|  | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass munges the code in the input function to better prepare it for | 
|  | // SelectionDAG-based code generation. This works around limitations in it's | 
|  | // basic-block-at-a-time approach. It should eventually be removed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/IR/ValueMap.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "codegenprepare" | 
|  |  | 
|  | STATISTIC(NumBlocksElim, "Number of blocks eliminated"); | 
|  | STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated"); | 
|  | STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts"); | 
|  | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " | 
|  | "sunken Cmps"); | 
|  | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " | 
|  | "of sunken Casts"); | 
|  | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " | 
|  | "computations were sunk"); | 
|  | STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads"); | 
|  | STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized"); | 
|  | STATISTIC(NumAndsAdded, | 
|  | "Number of and mask instructions added to form ext loads"); | 
|  | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); | 
|  | STATISTIC(NumRetsDup,    "Number of return instructions duplicated"); | 
|  | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); | 
|  | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); | 
|  | STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); | 
|  | STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); | 
|  |  | 
|  | static cl::opt<bool> DisableBranchOpts( | 
|  | "disable-cgp-branch-opts", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable branch optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable GC optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> DisableSelectToBranch( | 
|  | "disable-cgp-select2branch", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable select to branch conversion.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkUsingGEPs( | 
|  | "addr-sink-using-gep", cl::Hidden, cl::init(false), | 
|  | cl::desc("Address sinking in CGP using GEPs.")); | 
|  |  | 
|  | static cl::opt<bool> EnableAndCmpSinking( | 
|  | "enable-andcmp-sinking", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable sinkinig and/cmp into branches.")); | 
|  |  | 
|  | static cl::opt<bool> DisableStoreExtract( | 
|  | "disable-cgp-store-extract", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> StressStoreExtract( | 
|  | "stress-cgp-store-extract", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> DisableExtLdPromotion( | 
|  | "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " | 
|  | "CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> StressExtLdPromotion( | 
|  | "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " | 
|  | "optimization in CodeGenPrepare")); | 
|  |  | 
|  | namespace { | 
|  | typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; | 
|  | typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; | 
|  | typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; | 
|  | class TypePromotionTransaction; | 
|  |  | 
|  | class CodeGenPrepare : public FunctionPass { | 
|  | const TargetMachine *TM; | 
|  | const TargetLowering *TLI; | 
|  | const TargetTransformInfo *TTI; | 
|  | const TargetLibraryInfo *TLInfo; | 
|  |  | 
|  | /// As we scan instructions optimizing them, this is the next instruction | 
|  | /// to optimize. Transforms that can invalidate this should update it. | 
|  | BasicBlock::iterator CurInstIterator; | 
|  |  | 
|  | /// Keeps track of non-local addresses that have been sunk into a block. | 
|  | /// This allows us to avoid inserting duplicate code for blocks with | 
|  | /// multiple load/stores of the same address. | 
|  | ValueMap<Value*, Value*> SunkAddrs; | 
|  |  | 
|  | /// Keeps track of all instructions inserted for the current function. | 
|  | SetOfInstrs InsertedInsts; | 
|  | /// Keeps track of the type of the related instruction before their | 
|  | /// promotion for the current function. | 
|  | InstrToOrigTy PromotedInsts; | 
|  |  | 
|  | /// True if CFG is modified in any way. | 
|  | bool ModifiedDT; | 
|  |  | 
|  | /// True if optimizing for size. | 
|  | bool OptSize; | 
|  |  | 
|  | /// DataLayout for the Function being processed. | 
|  | const DataLayout *DL; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | explicit CodeGenPrepare(const TargetMachine *TM = nullptr) | 
|  | : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { | 
