|  | //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements some loop unrolling utilities. It does not define any | 
|  | // actual pass or policy, but provides a single function to perform loop | 
|  | // unrolling. | 
|  | // | 
|  | // The process of unrolling can produce extraneous basic blocks linked with | 
|  | // unconditional branches.  This will be corrected in the future. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopSimplify.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyIndVar.h" | 
|  | #include "llvm/Transforms/Utils/UnrollLoop.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unroll" | 
|  |  | 
|  | // TODO: Should these be here or in LoopUnroll? | 
|  | STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); | 
|  | STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, | 
|  | cl::desc("Allow runtime unrolled loops to be unrolled " | 
|  | "with epilog instead of prolog.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, | 
|  | cl::desc("Verify domtree after unrolling"), | 
|  | #ifdef NDEBUG | 
|  | cl::init(false) | 
|  | #else | 
|  | cl::init(true) | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | /// Convert the instruction operands from referencing the current values into | 
|  | /// those specified by VMap. | 
|  | static inline void remapInstruction(Instruction *I, | 
|  | ValueToValueMapTy &VMap) { | 
|  | for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { | 
|  | Value *Op = I->getOperand(op); | 
|  |  | 
|  | // Unwrap arguments of dbg.value intrinsics. | 
|  | bool Wrapped = false; | 
|  | if (auto *V = dyn_cast<MetadataAsValue>(Op)) | 
|  | if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { | 
|  | Op = Unwrapped->getValue(); | 
|  | Wrapped = true; | 
|  | } | 
|  |  | 
|  | auto wrap = [&](Value *V) { | 
|  | auto &C = I->getContext(); | 
|  | return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; | 
|  | }; | 
|  |  | 
|  | ValueToValueMapTy::iterator It = VMap.find(Op); | 
|  | if (It != VMap.end()) | 
|  | I->setOperand(op, wrap(It->second)); | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); | 
|  | if (It != VMap.end()) | 
|  | PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Folds a basic block into its predecessor if it only has one predecessor, and | 
|  | /// that predecessor only has one successor. | 
|  | /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is | 
|  | /// successful references to the containing loop must be removed from | 
|  | /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have | 
|  | /// references to the eliminated BB.  The argument ForgottenLoops contains a set | 
|  | /// of loops that have already been forgotten to prevent redundant, expensive | 
|  | /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block. | 
|  | static BasicBlock * | 
|  | foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, | 
|  | SmallPtrSetImpl<Loop *> &ForgottenLoops, | 
|  | DominatorTree *DT) { | 
|  | // Merge basic blocks into their predecessor if there is only one distinct | 
|  | // pred, and if there is only one distinct successor of the predecessor, and | 
|  | // if there are no PHI nodes. | 
|  | BasicBlock *OnlyPred = BB->getSinglePredecessor(); | 
|  | if (!OnlyPred) return nullptr; | 
|  |  | 
|  | if (OnlyPred->getTerminator()->getNumSuccessors() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); | 
|  |  | 
|  | // Resolve any PHI nodes at the start of the block.  They are all | 
|  | // guaranteed to have exactly one entry if they exist, unless there are | 
|  | // multiple duplicate (but guaranteed to be equal) entries for the | 
|  | // incoming edges.  This occurs when there are multiple edges from | 
|  | // OnlyPred to OnlySucc. | 
|  | FoldSingleEntryPHINodes(BB); | 
|  |  | 
|  | // Delete the unconditional branch from the predecessor... | 
|  | OnlyPred->getInstList().pop_back(); | 
|  |  | 
|  | // Make all PHI nodes that referred to BB now refer to Pred as their | 
|  | // source... | 
|  | BB->replaceAllUsesWith(OnlyPred); | 
|  |  | 
|  | // Move all definitions in the successor to the predecessor... | 
|  | OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); | 
|  |  | 
|  | // OldName will be valid until erased. | 
|  | StringRef OldName = BB->getName(); | 
|  |  | 
|  | // Erase the old block and update dominator info. | 
|  | if (DT) | 
