOperand(1); | 
|  | SDValue RHSShiftAmt = RHSShift.getOperand(1); | 
|  |  | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) | 
|  | if (LHSShiftAmt.getOpcode() == ISD::Constant && | 
|  | RHSShiftAmt.getOpcode() == ISD::Constant) { | 
|  | uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue(); | 
|  | uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue(); | 
|  | if ((LShVal + RShVal) != OpSizeInBits) | 
|  | return 0; | 
|  |  | 
|  | SDValue Rot; | 
|  | if (HasROTL) | 
|  | Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt); | 
|  | else | 
|  | Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt); | 
|  |  | 
|  | // If there is an AND of either shifted operand, apply it to the result. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) { | 
|  | APInt Mask = APInt::getAllOnesValue(OpSizeInBits); | 
|  |  | 
|  | if (LHSMask.getNode()) { | 
|  | APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); | 
|  | Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; | 
|  | } | 
|  | if (RHSMask.getNode()) { | 
|  | APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); | 
|  | Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; | 
|  | } | 
|  |  | 
|  | Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | return Rot.getNode(); | 
|  | } | 
|  |  | 
|  | // If there is a mask here, and we have a variable shift, we can't be sure | 
|  | // that we're masking out the right stuff. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) | 
|  | return 0; | 
|  |  | 
|  | // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) | 
|  | // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) | 
|  | if (RHSShiftAmt.getOpcode() == ISD::SUB && | 
|  | LHSShiftAmt == RHSShiftAmt.getOperand(1)) { | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | if (HasROTL) | 
|  | return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).getNode(); | 
|  | else | 
|  | return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) | 
|  | // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) | 
|  | if (LHSShiftAmt.getOpcode() == ISD::SUB && | 
|  | RHSShiftAmt == LHSShiftAmt.getOperand(1)) { | 
|  | if (ConstantSDNode *SUBC = | 
|  | dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | if (HasROTR) | 
|  | return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).getNode(); | 
|  | else | 
|  | return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for sign/zext/any-extended cases: | 
|  | if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND | 
|  | || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND | 
|  | || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) && | 
|  | (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND | 
|  | || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND | 
|  | || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) { | 
|  | SDValue LExtOp0 = LHSShiftAmt.getOperand(0); | 
|  | SDValue RExtOp0 = RHSShiftAmt.getOperand(0); | 
|  | if (RExtOp0.getOpcode() == ISD::SUB && | 
|  | RExtOp0.getOperand(1) == LExtOp0) { | 
|  | // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotl x, y) | 
|  | // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotr x, (sub 32, y)) | 
|  | if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, VT, LHSShiftArg, | 
|  | HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } else if (LExtOp0.getOpcode() == ISD::SUB && | 
|  | RExtOp0 == LExtOp0.getOperand(1)) { | 
|  | // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> | 
|  | //   (rotr x, y) | 
|  | // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> | 
|  | //   (rotl x, (sub 32, y)) | 
|  | if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) { | 
|  | if (SUBC->getAPIntValue() == OpSizeInBits) { | 
|  | return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, VT, LHSShiftArg, | 
|  | HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitXOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue LHS, RHS, CC; | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (xor undef, undef) -> 0. This is a common idiom (misuse). | 
|  | if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (xor x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | // fold (xor c1, c2) -> c1^c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::XOR, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::XOR, VT, N1, N0); | 
|  | // fold (xor x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // reassociate xor | 
|  | SDValue RXOR = ReassociateOps(ISD::XOR, N0, N1); | 
|  | if (RXOR.getNode() != 0) | 
|  | return RXOR; | 
|  | // fold !(x cc y) -> (x !cc y) | 
|  | if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { | 
|  | bool isInt = LHS.getValueType().isInteger(); | 
|  | ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | isInt); | 
|  | if (N0.getOpcode() == ISD::SETCC) | 
|  | return DAG.getSetCC(VT, LHS, RHS, NotCC); | 
|  | if (N0.getOpcode() == ISD::SELECT_CC) | 
|  | return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); | 
|  | assert(0 && "Unhandled SetCC Equivalent!"); | 
|  | abort(); | 
|  | } | 
|  | // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | 
|  | if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | 
|  | SDValue V = N0.getOperand(0); | 
|  | V = DAG.getNode(ISD::XOR, V.getValueType(), V, | 
|  | DAG.getConstant(1, V.getValueType())); | 
|  | AddToWorkList(V.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, V); | 
|  | } | 
|  |  | 
|  | // fold !(x or y) -> (!x and !y) iff x or y are setcc | 
|  | if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS | 
|  | AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold !(x or y) -> (!x and !y) iff x or y are constants | 
|  | if (N1C && N1C->isAllOnesValue() && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS | 
|  | AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) | 
|  | if (N1C && N0.getOpcode() == ISD::XOR) { | 
|  | ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (N00C) | 
|  | return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), | 
|  | DAG.getConstant(N1C->getAPIntValue()^ | 
|  | N00C->getAPIntValue(), VT)); | 
|  | if (N01C) | 
|  | return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), | 
|  | DAG.getConstant(N1C->getAPIntValue()^ | 
|  | N01C->getAPIntValue(), VT)); | 
|  | } | 
|  | // fold (xor x, x) -> 0 | 
|  | if (N0 == N1) { | 
|  | if (!VT.isVector()) { | 
|  | return DAG.getConstant(0, VT); | 
|  | } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { | 
|  | // Produce a vector of zeros. | 
|  | SDValue El = DAG.getConstant(0, VT.getVectorElementType()); | 
|  | std::vector<SDValue> Ops(VT.getVectorNumElements(), El); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); | 
|  | if (Tmp.getNode()) return Tmp; | 
|  | } | 
|  |  | 
|  | // Simplify the expression using non-local knowledge. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// visitShiftByConstant - Handle transforms common to the three shifts, when | 
|  | /// the shift amount is a constant. | 
|  | SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { | 
|  | SDNode *LHS = N->getOperand(0).getNode(); | 
|  | if (!LHS->hasOneUse()) return SDValue(); | 
|  |  | 
|  | // We want to pull some binops through shifts, so that we have (and (shift)) | 
|  | // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of | 
|  | // thing happens with address calculations, so it's important to canonicalize | 
|  | // it. | 
|  | bool HighBitSet = false;  // Can we transform this if the high bit is set? | 
|  |  | 
|  | switch (LHS->getOpcode()) { | 
|  | default: return SDValue(); | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | case ISD::AND: | 
|  | HighBitSet = true;  // We can only transform sra if the high bit is set. | 
|  | break; | 
|  | case ISD::ADD: | 
|  | if (N->getOpcode() != ISD::SHL) | 
|  | return SDValue(); // only shl(add) not sr[al](add). | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We require the RHS of the binop to be a constant as well. | 
|  | ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); | 
|  | if (!BinOpCst) return SDValue(); | 
|  |  | 
|  |  | 
|  | // FIXME: disable this for unless the input to the binop is a shift by a | 
|  | // constant.  If it is not a shift, it pessimizes some common cases like: | 
|  | // | 
|  | //void foo(int *X, int i) { X[i & 1235] = 1; } | 
|  | //int bar(int *X, int i) { return X[i & 255]; } | 
|  | SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); | 
|  | if ((BinOpLHSVal->getOpcode() != ISD::SHL && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRA && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRL) || | 
|  | !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is a signed shift right, and the high bit is modified | 
|  | // by the logical operation, do not perform the transformation. | 
|  | // The highBitSet boolean indicates the value of the high bit of | 
|  | // the constant which would cause it to be modified for this | 
|  | // operation. | 
|  | if (N->getOpcode() == ISD::SRA) { | 
|  | bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); | 
|  | if (BinOpRHSSignSet != HighBitSet) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Fold the constants, shifting the binop RHS by the shift amount. | 
|  | SDValue NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0), | 
|  | LHS->getOperand(1), N->getOperand(1)); | 
|  |  | 
|  | // Create the new shift. | 
|  | SDValue NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0), | 
|  | N->getOperand(1)); | 
|  |  | 
|  | // Create the new binop. | 
|  | return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitSHL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  |  | 
|  | // fold (shl c1, c2) -> c1<<c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::SHL, VT, N0, N1); | 
|  | // fold (shl 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (shl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getValue() >= OpSizeInBits) | 
|  | return DAG.getNode(ISD::UNDEF, VT); | 
|  | // fold (shl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // if (shl x, c) is known to be zero, return 0 | 
|  | if (DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(VT.getSizeInBits()))) | 
|  | return DAG.getConstant(0, VT); | 
|  | // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), c)) | 
|  | // iff (trunc c) == c | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101); | 
|  | if (N101C) { | 
|  | MVT TruncVT = N1.getValueType(); | 
|  | unsigned TruncBitSize = TruncVT.getSizeInBits(); | 
|  | APInt ShAmt = N101C->getAPIntValue(); | 
|  | if (ShAmt.trunc(TruncBitSize).getZExtValue() == N101C->getValue()) { | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | return DAG.getNode(ISD::SHL, VT, N0, | 
|  | DAG.getNode(ISD::AND, TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, TruncVT, N100), | 
|  | DAG.getConstant(N101C->getValue(), TruncVT))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  | // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); | 
|  | uint64_t c2 = N1C->getValue(); | 
|  | if (c1 + c2 > OpSizeInBits) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, N1.getValueType())); | 
|  | } | 
|  | // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or | 
|  | //                               (srl (and x, -1 << c1), c1-c2) | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); | 
|  | uint64_t c2 = N1C->getValue(); | 
|  | SDValue Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), | 
|  | DAG.getConstant(~0ULL << c1, VT)); | 
|  | if (c2 > c1) | 
|  | return DAG.getNode(ISD::SHL, VT, Mask, | 
|  | DAG.getConstant(c2-c1, N1.getValueType())); | 
|  | else | 
|  | return DAG.getNode(ISD::SRL, VT, Mask, | 
|  | DAG.getConstant(c1-c2, N1.getValueType())); | 
|  | } | 
|  | // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) | 
|  | return DAG.getNode(ISD::AND, VT, N0.getOperand(0), | 
|  | DAG.getConstant(~0ULL << N1C->getValue(), VT)); | 
|  |  | 
|  | return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (sra c1, c2) -> c1>>c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::SRA, VT, N0, N1); | 
|  | // fold (sra 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (sra -1, x) -> -1 | 
|  | if (N0C && N0C->isAllOnesValue()) | 
|  | return N0; | 
|  | // fold (sra x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getValue() >= VT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::UNDEF, VT); | 
|  | // fold (sra x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports | 
|  | // sext_inreg. | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { | 
|  | unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getValue(); | 
|  | MVT EVT = MVT::getIntegerVT(LowBits); | 
|  | if (EVT.isSimple() && // TODO: remove when apint codegen support lands. | 
|  | (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), | 
|  | DAG.getValueType(EVT)); | 
|  | } | 
|  |  | 
|  | // fold (sra (sra x, c1), c2) -> (sra x, c1+c2) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA) { | 
|  | if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | unsigned Sum = N1C->getValue() + C1->getValue(); | 
|  | if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1; | 
|  | return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), | 
|  | DAG.getConstant(Sum, N1C->getValueType(0))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold sra (shl X, m), result_size - n | 
|  | // -> (sign_extend (trunc (shl X, result_size - n - m))) for | 
|  | // result_size - n != m. | 
|  | // If truncate is free for the target sext(shl) is likely to result in better | 
|  | // code. | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | // Get the two constanst of the shifts, CN0 = m, CN = n. | 
|  | const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (N01C && N1C) { | 
|  | // Determine what the truncate's result bitsize and type would be. | 
|  | unsigned VTValSize = VT.getSizeInBits(); | 
|  | MVT TruncVT = | 
|  | MVT::getIntegerVT(VTValSize - N1C->getValue()); | 
|  | // Determine the residual right-shift amount. | 
|  | unsigned ShiftAmt = N1C->getValue() - N01C->getValue(); | 
|  |  | 
|  | // If the shift is not a no-op (in which case this should be just a sign | 
|  | // extend already), the truncated to type is legal, sign_extend is legal | 
|  | // on that type, and the the truncate to that type is both legal and free, | 