|  | initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | const char *getPassName() const override { return "CodeGen Prepare"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool eliminateFallThrough(Function &F); | 
|  | bool eliminateMostlyEmptyBlocks(Function &F); | 
|  | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; | 
|  | void eliminateMostlyEmptyBlock(BasicBlock *BB); | 
|  | bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); | 
|  | bool optimizeInst(Instruction *I, bool& ModifiedDT); | 
|  | bool optimizeMemoryInst(Instruction *I, Value *Addr, | 
|  | Type *AccessTy, unsigned AS); | 
|  | bool optimizeInlineAsmInst(CallInst *CS); | 
|  | bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); | 
|  | bool moveExtToFormExtLoad(Instruction *&I); | 
|  | bool optimizeExtUses(Instruction *I); | 
|  | bool optimizeLoadExt(LoadInst *I); | 
|  | bool optimizeSelectInst(SelectInst *SI); | 
|  | bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); | 
|  | bool optimizeSwitchInst(SwitchInst *CI); | 
|  | bool optimizeExtractElementInst(Instruction *Inst); | 
|  | bool dupRetToEnableTailCallOpts(BasicBlock *BB); | 
|  | bool placeDbgValues(Function &F); | 
|  | bool sinkAndCmp(Function &F); | 
|  | bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, | 
|  | Instruction *&Inst, | 
|  | const SmallVectorImpl<Instruction *> &Exts, | 
|  | unsigned CreatedInstCost); | 
|  | bool splitBranchCondition(Function &F); | 
|  | bool simplifyOffsetableRelocate(Instruction &I); | 
|  | void stripInvariantGroupMetadata(Instruction &I); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char CodeGenPrepare::ID = 0; | 
|  | INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", | 
|  | "Optimize for code generation", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { | 
|  | return new CodeGenPrepare(TM); | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::runOnFunction(Function &F) { | 
|  | if (skipOptnoneFunction(F)) | 
|  | return false; | 
|  |  | 
|  | DL = &F.getParent()->getDataLayout(); | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  | // Clear per function information. | 
|  | InsertedInsts.clear(); | 
|  | PromotedInsts.clear(); | 
|  |  | 
|  | ModifiedDT = false; | 
|  | if (TM) | 
|  | TLI = TM->getSubtargetImpl(F)->getTargetLowering(); | 
|  | TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | OptSize = F.optForSize(); | 
|  |  | 
|  | /// This optimization identifies DIV instructions that can be | 
|  | /// profitably bypassed and carried out with a shorter, faster divide. | 
|  | if (!OptSize && TLI && TLI->isSlowDivBypassed()) { | 
|  | const DenseMap<unsigned int, unsigned int> &BypassWidths = | 
|  | TLI->getBypassSlowDivWidths(); | 
|  | BasicBlock* BB = &*F.begin(); | 
|  | while (BB != nullptr) { | 
|  | // bypassSlowDivision may create new BBs, but we don't want to reapply the | 
|  | // optimization to those blocks. | 
|  | BasicBlock* Next = BB->getNextNode(); | 
|  | EverMadeChange |= bypassSlowDivision(BB, BypassWidths); | 
|  | BB = Next; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate blocks that contain only PHI nodes and an | 
|  | // unconditional branch. | 
|  | EverMadeChange |= eliminateMostlyEmptyBlocks(F); | 
|  |  | 
|  | // llvm.dbg.value is far away from the value then iSel may not be able | 
|  | // handle it properly. iSel will drop llvm.dbg.value if it can not | 
|  | // find a node corresponding to the value. | 
|  | EverMadeChange |= placeDbgValues(F); | 
|  |  | 
|  | // If there is a mask, compare against zero, and branch that can be combined | 
|  | // into a single target instruction, push the mask and compare into branch | 
|  | // users. Do this before OptimizeBlock -> OptimizeInst -> | 
|  | // OptimizeCmpExpression, which perturbs the pattern being searched for. | 
|  | if (!DisableBranchOpts) { | 
|  | EverMadeChange |= sinkAndCmp(F); | 
|  | EverMadeChange |= splitBranchCondition(F); | 
|  | } | 
|  |  | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) { | 
|  | MadeChange = false; | 
|  | for (Function::iterator I = F.begin(); I != F.end(); ) { | 
|  | BasicBlock *BB = &*I++; | 
|  | bool ModifiedDTOnIteration = false; | 
|  | MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); | 
|  |  | 
|  | // Restart BB iteration if the dominator tree of the Function was changed | 
|  | if (ModifiedDTOnIteration) | 
|  | break; | 
|  | } | 
|  | EverMadeChange |= MadeChange; | 
|  | } | 
|  |  | 
|  | SunkAddrs.clear(); | 
|  |  | 
|  | if (!DisableBranchOpts) { | 
|  | MadeChange = false; | 
|  | SmallPtrSet<BasicBlock*, 8> WorkList; | 