|  | if (DomTreeNode *DTN = DT->getNode(BB)) { | 
|  | DomTreeNode *PredDTN = DT->getNode(OnlyPred); | 
|  | SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); | 
|  | for (auto *DI : Children) | 
|  | DT->changeImmediateDominator(DI, PredDTN); | 
|  |  | 
|  | DT->eraseNode(BB); | 
|  | } | 
|  |  | 
|  | // ScalarEvolution holds references to loop exit blocks. | 
|  | if (SE) { | 
|  | if (Loop *L = LI->getLoopFor(BB)) { | 
|  | if (ForgottenLoops.insert(L).second) | 
|  | SE->forgetLoop(L); | 
|  | } | 
|  | } | 
|  | LI->removeBlock(BB); | 
|  |  | 
|  | // Inherit predecessor's name if it exists... | 
|  | if (!OldName.empty() && !OnlyPred->hasName()) | 
|  | OnlyPred->setName(OldName); | 
|  |  | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | return OnlyPred; | 
|  | } | 
|  |  | 
|  | /// Check if unrolling created a situation where we need to insert phi nodes to | 
|  | /// preserve LCSSA form. | 
|  | /// \param Blocks is a vector of basic blocks representing unrolled loop. | 
|  | /// \param L is the outer loop. | 
|  | /// It's possible that some of the blocks are in L, and some are not. In this | 
|  | /// case, if there is a use is outside L, and definition is inside L, we need to | 
|  | /// insert a phi-node, otherwise LCSSA will be broken. | 
|  | /// The function is just a helper function for llvm::UnrollLoop that returns | 
|  | /// true if this situation occurs, indicating that LCSSA needs to be fixed. | 
|  | static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, | 
|  | LoopInfo *LI) { | 
|  | for (BasicBlock *BB : Blocks) { | 
|  | if (LI->getLoopFor(BB) == L) | 
|  | continue; | 
|  | for (Instruction &I : *BB) { | 
|  | for (Use &U : I.operands()) { | 
|  | if (auto Def = dyn_cast<Instruction>(U)) { | 
|  | Loop *DefLoop = LI->getLoopFor(Def->getParent()); | 
|  | if (!DefLoop) | 
|  | continue; | 
|  | if (DefLoop->contains(L)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary | 
|  | /// and adds a mapping from the original loop to the new loop to NewLoops. | 
|  | /// Returns nullptr if no new loop was created and a pointer to the | 
|  | /// original loop OriginalBB was part of otherwise. | 
|  | const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, | 
|  | BasicBlock *ClonedBB, LoopInfo *LI, | 
|  | NewLoopsMap &NewLoops) { | 
|  | // Figure out which loop New is in. | 
|  | const Loop *OldLoop = LI->getLoopFor(OriginalBB); | 
|  | assert(OldLoop && "Should (at least) be in the loop being unrolled!"); | 
|  |  | 
|  | Loop *&NewLoop = NewLoops[OldLoop]; | 
|  | if (!NewLoop) { | 
|  | // Found a new sub-loop. | 
|  | assert(OriginalBB == OldLoop->getHeader() && | 
|  | "Header should be first in RPO"); | 
|  |  | 
|  | NewLoop = LI->AllocateLoop(); | 
|  | Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); | 
|  |  | 
|  | if (NewLoopParent) | 
|  | NewLoopParent->addChildLoop(NewLoop); | 
|  | else | 
|  | LI->addTopLevelLoop(NewLoop); | 
|  |  | 
|  | NewLoop->addBasicBlockToLoop(ClonedBB, *LI); | 
|  | return OldLoop; | 
|  | } else { | 
|  | NewLoop->addBasicBlockToLoop(ClonedBB, *LI); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The function chooses which type of unroll (epilog or prolog) is more | 
|  | /// profitabale. | 
|  | /// Epilog unroll is more profitable when there is PHI that starts from | 
|  | /// constant.  In this case epilog will leave PHI start from constant, | 
|  | /// but prolog will convert it to non-constant. | 
|  | /// | 
|  | /// loop: | 
|  | ///   PN = PHI [I, Latch], [CI, PreHeader] | 
|  | ///   I = foo(PN) | 
|  | ///   ... | 
|  | /// | 
|  | /// Epilog unroll case. | 
|  | /// loop: | 
|  | ///   PN = PHI [I2, Latch], [CI, PreHeader] | 
|  | ///   I1 = foo(PN) | 
|  | ///   I2 = foo(I1) | 
|  | ///   ... | 
|  | /// Prolog unroll case. | 
|  | ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader] | 
|  | /// loop: | 
|  | ///   PN = PHI [I2, Latch], [NewPN, PreHeader] | 
|  | ///   I1 = foo(PN) | 
|  | ///   I2 = foo(I1) | 
|  | ///   ... | 
|  | /// | 
|  | static bool isEpilogProfitable(Loop *L) { | 
|  | BasicBlock *PreHeader = L->getLoopPreheader(); | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | assert(PreHeader && Header); | 
|  | for (Instruction &BBI : *Header) { | 
|  | PHINode *PN = dyn_cast<PHINode>(&BBI); | 
|  | if (!PN) | 
|  | break; | 
|  | if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader))) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling | 