|  | // perform the transform. | 
|  | if (ShiftAmt && | 
|  | TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) && | 
|  | TLI.isOperationLegal(ISD::TRUNCATE, VT) && | 
|  | TLI.isTruncateFree(VT, TruncVT)) { | 
|  |  | 
|  | SDValue Amt = DAG.getConstant(ShiftAmt, TLI.getShiftAmountTy()); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, VT, N0.getOperand(0), Amt); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, TruncVT, Shift); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, N->getValueType(0), Trunc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), c)) | 
|  | // iff (trunc c) == c | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101); | 
|  | if (N101C) { | 
|  | MVT TruncVT = N1.getValueType(); | 
|  | unsigned TruncBitSize = TruncVT.getSizeInBits(); | 
|  | APInt ShAmt = N101C->getAPIntValue(); | 
|  | if (ShAmt.trunc(TruncBitSize).getZExtValue() == N101C->getValue()) { | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | return DAG.getNode(ISD::SRA, VT, N0, | 
|  | DAG.getNode(ISD::AND, TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, TruncVT, N100), | 
|  | DAG.getConstant(N101C->getValue(), TruncVT))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify, based on bits shifted out of the LHS. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  |  | 
|  | // If the sign bit is known to be zero, switch this to a SRL. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SRL, VT, N0, N1); | 
|  |  | 
|  | return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | MVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  |  | 
|  | // fold (srl c1, c2) -> c1 >>u c2 | 
|  | if (N0C && N1C) | 
|  | return DAG.getNode(ISD::SRL, VT, N0, N1); | 
|  | // fold (srl 0, x) -> 0 | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  | // fold (srl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getValue() >= OpSizeInBits) | 
|  | return DAG.getNode(ISD::UNDEF, VT); | 
|  | // fold (srl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // if (srl x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, VT); | 
|  |  | 
|  | // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); | 
|  | uint64_t c2 = N1C->getValue(); | 
|  | if (c1 + c2 > OpSizeInBits) | 
|  | return DAG.getConstant(0, VT); | 
|  | return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, N1.getValueType())); | 
|  | } | 
|  |  | 
|  | // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // Shifting in all undef bits? | 
|  | MVT SmallVT = N0.getOperand(0).getValueType(); | 
|  | if (N1C->getValue() >= SmallVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::UNDEF, VT); | 
|  |  | 
|  | SDValue SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1); | 
|  | AddToWorkList(SmallShift.getNode()); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift); | 
|  | } | 
|  |  | 
|  | // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign | 
|  | // bit, which is unmodified by sra. | 
|  | if (N1C && N1C->getValue()+1 == VT.getSizeInBits()) { | 
|  | if (N0.getOpcode() == ISD::SRA) | 
|  | return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). | 
|  | if (N1C && N0.getOpcode() == ISD::CTLZ && | 
|  | N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) { | 
|  | APInt KnownZero, KnownOne; | 
|  | APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); | 
|  | DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); | 
|  |  | 
|  | // If any of the input bits are KnownOne, then the input couldn't be all | 
|  | // zeros, thus the result of the srl will always be zero. | 
|  | if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); | 
|  |  | 
|  | // If all of the bits input the to ctlz node are known to be zero, then | 
|  | // the result of the ctlz is "32" and the result of the shift is one. | 
|  | APInt UnknownBits = ~KnownZero & Mask; | 
|  | if (UnknownBits == 0) return DAG.getConstant(1, VT); | 
|  |  | 
|  | // Otherwise, check to see if there is exactly one bit input to the ctlz. | 
|  | if ((UnknownBits & (UnknownBits-1)) == 0) { | 
|  | // Okay, we know that only that the single bit specified by UnknownBits | 
|  | // could be set on input to the CTLZ node.  If this bit is set, the SRL | 
|  | // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair | 
|  | // to an SRL,XOR pair, which is likely to simplify more. | 
|  | unsigned ShAmt = UnknownBits.countTrailingZeros(); | 
|  | SDValue Op = N0.getOperand(0); | 
|  | if (ShAmt) { | 
|  | Op = DAG.getNode(ISD::SRL, VT, Op, | 
|  | DAG.getConstant(ShAmt, TLI.getShiftAmountTy())); | 
|  | AddToWorkList(Op.getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), c)) | 
|  | // iff (trunc c) == c | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101); | 
|  | if (N101C) { | 
|  | MVT TruncVT = N1.getValueType(); | 
|  | unsigned TruncBitSize = TruncVT.getSizeInBits(); | 
|  | APInt ShAmt = N101C->getAPIntValue(); | 
|  | if (ShAmt.trunc(TruncBitSize).getZExtValue() == N101C->getValue()) { | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | return DAG.getNode(ISD::SRL, VT, N0, | 
|  | DAG.getNode(ISD::AND, TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, TruncVT, N100), | 
|  | DAG.getConstant(N101C->getValue(), TruncVT))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold operands of srl based on knowledge that the low bits are not | 
|  | // demanded. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTLZ, VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTTZ, VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTPOP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctpop c1) -> c2 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::CTPOP, VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT VT0 = N0.getValueType(); | 
|  |  | 
|  | // fold select C, X, X -> X | 
|  | if (N1 == N2) | 
|  | return N1; | 
|  | // fold select true, X, Y -> X | 
|  | if (N0C && !N0C->isNullValue()) | 
|  | return N1; | 
|  | // fold select false, X, Y -> Y | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N2; | 
|  | // fold select C, 1, X -> C | X | 
|  | if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::OR, VT, N0, N2); | 
|  | // fold select C, 0, 1 -> ~C | 
|  | if (VT.isInteger() && VT0.isInteger() && | 
|  | N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { | 
|  | SDValue XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0)); | 
|  | if (VT == VT0) | 
|  | return XORNode; | 
|  | AddToWorkList(XORNode.getNode()); | 
|  | if (VT.bitsGT(VT0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode); | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, XORNode); | 
|  | } | 
|  | // fold select C, 0, X -> ~C & X | 
|  | if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { | 
|  | SDValue XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); | 
|  | AddToWorkList(XORNode.getNode()); | 
|  | return DAG.getNode(ISD::AND, VT, XORNode, N2); | 
|  | } | 
|  | // fold select C, X, 1 -> ~C | X | 
|  | if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { | 
|  | SDValue XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); | 
|  | AddToWorkList(XORNode.getNode()); | 
|  | return DAG.getNode(ISD::OR, VT, XORNode, N1); | 
|  | } | 
|  | // fold select C, X, 0 -> C & X | 
|  | // FIXME: this should check for C type == X type, not i1? | 
|  | if (VT == MVT::i1 && N2C && N2C->isNullValue()) | 
|  | return DAG.getNode(ISD::AND, VT, N0, N1); | 
|  | // fold  X ? X : Y --> X ? 1 : Y --> X | Y | 
|  | if (VT == MVT::i1 && N0 == N1) | 
|  | return DAG.getNode(ISD::OR, VT, N0, N2); | 
|  | // fold X ? Y : X --> X ? Y : 0 --> X & Y | 
|  | if (VT == MVT::i1 && N0 == N2) | 
|  | return DAG.getNode(ISD::AND, VT, N0, N1); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold selects based on a setcc into other things, such as min/max/abs | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // FIXME: | 
|  | // Check against MVT::Other for SELECT_CC, which is a workaround for targets | 
|  | // having to say they don't support SELECT_CC on every type the DAG knows | 
|  | // about, since there is no way to mark an opcode illegal at all value types | 
|  | if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) | 
|  | return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), | 
|  | N1, N2, N0.getOperand(2)); | 
|  | else | 
|  | return SimplifySelect(N0, N1, N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDValue N3 = N->getOperand(3); | 
|  | SDValue N4 = N->getOperand(4); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | 
|  |  | 
|  | // fold select_cc lhs, rhs, x, x, cc -> x | 
|  | if (N2 == N3) | 
|  | return N2; | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false); | 
|  | if (SCC.getNode()) AddToWorkList(SCC.getNode()); | 
|  |  | 
|  | if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { | 
|  | if (!SCCC->isNullValue()) | 
|  | return N2;    // cond always true -> true val | 
|  | else | 
|  | return N3;    // cond always false -> false val | 
|  | } | 
|  |  | 
|  | // Fold to a simpler select_cc | 
|  | if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::SELECT_CC, N2.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), N2, N3, | 
|  | SCC.getOperand(2)); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N2, N3)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold select_cc into other things, such as min/max/abs | 
|  | return SimplifySelectCC(N0, N1, N2, N3, CC); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCC(SDNode *N) { | 
|  | return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), | 
|  | cast<CondCodeSDNode>(N->getOperand(2))->get()); | 
|  | } | 
|  |  | 
|  | // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | 
|  | // "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))" | 
|  | // transformation. Returns true if extension are possible and the above | 
|  | // mentioned transformation is profitable. | 
|  | static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, | 
|  | unsigned ExtOpc, | 
|  | SmallVector<SDNode*, 4> &ExtendNodes, | 
|  | TargetLowering &TLI) { | 
|  | bool HasCopyToRegUses = false; | 
|  | bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); | 
|  | for (SDNode::use_iterator UI = N0.getNode()->use_begin(), | 
|  | UE = N0.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == N) | 
|  | continue; | 
|  | // FIXME: Only extend SETCC N, N and SETCC N, c for now. | 
|  | if (User->getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
|  | if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | 
|  | // Sign bits will be lost after a zext. | 
|  | return false; | 
|  | bool Add = false; | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp == N0) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(UseOp)) | 
|  | return false; | 
|  | Add = true; | 
|  | } | 
|  | if (Add) | 
|  | ExtendNodes.push_back(User); | 
|  | } else { | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp == N0) { | 
|  | // If truncate from extended type to original load type is free | 
|  | // on this target, then it's ok to extend a CopyToReg. | 
|  | if (isTruncFree && User->getOpcode() == ISD::CopyToReg) | 
|  | HasCopyToRegUses = true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasCopyToRegUses) { | 
|  | bool BothLiveOut = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp.getNode() == N && UseOp.getResNo() == 0) { | 
|  | BothLiveOut = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (BothLiveOut) | 
|  | // Both unextended and extended values are live out. There had better be | 
|  | // good a reason for the transformation. | 
|  | return ExtendNodes.size(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (sext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); | 
|  |  | 
|  | // fold (sext (sext x)) -> (sext x) | 
|  | // fold (sext (aext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (sext (truncate (load x))) -> (sext (smaller load x)) | 
|  | // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | if (NarrowLoad.getNode() != N0.getNode()) | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad); | 
|  | } | 
|  |  | 
|  | // See if the value being truncated is already sign extended.  If so, just | 
|  | // eliminate the trunc/sext pair. | 
|  | SDValue Op = N0.getOperand(0); | 
|  | unsigned OpBits   = Op.getValueType().getSizeInBits(); | 
|  | unsigned MidBits  = N0.getValueType().getSizeInBits(); | 
|  | unsigned DestBits = VT.getSizeInBits(); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(Op); | 
|  |  | 
|  | if (OpBits == DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
|  | // bits, it is already ready. | 
|  | if (NumSignBits > DestBits-MidBits) | 
|  | return Op; | 
|  | } else if (OpBits < DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
|  | // bits, just sext from i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, VT, Op); | 
|  | } else { | 
|  | // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
|  | // bits, just truncate to i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, Op); | 
|  | } | 
|  |  | 
|  | // fold (sext (truncate x)) -> (sextinreg x). | 
|  | if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | 
|  | N0.getValueType())) { | 
|  | if (Op.getValueType().bitsLT(VT)) | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); | 
|  | else if (Op.getValueType().bitsGT(VT)) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, VT, Op); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op, | 
|  | DAG.getValueType(N0.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (load x)) -> (sext (truncate (sextload x))) | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | // Extend SetCC uses if necessary. | 
|  | for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { | 
|  | SDNode *SetCC = SetCCs[i]; | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | SDValue SOp = SetCC->getOperand(j); | 
|  | if (SOp == Trunc) | 
|  | Ops.push_back(ExtLoad); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp)); | 
|  | } | 
|  | Ops.push_back(SetCC->getOperand(2)); | 
|  | CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), | 
|  | &Ops[0], Ops.size())); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (sextload x)) -> (sext (truncate (sextload x))) | 
|  | // fold (sext ( extload x)) -> (sext (truncate (sextload x))) | 
|  | if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT EVT = LN0->getMemoryVT(); | 