|  | for (BasicBlock &BB : F) { | 
|  | SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); | 
|  | MadeChange |= ConstantFoldTerminator(&BB, true); | 
|  | if (!MadeChange) continue; | 
|  |  | 
|  | for (SmallVectorImpl<BasicBlock*>::iterator | 
|  | II = Successors.begin(), IE = Successors.end(); II != IE; ++II) | 
|  | if (pred_begin(*II) == pred_end(*II)) | 
|  | WorkList.insert(*II); | 
|  | } | 
|  |  | 
|  | // Delete the dead blocks and any of their dead successors. | 
|  | MadeChange |= !WorkList.empty(); | 
|  | while (!WorkList.empty()) { | 
|  | BasicBlock *BB = *WorkList.begin(); | 
|  | WorkList.erase(BB); | 
|  | SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); | 
|  |  | 
|  | DeleteDeadBlock(BB); | 
|  |  | 
|  | for (SmallVectorImpl<BasicBlock*>::iterator | 
|  | II = Successors.begin(), IE = Successors.end(); II != IE; ++II) | 
|  | if (pred_begin(*II) == pred_end(*II)) | 
|  | WorkList.insert(*II); | 
|  | } | 
|  |  | 
|  | // Merge pairs of basic blocks with unconditional branches, connected by | 
|  | // a single edge. | 
|  | if (EverMadeChange || MadeChange) | 
|  | MadeChange |= eliminateFallThrough(F); | 
|  |  | 
|  | EverMadeChange |= MadeChange; | 
|  | } | 
|  |  | 
|  | if (!DisableGCOpts) { | 
|  | SmallVector<Instruction *, 2> Statepoints; | 
|  | for (BasicBlock &BB : F) | 
|  | for (Instruction &I : BB) | 
|  | if (isStatepoint(I)) | 
|  | Statepoints.push_back(&I); | 
|  | for (auto &I : Statepoints) | 
|  | EverMadeChange |= simplifyOffsetableRelocate(*I); | 
|  | } | 
|  |  | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | /// Merge basic blocks which are connected by a single edge, where one of the | 
|  | /// basic blocks has a single successor pointing to the other basic block, | 
|  | /// which has a single predecessor. | 
|  | bool CodeGenPrepare::eliminateFallThrough(Function &F) { | 
|  | bool Changed = false; | 
|  | // Scan all of the blocks in the function, except for the entry block. | 
|  | for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { | 
|  | BasicBlock *BB = &*I++; | 
|  | // If the destination block has a single pred, then this is a trivial | 
|  | // edge, just collapse it. | 
|  | BasicBlock *SinglePred = BB->getSinglePredecessor(); | 
|  |  | 
|  | // Don't merge if BB's address is taken. | 
|  | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; | 
|  |  | 
|  | BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); | 
|  | if (Term && !Term->isConditional()) { | 
|  | Changed = true; | 
|  | DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); | 
|  | // Remember if SinglePred was the entry block of the function. | 
|  | // If so, we will need to move BB back to the entry position. | 
|  | bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); | 
|  | MergeBasicBlockIntoOnlyPred(BB, nullptr); | 
|  |  | 
|  | if (isEntry && BB != &BB->getParent()->getEntryBlock()) | 
|  | BB->moveBefore(&BB->getParent()->getEntryBlock()); | 
|  |  | 
|  | // We have erased a block. Update the iterator. | 
|  | I = BB->getIterator(); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an | 
|  | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split | 
|  | /// edges in ways that are non-optimal for isel. Start by eliminating these | 
|  | /// blocks so we can split them the way we want them. | 
|  | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { | 
|  | bool MadeChange = false; | 
|  | // Note that this intentionally skips the entry block. | 
|  | for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { | 
|  | BasicBlock *BB = &*I++; | 
|  |  | 
|  | // If this block doesn't end with an uncond branch, ignore it. | 
|  | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional()) | 
|  | continue; | 
|  |  | 
|  | // If the instruction before the branch (skipping debug info) isn't a phi | 
|  | // node, then other stuff is happening here. | 
|  | BasicBlock::iterator BBI = BI->getIterator(); | 
|  | if (BBI != BB->begin()) { | 
|  | --BBI; | 
|  | while (isa<DbgInfoIntrinsic>(BBI)) { | 
|  | if (BBI == BB->begin()) | 
|  | break; | 
|  | --BBI; | 
|  | } | 
|  | if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Do not break infinite loops. | 
|  | BasicBlock *DestBB = BI->getSuccessor(0); | 
|  | if (DestBB == BB) | 
|  | continue; | 
|  |  | 
|  | if (!canMergeBlocks(BB, DestBB)) | 
|  | continue; | 
|  |  | 
|  | eliminateMostlyEmptyBlock(BB); | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Return true if we can merge BB into DestBB if there is a single | 
|  | /// unconditional branch between them, and BB contains no other non-phi | 
