|  | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for PowerPC, | 
|  | // converting from a legalized dag to a PPC dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCISelLowering.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); | 
|  | Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// PPCDAGToDAGISel - PPC specific code to select PPC machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | class PPCDAGToDAGISel : public SelectionDAGISel { | 
|  | PPCTargetLowering PPCLowering; | 
|  | unsigned GlobalBaseReg; | 
|  | public: | 
|  | PPCDAGToDAGISel(TargetMachine &TM) | 
|  | : SelectionDAGISel(PPCLowering), PPCLowering(TM) {} | 
|  |  | 
|  | virtual bool runOnFunction(Function &Fn) { | 
|  | // Make sure we re-emit a set of the global base reg if necessary | 
|  | GlobalBaseReg = 0; | 
|  | return SelectionDAGISel::runOnFunction(Fn); | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDOperand getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC | 
|  | /// base register.  Return the virtual register that holds this value. | 
|  | SDOperand getGlobalBaseReg(); | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | SDOperand Select(SDOperand Op); | 
|  |  | 
|  | SDNode *SelectBitfieldInsert(SDNode *N); | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the | 
|  | /// specified condition code, returning the CR# of the expression. | 
|  | SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); | 
|  |  | 
|  | /// SelectAddr - Given the specified address, return the two operands for a | 
|  | /// load/store instruction, and return true if it should be an indexed [r+r] | 
|  | /// operation. | 
|  | bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); | 
|  |  | 
|  | SDOperand BuildSDIVSequence(SDNode *N); | 
|  | SDOperand BuildUDIVSequence(SDNode *N); | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "PowerPC DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "PPCGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op); | 
|  | SDOperand SelectADD_PARTS(SDOperand Op); | 
|  | SDOperand SelectSUB_PARTS(SDOperand Op); | 
|  | SDOperand SelectSETCC(SDOperand Op); | 
|  | SDOperand SelectCALL(SDOperand Op); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { | 
|  | DEBUG(BB->dump()); | 
|  |  | 
|  | // The selection process is inherently a bottom-up recursive process (users | 
|  | // select their uses before themselves).  Given infinite stack space, we | 
|  | // could just start selecting on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, select the entry node, then all its uses, | 
|  | // iteratively instead of recursively. | 
|  | std::vector<SDOperand> Worklist; | 
|  | Worklist.push_back(DAG.getEntryNode()); | 
|  |  | 
|  | // Note that we can do this in the PPC target (scanning forward across token | 
|  | // chain edges) because no nodes ever get folded across these edges.  On a | 
|  | // target like X86 which supports load/modify/store operations, this would | 
|  | // have to be more careful. | 
|  | while (!Worklist.empty()) { | 
|  | SDOperand Node = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | // Chose from the least deep of the top two nodes. | 
|  | if (!Worklist.empty() && | 
|  | Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) | 
|  | std::swap(Worklist.back(), Node); | 
|  |  | 
|  | if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && | 
|  | Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || | 
|  | CodeGenMap.count(Node)) continue; | 
|  |  | 
|  | for (SDNode::use_iterator UI = Node.Val->use_begin(), | 
|  | E = Node.Val->use_end(); UI != E; ++UI) { | 
|  | // Scan the values.  If this use has a value that is a token chain, add it | 
|  | // to the worklist. | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) | 
|  | if (User->getValueType(i) == MVT::Other) { | 
|  | Worklist.push_back(SDOperand(User, i)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, legalize this node. | 
|  | Select(Node); | 
|  | } | 
|  |  | 
|  | // Select target instructions for the DAG. | 
|  | DAG.setRoot(Select(DAG.getRoot())); | 
|  | CodeGenMap.clear(); | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | // Emit machine code to BB. | 
|  | ScheduleAndEmitDAG(DAG); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Output the instructions required to put the | 
|  | /// base address to use for accessing globals into a register. | 
|  | /// | 
|  | SDOperand PPCDAGToDAGISel::getGlobalBaseReg() { | 
|  | if (!GlobalBaseReg) { | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = BB->getParent()->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | SSARegMap *RegMap = BB->getParent()->getSSARegMap(); | 
|  | // FIXME: when we get to LP64, we will need to create the appropriate | 
|  | // type of register here. | 
|  | GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass); | 
|  | BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); | 
|  | BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); | 
|  | } | 
|  | return CurDAG->getRegister(GlobalBaseReg, MVT::i32); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isIntImmediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isIntImmediate(SDNode *N, unsigned& Imm) { | 
|  | if (N->getOpcode() == ISD::Constant) { | 
|  | Imm = cast<ConstantSDNode>(N)->getValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isOprShiftImm - Returns true if the specified operand is a shift opcode with | 
|  | // a immediate shift count less than 32. | 
|  | static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) { | 