|  | if ((!AfterLegalize && !LN0->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) return SCC; | 
|  | } | 
|  |  | 
|  | // fold (sext x) -> (zext x) if the sign bit is known zero. | 
|  | if ((!AfterLegalize || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | 
|  | DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (zext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); | 
|  | // fold (zext (zext x)) -> (zext x) | 
|  | // fold (zext (aext x)) -> (zext x) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | if (NarrowLoad.getNode() != N0.getNode()) | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (truncate x)) -> (and x, mask) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) { | 
|  | SDValue Op = N0.getOperand(0); | 
|  | if (Op.getValueType().bitsLT(VT)) { | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); | 
|  | } else if (Op.getValueType().bitsGT(VT)) { | 
|  | Op = DAG.getNode(ISD::TRUNCATE, VT, Op); | 
|  | } | 
|  | return DAG.getZeroExtendInReg(Op, N0.getValueType()); | 
|  | } | 
|  |  | 
|  | // fold (zext (and (trunc x), cst)) -> (and x, cst). | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask.zext(VT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | // fold (zext (load x)) -> (zext (truncate (zextload x))) | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | // Extend SetCC uses if necessary. | 
|  | for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { | 
|  | SDNode *SetCC = SetCCs[i]; | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | SDValue SOp = SetCC->getOperand(j); | 
|  | if (SOp == Trunc) | 
|  | Ops.push_back(ExtLoad); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp)); | 
|  | } | 
|  | Ops.push_back(SetCC->getOperand(2)); | 
|  | CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), | 
|  | &Ops[0], Ops.size())); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (zextload x)) -> (zext (truncate (zextload x))) | 
|  | // fold (zext ( extload x)) -> (zext (truncate (zextload x))) | 
|  | if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT EVT = LN0->getMemoryVT(); | 
|  | if ((!AfterLegalize && !LN0->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) return SCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (aext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::ANY_EXTEND, VT, N0); | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::ANY_EXTEND  || | 
|  | N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) | 
|  | return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (aext (truncate (load x))) -> (aext (smaller load x)) | 
|  | // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); | 
|  | if (NarrowLoad.getNode()) { | 
|  | if (NarrowLoad.getNode() != N0.getNode()) | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (truncate x)) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue TruncOp = N0.getOperand(0); | 
|  | if (TruncOp.getValueType() == VT) | 
|  | return TruncOp; // x iff x size == zext size. | 
|  | if (TruncOp.getValueType().bitsGT(VT)) | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, TruncOp); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp); | 
|  | } | 
|  |  | 
|  | // fold (aext (and (trunc x), cst)) -> (and x, cst). | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask.zext(VT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  |  | 
|  | // fold (aext (load x)) -> (aext (truncate (extload x))) | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | // Redirect any chain users to the new load. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), | 
|  | SDValue(ExtLoad.getNode(), 1)); | 
|  | // If any node needs the original loaded value, recompute it. | 
|  | if (!LN0->use_empty()) | 
|  | CombineTo(LN0, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // fold (aext (zextload x)) -> (aext (truncate (zextload x))) | 
|  | // fold (aext (sextload x)) -> (aext (truncate (sextload x))) | 
|  | // fold (aext ( extload x)) -> (aext (truncate (extload  x))) | 
|  | if (N0.getOpcode() == ISD::LOAD && | 
|  | !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT EVT = LN0->getMemoryVT(); | 
|  | SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue SCC = | 
|  | SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); | 
|  | if (SCC.getNode()) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// GetDemandedBits - See if the specified operand can be simplified with the | 
|  | /// knowledge that only the bits specified by Mask are used.  If so, return the | 
|  | /// simpler operand, otherwise return a null SDValue. | 
|  | SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // If the LHS or RHS don't contribute bits to the or, drop them. | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) | 
|  | return V.getOperand(1); | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) | 
|  | return V.getOperand(0); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | // Only look at single-use SRLs. | 
|  | if (!V.getNode()->hasOneUse()) | 
|  | break; | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { | 
|  | // See if we can recursively simplify the LHS. | 
|  | unsigned Amt = RHSC->getValue(); | 
|  | APInt NewMask = Mask << Amt; | 
|  | SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); | 
|  | if (SimplifyLHS.getNode()) { | 
|  | return DAG.getNode(ISD::SRL, V.getValueType(), | 
|  | SimplifyLHS, V.getOperand(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// ReduceLoadWidth - If the result of a wider load is shifted to right of N | 
|  | /// bits and then truncated to a narrower type and where N is a multiple | 
|  | /// of number of bits of the narrower type, transform it to a narrower load | 
|  | /// from address + N / num of bits of new type. If the result is to be | 
|  | /// extended, also fold the extension to form a extending load. | 
|  | SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT EVT = N->getValueType(0); | 
|  |  | 
|  | // This transformation isn't valid for vector loads. | 
|  | if (VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then | 
|  | // extended to VT. | 
|  | if (Opc == ISD::SIGN_EXTEND_INREG) { | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | unsigned EVTBits = EVT.getSizeInBits(); | 
|  | unsigned ShAmt = 0; | 
|  | bool CombineSRL =  false; | 
|  | if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShAmt = N01->getValue(); | 
|  | // Is the shift amount a multiple of size of VT? | 
|  | if ((ShAmt & (EVTBits-1)) == 0) { | 
|  | N0 = N0.getOperand(0); | 
|  | if (N0.getValueType().getSizeInBits() <= EVTBits) | 
|  | return SDValue(); | 
|  | CombineSRL = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (isa<LoadSDNode>(N0) && N0.hasOneUse() && VT.isRound() && | 
|  | cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits && | 
|  | // Do not change the width of a volatile load. | 
|  | !cast<LoadSDNode>(N0)->isVolatile()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | MVT PtrType = N0.getOperand(1).getValueType(); | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (TLI.isBigEndian()) { | 
|  | unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); | 
|  | unsigned EVTStoreBits = EVT.getStoreSizeInBits(); | 
|  | ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; | 
|  | } | 
|  | uint64_t PtrOff =  ShAmt / 8; | 
|  | unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(), | 
|  | DAG.getConstant(PtrOff, PtrType)); | 
|  | AddToWorkList(NewPtr.getNode()); | 
|  | SDValue Load = (ExtType == ISD::NON_EXTLOAD) | 
|  | ? DAG.getLoad(VT, LN0->getChain(), NewPtr, | 
|  | LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff, | 
|  | LN0->isVolatile(), NewAlign) | 
|  | : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr, | 
|  | LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff, | 
|  | EVT, LN0->isVolatile(), NewAlign); | 
|  | AddToWorkList(N); | 
|  | if (CombineSRL) { | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), | 
|  | &DeadNodes); | 
|  | CombineTo(N->getOperand(0).getNode(), Load); | 
|  | } else | 
|  | CombineTo(N0.getNode(), Load, Load.getValue(1)); | 
|  | if (ShAmt) { | 
|  | if (Opc == ISD::SIGN_EXTEND_INREG) | 
|  | return DAG.getNode(Opc, VT, Load, N->getOperand(1)); | 
|  | else | 
|  | return DAG.getNode(Opc, VT, Load); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT EVT = cast<VTSDNode>(N1)->getVT(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | unsigned EVTBits = EVT.getSizeInBits(); | 
|  |  | 
|  | // fold (sext_in_reg c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1); | 
|  |  | 
|  | // If the input is already sign extended, just drop the extension. | 
|  | if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1) | 
|  | return N0; | 
|  |  | 
|  | // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) { | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg (sext x)) -> (sext x) | 
|  | // fold (sext_in_reg (aext x)) -> (sext x) | 
|  | // if x is small enough. | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getValueType().getSizeInBits() < EVTBits) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, VT, N00, N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | 
|  | if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) | 
|  | return DAG.getZeroExtendInReg(N0, EVT); | 
|  |  | 
|  | // fold operands of sext_in_reg based on knowledge that the top bits are not | 
|  | // demanded. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (sext_in_reg (load x)) -> (smaller sextload x) | 
|  | // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | 
|  | SDValue NarrowLoad = ReduceLoadWidth(N); | 
|  | if (NarrowLoad.getNode()) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24 | 
|  | // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible. | 
|  | // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | 
|  | if (N0.getOpcode() == ISD::SRL) { | 
|  | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if (ShAmt->getValue()+EVTBits <= VT.getSizeInBits()) { | 
|  | // We can turn this into an SRA iff the input to the SRL is already sign | 
|  | // extended enough. | 
|  | unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | 
|  | if (VT.getSizeInBits()-(ShAmt->getValue()+EVTBits) < InSignBits) | 
|  | return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext_inreg (extload x)) -> (sextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | 
|  | if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse() && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), EVT, | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // noop truncate | 
|  | if (N0.getValueType() == N->getValueType(0)) | 
|  | return N0; | 
|  | // fold (truncate c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, N0); | 
|  | // fold (truncate (truncate x)) -> (truncate x) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); | 
|  | // fold (truncate (ext x)) -> (ext x) or (truncate x) or x | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND|| | 
|  | N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | if (N0.getOperand(0).getValueType().bitsLT(VT)) | 
|  | // if the source is smaller than the dest, we still need an extend | 
|  | return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); | 
|  | else if (N0.getOperand(0).getValueType().bitsGT(VT)) | 
|  | // if the source is larger than the dest, than we just need the truncate | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); | 
|  | else | 
|  | // if the source and dest are the same type, we can drop both the extend | 
|  | // and the truncate | 
|  | return N0.getOperand(0); | 
|  | } | 
|  |  | 
|  | // See if we can simplify the input to this truncate through knowledge that | 
|  | // only the low bits are being used.  For example "trunc (or (shl x, 8), y)" | 
|  | // -> trunc y | 
|  | SDValue Shorter = | 
|  | GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), | 
|  | VT.getSizeInBits())); | 
|  | if (Shorter.getNode()) | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, Shorter); | 
|  |  | 
|  | // fold (truncate (load x)) -> (smaller load x) | 
|  | // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | 
|  | return ReduceLoadWidth(N); | 
|  | } | 
|  |  | 
|  | static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | 
|  | SDValue Elt = N->getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::MERGE_VALUES) | 
|  | return Elt.getNode(); | 
|  | return Elt.getOperand(Elt.getResNo()).getNode(); | 
|  | } | 
|  |  | 
|  | /// CombineConsecutiveLoads - build_pair (load, load) -> load | 
|  | /// if load locations are consecutive. | 
|  | SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) { | 
|  | assert(N->getOpcode() == ISD::BUILD_PAIR); | 
|  |  | 
|  | SDNode *LD1 = getBuildPairElt(N, 0); | 
|  | if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse()) | 
|  | return SDValue(); | 
|  | MVT LD1VT = LD1->getValueType(0); | 
|  | SDNode *LD2 = getBuildPairElt(N, 1); | 
|  | const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | if (ISD::isNON_EXTLoad(LD2) && | 
|  | LD2->hasOneUse() && | 
|  | // If both are volatile this would reduce the number of volatile loads. | 
|  | // If one is volatile it might be ok, but play conservative and bail out. | 
|  | !cast<LoadSDNode>(LD1)->isVolatile() && | 
|  | !cast<LoadSDNode>(LD2)->isVolatile() && | 
|  | TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(LD1); | 
|  | unsigned Align = LD->getAlignment(); | 
|  | unsigned NewAlign = TLI.getTargetData()-> | 
|  | getABITypeAlignment(VT.getTypeForMVT()); | 
|  | if (NewAlign <= Align && | 
|  | (!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT))) | 
|  | return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), | 
|  | LD->getSrcValue(), LD->getSrcValueOffset(), | 
|  | false, Align); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // If the input is a BUILD_VECTOR with all constant elements, fold this now. | 
|  | // Only do this before legalize, since afterward the target may be depending | 
|  | // on the bitconvert. | 
|  | // First check to see if this is all constant. | 
|  | if (!AfterLegalize && | 
|  | N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && | 
|  | VT.isVector()) { | 
|  | bool isSimple = true; | 
|  | for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) | 
|  | if (N0.getOperand(i).getOpcode() != ISD::UNDEF && | 
|  | N0.getOperand(i).getOpcode() != ISD::Constant && | 