|  | /// can only fail when the loop's latch block is not terminated by a conditional | 
|  | /// branch instruction. However, if the trip count (and multiple) are not known, | 
|  | /// loop unrolling will mostly produce more code that is no faster. | 
|  | /// | 
|  | /// TripCount is the upper bound of the iteration on which control exits | 
|  | /// LatchBlock. Control may exit the loop prior to TripCount iterations either | 
|  | /// via an early branch in other loop block or via LatchBlock terminator. This | 
|  | /// is relaxed from the general definition of trip count which is the number of | 
|  | /// times the loop header executes. Note that UnrollLoop assumes that the loop | 
|  | /// counter test is in LatchBlock in order to remove unnecesssary instances of | 
|  | /// the test.  If control can exit the loop from the LatchBlock's terminator | 
|  | /// prior to TripCount iterations, flag PreserveCondBr needs to be set. | 
|  | /// | 
|  | /// PreserveCondBr indicates whether the conditional branch of the LatchBlock | 
|  | /// needs to be preserved.  It is needed when we use trip count upper bound to | 
|  | /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first | 
|  | /// conditional branch needs to be preserved. | 
|  | /// | 
|  | /// Similarly, TripMultiple divides the number of times that the LatchBlock may | 
|  | /// execute without exiting the loop. | 
|  | /// | 
|  | /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that | 
|  | /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these | 
|  | /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" | 
|  | /// iterations before branching into the unrolled loop.  UnrollLoop will not | 
|  | /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and | 
|  | /// AllowExpensiveTripCount is false. | 
|  | /// | 
|  | /// If we want to perform PGO-based loop peeling, PeelCount is set to the | 
|  | /// number of iterations we want to peel off. | 
|  | /// | 
|  | /// The LoopInfo Analysis that is passed will be kept consistent. | 
|  | /// | 
|  | /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and | 
|  | /// DominatorTree if they are non-null. | 
|  | LoopUnrollResult llvm::UnrollLoop( | 
|  | Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime, | 
|  | bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst, | 
|  | unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder, | 
|  | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, | 
|  | OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) { | 
|  | DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | if (!LatchBlock) { | 
|  | DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | // Loops with indirectbr cannot be cloned. | 
|  | if (!L->isSafeToClone()) { | 
|  | DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | // The current loop unroll pass can only unroll loops with a single latch | 
|  | // that's a conditional branch exiting the loop. | 
|  | // FIXME: The implementation can be extended to work with more complicated | 
|  | // cases, e.g. loops with multiple latches. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); | 
|  |  | 
|  | if (!BI || BI->isUnconditional()) { | 
|  | // The loop-rotate pass can be helpful to avoid this in many cases. | 
|  | DEBUG(dbgs() << | 
|  | "  Can't unroll; loop not terminated by a conditional branch.\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | auto CheckSuccessors = [&](unsigned S1, unsigned S2) { | 
|  | return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); | 
|  | }; | 
|  |  | 
|  | if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { | 
|  | DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" | 
|  | " exiting the loop can be unrolled\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | if (Header->hasAddressTaken()) { | 
|  | // The loop-rotate pass can be helpful to avoid this in many cases. | 
|  | DEBUG(dbgs() << | 
|  | "  Won't unroll loop: address of header block is taken.\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | if (TripCount != 0) | 
|  | DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n"); | 
|  | if (TripMultiple != 1) | 
|  | DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n"); | 
|  |  | 
|  | // Effectively "DCE" unrolled iterations that are beyond the tripcount | 
|  | // and will never be executed. | 