|  | Opc = N->getOpcode(); | 
|  | return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) && | 
|  | isIntImmediate(N->getOperand(1).Val, SH) && SH < 32; | 
|  | } | 
|  |  | 
|  | // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with | 
|  | // any number of 0s on either side.  The 1s are allowed to wrap from LSB to | 
|  | // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is | 
|  | // not, since all 1s are not contiguous. | 
|  | static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // look for the first non-zero bit | 
|  | MB = CountLeadingZeros_32(Val); | 
|  | // look for the first zero bit after the run of ones | 
|  | ME = CountLeadingZeros_32((Val - 1) ^ Val); | 
|  | return true; | 
|  | } else { | 
|  | Val = ~Val; // invert mask | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // effectively look for the first zero bit | 
|  | ME = CountLeadingZeros_32(Val) - 1; | 
|  | // effectively look for the first one bit after the run of zeros | 
|  | MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // no run present | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate | 
|  | // and mask opcode and mask operation. | 
|  | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, | 
|  | unsigned &SH, unsigned &MB, unsigned &ME) { | 
|  | // Don't even go down this path for i64, since different logic will be | 
|  | // necessary for rldicl/rldicr/rldimi. | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Shift  = 32; | 
|  | unsigned Indeterminant = ~0;  // bit mask marking indeterminant results | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (N->getNumOperands() != 2 || | 
|  | !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::SHL) { | 
|  | // apply shift left to mask if it comes first | 
|  | if (IsShiftMask) Mask = Mask << Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu << Shift); | 
|  | } else if (Opcode == ISD::SRL) { | 
|  | // apply shift right to mask if it comes first | 
|  | if (IsShiftMask) Mask = Mask >> Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu >> Shift); | 
|  | // adjust for the left rotate | 
|  | Shift = 32 - Shift; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the mask doesn't intersect any Indeterminant bits | 
|  | if (Mask && !(Mask & Indeterminant)) { | 
|  | SH = Shift; | 
|  | // make sure the mask is still a mask (wrap arounds may not be) | 
|  | return isRunOfOnes(Mask, MB, ME); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm); | 
|  | } | 
|  |  | 
|  | // isOprNot - Returns true if the specified operand is an xor with immediate -1. | 
|  | static bool isOprNot(SDNode *N) { | 
|  | unsigned Imm; | 
|  | return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1; | 
|  | } | 
|  |  | 
|  | // Immediate constant composers. | 
|  | // Lo16 - grabs the lo 16 bits from a 32 bit constant. | 
|  | // Hi16 - grabs the hi 16 bits from a 32 bit constant. | 
|  | // HA16 - computes the hi bits required if the lo bits are add/subtracted in | 
|  | // arithmethically. | 
|  | static unsigned Lo16(unsigned x)  { return x & 0x0000FFFF; } | 
|  | static unsigned Hi16(unsigned x)  { return Lo16(x >> 16); } | 
|  | static unsigned HA16(unsigned x)  { return Hi16((signed)x - (signed short)x); } | 
|  |  | 
|  | // isIntImmediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isIntImmediate(SDOperand N, unsigned& Imm) { | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | Imm = (unsigned)CN->getSignExtended(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectBitfieldInsert - turn an or of two masked values into | 
|  | /// the rotate left word immediate then mask insert (rlwimi) instruction. | 
|  | /// Returns true on success, false if the caller still needs to select OR. | 
|  | /// | 
|  | /// Patterns matched: | 
|  | /// 1. or shl, and   5. or and, and | 
|  | /// 2. or and, shl   6. or shl, shr | 
|  | /// 3. or shr, and   7. or shr, shl | 
|  | /// 4. or and, shr | 
|  | SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { | 
|  | bool IsRotate = false; | 
|  | unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0; | 
|  | unsigned Value; | 
|  |  | 
|  | SDOperand Op0 = N->getOperand(0); | 
|  | SDOperand Op1 = N->getOperand(1); | 
|  |  | 
|  | unsigned Op0Opc = Op0.getOpcode(); | 
|  | unsigned Op1Opc = Op1.getOpcode(); | 
|  |  | 
|  | // Verify that we have the correct opcodes | 
|  | if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) | 
|  | return false; | 
|  | if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) | 
|  | return false; | 
|  |  | 
|  | // Generate Mask value for Target | 
|  | if (isIntImmediate(Op0.getOperand(1), Value)) { | 
|  | switch(Op0Opc) { | 
|  | case ISD::SHL: TgtMask <<= Value; break; | 
|  | case ISD::SRL: TgtMask >>= Value; break; | 
|  | case ISD::AND: TgtMask &= Value; break; | 
|  | } | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Generate Mask value for Insert | 
|  | if (!isIntImmediate(Op1.getOperand(1), Value)) | 
|  | return 0; | 
|  |  | 
|  | switch(Op1Opc) { | 
|  | case ISD::SHL: | 
|  | SH = Value; | 
|  | InsMask <<= SH; | 
|  | if (Op0Opc == ISD::SRL) IsRotate = true; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | SH = Value; | 
|  | InsMask >>= SH; | 
|  | SH = 32-SH; | 
|  | if (Op0Opc == ISD::SHL) IsRotate = true; | 
|  | break; | 
|  | case ISD::AND: | 
|  | InsMask &= Value; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If both of the inputs are ANDs and one of them has a logical shift by | 