|  | /// instructions. | 
|  | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, | 
|  | const BasicBlock *DestBB) const { | 
|  | // We only want to eliminate blocks whose phi nodes are used by phi nodes in | 
|  | // the successor.  If there are more complex condition (e.g. preheaders), | 
|  | // don't mess around with them. | 
|  | BasicBlock::const_iterator BBI = BB->begin(); | 
|  | while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { | 
|  | for (const User *U : PN->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (UI->getParent() != DestBB || !isa<PHINode>(UI)) | 
|  | return false; | 
|  | // If User is inside DestBB block and it is a PHINode then check | 
|  | // incoming value. If incoming value is not from BB then this is | 
|  | // a complex condition (e.g. preheaders) we want to avoid here. | 
|  | if (UI->getParent() == DestBB) { | 
|  | if (const PHINode *UPN = dyn_cast<PHINode>(UI)) | 
|  | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { | 
|  | Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); | 
|  | if (Insn && Insn->getParent() == BB && | 
|  | Insn->getParent() != UPN->getIncomingBlock(I)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BB and DestBB contain any common predecessors, then the phi nodes in BB | 
|  | // and DestBB may have conflicting incoming values for the block.  If so, we | 
|  | // can't merge the block. | 
|  | const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); | 
|  | if (!DestBBPN) return true;  // no conflict. | 
|  |  | 
|  | // Collect the preds of BB. | 
|  | SmallPtrSet<const BasicBlock*, 16> BBPreds; | 
|  | if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | 
|  | // It is faster to get preds from a PHI than with pred_iterator. | 
|  | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | 
|  | BBPreds.insert(BBPN->getIncomingBlock(i)); | 
|  | } else { | 
|  | BBPreds.insert(pred_begin(BB), pred_end(BB)); | 
|  | } | 
|  |  | 
|  | // Walk the preds of DestBB. | 
|  | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); | 
|  | if (BBPreds.count(Pred)) {   // Common predecessor? | 
|  | BBI = DestBB->begin(); | 
|  | while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { | 
|  | const Value *V1 = PN->getIncomingValueForBlock(Pred); | 
|  | const Value *V2 = PN->getIncomingValueForBlock(BB); | 
|  |  | 
|  | // If V2 is a phi node in BB, look up what the mapped value will be. | 
|  | if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) | 
|  | if (V2PN->getParent() == BB) | 
|  | V2 = V2PN->getIncomingValueForBlock(Pred); | 
|  |  | 
|  | // If there is a conflict, bail out. | 
|  | if (V1 != V2) return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Eliminate a basic block that has only phi's and an unconditional branch in | 
|  | /// it. | 
|  | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { | 
|  | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | 
|  | BasicBlock *DestBB = BI->getSuccessor(0); | 
|  |  | 
|  | DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); | 
|  |  | 
|  | // If the destination block has a single pred, then this is a trivial edge, | 
|  | // just collapse it. | 
|  | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { | 
|  | if (SinglePred != DestBB) { | 
|  | // Remember if SinglePred was the entry block of the function.  If so, we | 
|  | // will need to move BB back to the entry position. | 
|  | bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); | 
|  | MergeBasicBlockIntoOnlyPred(DestBB, nullptr); | 
|  |  | 
|  | if (isEntry && BB != &BB->getParent()->getEntryBlock()) | 
|  | BB->moveBefore(&BB->getParent()->getEntryBlock()); | 
|  |  | 
|  | DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB | 
|  | // to handle the new incoming edges it is about to have. | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator BBI = DestBB->begin(); | 
|  | (PN = dyn_cast<PHINode>(BBI)); ++BBI) { | 
|  | // Remove the incoming value for BB, and remember it. | 
|  | Value *InVal = PN->removeIncomingValue(BB, false); | 
|  |  | 
|  | // Two options: either the InVal is a phi node defined in BB or it is some | 
|  | // value that dominates BB. | 
|  | PHINode *InValPhi = dyn_cast<PHINode>(InVal); | 
|  | if (InValPhi && InValPhi->getParent() == BB) { | 
|  | // Add all of the input values of the input PHI as inputs of this phi. | 
|  | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) | 
|  | PN->addIncoming(InValPhi->getIncomingValue(i), | 
|  | InValPhi->getIncomingBlock(i)); | 
|  | } else { | 