|  | N0.getOperand(i).getOpcode() != ISD::ConstantFP) { | 
|  | isSimple = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | MVT DestEltVT = N->getValueType(0).getVectorElementType(); | 
|  | assert(!DestEltVT.isVector() && | 
|  | "Element type of vector ValueType must not be vector!"); | 
|  | if (isSimple) { | 
|  | return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the input is a constant, let getNode fold it. | 
|  | if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { | 
|  | SDValue Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); | 
|  | if (Res.getNode() != N) return Res; | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2) | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (conv (load x)) -> (load (conv*)x) | 
|  | // If the resultant load doesn't need a higher alignment than the original! | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | // Do not change the width of a volatile load. | 
|  | !cast<LoadSDNode>(N0)->isVolatile() && | 
|  | (!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | unsigned Align = TLI.getTargetData()-> | 
|  | getABITypeAlignment(VT.getTypeForMVT()); | 
|  | unsigned OrigAlign = LN0->getAlignment(); | 
|  | if (Align <= OrigAlign) { | 
|  | SDValue Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getSrcValue(), LN0->getSrcValueOffset(), | 
|  | LN0->isVolatile(), OrigAlign); | 
|  | AddToWorkList(N); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), | 
|  | Load.getValue(1)); | 
|  | return Load; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit) | 
|  | // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit) | 
|  | // This often reduces constant pool loads. | 
|  | if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && | 
|  | N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) { | 
|  | SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); | 
|  | AddToWorkList(NewConv.getNode()); | 
|  |  | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | if (N0.getOpcode() == ISD::FNEG) | 
|  | return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT)); | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT)); | 
|  | } | 
|  |  | 
|  | // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign' | 
|  | // Note that we don't handle copysign(x,cst) because this can always be folded | 
|  | // to an fneg or fabs. | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantFPSDNode>(N0.getOperand(0)) && | 
|  | VT.isInteger() && !VT.isVector()) { | 
|  | unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); | 
|  | SDValue X = DAG.getNode(ISD::BIT_CONVERT, | 
|  | MVT::getIntegerVT(OrigXWidth), | 
|  | N0.getOperand(1)); | 
|  | AddToWorkList(X.getNode()); | 
|  |  | 
|  | // If X has a different width than the result/lhs, sext it or truncate it. | 
|  | unsigned VTWidth = VT.getSizeInBits(); | 
|  | if (OrigXWidth < VTWidth) { | 
|  | X = DAG.getNode(ISD::SIGN_EXTEND, VT, X); | 
|  | AddToWorkList(X.getNode()); | 
|  | } else if (OrigXWidth > VTWidth) { | 
|  | // To get the sign bit in the right place, we have to shift it right | 
|  | // before truncating. | 
|  | X = DAG.getNode(ISD::SRL, X.getValueType(), X, | 
|  | DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); | 
|  | AddToWorkList(X.getNode()); | 
|  | X = DAG.getNode(ISD::TRUNCATE, VT, X); | 
|  | AddToWorkList(X.getNode()); | 
|  | } | 
|  |  | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT)); | 
|  | AddToWorkList(X.getNode()); | 
|  |  | 
|  | SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); | 
|  | Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT)); | 
|  | AddToWorkList(Cst.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, VT, X, Cst); | 
|  | } | 
|  |  | 
|  | // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | 
|  | if (N0.getOpcode() == ISD::BUILD_PAIR) { | 
|  | SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT); | 
|  | if (CombineLD.getNode()) | 
|  | return CombineLD; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | 
|  | MVT VT = N->getValueType(0); | 
|  | return CombineConsecutiveLoads(N, VT); | 
|  | } | 
|  |  | 
|  | /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector | 
|  | /// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the | 
|  | /// destination element value type. | 
|  | SDValue DAGCombiner:: | 
|  | ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) { | 
|  | MVT SrcEltVT = BV->getOperand(0).getValueType(); | 
|  |  | 
|  | // If this is already the right type, we're done. | 
|  | if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | 
|  |  | 
|  | unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | 
|  | unsigned DstBitSize = DstEltVT.getSizeInBits(); | 
|  |  | 
|  | // If this is a conversion of N elements of one type to N elements of another | 
|  | // type, convert each element.  This handles FP<->INT cases. | 
|  | if (SrcBitSize == DstBitSize) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i))); | 
|  | AddToWorkList(Ops.back().getNode()); | 
|  | } | 
|  | MVT VT = MVT::getVectorVT(DstEltVT, | 
|  | BV->getValueType(0).getVectorNumElements()); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Otherwise, we're growing or shrinking the elements.  To avoid having to | 
|  | // handle annoying details of growing/shrinking FP values, we convert them to | 
|  | // int first. | 
|  | if (SrcEltVT.isFloatingPoint()) { | 
|  | // Convert the input float vector to a int vector where the elements are the | 
|  | // same sizes. | 
|  | assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); | 
|  | MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits()); | 
|  | BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode(); | 
|  | SrcEltVT = IntVT; | 
|  | } | 
|  |  | 
|  | // Now we know the input is an integer vector.  If the output is a FP type, | 
|  | // convert to integer first, then to FP of the right size. | 
|  | if (DstEltVT.isFloatingPoint()) { | 
|  | assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); | 
|  | MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits()); | 
|  | SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode(); | 
|  |  | 
|  | // Next, convert to FP elements of the same size. | 
|  | return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT); | 
|  | } | 
|  |  | 
|  | // Okay, we know the src/dst types are both integers of differing types. | 
|  | // Handling growing first. | 
|  | assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | 
|  | if (SrcBitSize < DstBitSize) { | 
|  | unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; | 
|  | i += NumInputsPerOutput) { | 
|  | bool isLE = TLI.isLittleEndian(); | 
|  | APInt NewBits = APInt(DstBitSize, 0); | 
|  | bool EltIsUndef = true; | 
|  | for (unsigned j = 0; j != NumInputsPerOutput; ++j) { | 
|  | // Shift the previously computed bits over. | 
|  | NewBits <<= SrcBitSize; | 
|  | SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); | 
|  | if (Op.getOpcode() == ISD::UNDEF) continue; | 
|  | EltIsUndef = false; | 
|  |  | 
|  | NewBits |= | 
|  | APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize); | 
|  | } | 
|  |  | 
|  | if (EltIsUndef) | 
|  | Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); | 
|  | else | 
|  | Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); | 
|  | } | 
|  |  | 
|  | MVT VT = MVT::getVectorVT(DstEltVT, Ops.size()); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Finally, this must be the case where we are shrinking elements: each input | 
|  | // turns into multiple outputs. | 
|  | bool isS2V = ISD::isScalarToVector(BV); | 
|  | unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; | 
|  | MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands()); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) | 
|  | Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); | 
|  | continue; | 
|  | } | 
|  | APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue(); | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) { | 
|  | APInt ThisVal = APInt(OpVal).trunc(DstBitSize); | 
|  | Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); | 
|  | if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal) | 
|  | // Simply turn this into a SCALAR_TO_VECTOR of the new type. | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]); | 
|  | OpVal = OpVal.lshr(DstBitSize); | 
|  | } | 
|  |  | 
|  | // For big endian targets, swap the order of the pieces of each element. | 
|  | if (TLI.isBigEndian()) | 
|  | std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitFADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fadd c1, c2) -> c1+c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FADD, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FADD, VT, N1, N0); | 
|  | // fold (A + (-B)) -> A-B | 
|  | if (isNegatibleForFree(N1, AfterLegalize) == 2) | 
|  | return DAG.getNode(ISD::FSUB, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, AfterLegalize)); | 
|  | // fold ((-A) + B) -> B-A | 
|  | if (isNegatibleForFree(N0, AfterLegalize) == 2) | 
|  | return DAG.getNode(ISD::FSUB, VT, N1, | 
|  | GetNegatedExpression(N0, DAG, AfterLegalize)); | 
|  |  | 
|  | // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) | 
|  | if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD && | 
|  | N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::FADD, VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fsub c1, c2) -> c1-c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FSUB, VT, N0, N1); | 
|  | // fold (0-B) -> -B | 
|  | if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) { | 
|  | if (isNegatibleForFree(N1, AfterLegalize)) | 
|  | return GetNegatedExpression(N1, DAG, AfterLegalize); | 
|  | return DAG.getNode(ISD::FNEG, VT, N1); | 
|  | } | 
|  | // fold (A-(-B)) -> A+B | 
|  | if (isNegatibleForFree(N1, AfterLegalize)) | 
|  | return DAG.getNode(ISD::FADD, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, AfterLegalize)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fmul c1, c2) -> c1*c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FMUL, VT, N0, N1); | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FMUL, VT, N1, N0); | 
|  | // fold (fmul X, 2.0) -> (fadd X, X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(+2.0)) | 
|  | return DAG.getNode(ISD::FADD, VT, N0, N0); | 
|  | // fold (fmul X, -1.0) -> (fneg X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(ISD::FNEG, VT, N0); | 
|  |  | 
|  | // -X * -Y -> X*Y | 
|  | if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FMUL, VT, | 
|  | GetNegatedExpression(N0, DAG, AfterLegalize), | 
|  | GetNegatedExpression(N1, DAG, AfterLegalize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) | 
|  | if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL && | 
|  | N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | SDValue FoldedVOp = SimplifyVBinOp(N); | 
|  | if (FoldedVOp.getNode()) return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fdiv c1, c2) -> c1/c2 | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FDIV, VT, N0, N1); | 
|  |  | 
|  |  | 
|  | // -X / -Y -> X*Y | 
|  | if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FDIV, VT, | 
|  | GetNegatedExpression(N0, DAG, AfterLegalize), | 
|  | GetNegatedExpression(N1, DAG, AfterLegalize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (frem c1, c2) -> fmod(c1,c2) | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FREM, VT, N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold | 
|  | return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1); | 
|  |  | 
|  | if (N1CFP) { | 
|  | const APFloat& V = N1CFP->getValueAPF(); | 
|  | // copysign(x, c1) -> fabs(x)       iff ispos(c1) | 
|  | // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | 
|  | if (!V.isNegative()) | 
|  | return DAG.getNode(ISD::FABS, VT, N0); | 
|  | else | 
|  | return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0)); | 
|  | } | 
|  |  | 
|  | // copysign(fabs(x), y) -> copysign(x, y) | 
|  | // copysign(fneg(x), y) -> copysign(x, y) | 
|  | // copysign(copysign(x,z), y) -> copysign(x, y) | 
|  | if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | 
|  | N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // copysign(x, abs(y)) -> abs(x) | 
|  | if (N1.getOpcode() == ISD::FABS) | 
|  | return DAG.getNode(ISD::FABS, VT, N0); | 
|  |  | 
|  | // copysign(x, copysign(y,z)) -> copysign(x, z) | 
|  | if (N1.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1)); | 
|  |  | 
|  | // copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | // copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (sint_to_fp c1) -> c1fp | 
|  | if (N0C && OpVT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and SINT_TO_FP is not legal on this target, | 
|  | // but UINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegal(ISD::SINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegal(ISD::UINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to UINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, VT, N0); | 
|  | } | 
|  |  | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (uint_to_fp c1) -> c1fp | 
|  | if (N0C && OpVT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and UINT_TO_FP is not legal on this target, | 
|  | // but SINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegal(ISD::UINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegal(ISD::SINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to SINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, VT, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_sint c1fp) -> c1 | 
|  | if (N0CFP) | 
|  | return DAG.getNode(ISD::FP_TO_SINT, VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_uint c1fp) -> c1 | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_TO_UINT, VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_round c1fp) -> c1fp | 
|  | if (N0CFP && N0.getValueType() != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_ROUND, VT, N0, N1); | 
|  |  | 
|  | // fold (fp_round (fp_extend x)) -> x | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold (fp_round (fp_round x)) -> (fp_round x) | 
|  | if (N0.getOpcode() == ISD::FP_ROUND) { | 
|  | // This is a value preserving truncation if both round's are. | 
|  | bool IsTrunc = N->getConstantOperandVal(1) == 1 && | 
|  | N0.getNode()->getConstantOperandVal(1) == 1; | 
|  | return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), | 