|  | // constant as its input, make that AND the inserted value so that we can | 
|  | // combine the shift into the rotate part of the rlwimi instruction | 
|  | bool IsAndWithShiftOp = false; | 
|  | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { | 
|  | if (Op1.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op1.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { | 
|  | SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; | 
|  | IsAndWithShiftOp = true; | 
|  | } | 
|  | } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(TgtMask, InsMask); | 
|  | SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; | 
|  | IsAndWithShiftOp = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that the Target mask and Insert mask together form a full word mask | 
|  | // and that the Insert mask is a run of set bits (which implies both are runs | 
|  | // of set bits).  Given that, Select the arguments and generate the rlwimi | 
|  | // instruction. | 
|  | unsigned MB, ME; | 
|  | if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { | 
|  | bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; | 
|  | bool Op0IsAND = Op0Opc == ISD::AND; | 
|  | // Check for rotlwi / rotrwi here, a special case of bitfield insert | 
|  | // where both bitfield halves are sourced from the same value. | 
|  | if (IsRotate && fullMask && | 
|  | N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) { | 
|  | Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, | 
|  | Select(N->getOperand(0).getOperand(0)), | 
|  | getI32Imm(SH), getI32Imm(0), getI32Imm(31)); | 
|  | return Op0.Val; | 
|  | } | 
|  | SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0)) | 
|  | : Select(Op0); | 
|  | SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) | 
|  | : Select(Op1.getOperand(0)); | 
|  | Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, | 
|  | getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); | 
|  | return Op0.Val; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SelectAddr - Given the specified address, return the two operands for a | 
|  | /// load/store instruction, and return true if it should be an indexed [r+r] | 
|  | /// operation. | 
|  | bool PPCDAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1, | 
|  | SDOperand &Op2) { | 
|  | unsigned imm = 0; | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) { | 
|  | Op1 = getI32Imm(Lo16(imm)); | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) { | 
|  | ++FrameOff; | 
|  | Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); | 
|  | } else { | 
|  | Op2 = Select(Addr.getOperand(0)); | 
|  | } | 
|  | return false; | 
|  | } else { | 
|  | Op1 = Select(Addr.getOperand(0)); | 
|  | Op2 = Select(Addr.getOperand(1)); | 
|  | return true;   // [r+r] | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now check if we're dealing with a global, and whether or not we should emit | 
|  | // an optimized load or store for statics. | 
|  | if (GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(Addr)) { | 
|  | GlobalValue *GV = GN->getGlobal(); | 
|  | if (!GV->hasWeakLinkage() && !GV->isExternal()) { | 
|  | Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32); | 
|  | if (PICEnabled) | 
|  | Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), | 
|  | Op1); | 
|  | else | 
|  | Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); | 
|  | return false; | 
|  | } | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) { | 
|  | Op1 = getI32Imm(0); | 
|  | Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); | 
|  | return false; | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) { | 
|  | Op1 = Addr; | 
|  | if (PICEnabled) | 
|  | Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1); | 
|  | else | 
|  | Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); | 
|  | return false; | 
|  | } | 
|  | Op1 = getI32Imm(0); | 
|  | Op2 = Select(Addr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the specified | 
|  | /// condition code, returning the CR# of the expression. | 
|  | SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, | 
|  | ISD::CondCode CC) { | 
|  | // Always select the LHS. | 
|  | LHS = Select(LHS); | 
|  |  | 
|  | // Use U to determine whether the SETCC immediate range is signed or not. | 
|  | if (MVT::isInteger(LHS.getValueType())) { | 
|  | bool U = ISD::isUnsignedIntSetCC(CC); | 
|  | unsigned Imm; | 
|  | if (isIntImmediate(RHS, Imm) && | 
|  | ((U && isUInt16(Imm)) || (!U && isInt16(Imm)))) | 
|  | return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32, | 
|  | LHS, getI32Imm(Lo16(Imm))); | 
|  | return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32, | 
|  | LHS, Select(RHS)); | 
|  | } else if (LHS.getValueType() == MVT::f32) { | 
|  | return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS)); | 
|  | } else { | 
|  | return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding | 
|  | /// to Condition. | 
|  | static unsigned getBCCForSetCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown condition!"); abort(); | 
|  | case ISD::SETOEQ:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETEQ:  return PPC::BEQ; | 
|  | case ISD::SETONE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETNE:  return PPC::BNE; | 
|  | case ISD::SETOLT:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  return PPC::BLT; | 
|  | case ISD::SETOLE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  return PPC::BLE; | 
|  | case ISD::SETOGT:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT:  return PPC::BGT; | 