|  | if (TripCount != 0 && Count > TripCount) | 
|  | Count = TripCount; | 
|  |  | 
|  | // Don't enter the unroll code if there is nothing to do. | 
|  | if (TripCount == 0 && Count < 2 && PeelCount == 0) { | 
|  | DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | assert(Count > 0); | 
|  | assert(TripMultiple > 0); | 
|  | assert(TripCount == 0 || TripCount % TripMultiple == 0); | 
|  |  | 
|  | // Are we eliminating the loop control altogether? | 
|  | bool CompletelyUnroll = Count == TripCount; | 
|  | SmallVector<BasicBlock *, 4> ExitBlocks; | 
|  | L->getExitBlocks(ExitBlocks); | 
|  | std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); | 
|  |  | 
|  | // Go through all exits of L and see if there are any phi-nodes there. We just | 
|  | // conservatively assume that they're inserted to preserve LCSSA form, which | 
|  | // means that complete unrolling might break this form. We need to either fix | 
|  | // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For | 
|  | // now we just recompute LCSSA for the outer loop, but it should be possible | 
|  | // to fix it in-place. | 
|  | bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && | 
|  | any_of(ExitBlocks, [](const BasicBlock *BB) { | 
|  | return isa<PHINode>(BB->begin()); | 
|  | }); | 
|  |  | 
|  | // We assume a run-time trip count if the compiler cannot | 
|  | // figure out the loop trip count and the unroll-runtime | 
|  | // flag is specified. | 
|  | bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); | 
|  |  | 
|  | assert((!RuntimeTripCount || !PeelCount) && | 
|  | "Did not expect runtime trip-count unrolling " | 
|  | "and peeling for the same loop"); | 
|  |  | 
|  | if (PeelCount) { | 
|  | bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); | 
|  |  | 
|  | // Successful peeling may result in a change in the loop preheader/trip | 
|  | // counts. If we later unroll the loop, we want these to be updated. | 
|  | if (Peeled) { | 
|  | BasicBlock *ExitingBlock = L->getExitingBlock(); | 
|  | assert(ExitingBlock && "Loop without exiting block?"); | 
|  | Preheader = L->getLoopPreheader(); | 
|  | TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); | 
|  | TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loops containing convergent instructions must have a count that divides | 
|  | // their TripMultiple. | 
|  | DEBUG( | 
|  | { | 
|  | bool HasConvergent = false; | 
|  | for (auto &BB : L->blocks()) | 
|  | for (auto &I : *BB) | 
|  | if (auto CS = CallSite(&I)) | 
|  | HasConvergent |= CS.isConvergent(); | 
|  | assert((!HasConvergent || TripMultiple % Count == 0) && | 
|  | "Unroll count must divide trip multiple if loop contains a " | 
|  | "convergent operation."); | 
|  | }); | 
|  |  | 
|  | bool EpilogProfitability = | 
|  | UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog | 
|  | : isEpilogProfitable(L); | 
|  |  | 
|  | if (RuntimeTripCount && TripMultiple % Count != 0 && | 
|  | !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, | 
|  | EpilogProfitability, UnrollRemainder, LI, SE, | 
|  | DT, AC, PreserveLCSSA)) { | 
|  | if (Force) | 
|  | RuntimeTripCount = false; | 
|  | else { | 
|  | DEBUG( | 
|  | dbgs() << "Wont unroll; remainder loop could not be generated" | 
|  | "when assuming runtime trip count\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Notify ScalarEvolution that the loop will be substantially changed, | 
|  | // if not outright eliminated. | 
|  | if (SE) | 
|  | SE->forgetLoop(L); | 
|  |  | 
|  | // If we know the trip count, we know the multiple... | 
|  | unsigned BreakoutTrip = 0; | 
|  | if (TripCount != 0) { | 
|  | BreakoutTrip = TripCount % Count; | 
|  | TripMultiple = 0; | 
|  | } else { | 
|  | // Figure out what multiple to use. | 
|  | BreakoutTrip = TripMultiple = | 
|  | (unsigned)GreatestCommonDivisor64(Count, TripMultiple); | 
|  | } | 
|  |  | 
|  | using namespace ore; | 
|  | // Report the unrolling decision. | 
|  | if (CompletelyUnroll) { | 
|  | DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() | 
|  | << " with trip count " << TripCount << "!\n"); | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), | 
|  | L->getHeader()) | 
|  | << "completely unrolled loop with " | 
|  | << NV("UnrollCount", TripCount) << " iterations"; | 
|  | }); | 
|  | } else if (PeelCount) { | 
|  | DEBUG(dbgs() << "PEELING loop %" << Header->getName() | 