|  | DAG.getIntPtrConstant(IsTrunc)); | 
|  | } | 
|  |  | 
|  | // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { | 
|  | SDValue Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1); | 
|  | AddToWorkList(Tmp.getNode()); | 
|  | return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  |  | 
|  | // fold (fp_round_inreg c1fp) -> c1fp | 
|  | if (N0CFP) { | 
|  | SDValue Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT); | 
|  | return DAG.getNode(ISD::FP_EXTEND, VT, Round); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | 
|  | if (N->hasOneUse() && | 
|  | N->use_begin().getUse().getSDValue().getOpcode() == ISD::FP_ROUND) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (fp_extend c1fp) -> c1fp | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FP_EXTEND, VT, N0); | 
|  |  | 
|  | // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | 
|  | // value of X. | 
|  | if (N0.getOpcode() == ISD::FP_ROUND | 
|  | && N0.getNode()->getConstantOperandVal(1) == 1) { | 
|  | SDValue In = N0.getOperand(0); | 
|  | if (In.getValueType() == VT) return In; | 
|  | if (VT.bitsLT(In.getValueType())) | 
|  | return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::FP_EXTEND, VT, In); | 
|  | } | 
|  |  | 
|  | // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | ((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getSrcValue(), | 
|  | LN0->getSrcValueOffset(), | 
|  | N0.getValueType(), | 
|  | LN0->isVolatile(), | 
|  | LN0->getAlignment()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), DAG.getNode(ISD::FP_ROUND, N0.getValueType(), | 
|  | ExtLoad, DAG.getIntPtrConstant(1)), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFNEG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | if (isNegatibleForFree(N0, AfterLegalize)) | 
|  | return GetNegatedExpression(N0, DAG, AfterLegalize); | 
|  |  | 
|  | // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() && | 
|  | N0.getOperand(0).getValueType().isInteger() && | 
|  | !N0.getOperand(0).getValueType().isVector()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | MVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | Int = DAG.getNode(ISD::XOR, IntVT, Int, | 
|  | DAG.getConstant(IntVT.getIntegerVTSignBit(), IntVT)); | 
|  | AddToWorkList(Int.getNode()); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFABS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | MVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fabs c1) -> fabs(c1) | 
|  | if (N0CFP && VT != MVT::ppcf128) | 
|  | return DAG.getNode(ISD::FABS, VT, N0); | 
|  | // fold (fabs (fabs x)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FABS) | 
|  | return N->getOperand(0); | 
|  | // fold (fabs (fneg x)) -> (fabs x) | 
|  | // fold (fabs (fcopysign x, y)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FABS, VT, N0.getOperand(0)); | 
|  |  | 
|  | // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() && | 
|  | N0.getOperand(0).getValueType().isInteger() && | 
|  | !N0.getOperand(0).getValueType().isVector()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | MVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | Int = DAG.getNode(ISD::AND, IntVT, Int, | 
|  | DAG.getConstant(~IntVT.getIntegerVTSignBit(), IntVT)); | 
|  | AddToWorkList(Int.getNode()); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBRCOND(SDNode *N) { | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  |  | 
|  | // never taken branch, fold to chain | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return Chain; | 
|  | // unconditional branch | 
|  | if (N1C && N1C->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); | 
|  | // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | 
|  | // on the target. | 
|  | if (N1.getOpcode() == ISD::SETCC && | 
|  | TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { | 
|  | return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), | 
|  | N1.getOperand(0), N1.getOperand(1), N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | 
|  | // | 
|  | SDValue DAGCombiner::visitBR_CC(SDNode *N) { | 
|  | CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | 
|  | SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | 
|  |  | 
|  | // Use SimplifySetCC to simplify SETCC's. | 
|  | SDValue Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); | 
|  | if (Simp.getNode()) AddToWorkList(Simp.getNode()); | 
|  |  | 
|  | ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.getNode()); | 
|  |  | 
|  | // fold br_cc true, dest -> br dest (unconditional branch) | 
|  | if (SCCC && !SCCC->isNullValue()) | 
|  | return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), | 
|  | N->getOperand(4)); | 
|  | // fold br_cc false, dest -> unconditional fall through | 
|  | if (SCCC && SCCC->isNullValue()) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // fold to a simpler setcc | 
|  | if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), | 
|  | Simp.getOperand(2), Simp.getOperand(0), | 
|  | Simp.getOperand(1), N->getOperand(4)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CombineToPreIndexedLoadStore - Try turning a load / store into a | 
|  | /// pre-indexed load / store when the base pointer is an add or subtract | 
|  | /// and it has other uses besides the load / store. After the | 
|  | /// transformation, the new indexed load / store has effectively folded | 
|  | /// the add / subtract in and all of its other uses are redirected to the | 
|  | /// new load / store. | 
|  | bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | 
|  | if (!AfterLegalize) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | MVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | 
|  | // out.  There is no reason to make this a preinc/predec. | 
|  | if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | 
|  | Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Ask the target to do addressing mode selection. | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | 
|  | return false; | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isa<ConstantSDNode>(Offset) && | 
|  | cast<ConstantSDNode>(Offset)->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | // Try turning it into a pre-indexed load / store except when: | 
|  | // 1) The new base ptr is a frame index. | 
|  | // 2) If N is a store and the new base ptr is either the same as or is a | 
|  | //    predecessor of the value being stored. | 
|  | // 3) Another use of old base ptr is a predecessor of N. If ptr is folded | 
|  | //    that would create a cycle. | 
|  | // 4) All uses are load / store ops that use it as old base ptr. | 
|  |  | 
|  | // Check #1.  Preinc'ing a frame index would require copying the stack pointer | 
|  | // (plus the implicit offset) to a register to preinc anyway. | 
|  | if (isa<FrameIndexSDNode>(BasePtr)) | 
|  | return false; | 
|  |  | 
|  | // Check #2. | 
|  | if (!isLoad) { | 
|  | SDValue Val = cast<StoreSDNode>(N)->getValue(); | 
|  | if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now check for #3 and #4. | 
|  | bool RealUse = false; | 
|  | for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), | 
|  | E = Ptr.getNode()->use_end(); I != E; ++I) { | 
|  | SDNode *Use = *I; | 
|  | if (Use == N) | 
|  | continue; | 
|  | if (Use->isPredecessorOf(N)) | 
|  | return false; | 
|  |  | 
|  | if (!((Use->getOpcode() == ISD::LOAD && | 
|  | cast<LoadSDNode>(Use)->getBasePtr() == Ptr) || | 
|  | (Use->getOpcode() == ISD::STORE && | 
|  | cast<StoreSDNode>(Use)->getBasePtr() == Ptr))) | 
|  | RealUse = true; | 
|  | } | 
|  | if (!RealUse) | 
|  | return false; | 
|  |  | 
|  | SDValue Result; | 
|  | if (isLoad) | 
|  | Result = DAG.getIndexedLoad(SDValue(N,0), BasePtr, Offset, AM); | 
|  | else | 
|  | Result = DAG.getIndexedStore(SDValue(N,0), BasePtr, Offset, AM); | 
|  | ++PreIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG)); | 
|  | DOUT << '\n'; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), | 
|  | &DeadNodes); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), | 
|  | &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  |  | 
|  | // Replace the uses of Ptr with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(Ptr.getNode()); | 
|  | DAG.DeleteNode(Ptr.getNode()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CombineToPostIndexedLoadStore - Try to combine a load / store with a | 
|  | /// add / sub of the base pointer node into a post-indexed load / store. | 
|  | /// The transformation folded the add / subtract into the new indexed | 
|  | /// load / store effectively and all of its uses are redirected to the | 
|  | /// new load / store. | 
|  | bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | 
|  | if (!AfterLegalize) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | MVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | if (Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), | 
|  | E = Ptr.getNode()->use_end(); I != E; ++I) { | 
|  | SDNode *Op = *I; | 
|  | if (Op == N || | 
|  | (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) | 
|  | continue; | 
|  |  | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { | 
|  | if (Ptr == Offset) | 
|  | std::swap(BasePtr, Offset); | 
|  | if (Ptr != BasePtr) | 
|  | continue; | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isa<ConstantSDNode>(Offset) && | 
|  | cast<ConstantSDNode>(Offset)->isNullValue()) | 
|  | continue; | 
|  |  | 
|  | // Try turning it into a post-indexed load / store except when | 
|  | // 1) All uses are load / store ops that use it as base ptr. | 
|  | // 2) Op must be independent of N, i.e. Op is neither a predecessor | 
|  | //    nor a successor of N. Otherwise, if Op is folded that would | 
|  | //    create a cycle. | 
|  |  | 
|  | // Check for #1. | 
|  | bool TryNext = false; | 
|  | for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(), | 
|  | EE = BasePtr.getNode()->use_end(); II != EE; ++II) { | 
|  | SDNode *Use = *II; | 
|  | if (Use == Ptr.getNode()) | 
|  | continue; | 
|  |  | 
|  | // If all the uses are load / store addresses, then don't do the | 
|  | // transformation. | 
|  | if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ | 
|  | bool RealUse = false; | 
|  | for (SDNode::use_iterator III = Use->use_begin(), | 
|  | EEE = Use->use_end(); III != EEE; ++III) { | 
|  | SDNode *UseUse = *III; | 
|  | if (!((UseUse->getOpcode() == ISD::LOAD && | 
|  | cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) || | 
|  | (UseUse->getOpcode() == ISD::STORE && | 
|  | cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use))) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) { | 
|  | TryNext = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (TryNext) | 
|  | continue; | 
|  |  | 
|  | // Check for #2 | 
|  | if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { | 
|  | SDValue Result = isLoad | 
|  | ? DAG.getIndexedLoad(SDValue(N,0), BasePtr, Offset, AM) | 
|  | : DAG.getIndexedStore(SDValue(N,0), BasePtr, Offset, AM); | 
|  | ++PostIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG)); | 
|  | DOUT << '\n'; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), | 
|  | &DeadNodes); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), | 
|  | &DeadNodes); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | DAG.DeleteNode(N); | 
|  |  | 
|  | // Replace the uses of Use with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | 
|  | Result.getValue(isLoad ? 1 : 0), | 
|  | &DeadNodes); | 
|  | removeFromWorkList(Op); | 
|  | DAG.DeleteNode(Op); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// InferAlignment - If we can infer some alignment information from this | 
|  | /// pointer, return it. | 
|  | static unsigned InferAlignment(SDValue Ptr, SelectionDAG &DAG) { | 
|  | // If this is a direct reference to a stack slot, use information about the | 
|  | // stack slot's alignment. | 
|  | int FrameIdx = 1 << 31; | 
|  | int64_t FrameOffset = 0; | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { | 
|  | FrameIdx = FI->getIndex(); | 
|  | } else if (Ptr.getOpcode() == ISD::ADD && | 
|  | isa<ConstantSDNode>(Ptr.getOperand(1)) && | 
|  | isa<FrameIndexSDNode>(Ptr.getOperand(0))) { | 
|  | FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); | 
|  | FrameOffset = Ptr.getConstantOperandVal(1); | 
|  | } | 
|  |  | 
|  | if (FrameIdx != (1 << 31)) { | 
|  | // FIXME: Handle FI+CST. | 
|  | const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); | 
|  | if (MFI.isFixedObjectIndex(FrameIdx)) { | 
|  | int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset; | 
|  |  | 
|  | // The alignment of the frame index can be determined from its offset from | 
|  | // the incoming frame position.  If the frame object is at offset 32 and | 
|  | // the stack is guaranteed to be 16-byte aligned, then we know that the | 
|  | // object is 16-byte aligned. | 
|  | unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment(); | 
|  | unsigned Align = MinAlign(ObjectOffset, StackAlign); | 
|  |  | 
|  | // Finally, the frame object itself may have a known alignment.  Factor | 
|  | // the alignment + offset into a new alignment.  For example, if we know | 
|  | // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a | 
|  | // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte | 
|  | // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc. | 
|  | unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), | 
|  | FrameOffset); | 
|  | return std::max(Align, FIInfoAlign); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitLOAD(SDNode *N) { | 
|  | LoadSDNode *LD  = cast<LoadSDNode>(N); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr   = LD->getBasePtr(); | 
|  |  | 
|  | // Try to infer better alignment information than the load already has. | 
|  | if (!Fast && LD->isUnindexed()) { | 
|  | if (unsigned Align = InferAlignment(Ptr, DAG)) { | 
|  | if (Align > LD->getAlignment()) | 
|  | return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), | 
|  | Chain, Ptr, LD->getSrcValue(), | 
|  | LD->getSrcValueOffset(), LD->getMemoryVT(), | 
|  | LD->isVolatile(), Align); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If load is not volatile and there are no uses of the loaded value (and | 
|  | // the updated indexed value in case of indexed loads), change uses of the | 