|  | // Otherwise, add one instance of the dominating value for each edge that | 
|  | // we will be adding. | 
|  | if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | 
|  | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | 
|  | PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); | 
|  | } else { | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | PN->addIncoming(InVal, *PI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The PHIs are now updated, change everything that refers to BB to use | 
|  | // DestBB and remove BB. | 
|  | BB->replaceAllUsesWith(DestBB); | 
|  | BB->eraseFromParent(); | 
|  | ++NumBlocksElim; | 
|  |  | 
|  | DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); | 
|  | } | 
|  |  | 
|  | // Computes a map of base pointer relocation instructions to corresponding | 
|  | // derived pointer relocation instructions given a vector of all relocate calls | 
|  | static void computeBaseDerivedRelocateMap( | 
|  | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, | 
|  | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> | 
|  | &RelocateInstMap) { | 
|  | // Collect information in two maps: one primarily for locating the base object | 
|  | // while filling the second map; the second map is the final structure holding | 
|  | // a mapping between Base and corresponding Derived relocate calls | 
|  | DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; | 
|  | for (auto *ThisRelocate : AllRelocateCalls) { | 
|  | auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), | 
|  | ThisRelocate->getDerivedPtrIndex()); | 
|  | RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); | 
|  | } | 
|  | for (auto &Item : RelocateIdxMap) { | 
|  | std::pair<unsigned, unsigned> Key = Item.first; | 
|  | if (Key.first == Key.second) | 
|  | // Base relocation: nothing to insert | 
|  | continue; | 
|  |  | 
|  | GCRelocateInst *I = Item.second; | 
|  | auto BaseKey = std::make_pair(Key.first, Key.first); | 
|  |  | 
|  | // We're iterating over RelocateIdxMap so we cannot modify it. | 
|  | auto MaybeBase = RelocateIdxMap.find(BaseKey); | 
|  | if (MaybeBase == RelocateIdxMap.end()) | 
|  | // TODO: We might want to insert a new base object relocate and gep off | 
|  | // that, if there are enough derived object relocates. | 
|  | continue; | 
|  |  | 
|  | RelocateInstMap[MaybeBase->second].push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accepts a GEP and extracts the operands into a vector provided they're all | 
|  | // small integer constants | 
|  | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, | 
|  | SmallVectorImpl<Value *> &OffsetV) { | 
|  | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { | 
|  | // Only accept small constant integer operands | 
|  | auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!Op || Op->getZExtValue() > 20) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1; i < GEP->getNumOperands(); i++) | 
|  | OffsetV.push_back(GEP->getOperand(i)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to | 
|  | // replace, computes a replacement, and affects it. | 
|  | static bool | 
|  | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, | 
|  | const SmallVectorImpl<GCRelocateInst *> &Targets) { | 
|  | bool MadeChange = false; | 
|  | for (GCRelocateInst *ToReplace : Targets) { | 
|  | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && | 
|  | "Not relocating a derived object of the original base object"); | 
|  | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { | 
|  | // A duplicate relocate call. TODO: coalesce duplicates. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (RelocatedBase->getParent() != ToReplace->getParent()) { | 
|  | // Base and derived relocates are in different basic blocks. | 
|  | // In this case transform is only valid when base dominates derived | 
|  | // relocate. However it would be too expensive to check dominance | 
|  | // for each such relocate, so we skip the whole transformation. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Base = ToReplace->getBasePtr(); | 
|  | auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); | 
|  | if (!Derived || Derived->getPointerOperand() != Base) | 
|  | continue; | 
|  |  | 
|  | SmallVector<Value *, 2> OffsetV; | 
|  | if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) | 
|  | continue; | 
|  |  | 
|  | // Create a Builder and replace the target callsite with a gep | 
|  | assert(RelocatedBase->getNextNode() && | 
|  | "Should always have one since it's not a terminator"); | 
|  |  | 
|  | // Insert after RelocatedBase | 