|  | << " with iteration count " << PeelCount << "!\n"); | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), | 
|  | L->getHeader()) | 
|  | << " peeled loop by " << NV("PeelCount", PeelCount) | 
|  | << " iterations"; | 
|  | }); | 
|  | } else { | 
|  | auto DiagBuilder = [&]() { | 
|  | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), | 
|  | L->getHeader()); | 
|  | return Diag << "unrolled loop by a factor of " | 
|  | << NV("UnrollCount", Count); | 
|  | }; | 
|  |  | 
|  | DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() | 
|  | << " by " << Count); | 
|  | if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { | 
|  | DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return DiagBuilder() << " with a breakout at trip " | 
|  | << NV("BreakoutTrip", BreakoutTrip); | 
|  | }); | 
|  | } else if (TripMultiple != 1) { | 
|  | DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) | 
|  | << " trips per branch"; | 
|  | }); | 
|  | } else if (RuntimeTripCount) { | 
|  | DEBUG(dbgs() << " with run-time trip count"); | 
|  | if (ORE) | 
|  | ORE->emit( | 
|  | [&]() { return DiagBuilder() << " with run-time trip count"; }); | 
|  | } | 
|  | DEBUG(dbgs() << "!\n"); | 
|  | } | 
|  |  | 
|  | bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); | 
|  | BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); | 
|  |  | 
|  | // For the first iteration of the loop, we should use the precloned values for | 
|  | // PHI nodes.  Insert associations now. | 
|  | ValueToValueMapTy LastValueMap; | 
|  | std::vector<PHINode*> OrigPHINode; | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | OrigPHINode.push_back(cast<PHINode>(I)); | 
|  | } | 
|  |  | 
|  | std::vector<BasicBlock*> Headers; | 
|  | std::vector<BasicBlock*> Latches; | 
|  | Headers.push_back(Header); | 
|  | Latches.push_back(LatchBlock); | 
|  |  | 
|  | // The current on-the-fly SSA update requires blocks to be processed in | 
|  | // reverse postorder so that LastValueMap contains the correct value at each | 
|  | // exit. | 
|  | LoopBlocksDFS DFS(L); | 
|  | DFS.perform(LI); | 
|  |  | 
|  | // Stash the DFS iterators before adding blocks to the loop. | 
|  | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); | 
|  | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); | 
|  |  | 
|  | std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); | 
|  |  | 
|  | // Loop Unrolling might create new loops. While we do preserve LoopInfo, we | 
|  | // might break loop-simplified form for these loops (as they, e.g., would | 
|  | // share the same exit blocks). We'll keep track of loops for which we can | 
|  | // break this so that later we can re-simplify them. | 
|  | SmallSetVector<Loop *, 4> LoopsToSimplify; | 
|  | for (Loop *SubLoop : *L) | 
|  | LoopsToSimplify.insert(SubLoop); | 
|  |  | 
|  | if (Header->getParent()->isDebugInfoForProfiling()) | 
|  | for (BasicBlock *BB : L->getBlocks()) | 
|  | for (Instruction &I : *BB) | 
|  | if (!isa<DbgInfoIntrinsic>(&I)) | 
|  | if (const DILocation *DIL = I.getDebugLoc()) | 
|  | I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); | 
|  |  | 
|  | for (unsigned It = 1; It != Count; ++It) { | 
|  | std::vector<BasicBlock*> NewBlocks; | 
|  | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; | 
|  | NewLoops[L] = L; | 
|  |  | 
|  | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | 
|  | ValueToValueMapTy VMap; | 
|  | BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); | 
|  | Header->getParent()->getBasicBlockList().push_back(New); | 
|  |  | 
|  | assert((*BB != Header || LI->getLoopFor(*BB) == L) && | 
|  | "Header should not be in a sub-loop"); | 
|  | // Tell LI about New. | 
|  | const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); | 
|  | if (OldLoop) { | 
|  | LoopsToSimplify.insert(NewLoops[OldLoop]); | 
|  |  | 
|  | // Forget the old loop, since its inputs may have changed. | 
|  | if (SE) | 
|  | SE->forgetLoop(OldLoop); | 
|  | } | 
|  |  | 
|  | if (*BB == Header) | 
|  | // Loop over all of the PHI nodes in the block, changing them to use | 
|  | // the incoming values from the previous block. | 
|  | for (PHINode *OrigPHI : OrigPHINode) { | 
|  | PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); | 
|  | Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); | 
|  | if (Instruction *InValI = dyn_cast<Instruction>(InVal)) | 