|  | // chain value into uses of the chain input (i.e. delete the dead load). | 
|  | if (!LD->isVolatile()) { | 
|  | if (N->getValueType(1) == MVT::Other) { | 
|  | // Unindexed loads. | 
|  | if (N->hasNUsesOfValue(0, 0)) { | 
|  | // It's not safe to use the two value CombineTo variant here. e.g. | 
|  | // v1, chain2 = load chain1, loc | 
|  | // v2, chain3 = load chain2, loc | 
|  | // v3         = add v2, c | 
|  | // Now we replace use of chain2 with chain1.  This makes the second load | 
|  | // isomorphic to the one we are deleting, and thus makes this load live. | 
|  | DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG)); | 
|  | DOUT << "\n"; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes); | 
|  | if (N->use_empty()) { | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } else { | 
|  | // Indexed loads. | 
|  | assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | 
|  | if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) { | 
|  | SDValue Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0)); | 
|  | DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); | 
|  | DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG)); | 
|  | DOUT << " and 2 other values\n"; | 
|  | WorkListRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), | 
|  | DAG.getNode(ISD::UNDEF, N->getValueType(1)), | 
|  | &DeadNodes); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes); | 
|  | removeFromWorkList(N); | 
|  | DAG.DeleteNode(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this load is directly stored, replace the load value with the stored | 
|  | // value. | 
|  | // TODO: Handle store large -> read small portion. | 
|  | // TODO: Handle TRUNCSTORE/LOADEXT | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD && | 
|  | !LD->isVolatile()) { | 
|  | if (ISD::isNON_TRUNCStore(Chain.getNode())) { | 
|  | StoreSDNode *PrevST = cast<StoreSDNode>(Chain); | 
|  | if (PrevST->getBasePtr() == Ptr && | 
|  | PrevST->getValue().getValueType() == N->getValueType(0)) | 
|  | return CombineTo(N, Chain.getOperand(1), Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CombinerAA) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(N, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | SDValue ReplLoad; | 
|  |  | 
|  | // Replace the chain to void dependency. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr, | 
|  | LD->getSrcValue(), LD->getSrcValueOffset(), | 
|  | LD->isVolatile(), LD->getAlignment()); | 
|  | } else { | 
|  | ReplLoad = DAG.getExtLoad(LD->getExtensionType(), | 
|  | LD->getValueType(0), | 
|  | BetterChain, Ptr, LD->getSrcValue(), | 
|  | LD->getSrcValueOffset(), | 
|  | LD->getMemoryVT(), | 
|  | LD->isVolatile(), | 
|  | LD->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Create token factor to keep old chain connected. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | Chain, ReplLoad.getValue(1)); | 
|  |  | 
|  | // Replace uses with load result and token factor. Don't add users | 
|  | // to work list. | 
|  | return CombineTo(N, ReplLoad.getValue(0), Token, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed load. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitSTORE(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  |  | 
|  | // Try to infer better alignment information than the store already has. | 
|  | if (!Fast && ST->isUnindexed()) { | 
|  | if (unsigned Align = InferAlignment(Ptr, DAG)) { | 
|  | if (Align > ST->getAlignment()) | 
|  | return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), Align); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a store of a bit convert, store the input value if the | 
|  | // resultant store does not need a higher alignment than the original. | 
|  | if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() && | 
|  | ST->isUnindexed()) { | 
|  | unsigned Align = ST->getAlignment(); | 
|  | MVT SVT = Value.getOperand(0).getValueType(); | 
|  | unsigned OrigAlign = TLI.getTargetData()-> | 
|  | getABITypeAlignment(SVT.getTypeForMVT()); | 
|  | if (Align <= OrigAlign && | 
|  | ((!AfterLegalize && !ST->isVolatile()) || | 
|  | TLI.isOperationLegal(ISD::STORE, SVT))) | 
|  | return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign); | 
|  | } | 
|  |  | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { | 
|  | // NOTE: If the original store is volatile, this transform must not increase | 
|  | // the number of stores.  For example, on x86-32 an f64 can be stored in one | 
|  | // processor operation but an i64 (which is not legal) requires two.  So the | 
|  | // transform should not be done in this case. | 
|  | if (Value.getOpcode() != ISD::TargetConstantFP) { | 
|  | SDValue Tmp; | 
|  | switch (CFP->getValueType(0).getSimpleVT()) { | 
|  | default: assert(0 && "Unknown FP type"); | 
|  | case MVT::f80:    // We don't do this for these yet. | 
|  | case MVT::f128: | 
|  | case MVT::ppcf128: | 
|  | break; | 
|  | case MVT::f32: | 
|  | if ((!AfterLegalize && !ST->isVolatile()) || | 
|  | TLI.isOperationLegal(ISD::STORE, MVT::i32)) { | 
|  | Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | 
|  | convertToAPInt().getZExtValue(), MVT::i32); | 
|  | return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->isVolatile(), | 
|  | ST->getAlignment()); | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if ((!AfterLegalize && !ST->isVolatile()) || | 
|  | TLI.isOperationLegal(ISD::STORE, MVT::i64)) { | 
|  | Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). | 
|  | getZExtValue(), MVT::i64); | 
|  | return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->isVolatile(), | 
|  | ST->getAlignment()); | 
|  | } else if (!ST->isVolatile() && | 
|  | TLI.isOperationLegal(ISD::STORE, MVT::i32)) { | 
|  | // Many FP stores are not made apparent until after legalize, e.g. for | 
|  | // argument passing.  Since this is so common, custom legalize the | 
|  | // 64-bit integer store into two 32-bit stores. | 
|  | uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue(); | 
|  | SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32); | 
|  | if (TLI.isBigEndian()) std::swap(Lo, Hi); | 
|  |  | 
|  | int SVOffset = ST->getSrcValueOffset(); | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  |  | 
|  | SDValue St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), | 
|  | isVolatile, ST->getAlignment()); | 
|  | Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(4, Ptr.getValueType())); | 
|  | SVOffset += 4; | 
|  | Alignment = MinAlign(Alignment, 4U); | 
|  | SDValue St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CombinerAA) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(N, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | // Replace the chain to avoid dependency. | 
|  | SDValue ReplStore; | 
|  | if (ST->isTruncatingStore()) { | 
|  | ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr, | 
|  | ST->getSrcValue(),ST->getSrcValueOffset(), | 
|  | ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->getAlignment()); | 
|  | } else { | 
|  | ReplStore = DAG.getStore(BetterChain, Value, Ptr, | 
|  | ST->getSrcValue(), ST->getSrcValueOffset(), | 
|  | ST->isVolatile(), ST->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Create token to keep both nodes around. | 
|  | SDValue Token = | 
|  | DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore); | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(N, Token, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed store. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // FIXME: is there such a thing as a truncating indexed store? | 
|  | if (ST->isTruncatingStore() && ST->isUnindexed() && | 
|  | Value.getValueType().isInteger()) { | 
|  | // See if we can simplify the input to this truncstore with knowledge that | 
|  | // only the low bits are being used.  For example: | 
|  | // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" | 
|  | SDValue Shorter = | 
|  | GetDemandedBits(Value, | 
|  | APInt::getLowBitsSet(Value.getValueSizeInBits(), | 
|  | ST->getMemoryVT().getSizeInBits())); | 
|  | AddToWorkList(Value.getNode()); | 
|  | if (Shorter.getNode()) | 
|  | return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->getAlignment()); | 
|  |  | 
|  | // Otherwise, see if we can simplify the operation with | 
|  | // SimplifyDemandedBits, which only works if the value has a single use. | 
|  | if (SimplifyDemandedBits(Value, | 
|  | APInt::getLowBitsSet( | 
|  | Value.getValueSizeInBits(), | 
|  | ST->getMemoryVT().getSizeInBits()))) | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // If this is a load followed by a store to the same location, then the store | 
|  | // is dead/noop. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { | 
|  | if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | 
|  | ST->isUnindexed() && !ST->isVolatile() && | 
|  | // There can't be any side effects between the load and store, such as | 
|  | // a call or store. | 
|  | Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | 
|  | // The store is dead, remove it. | 
|  | return Chain; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an FP_ROUND or TRUNC followed by a store, fold this into a | 
|  | // truncating store.  We can do this even if this is already a truncstore. | 
|  | if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) | 
|  | && Value.getNode()->hasOneUse() && ST->isUnindexed() && | 
|  | TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), | 
|  | ST->getMemoryVT())) { | 
|  | return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->getAlignment()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue InVal = N->getOperand(1); | 
|  | SDValue EltNo = N->getOperand(2); | 
|  |  | 
|  | // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new | 
|  | // vector with the inserted element. | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) { | 
|  | unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); | 
|  | SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(), | 
|  | InVec.getNode()->op_end()); | 
|  | if (Elt < Ops.size()) | 
|  | Ops[Elt] = InVal; | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), | 
|  | &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | 
|  | // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | 
|  |  | 
|  | // Perform only after legalization to ensure build_vector / vector_shuffle | 
|  | // optimizations have already been done. | 
|  | if (!AfterLegalize) return SDValue(); | 
|  |  | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue EltNo = N->getOperand(1); | 
|  |  | 
|  | if (isa<ConstantSDNode>(EltNo)) { | 
|  | unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); | 
|  | bool NewLoad = false; | 
|  | MVT VT = InVec.getValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | MVT LVT = EVT; | 
|  | if (InVec.getOpcode() == ISD::BIT_CONVERT) { | 
|  | MVT BCVT = InVec.getOperand(0).getValueType(); | 
|  | if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType())) | 
|  | return SDValue(); | 
|  | InVec = InVec.getOperand(0); | 
|  | EVT = BCVT.getVectorElementType(); | 
|  | NewLoad = true; | 
|  | } | 
|  |  | 
|  | LoadSDNode *LN0 = NULL; | 
|  | if (ISD::isNormalLoad(InVec.getNode())) | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | InVec.getOperand(0).getValueType() == EVT && | 
|  | ISD::isNormalLoad(InVec.getOperand(0).getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec.getOperand(0)); | 
|  | } else if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | 
|  | // => | 
|  | // (load $addr+1*size) | 
|  | unsigned Idx = cast<ConstantSDNode>(InVec.getOperand(2). | 
|  | getOperand(Elt))->getValue(); | 
|  | unsigned NumElems = InVec.getOperand(2).getNumOperands(); | 
|  | InVec = (Idx < NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); | 
|  | if (InVec.getOpcode() == ISD::BIT_CONVERT) | 
|  | InVec = InVec.getOperand(0); | 
|  | if (ISD::isNormalLoad(InVec.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | Elt = (Idx < NumElems) ? Idx : Idx - NumElems; | 
|  | } | 
|  | } | 
|  | if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Align = LN0->getAlignment(); | 
|  | if (NewLoad) { | 
|  | // Check the resultant load doesn't need a higher alignment than the | 
|  | // original load. | 
|  | unsigned NewAlign = TLI.getTargetData()-> | 
|  | getABITypeAlignment(LVT.getTypeForMVT()); | 
|  | if (NewAlign > Align || !TLI.isOperationLegal(ISD::LOAD, LVT)) | 
|  | return SDValue(); | 
|  | Align = NewAlign; | 
|  | } | 
|  |  | 
|  | SDValue NewPtr = LN0->getBasePtr(); | 
|  | if (Elt) { | 
|  | unsigned PtrOff = LVT.getSizeInBits() * Elt / 8; | 
|  | MVT PtrType = NewPtr.getValueType(); | 
|  | if (TLI.isBigEndian()) | 
|  | PtrOff = VT.getSizeInBits() / 8 - PtrOff; | 
|  | NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, | 
|  | DAG.getConstant(PtrOff, PtrType)); | 
|  | } | 
|  | return DAG.getLoad(LVT, LN0->getChain(), NewPtr, | 
|  | LN0->getSrcValue(), LN0->getSrcValueOffset(), | 
|  | LN0->isVolatile(), Align); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | MVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | MVT EltType = VT.getVectorElementType(); | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | 
|  | // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from | 
|  | // at most two distinct vectors, turn this into a shuffle node. | 
|  | SDValue VecIn1, VecIn2; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | // Ignore undef inputs. | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | // If this input is something other than a EXTRACT_VECTOR_ELT with a | 
|  | // constant index, bail out. | 
|  | if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the input vector type disagrees with the result of the build_vector, | 
|  | // we can't make a shuffle. | 
|  | SDValue ExtractedFromVec = N->getOperand(i).getOperand(0); | 
|  | if (ExtractedFromVec.getValueType() != VT) { | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, remember this.  We allow up to two distinct input vectors. | 
|  | if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) | 
|  | continue; | 
|  |  | 
|  | if (VecIn1.getNode() == 0) { | 
|  | VecIn1 = ExtractedFromVec; | 
|  | } else if (VecIn2.getNode() == 0) { | 
|  | VecIn2 = ExtractedFromVec; | 
|  | } else { | 
|  | // Too many inputs. | 
|  | VecIn1 = VecIn2 = SDValue(0, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If everything is good, we can make a shuffle operation. | 