|  | IRBuilder<> Builder(RelocatedBase->getNextNode()); | 
|  | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); | 
|  |  | 
|  | // If gc_relocate does not match the actual type, cast it to the right type. | 
|  | // In theory, there must be a bitcast after gc_relocate if the type does not | 
|  | // match, and we should reuse it to get the derived pointer. But it could be | 
|  | // cases like this: | 
|  | // bb1: | 
|  | //  ... | 
|  | //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) | 
|  | //  br label %merge | 
|  | // | 
|  | // bb2: | 
|  | //  ... | 
|  | //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) | 
|  | //  br label %merge | 
|  | // | 
|  | // merge: | 
|  | //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] | 
|  | //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* | 
|  | // | 
|  | // In this case, we can not find the bitcast any more. So we insert a new bitcast | 
|  | // no matter there is already one or not. In this way, we can handle all cases, and | 
|  | // the extra bitcast should be optimized away in later passes. | 
|  | Value *ActualRelocatedBase = RelocatedBase; | 
|  | if (RelocatedBase->getType() != Base->getType()) { | 
|  | ActualRelocatedBase = | 
|  | Builder.CreateBitCast(RelocatedBase, Base->getType()); | 
|  | } | 
|  | Value *Replacement = Builder.CreateGEP( | 
|  | Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); | 
|  | Replacement->takeName(ToReplace); | 
|  | // If the newly generated derived pointer's type does not match the original derived | 
|  | // pointer's type, cast the new derived pointer to match it. Same reasoning as above. | 
|  | Value *ActualReplacement = Replacement; | 
|  | if (Replacement->getType() != ToReplace->getType()) { | 
|  | ActualReplacement = | 
|  | Builder.CreateBitCast(Replacement, ToReplace->getType()); | 
|  | } | 
|  | ToReplace->replaceAllUsesWith(ActualReplacement); | 
|  | ToReplace->eraseFromParent(); | 
|  |  | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Turns this: | 
|  | // | 
|  | // %base = ... | 
|  | // %ptr = gep %base + 15 | 
|  | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | 
|  | // %base' = relocate(%tok, i32 4, i32 4) | 
|  | // %ptr' = relocate(%tok, i32 4, i32 5) | 
|  | // %val = load %ptr' | 
|  | // | 
|  | // into this: | 
|  | // | 
|  | // %base = ... | 
|  | // %ptr = gep %base + 15 | 
|  | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | 
|  | // %base' = gc.relocate(%tok, i32 4, i32 4) | 
|  | // %ptr' = gep %base' + 15 | 
|  | // %val = load %ptr' | 
|  | bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { | 
|  | bool MadeChange = false; | 
|  | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; | 
|  |  | 
|  | for (auto *U : I.users()) | 
|  | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) | 
|  | // Collect all the relocate calls associated with a statepoint | 
|  | AllRelocateCalls.push_back(Relocate); | 
|  |  | 
|  | // We need atleast one base pointer relocation + one derived pointer | 
|  | // relocation to mangle | 
|  | if (AllRelocateCalls.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // RelocateInstMap is a mapping from the base relocate instruction to the | 
|  | // corresponding derived relocate instructions | 
|  | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; | 
|  | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); | 
|  | if (RelocateInstMap.empty()) | 
|  | return false; | 
|  |  | 
|  | for (auto &Item : RelocateInstMap) | 
|  | // Item.first is the RelocatedBase to offset against | 
|  | // Item.second is the vector of Targets to replace | 
|  | MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// SinkCast - Sink the specified cast instruction into its user blocks | 
|  | static bool SinkCast(CastInst *CI) { | 
|  | BasicBlock *DefBB = CI->getParent(); | 
|  |  | 
|  | /// InsertedCasts - Only insert a cast in each block once. | 
|  | DenseMap<BasicBlock*, CastInst*> InsertedCasts; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  |  | 
|  | // Figure out which BB this cast is used in.  For PHI's this is the | 
|  | // appropriate predecessor block. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(User)) { | 
|  | UserBB = PN->getIncomingBlock(TheUse); | 
|  | } | 
|  |  | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // If the block selected to receive the cast is an EH pad that does not | 
|  | // allow non-PHI instructions before the terminator, we can't sink the | 
|  | // cast. | 