|  | if (It > 1 && L->contains(InValI)) | 
|  | InVal = LastValueMap[InValI]; | 
|  | VMap[OrigPHI] = InVal; | 
|  | New->getInstList().erase(NewPHI); | 
|  | } | 
|  |  | 
|  | // Update our running map of newest clones | 
|  | LastValueMap[*BB] = New; | 
|  | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); | 
|  | VI != VE; ++VI) | 
|  | LastValueMap[VI->first] = VI->second; | 
|  |  | 
|  | // Add phi entries for newly created values to all exit blocks. | 
|  | for (BasicBlock *Succ : successors(*BB)) { | 
|  | if (L->contains(Succ)) | 
|  | continue; | 
|  | for (BasicBlock::iterator BBI = Succ->begin(); | 
|  | PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { | 
|  | Value *Incoming = phi->getIncomingValueForBlock(*BB); | 
|  | ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); | 
|  | if (It != LastValueMap.end()) | 
|  | Incoming = It->second; | 
|  | phi->addIncoming(Incoming, New); | 
|  | } | 
|  | } | 
|  | // Keep track of new headers and latches as we create them, so that | 
|  | // we can insert the proper branches later. | 
|  | if (*BB == Header) | 
|  | Headers.push_back(New); | 
|  | if (*BB == LatchBlock) | 
|  | Latches.push_back(New); | 
|  |  | 
|  | NewBlocks.push_back(New); | 
|  | UnrolledLoopBlocks.push_back(New); | 
|  |  | 
|  | // Update DomTree: since we just copy the loop body, and each copy has a | 
|  | // dedicated entry block (copy of the header block), this header's copy | 
|  | // dominates all copied blocks. That means, dominance relations in the | 
|  | // copied body are the same as in the original body. | 
|  | if (DT) { | 
|  | if (*BB == Header) | 
|  | DT->addNewBlock(New, Latches[It - 1]); | 
|  | else { | 
|  | auto BBDomNode = DT->getNode(*BB); | 
|  | auto BBIDom = BBDomNode->getIDom(); | 
|  | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); | 
|  | DT->addNewBlock( | 
|  | New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remap all instructions in the most recent iteration | 
|  | for (BasicBlock *NewBlock : NewBlocks) { | 
|  | for (Instruction &I : *NewBlock) { | 
|  | ::remapInstruction(&I, LastValueMap); | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) | 
|  | AC->registerAssumption(II); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over the PHI nodes in the original block, setting incoming values. | 
|  | for (PHINode *PN : OrigPHINode) { | 
|  | if (CompletelyUnroll) { | 
|  | PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); | 
|  | Header->getInstList().erase(PN); | 
|  | } | 
|  | else if (Count > 1) { | 
|  | Value *InVal = PN->removeIncomingValue(LatchBlock, false); | 
|  | // If this value was defined in the loop, take the value defined by the | 
|  | // last iteration of the loop. | 
|  | if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { | 
|  | if (L->contains(InValI)) | 
|  | InVal = LastValueMap[InVal]; | 
|  | } | 
|  | assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); | 
|  | PN->addIncoming(InVal, Latches.back()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all the basic blocks for the unrolled iterations are in place, | 
|  | // set up the branches to connect them. | 
|  | for (unsigned i = 0, e = Latches.size(); i != e; ++i) { | 
|  | // The original branch was replicated in each unrolled iteration. | 
|  | BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); | 
|  |  | 
|  | // The branch destination. | 
|  | unsigned j = (i + 1) % e; | 
|  | BasicBlock *Dest = Headers[j]; | 
|  | bool NeedConditional = true; | 
|  |  | 
|  | if (RuntimeTripCount && j != 0) { | 
|  | NeedConditional = false; | 
|  | } | 
|  |  | 
|  | // For a complete unroll, make the last iteration end with a branch | 
|  | // to the exit block. | 
|  | if (CompletelyUnroll) { | 
|  | if (j == 0) | 
|  | Dest = LoopExit; | 
|  | // If using trip count upper bound to completely unroll, we need to keep | 
|  | // the conditional branch except the last one because the loop may exit | 
|  | // after any iteration. | 
|  | assert(NeedConditional && | 
|  | "NeedCondition cannot be modified by both complete " | 
|  | "unrolling and runtime unrolling"); | 
|  | NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); | 
|  | } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { | 
|  | // If we know the trip count or a multiple of it, we can safely use an | 
|  | // unconditional branch for some iterations. | 