|  | if (VecIn1.getNode()) { | 
|  | SmallVector<SDValue, 8> BuildVecIndices; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) { | 
|  | BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue Extract = N->getOperand(i); | 
|  |  | 
|  | // If extracting from the first vector, just use the index directly. | 
|  | if (Extract.getOperand(0) == VecIn1) { | 
|  | BuildVecIndices.push_back(Extract.getOperand(1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, use InIdx + VecSize | 
|  | unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue(); | 
|  | BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars)); | 
|  | } | 
|  |  | 
|  | // Add count and size info. | 
|  | MVT BuildVecVT = MVT::getVectorVT(TLI.getPointerTy(), NumElts); | 
|  |  | 
|  | // Return the new VECTOR_SHUFFLE node. | 
|  | SDValue Ops[5]; | 
|  | Ops[0] = VecIn1; | 
|  | if (VecIn2.getNode()) { | 
|  | Ops[1] = VecIn2; | 
|  | } else { | 
|  | // Use an undef build_vector as input for the second operand. | 
|  | std::vector<SDValue> UnOps(NumInScalars, | 
|  | DAG.getNode(ISD::UNDEF, | 
|  | EltType)); | 
|  | Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT, | 
|  | &UnOps[0], UnOps.size()); | 
|  | AddToWorkList(Ops[1].getNode()); | 
|  | } | 
|  | Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT, | 
|  | &BuildVecIndices[0], BuildVecIndices.size()); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | 
|  | // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of | 
|  | // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector | 
|  | // inputs come from at most two distinct vectors, turn this into a shuffle | 
|  | // node. | 
|  |  | 
|  | // If we only have one input vector, we don't need to do any concatenation. | 
|  | if (N->getNumOperands() == 1) { | 
|  | return N->getOperand(0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | 
|  | SDValue ShufMask = N->getOperand(2); | 
|  | unsigned NumElts = ShufMask.getNumOperands(); | 
|  |  | 
|  | // If the shuffle mask is an identity operation on the LHS, return the LHS. | 
|  | bool isIdentity = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && | 
|  | cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) { | 
|  | isIdentity = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (isIdentity) return N->getOperand(0); | 
|  |  | 
|  | // If the shuffle mask is an identity operation on the RHS, return the RHS. | 
|  | isIdentity = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && | 
|  | cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) { | 
|  | isIdentity = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (isIdentity) return N->getOperand(1); | 
|  |  | 
|  | // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not | 
|  | // needed at all. | 
|  | bool isUnary = true; | 
|  | bool isSplat = true; | 
|  | int VecNum = -1; | 
|  | unsigned BaseIdx = 0; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue(); | 
|  | int V = (Idx < NumElts) ? 0 : 1; | 
|  | if (VecNum == -1) { | 
|  | VecNum = V; | 
|  | BaseIdx = Idx; | 
|  | } else { | 
|  | if (BaseIdx != Idx) | 
|  | isSplat = false; | 
|  | if (VecNum != V) { | 
|  | isUnary = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | // Normalize unary shuffle so the RHS is undef. | 
|  | if (isUnary && VecNum == 1) | 
|  | std::swap(N0, N1); | 
|  |  | 
|  | // If it is a splat, check if the argument vector is a build_vector with | 
|  | // all scalar elements the same. | 
|  | if (isSplat) { | 
|  | SDNode *V = N0.getNode(); | 
|  |  | 
|  | // If this is a bit convert that changes the element type of the vector but | 
|  | // not the number of vector elements, look through it.  Be careful not to | 
|  | // look though conversions that change things like v4f32 to v2f64. | 
|  | if (V->getOpcode() == ISD::BIT_CONVERT) { | 
|  | SDValue ConvInput = V->getOperand(0); | 
|  | if (ConvInput.getValueType().isVector() && | 
|  | ConvInput.getValueType().getVectorNumElements() == NumElts) | 
|  | V = ConvInput.getNode(); | 
|  | } | 
|  |  | 
|  | if (V->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElems = V->getNumOperands(); | 
|  | if (NumElems > BaseIdx) { | 
|  | SDValue Base; | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (V->getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | Base = V->getOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <u, u, u, u>, return <u, u, u, u> | 
|  | if (!Base.getNode()) | 
|  | return N0; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (V->getOperand(i) != Base) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <x, x, x, x>, return <x, x, x, x> | 
|  | if (AllSame) | 
|  | return N0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it is a unary or the LHS and the RHS are the same node, turn the RHS | 
|  | // into an undef. | 
|  | if (isUnary || N0 == N1) { | 
|  | // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the | 
|  | // first operand. | 
|  | SmallVector<SDValue, 8> MappedOps; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF || | 
|  | cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) { | 
|  | MappedOps.push_back(ShufMask.getOperand(i)); | 
|  | } else { | 
|  | unsigned NewIdx = | 
|  | cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts; | 
|  | MappedOps.push_back(DAG.getConstant(NewIdx, | 
|  | ShufMask.getOperand(i).getValueType())); | 
|  | } | 
|  | } | 
|  | ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(), | 
|  | &MappedOps[0], MappedOps.size()); | 
|  | AddToWorkList(ShufMask.getNode()); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0), | 
|  | N0, | 
|  | DAG.getNode(ISD::UNDEF, N->getValueType(0)), | 
|  | ShufMask); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform | 
|  | /// an AND to a vector_shuffle with the destination vector and a zero vector. | 
|  | /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | 
|  | ///      vector_shuffle V, Zero, <0, 4, 2, 4> | 
|  | SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (N->getOpcode() == ISD::AND) { | 
|  | if (RHS.getOpcode() == ISD::BIT_CONVERT) | 
|  | RHS = RHS.getOperand(0); | 
|  | if (RHS.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | std::vector<SDValue> IdxOps; | 
|  | unsigned NumOps = RHS.getNumOperands(); | 
|  | unsigned NumElts = NumOps; | 
|  | MVT EVT = RHS.getValueType().getVectorElementType(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | SDValue Elt = RHS.getOperand(i); | 
|  | if (!isa<ConstantSDNode>(Elt)) | 
|  | return SDValue(); | 
|  | else if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) | 
|  | IdxOps.push_back(DAG.getConstant(i, EVT)); | 
|  | else if (cast<ConstantSDNode>(Elt)->isNullValue()) | 
|  | IdxOps.push_back(DAG.getConstant(NumElts, EVT)); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Let's see if the target supports this vector_shuffle. | 
|  | if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return the new VECTOR_SHUFFLE node. | 
|  | MVT VT = MVT::getVectorVT(EVT, NumElts); | 
|  | std::vector<SDValue> Ops; | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS); | 
|  | Ops.push_back(LHS); | 
|  | AddToWorkList(LHS.getNode()); | 
|  | std::vector<SDValue> ZeroOps(NumElts, DAG.getConstant(0, EVT)); | 
|  | Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, | 
|  | &ZeroOps[0], ZeroOps.size())); | 
|  | Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, | 
|  | &IdxOps[0], IdxOps.size())); | 
|  | SDValue Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, | 
|  | &Ops[0], Ops.size()); | 
|  | if (VT != N->getValueType(0)) | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Result); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifyVBinOp - Visit a binary vector operation, like ADD. | 
|  | SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { | 
|  | // After legalize, the target may be depending on adds and other | 
|  | // binary ops to provide legal ways to construct constants or other | 
|  | // things. Simplifying them may result in a loss of legality. | 
|  | if (AfterLegalize) return SDValue(); | 
|  |  | 
|  | MVT VT = N->getValueType(0); | 
|  | assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); | 
|  |  | 
|  | MVT EltType = VT.getVectorElementType(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Shuffle = XformToShuffleWithZero(N); | 
|  | if (Shuffle.getNode()) return Shuffle; | 
|  |  | 
|  | // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold | 
|  | // this operation. | 
|  | if (LHS.getOpcode() == ISD::BUILD_VECTOR && | 
|  | RHS.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { | 
|  | SDValue LHSOp = LHS.getOperand(i); | 
|  | SDValue RHSOp = RHS.getOperand(i); | 
|  | // If these two elements can't be folded, bail out. | 
|  | if ((LHSOp.getOpcode() != ISD::UNDEF && | 
|  | LHSOp.getOpcode() != ISD::Constant && | 
|  | LHSOp.getOpcode() != ISD::ConstantFP) || | 
|  | (RHSOp.getOpcode() != ISD::UNDEF && | 
|  | RHSOp.getOpcode() != ISD::Constant && | 
|  | RHSOp.getOpcode() != ISD::ConstantFP)) | 
|  | break; | 
|  | // Can't fold divide by zero. | 
|  | if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || | 
|  | N->getOpcode() == ISD::FDIV) { | 
|  | if ((RHSOp.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) || | 
|  | (RHSOp.getOpcode() == ISD::ConstantFP && | 
|  | cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero())) | 
|  | break; | 
|  | } | 
|  | Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp)); | 
|  | AddToWorkList(Ops.back().getNode()); | 
|  | assert((Ops.back().getOpcode() == ISD::UNDEF || | 
|  | Ops.back().getOpcode() == ISD::Constant || | 
|  | Ops.back().getOpcode() == ISD::ConstantFP) && | 
|  | "Scalar binop didn't fold!"); | 
|  | } | 
|  |  | 
|  | if (Ops.size() == LHS.getNumOperands()) { | 
|  | MVT VT = LHS.getValueType(); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SimplifySelect(SDValue N0, SDValue N1, SDValue N2){ | 
|  | assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); | 
|  |  | 
|  | SDValue SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | // If we got a simplified select_cc node back from SimplifySelectCC, then | 
|  | // break it down into a new SETCC node, and a new SELECT node, and then return | 
|  | // the SELECT node, since we were called with a SELECT node. | 
|  | if (SCC.getNode()) { | 
|  | // Check to see if we got a select_cc back (to turn into setcc/select). | 
|  | // Otherwise, just return whatever node we got back, like fabs. | 
|  | if (SCC.getOpcode() == ISD::SELECT_CC) { | 
|  | SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), | 
|  | SCC.getOperand(4)); | 
|  | AddToWorkList(SETCC.getNode()); | 
|  | return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), | 
|  | SCC.getOperand(3), SETCC); | 
|  | } | 
|  | return SCC; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS | 
|  | /// are the two values being selected between, see if we can simplify the | 
|  | /// select.  Callers of this should assume that TheSelect is deleted if this | 
|  | /// returns true.  As such, they should return the appropriate thing (e.g. the | 
|  | /// node) back to the top-level of the DAG combiner loop to avoid it being | 
|  | /// looked at. | 
|  | /// | 
|  | bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | 
|  | SDValue RHS) { | 
|  |  | 
|  | // If this is a select from two identical things, try to pull the operation | 
|  | // through the select. | 
|  | if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ | 
|  | // If this is a load and the token chain is identical, replace the select | 
|  | // of two loads with a load through a select of the address to load from. | 
|  | // This triggers in things like "select bool X, 10.0, 123.0" after the FP | 
|  | // constants have been dropped into the constant pool. | 
|  | if (LHS.getOpcode() == ISD::LOAD && | 
|  | // Do not let this transformation reduce the number of volatile loads. | 
|  | !cast<LoadSDNode>(LHS)->isVolatile() && | 
|  | !cast<LoadSDNode>(RHS)->isVolatile() && | 
|  | // Token chains must be identical. | 
|  | LHS.getOperand(0) == RHS.getOperand(0)) { | 
|  | LoadSDNode *LLD = cast<LoadSDNode>(LHS); | 
|  | LoadSDNode *RLD = cast<LoadSDNode>(RHS); | 
|  |  | 
|  | // If this is an EXTLOAD, the VT's must match. | 
|  | if (LLD->getMemoryVT() == RLD->getMemoryVT()) { | 
|  | // FIXME: this conflates two src values, discarding one.  This is not | 
|  | // the right thing to do, but nothing uses srcvalues now.  When they do, | 
|  | // turn SrcValue into a list of locations. | 
|  | SDValue Addr; | 
|  | if (TheSelect->getOpcode() == ISD::SELECT) { | 
|  | // Check that the condition doesn't reach either load.  If so, folding | 
|  | // this will induce a cycle into the DAG. | 
|  | if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) && | 
|  | !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) { | 
|  | Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), LLD->getBasePtr(), | 
|  | RLD->getBasePtr()); | 
|  | } | 
|  | } else { | 
|  | // Check that the condition doesn't reach either load.  If so, folding | 
|  | // this will induce a cycle into the DAG. | 
|  | if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) && | 
|  | !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) && | 
|  | !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()) && | 
|  | !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())) { | 
|  | Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), | 
|  | TheSelect->getOperand(1), | 
|  | LLD->getBasePtr(), RLD->getBasePtr(), | 
|  | TheSelect->getOperand(4)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Addr.getNode()) { | 
|  | SDValue Load; | 
|  | if (LLD->getExtensionType() == ISD::NON_EXTLOAD) | 
|  | Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(), | 
|  | Addr,LLD->getSrcValue(), | 
|  | LLD->getSrcValueOffset(), | 
|  | LLD->isVolatile(), | 
|  | LLD->getAlignment()); | 
|  | else { | 
|  | Load = DAG.getExtLoad(LLD->getExtensionType(), | 
|  | TheSelect->getValueType(0), | 
|  | LLD->getChain(), Addr, LLD->getSrcValue(), | 
|  | LLD->getSrcValueOffset(), | 
|  | LLD->getMemoryVT(), | 
|  | LLD->isVolatile(), | 
|  | LLD->getAlignment()); | 
|  | } | 
|  | // Users of the select now use the result of the load. | 
|  | CombineTo(TheSelect, Load); | 
|  |  | 
|  | // Users of the old loads now use the new load's chain.  We know the | 