|  | if (UserBB->getTerminator()->isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // If this user is in the same block as the cast, don't change the cast. | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // If we have already inserted a cast into this block, use it. | 
|  | CastInst *&InsertedCast = InsertedCasts[UserBB]; | 
|  |  | 
|  | if (!InsertedCast) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), | 
|  | CI->getType(), "", &*InsertPt); | 
|  | } | 
|  |  | 
|  | // Replace a use of the cast with a use of the new cast. | 
|  | TheUse = InsertedCast; | 
|  | MadeChange = true; | 
|  | ++NumCastUses; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the cast. | 
|  | if (CI->use_empty()) { | 
|  | CI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// If the specified cast instruction is a noop copy (e.g. it's casting from | 
|  | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to | 
|  | /// reduce the number of virtual registers that must be created and coalesced. | 
|  | /// | 
|  | /// Return true if any changes are made. | 
|  | /// | 
|  | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | // If this is a noop copy, | 
|  | EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, CI->getType()); | 
|  |  | 
|  | // This is an fp<->int conversion? | 
|  | if (SrcVT.isInteger() != DstVT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | // If this is an extension, it will be a zero or sign extension, which | 
|  | // isn't a noop. | 
|  | if (SrcVT.bitsLT(DstVT)) return false; | 
|  |  | 
|  | // If these values will be promoted, find out what they will be promoted | 
|  | // to.  This helps us consider truncates on PPC as noop copies when they | 
|  | // are. | 
|  | if (TLI.getTypeAction(CI->getContext(), SrcVT) == | 
|  | TargetLowering::TypePromoteInteger) | 
|  | SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); | 
|  | if (TLI.getTypeAction(CI->getContext(), DstVT) == | 
|  | TargetLowering::TypePromoteInteger) | 
|  | DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); | 
|  |  | 
|  | // If, after promotion, these are the same types, this is a noop copy. | 
|  | if (SrcVT != DstVT) | 
|  | return false; | 
|  |  | 
|  | return SinkCast(CI); | 
|  | } | 
|  |  | 
|  | /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if | 
|  | /// possible. | 
|  | /// | 
|  | /// Return true if any changes were made. | 
|  | static bool CombineUAddWithOverflow(CmpInst *CI) { | 
|  | Value *A, *B; | 
|  | Instruction *AddI; | 
|  | if (!match(CI, | 
|  | m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) | 
|  | return false; | 
|  |  | 
|  | Type *Ty = AddI->getType(); | 
|  | if (!isa<IntegerType>(Ty)) | 
|  | return false; | 
|  |  | 
|  | // We don't want to move around uses of condition values this late, so we we | 
|  | // check if it is legal to create the call to the intrinsic in the basic | 
|  | // block containing the icmp: | 
|  |  | 
|  | if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption | 
|  | // for now: | 
|  | if (AddI->hasOneUse()) | 
|  | assert(*AddI->user_begin() == CI && "expected!"); | 
|  | #endif | 
|  |  | 
|  | Module *M = CI->getModule(); | 
|  | Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); | 
|  |  | 
|  | auto *InsertPt = AddI->hasOneUse() ? CI : AddI; | 
|  |  | 
|  | auto *UAddWithOverflow = | 
|  | CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); | 
|  | auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); | 
|  | auto *Overflow = | 
|  | ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); | 
|  |  | 
|  | CI->replaceAllUsesWith(Overflow); | 
|  | AddI->replaceAllUsesWith(UAdd); | 
|  | CI->eraseFromParent(); | 
|  | AddI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Sink the given CmpInst into user blocks to reduce the number of virtual | 
|  | /// registers that must be created and coalesced. This is a clear win except on | 
|  | /// targets with multiple condition code registers (PowerPC), where it might | 
|  | /// lose; some adjustment may be wanted there. | 
|  | /// | 
|  | /// Return true if any changes are made. | 
|  | static bool SinkCmpExpression(CmpInst *CI) { | 
|  | BasicBlock *DefBB = CI->getParent(); | 
|  |  | 
|  | /// Only insert a cmp in each block once. | 
|  | DenseMap<BasicBlock*, CmpInst*> InsertedCmps; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  |  | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(User)) | 
|  | continue; | 
|  |  | 
|  | // Figure out which BB this cmp is used in. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  |  | 