|  | case ISD::SETOGE:    // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  return PPC::BGE; | 
|  |  | 
|  | case ISD::SETO:   return PPC::BUN; | 
|  | case ISD::SETUO:  return PPC::BNU; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getCRIdxForSetCC - Return the index of the condition register field | 
|  | /// associated with the SetCC condition, and whether or not the field is | 
|  | /// treated as inverted.  That is, lt = 0; ge = 0 inverted. | 
|  | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown condition!"); abort(); | 
|  | case ISD::SETOLT:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  Inv = false;  return 0; | 
|  | case ISD::SETOGE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  Inv = true;   return 0; | 
|  | case ISD::SETOGT:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT:  Inv = false;  return 1; | 
|  | case ISD::SETOLE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  Inv = true;   return 1; | 
|  | case ISD::SETOEQ:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETEQ:  Inv = false;  return 2; | 
|  | case ISD::SETONE:  // FIXME: This is incorrect see PR642. | 
|  | case ISD::SETNE:  Inv = true;   return 2; | 
|  | case ISD::SETO:   Inv = true;   return 3; | 
|  | case ISD::SETUO:  Inv = false;  return 3; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDOperand PPCDAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  |  | 
|  | // FIXME: We are currently ignoring the requested alignment for handling | 
|  | // greater than the stack alignment.  This will need to be revisited at some | 
|  | // point.  Align = N.getOperand(2); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2)) || | 
|  | cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) { | 
|  | std::cerr << "Cannot allocate stack object with greater alignment than" | 
|  | << " the stack alignment yet!"; | 
|  | abort(); | 
|  | } | 
|  | SDOperand Chain = Select(N->getOperand(0)); | 
|  | SDOperand Amt   = Select(N->getOperand(1)); | 
|  |  | 
|  | SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); | 
|  | Chain = R1Val.getValue(1); | 
|  |  | 
|  | // Subtract the amount (guaranteed to be a multiple of the stack alignment) | 
|  | // from the stack pointer, giving us the result pointer. | 
|  | SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val); | 
|  |  | 
|  | // Copy this result back into R1. | 
|  | Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result); | 
|  |  | 
|  | // Copy this result back out of R1 to make sure we're not using the stack | 
|  | // space without decrementing the stack pointer. | 
|  | Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); | 
|  |  | 
|  | // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. | 
|  | CodeGenMap[Op.getValue(0)] = Result; | 
|  | CodeGenMap[Op.getValue(1)] = Result.getValue(1); | 
|  | return SDOperand(Result.Val, Op.ResNo); | 
|  | } | 
|  |  | 
|  | SDOperand PPCDAGToDAGISel::SelectADD_PARTS(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | SDOperand LHSL = Select(N->getOperand(0)); | 
|  | SDOperand LHSH = Select(N->getOperand(1)); | 
|  |  | 
|  | unsigned Imm; | 
|  | bool ME = false, ZE = false; | 
|  | if (isIntImmediate(N->getOperand(3), Imm)) { | 
|  | ME = (signed)Imm == -1; | 
|  | ZE = Imm == 0; | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> Result; | 
|  | SDOperand CarryFromLo; | 
|  | if (isIntImmediate(N->getOperand(2), Imm) && | 
|  | ((signed)Imm >= -32768 || (signed)Imm < 32768)) { | 
|  | // Codegen the low 32 bits of the add.  Interestingly, there is no | 
|  | // shifted form of add immediate carrying. | 
|  | CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | LHSL, getI32Imm(Imm)); | 
|  | } else { | 
|  | CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag, | 
|  | LHSL, Select(N->getOperand(2))); | 
|  | } | 
|  | CarryFromLo = CarryFromLo.getValue(1); | 
|  |  | 
|  | // Codegen the high 32 bits, adding zero, minus one, or the full value | 
|  | // along with the carry flag produced by addc/addic. | 
|  | SDOperand ResultHi; | 
|  | if (ZE) | 
|  | ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo); | 
|  | else if (ME) | 
|  | ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo); | 
|  | else | 
|  | ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH, | 
|  | Select(N->getOperand(3)), CarryFromLo); | 
|  | Result.push_back(CarryFromLo.getValue(0)); | 
|  | Result.push_back(ResultHi); | 
|  |  | 
|  | CodeGenMap[Op.getValue(0)] = Result[0]; | 
|  | CodeGenMap[Op.getValue(1)] = Result[1]; | 
|  | return Result[Op.ResNo]; | 
|  | } | 
|  | SDOperand PPCDAGToDAGISel::SelectSUB_PARTS(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | SDOperand LHSL = Select(N->getOperand(0)); | 
|  | SDOperand LHSH = Select(N->getOperand(1)); | 
|  | SDOperand RHSL = Select(N->getOperand(2)); | 
|  | SDOperand RHSH = Select(N->getOperand(3)); | 
|  |  | 
|  | std::vector<SDOperand> Result; | 
|  | Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag, | 
|  | RHSL, LHSL)); | 
|  | Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH, | 
|  | Result[0].getValue(1))); | 
|  | CodeGenMap[Op.getValue(0)] = Result[0]; | 
|  | CodeGenMap[Op.getValue(1)] = Result[1]; | 
|  | return Result[Op.ResNo]; | 
|  | } | 
|  |  | 
|  | SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | unsigned Imm; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | if (isIntImmediate(N->getOperand(1), Imm)) { | 
|  | // We can codegen setcc op, imm very efficiently compared to a brcond. | 
|  | // Check for those cases here. | 