|  | NeedConditional = false; | 
|  | } | 
|  |  | 
|  | if (NeedConditional) { | 
|  | // Update the conditional branch's successor for the following | 
|  | // iteration. | 
|  | Term->setSuccessor(!ContinueOnTrue, Dest); | 
|  | } else { | 
|  | // Remove phi operands at this loop exit | 
|  | if (Dest != LoopExit) { | 
|  | BasicBlock *BB = Latches[i]; | 
|  | for (BasicBlock *Succ: successors(BB)) { | 
|  | if (Succ == Headers[i]) | 
|  | continue; | 
|  | for (BasicBlock::iterator BBI = Succ->begin(); | 
|  | PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { | 
|  | Phi->removeIncomingValue(BB, false); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Replace the conditional branch with an unconditional one. | 
|  | BranchInst::Create(Dest, Term); | 
|  | Term->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update dominators of blocks we might reach through exits. | 
|  | // Immediate dominator of such block might change, because we add more | 
|  | // routes which can lead to the exit: we can now reach it from the copied | 
|  | // iterations too. | 
|  | if (DT && Count > 1) { | 
|  | for (auto *BB : OriginalLoopBlocks) { | 
|  | auto *BBDomNode = DT->getNode(BB); | 
|  | SmallVector<BasicBlock *, 16> ChildrenToUpdate; | 
|  | for (auto *ChildDomNode : BBDomNode->getChildren()) { | 
|  | auto *ChildBB = ChildDomNode->getBlock(); | 
|  | if (!L->contains(ChildBB)) | 
|  | ChildrenToUpdate.push_back(ChildBB); | 
|  | } | 
|  | BasicBlock *NewIDom; | 
|  | if (BB == LatchBlock) { | 
|  | // The latch is special because we emit unconditional branches in | 
|  | // some cases where the original loop contained a conditional branch. | 
|  | // Since the latch is always at the bottom of the loop, if the latch | 
|  | // dominated an exit before unrolling, the new dominator of that exit | 
|  | // must also be a latch.  Specifically, the dominator is the first | 
|  | // latch which ends in a conditional branch, or the last latch if | 
|  | // there is no such latch. | 
|  | NewIDom = Latches.back(); | 
|  | for (BasicBlock *IterLatch : Latches) { | 
|  | TerminatorInst *Term = IterLatch->getTerminator(); | 
|  | if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { | 
|  | NewIDom = IterLatch; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // The new idom of the block will be the nearest common dominator | 
|  | // of all copies of the previous idom. This is equivalent to the | 
|  | // nearest common dominator of the previous idom and the first latch, | 
|  | // which dominates all copies of the previous idom. | 
|  | NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); | 
|  | } | 
|  | for (auto *ChildBB : ChildrenToUpdate) | 
|  | DT->changeImmediateDominator(ChildBB, NewIDom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DT && UnrollVerifyDomtree) | 
|  | DT->verifyDomTree(); | 
|  |  | 
|  | // Merge adjacent basic blocks, if possible. | 
|  | SmallPtrSet<Loop *, 4> ForgottenLoops; | 
|  | for (BasicBlock *Latch : Latches) { | 
|  | BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); | 
|  | if (Term->isUnconditional()) { | 
|  | BasicBlock *Dest = Term->getSuccessor(0); | 
|  | if (BasicBlock *Fold = | 
|  | foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { | 
|  | // Dest has been folded into Fold. Update our worklists accordingly. | 
|  | std::replace(Latches.begin(), Latches.end(), Dest, Fold); | 
|  | UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), | 
|  | UnrolledLoopBlocks.end(), Dest), | 
|  | UnrolledLoopBlocks.end()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify any new induction variables in the partially unrolled loop. | 
|  | if (SE && !CompletelyUnroll && Count > 1) { | 
|  | SmallVector<WeakTrackingVH, 16> DeadInsts; | 
|  | simplifyLoopIVs(L, SE, DT, LI, DeadInsts); | 
|  |  | 
|  | // Aggressively clean up dead instructions that simplifyLoopIVs already | 
|  | // identified. Any remaining should be cleaned up below. | 
|  | while (!DeadInsts.empty()) | 
|  | if (Instruction *Inst = | 
|  | dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Inst); | 
|  | } | 
|  |  | 
|  | // At this point, the code is well formed.  We now do a quick sweep over the | 
|  | // inserted code, doing constant propagation and dead code elimination as we | 
|  | // go. | 
|  | const DataLayout &DL = Header->getModule()->getDataLayout(); | 
