|  | //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMTargetTransformInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Target/CostTable.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "armtti" | 
|  |  | 
|  | int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned Bits = Ty->getPrimitiveSizeInBits(); | 
|  | if (Bits == 0 || Bits > 64) | 
|  | return 4; | 
|  |  | 
|  | int64_t SImmVal = Imm.getSExtValue(); | 
|  | uint64_t ZImmVal = Imm.getZExtValue(); | 
|  | if (!ST->isThumb()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getSOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getSOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | if (ST->isThumb2()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | // Thumb1. | 
|  | if (SImmVal >= 0 && SImmVal < 256) | 
|  | return 1; | 
|  | if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) | 
|  | return 2; | 
|  | // Load from constantpool. | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, | 
|  | Type *Ty) { | 
|  | // Division by a constant can be turned into multiplication, but only if we | 
|  | // know it's constant. So it's not so much that the immediate is cheap (it's | 
|  | // not), but that the alternative is worse. | 
|  | // FIXME: this is probably unneeded with GlobalISel. | 
|  | if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || | 
|  | Opcode == Instruction::SRem || Opcode == Instruction::URem) && | 
|  | Idx == 1) | 
|  | return 0; | 
|  |  | 
|  | return getIntImmCost(Imm, Ty); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | assert(ISD && "Invalid opcode"); | 
|  |  | 
|  | // Single to/from double precision conversions. | 
|  | static const CostTblEntry NEONFltDblTbl[] = { | 
|  | // Vector fptrunc/fpext conversions. | 
|  | { ISD::FP_ROUND,   MVT::v2f64, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v2f32, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v4f32, 4 } | 
|  | }; | 
|  |  | 
|  | if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || | 
|  | ISD == ISD::FP_EXTEND)) { | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); | 
|  | if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  | } | 
|  |  | 
|  | EVT SrcTy = TLI->getValueType(DL, Src); | 
|  | EVT DstTy = TLI->getValueType(DL, Dst); | 
|  |  | 
|  | if (!SrcTy.isSimple() || !DstTy.isSimple()) | 
|  | return BaseT::getCastInstrCost(Opcode, Dst, Src); | 
|  |  | 
|  | // Some arithmetic, load and store operations have specific instructions | 
|  | // to cast up/down their types automatically at no extra cost. | 
|  | // TODO: Get these tables to know at least what the related operations are. | 
|  | static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { | 
|  | { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 }, | 
|  |  | 
|  | // The number of vmovl instructions for the extension. | 
|  | { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  |  | 
|  | // Operations that we legalize using splitting. | 
|  | { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 }, | 
|  | { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 }, | 
|  |  | 
|  | // Vector float <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  |  | 
|  | // Vector double <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isVector() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar float to integer conversions. | 
|  | static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 } | 
|  | }; | 
|  | if (SrcTy.isFloatingPoint() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer to float conversions. | 
|  | static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, | 
|  | ISD, DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer conversion costs. | 
|  | static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { | 
|  | // i16 -> i64 requires two dependent operations. | 
|  | { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, | 
|  |  | 
|  | // Truncates on i64 are assumed to be free. | 
|  | { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | return BaseT::getCastInstrCost(Opcode, Dst, Src); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, | 
|  | unsigned Index) { | 
|  | // Penalize inserting into an D-subregister. We end up with a three times | 
|  | // lower estimated throughput on swift. | 
|  | if (ST->isSwift() && | 
|  | Opcode == Instruction::InsertElement && | 
|  | ValTy->isVectorTy() && | 
|  | ValTy->getScalarSizeInBits() <= 32) | 
|  | return 3; | 
|  |  | 
|  | if ((Opcode == Instruction::InsertElement || | 
|  | Opcode == Instruction::ExtractElement)) { | 
|  | // Cross-class copies are expensive on many microarchitectures, | 
|  | // so assume they are expensive by default. | 
|  | if (ValTy->getVectorElementType()->isIntegerTy()) | 
|  | return 3; | 
|  |  | 
|  | // Even if it's not a cross class copy, this likely leads to mixing | 
|  | // of NEON and VFP code and should be therefore penalized. | 
|  | if (ValTy->isVectorTy() && | 
|  | ValTy->getScalarSizeInBits() <= 32) | 
|  | return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); | 
|  | } | 
|  |  | 
|  | return BaseT::getVectorInstrCost(Opcode, ValTy, Index); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { | 
|  |  | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | // On NEON a a vector select gets lowered to vbsl. | 
|  | if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { | 
|  | // Lowering of some vector selects is currently far from perfect. | 
|  | static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { | 
|  | { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, | 
|  | { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, | 
|  | { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } | 
|  | }; | 
|  |  | 