|  | // setcc op, 0 | 
|  | if (Imm == 0) { | 
|  | SDOperand Op = Select(N->getOperand(0)); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op); | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), | 
|  | getI32Imm(5), getI32Imm(31)); | 
|  | return SDOperand(N, 0); | 
|  | case ISD::SETNE: { | 
|  | SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::SETLT: | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | return SDOperand(N, 0); | 
|  | case ISD::SETGT: { | 
|  | SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op); | 
|  | T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  | } else if (Imm == ~0U) {        // setcc op, -1 | 
|  | SDOperand Op = Select(N->getOperand(0)); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(1)); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | CurDAG->getTargetNode(PPC::LI, MVT::i32, | 
|  | getI32Imm(0)), | 
|  | Op.getValue(1)); | 
|  | return SDOperand(N, 0); | 
|  | case ISD::SETNE: { | 
|  | Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op); | 
|  | SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, | 
|  | getI32Imm(1)); | 
|  | SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op); | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::SETGT: | 
|  | Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  | SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); | 
|  | SDOperand IntCR; | 
|  |  | 
|  | // Force the ccreg into CR7. | 
|  | SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); | 
|  |  | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.push_back(MVT::Other); | 
|  | VTs.push_back(MVT::Flag);    // NONSTANDARD CopyToReg node: defines a flag | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(CurDAG->getEntryNode()); | 
|  | Ops.push_back(CR7Reg); | 
|  | Ops.push_back(CCReg); | 
|  | CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1); | 
|  |  | 
|  | if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) | 
|  | IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg); | 
|  | else | 
|  | IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg); | 
|  |  | 
|  | if (!Inv) { | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, | 
|  | getI32Imm((32-(3-Idx)) & 31), | 
|  | getI32Imm(31), getI32Imm(31)); | 
|  | } else { | 
|  | SDOperand Tmp = | 
|  | CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, | 
|  | getI32Imm((32-(3-Idx)) & 31), | 
|  | getI32Imm(31),getI32Imm(31)); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); | 
|  | } | 
|  |  | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | SDOperand Chain = Select(N->getOperand(0)); | 
|  |  | 
|  | unsigned CallOpcode; | 
|  | std::vector<SDOperand> CallOperands; | 
|  |  | 
|  | if (GlobalAddressSDNode *GASD = | 
|  | dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) { | 
|  | CallOpcode = PPC::CALLpcrel; | 
|  | CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(), | 
|  | MVT::i32)); | 
|  | } else if (ExternalSymbolSDNode *ESSDN = | 
|  | dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) { | 
|  | CallOpcode = PPC::CALLpcrel; | 
|  | CallOperands.push_back(N->getOperand(1)); | 
|  | } else { | 
|  | // Copy the callee address into the CTR register. | 
|  | SDOperand Callee = Select(N->getOperand(1)); | 
|  | Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain); | 
|  |  | 
|  | // Copy the callee address into R12 on darwin. | 
|  | SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32); | 
|  | Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee); | 
|  |  | 
|  | CallOperands.push_back(getI32Imm(20));  // Information to encode indcall | 
|  | CallOperands.push_back(getI32Imm(0));   // Information to encode indcall | 
|  | CallOperands.push_back(R12); | 
|  | CallOpcode = PPC::CALLindirect; | 
|  | } | 
|  |  | 
|  | unsigned GPR_idx = 0, FPR_idx = 0; | 
|  | static const unsigned GPR[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 | 
|  | }; | 
|  |  | 
|  | SDOperand InFlag;  // Null incoming flag value. | 
|  |  | 
|  | for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) { | 
|  | unsigned DestReg = 0; | 
|  | MVT::ValueType RegTy = N->getOperand(i).getValueType(); | 
|  | if (RegTy == MVT::i32) { | 
|  | assert(GPR_idx < 8 && "Too many int args"); | 
|  | DestReg = GPR[GPR_idx++]; | 
|  | } else { | 
|  | assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) && | 
|  | "Unpromoted integer arg?"); | 
|  | assert(FPR_idx < 13 && "Too many fp args"); | 
|  | DestReg = FPR[FPR_idx++]; | 
|  | } | 
|  |  | 
|  | if (N->getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | SDOperand Val = Select(N->getOperand(i)); | 
|  | Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, once everything is in registers to pass to the call, emit the | 
|  | // call itself. | 
|  | if (InFlag.Val) | 
|  | CallOperands.push_back(InFlag);   // Strong dep on register copies. | 
|  | else | 
|  | CallOperands.push_back(Chain);    // Weak dep on whatever occurs before | 
|  | Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, | 
|  | CallOperands); | 
|  |  | 
|  | std::vector<SDOperand> CallResults; | 
|  |  | 
|  | // If the call has results, copy the values out of the ret val registers. | 
|  | switch (N->getValueType(0)) { | 
|  | default: assert(0 && "Unexpected ret value!"); | 
|  | case MVT::Other: break; | 
|  | case MVT::i32: | 
|  | if (N->getValueType(1) == MVT::i32) { | 
|  | Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, | 
|  | Chain.getValue(1)).getValue(1); | 
|  | CallResults.push_back(Chain.getValue(0)); | 