|  | const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); | 
|  | for (BasicBlock *BB : NewLoopBlocks) { | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { | 
|  | Instruction *Inst = &*I++; | 
|  |  | 
|  | if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) | 
|  | if (LI->replacementPreservesLCSSAForm(Inst, V)) | 
|  | Inst->replaceAllUsesWith(V); | 
|  | if (isInstructionTriviallyDead(Inst)) | 
|  | BB->getInstList().erase(Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: after peeling or unrolling, previously loop variant conditions are | 
|  | // likely to fold to constants, eagerly propagating those here will require | 
|  | // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be | 
|  | // appropriate. | 
|  |  | 
|  | NumCompletelyUnrolled += CompletelyUnroll; | 
|  | ++NumUnrolled; | 
|  |  | 
|  | Loop *OuterL = L->getParentLoop(); | 
|  | // Update LoopInfo if the loop is completely removed. | 
|  | if (CompletelyUnroll) | 
|  | LI->erase(L); | 
|  |  | 
|  | // After complete unrolling most of the blocks should be contained in OuterL. | 
|  | // However, some of them might happen to be out of OuterL (e.g. if they | 
|  | // precede a loop exit). In this case we might need to insert PHI nodes in | 
|  | // order to preserve LCSSA form. | 
|  | // We don't need to check this if we already know that we need to fix LCSSA | 
|  | // form. | 
|  | // TODO: For now we just recompute LCSSA for the outer loop in this case, but | 
|  | // it should be possible to fix it in-place. | 
|  | if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) | 
|  | NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); | 
|  |  | 
|  | // If we have a pass and a DominatorTree we should re-simplify impacted loops | 
|  | // to ensure subsequent analyses can rely on this form. We want to simplify | 
|  | // at least one layer outside of the loop that was unrolled so that any | 
|  | // changes to the parent loop exposed by the unrolling are considered. | 
|  | if (DT) { | 
|  | if (OuterL) { | 
|  | // OuterL includes all loops for which we can break loop-simplify, so | 
|  | // it's sufficient to simplify only it (it'll recursively simplify inner | 
|  | // loops too). | 
|  | if (NeedToFixLCSSA) { | 
|  | // LCSSA must be performed on the outermost affected loop. The unrolled | 
|  | // loop's last loop latch is guaranteed to be in the outermost loop | 
|  | // after LoopInfo's been updated by LoopInfo::erase. | 
|  | Loop *LatchLoop = LI->getLoopFor(Latches.back()); | 
|  | Loop *FixLCSSALoop = OuterL; | 
|  | if (!FixLCSSALoop->contains(LatchLoop)) | 
|  | while (FixLCSSALoop->getParentLoop() != LatchLoop) | 
|  | FixLCSSALoop = FixLCSSALoop->getParentLoop(); | 
|  |  | 
|  | formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); | 
|  | } else if (PreserveLCSSA) { | 
|  | assert(OuterL->isLCSSAForm(*DT) && | 
|  | "Loops should be in LCSSA form after loop-unroll."); | 
|  | } | 
|  |  | 
|  | // TODO: That potentially might be compile-time expensive. We should try | 
|  | // to fix the loop-simplified form incrementally. | 
|  | simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); | 
|  | } else { | 
|  | // Simplify loops for which we might've broken loop-simplify form. | 
|  | for (Loop *SubLoop : LoopsToSimplify) | 
|  | simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); | 
|  | } | 
|  | } | 
|  |  | 
|  | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled | 
|  | : LoopUnrollResult::PartiallyUnrolled; | 
|  | } | 
|  |  | 
|  | /// Given an llvm.loop loop id metadata node, returns the loop hint metadata | 
|  | /// node with the given name (for example, "llvm.loop.unroll.count"). If no | 
|  | /// such metadata node exists, then nullptr is returned. | 
|  | MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { | 
|  | // First operand should refer to the loop id itself. | 
|  | assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); | 
|  | assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); | 
|  |  | 
|  | for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { | 
|  | MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); | 
|  | if (!MD) | 
|  | continue; | 
|  |  | 
|  | MDString *S = dyn_cast<MDString>(MD->getOperand(0)); | 
|  | if (!S) | 
|  | continue; | 
|  |  | 
|  | if (Name.equals(S->getString())) | 
|  | return MD; | 
|  | } | 
|  | return nullptr; | 
|  | } |