|  | EVT SelCondTy = TLI->getValueType(DL, CondTy); | 
|  | EVT SelValTy = TLI->getValueType(DL, ValTy); | 
|  | if (SelCondTy.isSimple() && SelValTy.isSimple()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, | 
|  | SelCondTy.getSimpleVT(), | 
|  | SelValTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); | 
|  | return LT.first; | 
|  | } | 
|  |  | 
|  | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { | 
|  | // Address computations in vectorized code with non-consecutive addresses will | 
|  | // likely result in more instructions compared to scalar code where the | 
|  | // computation can more often be merged into the index mode. The resulting | 
|  | // extra micro-ops can significantly decrease throughput. | 
|  | unsigned NumVectorInstToHideOverhead = 10; | 
|  |  | 
|  | if (Ty->isVectorTy() && IsComplex) | 
|  | return NumVectorInstToHideOverhead; | 
|  |  | 
|  | // In many cases the address computation is not merged into the instruction | 
|  | // addressing mode. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getFPOpCost(Type *Ty) { | 
|  | // Use similar logic that's in ARMISelLowering: | 
|  | // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access | 
|  | // to VFP. | 
|  |  | 
|  | if (ST->hasVFP2() && !ST->isThumb1Only()) { | 
|  | if (Ty->isFloatTy()) { | 
|  | return TargetTransformInfo::TCC_Basic; | 
|  | } | 
|  |  | 
|  | if (Ty->isDoubleTy()) { | 
|  | return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive : | 
|  | TargetTransformInfo::TCC_Basic; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetTransformInfo::TCC_Expensive; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, | 
|  | Type *SubTp) { | 
|  | // We only handle costs of reverse and alternate shuffles for now. | 
|  | if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  |  | 
|  | if (Kind == TTI::SK_Reverse) { | 
|  | static const CostTblEntry NEONShuffleTbl[] = { | 
|  | // Reverse shuffle cost one instruction if we are shuffling within a | 
|  | // double word (vrev) or two if we shuffle a quad word (vrev, vext). | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  |  | 
|  | if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, | 
|  | LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  |  | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  | if (Kind == TTI::SK_Alternate) { | 
|  | static const CostTblEntry NEONAltShuffleTbl[] = { | 
|  | // Alt shuffle cost table for ARM. Cost is the number of instructions | 
|  | // required to create the shuffled vector. | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  | if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl, | 
|  | ISD::VECTOR_SHUFFLE, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, | 
|  | TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, | 
|  | TTI::OperandValueProperties Opd2PropInfo) { | 
|  |  | 
|  | int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); | 
|  |  | 
|  | const unsigned FunctionCallDivCost = 20; | 
|  | const unsigned ReciprocalDivCost = 10; | 
|  | static const CostTblEntry CostTbl[] = { | 
|  | // Division. | 
|  | // These costs are somewhat random. Choose a cost of 20 to indicate that | 
|  | // vectorizing devision (added function call) is going to be very expensive. | 
|  | // Double registers types. | 
|  | { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | // Quad register types. | 
|  | { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | // Multiplication. | 
|  | }; | 
|  |  | 
|  | if (ST->hasNEON()) | 
|  | if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  |  | 
|  | int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, | 
|  | Opd1PropInfo, Opd2PropInfo); | 
|  |  | 
|  | // This is somewhat of a hack. The problem that we are facing is that SROA | 
|  | // creates a sequence of shift, and, or instructions to construct values. | 
|  | // These sequences are recognized by the ISel and have zero-cost. Not so for | 
|  | // the vectorized code. Because we have support for v2i64 but not i64 those | 
|  | // sequences look particularly beneficial to vectorize. | 
|  | // To work around this we increase the cost of v2i64 operations to make them | 
|  | // seem less beneficial. | 
|  | if (LT.second == MVT::v2i64 && | 
|  | Op2Info == TargetTransformInfo::OK_UniformConstantValue) | 
|  | Cost += 4; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace) { | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); | 
|  |  | 
|  | if (Src->isVectorTy() && Alignment != 16 && | 
|  | Src->getVectorElementType()->isDoubleTy()) { | 
|  | // Unaligned loads/stores are extremely inefficient. | 
|  | // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. | 
|  | return LT.first * 4; | 
|  | } | 
|  | return LT.first; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, | 
|  | unsigned Factor, | 
|  | ArrayRef<unsigned> Indices, | 
|  | unsigned Alignment, | 
|  | unsigned AddressSpace) { | 
|  | assert(Factor >= 2 && "Invalid interleave factor"); | 
|  | assert(isa<VectorType>(VecTy) && "Expect a vector type"); | 
|  |  | 
|  | // vldN/vstN doesn't support vector types of i64/f64 element. | 
|  | bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; | 
|  |  | 
|  | if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) { | 
|  | unsigned NumElts = VecTy->getVectorNumElements(); | 
|  | Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); | 
|  | unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); | 
|  |  | 
|  | // vldN/vstN only support legal vector types of size 64 or 128 in bits. | 
|  | if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128)) | 
|  | return Factor; | 
|  | } | 
|  |  | 
|  | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, | 
|  | Alignment, AddressSpace); | 
|  | } |