|  | // old-load value is dead now. | 
|  | CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SimplifySelectCC(SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC, bool NotExtCompare) { | 
|  |  | 
|  | MVT VT = N2.getValueType(); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
|  | ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false); | 
|  | if (SCC.getNode()) AddToWorkList(SCC.getNode()); | 
|  | ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode()); | 
|  |  | 
|  | // fold select_cc true, x, y -> x | 
|  | if (SCCC && !SCCC->isNullValue()) | 
|  | return N2; | 
|  | // fold select_cc false, x, y -> y | 
|  | if (SCCC && SCCC->isNullValue()) | 
|  | return N3; | 
|  |  | 
|  | // Check to see if we can simplify the select into an fabs node | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { | 
|  | // Allow either -0.0 or 0.0 | 
|  | if (CFP->getValueAPF().isZero()) { | 
|  | // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs | 
|  | if ((CC == ISD::SETGE || CC == ISD::SETGT) && | 
|  | N0 == N2 && N3.getOpcode() == ISD::FNEG && | 
|  | N2 == N3.getOperand(0)) | 
|  | return DAG.getNode(ISD::FABS, VT, N0); | 
|  |  | 
|  | // select (setl[te] X, +/-0.0), fneg(X), X -> fabs | 
|  | if ((CC == ISD::SETLT || CC == ISD::SETLE) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::FNEG && | 
|  | N2.getOperand(0) == N3) | 
|  | return DAG.getNode(ISD::FABS, VT, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we can perform the "gzip trick", transforming | 
|  | // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A | 
|  | if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && | 
|  | N0.getValueType().isInteger() && | 
|  | N2.getValueType().isInteger() && | 
|  | (N1C->isNullValue() ||                         // (a < 0) ? b : 0 | 
|  | (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0 | 
|  | MVT XType = N0.getValueType(); | 
|  | MVT AType = N2.getValueType(); | 
|  | if (XType.bitsGE(AType)) { | 
|  | // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a | 
|  | // single-bit constant. | 
|  | if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) { | 
|  | unsigned ShCtV = N2C->getAPIntValue().logBase2(); | 
|  | ShCtV = XType.getSizeInBits()-ShCtV-1; | 
|  | SDValue ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::AND, AType, Shift, N2); | 
|  | } | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::AND, AType, Shift, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold select C, 16, 0 -> shl C, 4 | 
|  | if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() && | 
|  | TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { | 
|  |  | 
|  | // If the caller doesn't want us to simplify this into a zext of a compare, | 
|  | // don't do it. | 
|  | if (NotExtCompare && N2C->getAPIntValue() == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Get a SetCC of the condition | 
|  | // FIXME: Should probably make sure that setcc is legal if we ever have a | 
|  | // target where it isn't. | 
|  | SDValue Temp, SCC; | 
|  | // cast from setcc result type to select result type | 
|  | if (AfterLegalize) { | 
|  | SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC); | 
|  | if (N2.getValueType().bitsLT(SCC.getValueType())) | 
|  | Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); | 
|  | else | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); | 
|  | } else { | 
|  | SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC); | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); | 
|  | } | 
|  | AddToWorkList(SCC.getNode()); | 
|  | AddToWorkList(Temp.getNode()); | 
|  |  | 
|  | if (N2C->getAPIntValue() == 1) | 
|  | return Temp; | 
|  | // shl setcc result by log2 n2c | 
|  | return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, | 
|  | DAG.getConstant(N2C->getAPIntValue().logBase2(), | 
|  | TLI.getShiftAmountTy())); | 
|  | } | 
|  |  | 
|  | // Check to see if this is the equivalent of setcc | 
|  | // FIXME: Turn all of these into setcc if setcc if setcc is legal | 
|  | // otherwise, go ahead with the folds. | 
|  | if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) { | 
|  | MVT XType = N0.getValueType(); | 
|  | if (!AfterLegalize || | 
|  | TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) { | 
|  | SDValue Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC); | 
|  | if (Res.getValueType() != VT) | 
|  | Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // seteq X, 0 -> srl (ctlz X, log2(size(X))) | 
|  | if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && | 
|  | (!AfterLegalize || | 
|  | TLI.isOperationLegal(ISD::CTLZ, XType))) { | 
|  | SDValue Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); | 
|  | return DAG.getNode(ISD::SRL, XType, Ctlz, | 
|  | DAG.getConstant(Log2_32(XType.getSizeInBits()), | 
|  | TLI.getShiftAmountTy())); | 
|  | } | 
|  | // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) | 
|  | if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { | 
|  | SDValue NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), | 
|  | N0); | 
|  | SDValue NotN0 = DAG.getNode(ISD::XOR, XType, N0, | 
|  | DAG.getConstant(~0ULL, XType)); | 
|  | return DAG.getNode(ISD::SRL, XType, | 
|  | DAG.getNode(ISD::AND, XType, NegN0, NotN0), | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | } | 
|  | // setgt X, -1 -> xor (srl (X, size(X)-1), 1) | 
|  | if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { | 
|  | SDValue Sign = DAG.getNode(ISD::SRL, XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) && | 
|  | N2.getOperand(0) == N1 && N0.getValueType().isInteger()) { | 
|  | MVT XType = N0.getValueType(); | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, XType, N0, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, XType, Add, Shift); | 
|  | } | 
|  | // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT && | 
|  | N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) { | 
|  | if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) { | 
|  | MVT XType = N0.getValueType(); | 
|  | if (SubC->isNullValue() && XType.isInteger()) { | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, XType, N0, Shift); | 
|  | AddToWorkList(Shift.getNode()); | 
|  | AddToWorkList(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, XType, Add, Shift); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC. | 
|  | SDValue DAGCombiner::SimplifySetCC(MVT VT, SDValue N0, | 
|  | SDValue N1, ISD::CondCode Cond, | 
|  | bool foldBooleans) { | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, !AfterLegalize, false, this); | 
|  | return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo); | 
|  | } | 
|  |  | 
|  | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue DAGCombiner::BuildSDIV(SDNode *N) { | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = TLI.BuildSDIV(N, DAG, &Built); | 
|  |  | 
|  | for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); | 
|  | ii != ee; ++ii) | 
|  | AddToWorkList(*ii); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue DAGCombiner::BuildUDIV(SDNode *N) { | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = TLI.BuildUDIV(N, DAG, &Built); | 
|  |  | 
|  | for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); | 
|  | ii != ee; ++ii) | 
|  | AddToWorkList(*ii); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// FindBaseOffset - Return true if base is known not to alias with anything | 
|  | /// but itself.  Provides base object and offset as results. | 
|  | static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) { | 
|  | // Assume it is a primitive operation. | 
|  | Base = Ptr; Offset = 0; | 
|  |  | 
|  | // If it's an adding a simple constant then integrate the offset. | 
|  | if (Base.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { | 
|  | Base = Base.getOperand(0); | 
|  | Offset += C->getValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's any of the following then it can't alias with anything but itself. | 
|  | return isa<FrameIndexSDNode>(Base) || | 
|  | isa<ConstantPoolSDNode>(Base) || | 
|  | isa<GlobalAddressSDNode>(Base); | 
|  | } | 
|  |  | 
|  | /// isAlias - Return true if there is any possibility that the two addresses | 
|  | /// overlap. | 
|  | bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, | 
|  | const Value *SrcValue1, int SrcValueOffset1, | 
|  | SDValue Ptr2, int64_t Size2, | 
|  | const Value *SrcValue2, int SrcValueOffset2) | 
|  | { | 
|  | // If they are the same then they must be aliases. | 
|  | if (Ptr1 == Ptr2) return true; | 
|  |  | 
|  | // Gather base node and offset information. | 
|  | SDValue Base1, Base2; | 
|  | int64_t Offset1, Offset2; | 
|  | bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1); | 
|  | bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2); | 
|  |  | 
|  | // If they have a same base address then... | 
|  | if (Base1 == Base2) { | 
|  | // Check to see if the addresses overlap. | 
|  | return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); | 
|  | } | 
|  |  | 
|  | // If we know both bases then they can't alias. | 
|  | if (KnownBase1 && KnownBase2) return false; | 
|  |  | 
|  | if (CombinerGlobalAA) { | 
|  | // Use alias analysis information. | 
|  | int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2); | 
|  | int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset; | 
|  | int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset; | 
|  | AliasAnalysis::AliasResult AAResult = | 
|  | AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2); | 
|  | if (AAResult == AliasAnalysis::NoAlias) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to assume they alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindAliasInfo - Extracts the relevant alias information from the memory | 
|  | /// node.  Returns true if the operand was a load. | 
|  | bool DAGCombiner::FindAliasInfo(SDNode *N, | 
|  | SDValue &Ptr, int64_t &Size, | 
|  | const Value *&SrcValue, int &SrcValueOffset) { | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | Ptr = LD->getBasePtr(); | 
|  | Size = LD->getMemoryVT().getSizeInBits() >> 3; | 
|  | SrcValue = LD->getSrcValue(); | 
|  | SrcValueOffset = LD->getSrcValueOffset(); | 
|  | return true; | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | Ptr = ST->getBasePtr(); | 
|  | Size = ST->getMemoryVT().getSizeInBits() >> 3; | 
|  | SrcValue = ST->getSrcValue(); | 
|  | SrcValueOffset = ST->getSrcValueOffset(); | 
|  | } else { | 
|  | assert(0 && "FindAliasInfo expected a memory operand"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVector<SDValue, 8> &Aliases) { | 
|  | SmallVector<SDValue, 8> Chains;     // List of chains to visit. | 
|  | std::set<SDNode *> Visited;           // Visited node set. | 
|  |  | 
|  | // Get alias information for node. | 
|  | SDValue Ptr; | 
|  | int64_t Size; | 
|  | const Value *SrcValue; | 
|  | int SrcValueOffset; | 
|  | bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset); | 
|  |  | 
|  | // Starting off. | 
|  | Chains.push_back(OriginalChain); | 
|  |  | 
|  | // Look at each chain and determine if it is an alias.  If so, add it to the | 
|  | // aliases list.  If not, then continue up the chain looking for the next | 
|  | // candidate. | 
|  | while (!Chains.empty()) { | 
|  | SDValue Chain = Chains.back(); | 
|  | Chains.pop_back(); | 
|  |  | 
|  | // Don't bother if we've been before. | 
|  | if (Visited.find(Chain.getNode()) != Visited.end()) continue; | 
|  | Visited.insert(Chain.getNode()); | 
|  |  | 
|  | switch (Chain.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry token is ideal chain operand, but handled in FindBetterChain. | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: { | 
|  | // Get alias information for Chain. | 
|  | SDValue OpPtr; | 
|  | int64_t OpSize; | 
|  | const Value *OpSrcValue; | 
|  | int OpSrcValueOffset; | 
|  | bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize, | 
|  | OpSrcValue, OpSrcValueOffset); | 
|  |  | 
|  | // If chain is alias then stop here. | 
|  | if (!(IsLoad && IsOpLoad) && | 
|  | isAlias(Ptr, Size, SrcValue, SrcValueOffset, | 
|  | OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) { | 
|  | Aliases.push_back(Chain); | 
|  | } else { | 
|  | // Look further up the chain. | 
|  | Chains.push_back(Chain.getOperand(0)); | 
|  | // Clean up old chain. | 
|  | AddToWorkList(Chain.getNode()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | // We have to check each of the operands of the token factor, so we queue | 
|  | // then up.  Adding the  operands to the queue (stack) in reverse order | 
|  | // maintains the original order and increases the likelihood that getNode | 
|  | // will find a matching token factor (CSE.) | 
|  | for (unsigned n = Chain.getNumOperands(); n;) | 
|  | Chains.push_back(Chain.getOperand(--n)); | 
|  | // Eliminate the token factor if we can. | 
|  | AddToWorkList(Chain.getNode()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | // For all other instructions we will just have to take what we can get. | 
|  | Aliases.push_back(Chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking | 
|  | /// for a better chain (aliasing node.) | 
|  | SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | 
|  | SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor. | 
|  |  | 
|  | // Accumulate all the aliases to this node. | 
|  | GatherAllAliases(N, OldChain, Aliases); | 
|  |  | 
|  | if (Aliases.size() == 0) { | 
|  | // If no operands then chain to entry token. | 
|  | return DAG.getEntryNode(); | 
|  | } else if (Aliases.size() == 1) { | 
|  | // If a single operand then chain to it.  We don't need to revisit it. | 
|  | return Aliases[0]; | 
|  | } | 
|  |  | 
|  | // Construct a custom tailored token factor. | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &Aliases[0], Aliases.size()); | 
|  |  | 
|  | // Make sure the old chain gets cleaned up. | 
|  | if (NewChain != OldChain) AddToWorkList(OldChain.getNode()); | 
|  |  | 
|  | return NewChain; | 
|  | } | 
|  |  | 
|  | // SelectionDAG::Combine - This is the entry point for the file. | 
|  | // | 
|  | void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA, | 
|  | bool Fast) { | 
|  | /// run - This is the main entry point to this class. | 
|  | /// | 
|  | DAGCombiner(*this, AA, Fast).Run(RunningAfterLegalize); | 
|  | } |