|  | Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, | 
|  | Chain.getValue(2)).getValue(1); | 
|  | CallResults.push_back(Chain.getValue(0)); | 
|  | } else { | 
|  | Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, | 
|  | Chain.getValue(1)).getValue(1); | 
|  | CallResults.push_back(Chain.getValue(0)); | 
|  | } | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0), | 
|  | Chain.getValue(1)).getValue(1); | 
|  | CallResults.push_back(Chain.getValue(0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | CallResults.push_back(Chain); | 
|  | for (unsigned i = 0, e = CallResults.size(); i != e; ++i) | 
|  | CodeGenMap[Op.getValue(i)] = CallResults[i]; | 
|  | return CallResults[Op.ResNo]; | 
|  | } | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | SDOperand PPCDAGToDAGISel::Select(SDOperand Op) { | 
|  | SDNode *N = Op.Val; | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END && | 
|  | N->getOpcode() < PPCISD::FIRST_NUMBER) | 
|  | return Op;   // Already selected. | 
|  |  | 
|  | // If this has already been converted, use it. | 
|  | std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op); | 
|  | if (CGMI != CodeGenMap.end()) return CGMI->second; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op); | 
|  | case ISD::ADD_PARTS:          return SelectADD_PARTS(Op); | 
|  | case ISD::SUB_PARTS:          return SelectSUB_PARTS(Op); | 
|  | case ISD::SETCC:              return SelectSETCC(Op); | 
|  | case ISD::CALL:               return SelectCALL(Op); | 
|  | case ISD::TAILCALL:           return SelectCALL(Op); | 
|  |  | 
|  | case ISD::FrameIndex: { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | if (N->hasOneUse()) { | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32, | 
|  | CurDAG->getTargetFrameIndex(FI, MVT::i32), | 
|  | getI32Imm(0)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | return CurDAG->getTargetNode(PPC::ADDI, MVT::i32, | 
|  | CurDAG->getTargetFrameIndex(FI, MVT::i32), | 
|  | getI32Imm(0)); | 
|  | } | 
|  | case ISD::ConstantPool: { | 
|  | Constant *C = cast<ConstantPoolSDNode>(N)->get(); | 
|  | SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32); | 
|  | if (PICEnabled) | 
|  | Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI); | 
|  | else | 
|  | Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI); | 
|  | if (N->hasOneUse()) { | 
|  | CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | return CurDAG->getTargetNode(PPC::LA, MVT::i32, Tmp, CPI); | 
|  | } | 
|  | case ISD::GlobalAddress: { | 
|  | GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); | 
|  | SDOperand Tmp; | 
|  | SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32); | 
|  | if (PICEnabled) | 
|  | Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA); | 
|  | else | 
|  | Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA); | 
|  |  | 
|  | if (GV->hasWeakLinkage() || GV->isExternal()) | 
|  | return CurDAG->getTargetNode(PPC::LWZ, MVT::i32, GA, Tmp); | 
|  | else | 
|  | return CurDAG->getTargetNode(PPC::LA, MVT::i32, Tmp, GA); | 
|  | } | 
|  | case ISD::FADD: { | 
|  | MVT::ValueType Ty = N->getValueType(0); | 
|  | if (!NoExcessFPPrecision) {  // Match FMA ops | 
|  | if (N->getOperand(0).getOpcode() == ISD::FMUL && | 
|  | N->getOperand(0).Val->hasOneUse()) { | 
|  | ++FusedFP; // Statistic | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, | 
|  | Select(N->getOperand(0).getOperand(0)), | 
|  | Select(N->getOperand(0).getOperand(1)), | 
|  | Select(N->getOperand(1))); | 
|  | return SDOperand(N, 0); | 
|  | } else if (N->getOperand(1).getOpcode() == ISD::FMUL && | 
|  | N->getOperand(1).hasOneUse()) { | 
|  | ++FusedFP; // Statistic | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, | 
|  | Select(N->getOperand(1).getOperand(0)), | 
|  | Select(N->getOperand(1).getOperand(1)), | 
|  | Select(N->getOperand(0))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty, | 
|  | Select(N->getOperand(0)), Select(N->getOperand(1))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::FSUB: { | 
|  | MVT::ValueType Ty = N->getValueType(0); | 
|  |  | 
|  | if (!NoExcessFPPrecision) {  // Match FMA ops | 
|  | if (N->getOperand(0).getOpcode() == ISD::FMUL && | 
|  | N->getOperand(0).Val->hasOneUse()) { | 
|  | ++FusedFP; // Statistic | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty, | 
|  | Select(N->getOperand(0).getOperand(0)), | 
|  | Select(N->getOperand(0).getOperand(1)), | 
|  | Select(N->getOperand(1))); | 
|  | return SDOperand(N, 0); | 
|  | } else if (N->getOperand(1).getOpcode() == ISD::FMUL && | 
|  | N->getOperand(1).Val->hasOneUse()) { | 
|  | ++FusedFP; // Statistic | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty, | 
|  | Select(N->getOperand(1).getOperand(0)), | 
|  | Select(N->getOperand(1).getOperand(1)), | 
|  | Select(N->getOperand(0))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  | CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty, | 
|  | Select(N->getOperand(0)), | 
|  | Select(N->getOperand(1))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::SDIV: { | 
|  | // FIXME: since this depends on the setting of the carry flag from the srawi | 
|  | //        we should really be making notes about that for the scheduler. | 
|  | // FIXME: It sure would be nice if we could cheaply recognize the | 
|  | //        srl/add/sra pattern the dag combiner will generate for this as | 
|  | //        sra/addze rather than having to handle sdiv ourselves.  oh well. | 
|  | unsigned Imm; | 
|  | if (isIntImmediate(N->getOperand(1), Imm)) { | 
|  | if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { | 
|  | SDOperand Op = | 
|  | CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, | 
|  | Select(N->getOperand(0)), | 
|  | getI32Imm(Log2_32(Imm))); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | Op.getValue(0), Op.getValue(1)); | 
|  | return SDOperand(N, 0); | 
|  | } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { | 
|  | SDOperand Op = | 
|  | CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, | 
|  | Select(N->getOperand(0)), | 
|  | getI32Imm(Log2_32(-Imm))); | 
|  | SDOperand PT = | 
|  | CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0), | 
|  | Op.getValue(1)); | 
|  | CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::AND: { | 
|  | unsigned Imm; | 
|  | // If this is an and of a value rotated between 0 and 31 bits and then and'd | 
|  | // with a mask, emit rlwinm | 
|  | if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) || | 
|  | isShiftedMask_32(~Imm))) { | 
|  | SDOperand Val; | 
|  | unsigned SH, MB, ME; | 
|  | if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) { | 
|  | Val = Select(N->getOperand(0).getOperand(0)); | 
|  | } else if (Imm == 0) { | 
|  | // AND X, 0 -> 0, not "rlwinm 32". | 
|  | return Select(N->getOperand(1)); | 
|  | } else { | 
|  | Val = Select(N->getOperand(0)); | 
|  | isRunOfOnes(Imm, MB, ME); | 
|  | SH = 0; | 
|  | } | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH), | 
|  | getI32Imm(MB), getI32Imm(ME)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | if (SDNode *I = SelectBitfieldInsert(N)) | 
|  | return CodeGenMap[Op] = SDOperand(I, 0); | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | case ISD::SHL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, | 
|  | Select(N->getOperand(0).getOperand(0)), | 
|  | getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, | 
|  | Select(N->getOperand(0).getOperand(0)), | 
|  | getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::FNEG: { | 
|  | SDOperand Val = Select(N->getOperand(0)); | 
|  | MVT::ValueType Ty = N->getValueType(0); | 
|  | if (N->getOperand(0).Val->hasOneUse()) { | 
|  | unsigned Opc; | 
|  | switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) { | 
|  | default:          Opc = 0;            break; | 
|  | case PPC::FABSS:  Opc = PPC::FNABSS;  break; | 
|  | case PPC::FABSD:  Opc = PPC::FNABSD;  break; | 
|  | case PPC::FMADD:  Opc = PPC::FNMADD;  break; | 
|  | case PPC::FMADDS: Opc = PPC::FNMADDS; break; | 
|  | case PPC::FMSUB:  Opc = PPC::FNMSUB;  break; | 
|  | case PPC::FMSUBS: Opc = PPC::FNMSUBS; break; | 
|  | } | 
|  | // If we inverted the opcode, then emit the new instruction with the | 
|  | // inverted opcode and the original instruction's operands.  Otherwise, | 
|  | // fall through and generate a fneg instruction. | 
|  | if (Opc) { | 
|  | if (Opc == PPC::FNABSS || Opc == PPC::FNABSD) | 
|  | CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0)); | 
|  | else | 
|  | CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0), | 
|  | Val.getOperand(1), Val.getOperand(2)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  | if (Ty == MVT::f32) | 
|  | CurDAG->SelectNodeTo(N, PPC::FNEGS, MVT::f32, Val); | 
|  | else | 
|  | CurDAG->SelectNodeTo(N, PPC::FNEGD, MVT::f64, Val); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::LOAD: | 
|  | case ISD::EXTLOAD: | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::SEXTLOAD: { | 
|  | SDOperand Op1, Op2; | 
|  | bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2); | 
|  |  | 
|  | MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ? | 
|  | N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT(); | 
|  | unsigned Opc; | 
|  | switch (TypeBeingLoaded) { | 
|  | default: N->dump(); assert(0 && "Cannot load this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = isIdx ? PPC::LBZX : PPC::LBZ; break; | 
|  | case MVT::i16: | 
|  | if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load? | 
|  | Opc = isIdx ? PPC::LHAX : PPC::LHA; | 
|  | } else { | 
|  | Opc = isIdx ? PPC::LHZX : PPC::LHZ; | 
|  | } | 
|  | break; | 
|  | case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break; | 
|  | case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break; | 
|  | case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break; | 
|  | } | 
|  |  | 
|  | // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending | 
|  | // copy'. | 
|  | if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) { | 
|  | CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, | 
|  | Op1, Op2, Select(N->getOperand(0))); | 
|  | return SDOperand(N, Op.ResNo); | 
|  | } else { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Select(N->getOperand(0))); | 
|  | SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops); | 
|  | SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res); | 
|  | CodeGenMap[Op.getValue(0)] = Ext; | 
|  | CodeGenMap[Op.getValue(1)] = Res.getValue(1); | 
|  | if (Op.ResNo) | 
|  | return Res.getValue(1); | 
|  | else | 
|  | return Ext; | 
|  | } | 
|  | } | 
|  | case ISD::TRUNCSTORE: | 
|  | case ISD::STORE: { | 
|  | SDOperand AddrOp1, AddrOp2; | 
|  | bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2); | 
|  |  | 
|  | unsigned Opc; | 
|  | if (N->getOpcode() == ISD::STORE) { | 
|  | switch (N->getOperand(1).getValueType()) { | 
|  | default: assert(0 && "unknown Type in store"); | 
|  | case MVT::i32: Opc = isIdx ? PPC::STWX  : PPC::STW; break; | 
|  | case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break; | 
|  | case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break; | 
|  | } | 
|  | } else { //ISD::TRUNCSTORE | 
|  | switch(cast<VTSDNode>(N->getOperand(4))->getVT()) { | 
|  | default: assert(0 && "unknown Type in store"); | 
|  | case MVT::i8:  Opc = isIdx ? PPC::STBX : PPC::STB; break; | 
|  | case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)), | 
|  | AddrOp1, AddrOp2, Select(N->getOperand(0))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | case ISD::SELECT_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
|  |  | 
|  | // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (N1C->isNullValue() && N3C->isNullValue() && | 
|  | N2C->getValue() == 1ULL && CC == ISD::SETNE) { | 
|  | SDOperand LHS = Select(N->getOperand(0)); | 
|  | SDOperand Tmp = | 
|  | CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, | 
|  | LHS, getI32Imm(~0U)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS, | 
|  | Tmp.getValue(1)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); | 
|  | unsigned BROpc = getBCCForSetCC(CC); | 
|  |  | 
|  | bool isFP = MVT::isFloatingPoint(N->getValueType(0)); | 
|  | unsigned SelectCCOp; | 
|  | if (MVT::isInteger(N->getValueType(0))) | 
|  | SelectCCOp = PPC::SELECT_CC_Int; | 
|  | else if (N->getValueType(0) == MVT::f32) | 
|  | SelectCCOp = PPC::SELECT_CC_F4; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_F8; | 
|  | CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, | 
|  | Select(N->getOperand(2)), Select(N->getOperand(3)), | 
|  | getI32Imm(BROpc)); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: { | 
|  | unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue(); | 
|  | unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? | 
|  | PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; | 
|  | CurDAG->SelectNodeTo(N, Opc, MVT::Other, | 
|  | getI32Imm(Amt), Select(N->getOperand(0))); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::RET: { | 
|  | SDOperand Chain = Select(N->getOperand(0));     // Token chain. | 
|  |  | 
|  | if (N->getNumOperands() == 2) { | 
|  | SDOperand Val = Select(N->getOperand(1)); | 
|  | if (N->getOperand(1).getValueType() == MVT::i32) { | 
|  | Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val); | 
|  | } else { | 
|  | assert(MVT::isFloatingPoint(N->getOperand(1).getValueType())); | 
|  | Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val); | 
|  | } | 
|  | } else if (N->getNumOperands() > 1) { | 
|  | assert(N->getOperand(1).getValueType() == MVT::i32 && | 
|  | N->getOperand(2).getValueType() == MVT::i32 && | 
|  | N->getNumOperands() == 3 && "Unknown two-register ret value!"); | 
|  | Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1))); | 
|  | Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2))); | 
|  | } | 
|  |  | 
|  | // Finally, select this to a blr (return) instruction. | 
|  | CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | case ISD::BR: | 
|  | CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1), | 
|  | Select(N->getOperand(0))); | 
|  | return SDOperand(N, 0); | 
|  | case ISD::BR_CC: | 
|  | case ISD::BRTWOWAY_CC: { | 
|  | SDOperand Chain = Select(N->getOperand(0)); | 
|  | MachineBasicBlock *Dest = | 
|  | cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); | 
|  |  | 
|  | // If this is a two way branch, then grab the fallthrough basic block | 
|  | // argument and build a PowerPC branch pseudo-op, suitable for long branch | 
|  | // conversion if necessary by the branch selection pass.  Otherwise, emit a | 
|  | // standard conditional branch. | 
|  | if (N->getOpcode() == ISD::BRTWOWAY_CC) { | 
|  | SDOperand CondTrueBlock = N->getOperand(4); | 
|  | SDOperand CondFalseBlock = N->getOperand(5); | 
|  |  | 
|  | // If the false case is the current basic block, then this is a self loop. | 
|  | // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an | 
|  | // extra dispatch group to the loop.  Instead, invert the condition and | 
|  | // emit "Loop: ... br!cond Loop; br Out | 
|  | if (cast<BasicBlockSDNode>(CondFalseBlock)->getBasicBlock() == BB) { | 
|  | std::swap(CondTrueBlock, CondFalseBlock); | 
|  | CC = getSetCCInverse(CC, | 
|  | MVT::isInteger(N->getOperand(2).getValueType())); | 
|  | } | 
|  |  | 
|  | unsigned Opc = getBCCForSetCC(CC); | 
|  | SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other, | 
|  | CondCode, getI32Imm(Opc), | 
|  | CondTrueBlock, CondFalseBlock, | 
|  | Chain); | 
|  | CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB); | 
|  | } else { | 
|  | // Iterate to the next basic block | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | // If the fallthrough path is off the end of the function, which would be | 
|  | // undefined behavior, set it to be the same as the current block because | 
|  | // we have nothing better to set it to, and leaving it alone will cause | 
|  | // the PowerPC Branch Selection pass to crash. | 
|  | if (It == BB->getParent()->end()) It = Dest; | 
|  | CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode, | 
|  | getI32Imm(getBCCForSetCC(CC)), N->getOperand(4), | 
|  | CurDAG->getBasicBlock(It), Chain); | 
|  | } | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SelectCode(Op); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// createPPCISelDag - This pass converts a legalized DAG into a | 
|  | /// PowerPC-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCISelDag(TargetMachine &TM) { | 
|  | return new PPCDAGToDAGISel(TM); | 
|  | } | 
|  |  |