|  | // If this user is in the same block as the cmp, don't change the cmp. | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // If we have already inserted a cmp into this block, use it. | 
|  | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; | 
|  |  | 
|  | if (!InsertedCmp) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedCmp = | 
|  | CmpInst::Create(CI->getOpcode(), CI->getPredicate(), | 
|  | CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); | 
|  | } | 
|  |  | 
|  | // Replace a use of the cmp with a use of the new cmp. | 
|  | TheUse = InsertedCmp; | 
|  | MadeChange = true; | 
|  | ++NumCmpUses; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the cmp. | 
|  | if (CI->use_empty()) { | 
|  | CI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static bool OptimizeCmpExpression(CmpInst *CI) { | 
|  | if (SinkCmpExpression(CI)) | 
|  | return true; | 
|  |  | 
|  | if (CombineUAddWithOverflow(CI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if the candidates could be combined with a shift instruction, which | 
|  | /// includes: | 
|  | /// 1. Truncate instruction | 
|  | /// 2. And instruction and the imm is a mask of the low bits: | 
|  | /// imm & (imm+1) == 0 | 
|  | static bool isExtractBitsCandidateUse(Instruction *User) { | 
|  | if (!isa<TruncInst>(User)) { | 
|  | if (User->getOpcode() != Instruction::And || | 
|  | !isa<ConstantInt>(User->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); | 
|  |  | 
|  | if ((Cimm & (Cimm + 1)).getBoolValue()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Sink both shift and truncate instruction to the use of truncate's BB. | 
|  | static bool | 
|  | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, | 
|  | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, | 
|  | const TargetLowering &TLI, const DataLayout &DL) { | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; | 
|  | TruncInst *TruncI = dyn_cast<TruncInst>(User); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (Value::user_iterator TruncUI = TruncI->user_begin(), | 
|  | TruncE = TruncI->user_end(); | 
|  | TruncUI != TruncE;) { | 
|  |  | 
|  | Use &TruncTheUse = TruncUI.getUse(); | 
|  | Instruction *TruncUser = cast<Instruction>(*TruncUI); | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  |  | 
|  | ++TruncUI; | 
|  |  | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); | 
|  | if (!ISDOpcode) | 
|  | continue; | 
|  |  | 
|  | // If the use is actually a legal node, there will not be an | 
|  | // implicit truncate. | 
|  | // FIXME: always querying the result type is just an | 
|  | // approximation; some nodes' legality is determined by the | 
|  | // operand or other means. There's no good way to find out though. | 
|  | if (TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) | 
|  | continue; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(TruncUser)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *TruncUserBB = TruncUser->getParent(); | 
|  |  | 
|  | if (UserBB == TruncUserBB) | 
|  | continue; | 
|  |  | 
|  | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; | 
|  | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; | 
|  |  | 
|  | if (!InsertedShift && !InsertedTrunc) { | 
|  | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != TruncUserBB->end()); | 
|  | // Sink the shift | 
|  | if (ShiftI->getOpcode() == Instruction::AShr) | 
|  | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | else | 
|  | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  |  | 
|  | // Sink the trunc | 
|  | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); | 
|  | TruncInsertPt++; | 
|  | assert(TruncInsertPt != TruncUserBB->end()); | 
|  |  | 
|  | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, | 
|  | TruncI->getType(), "", &*TruncInsertPt); | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | TruncTheUse = InsertedTrunc; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Sink the shift *right* instruction into user blocks if the uses could | 
|  | /// potentially be combined with this shift instruction and generate BitExtract | 
|  | /// instruction. It will only be applied if the architecture supports BitExtract | 
|  | /// instruction. Here is an example: | 
|  | /// BB1: | 
|  | ///   %x.extract.shift = lshr i64 %arg1, 32 | 
|  | /// BB2: | 
|  | ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16 | 
|  | /// ==> | 
|  | /// | 
|  | /// BB2: | 
|  | ///   %x.extract.shift.1 = lshr i64 %arg1, 32 | 
|  | ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 | 
|  | /// | 
|  | /// CodeGen will recoginze the pattern in BB2 and generate BitExtract | 
|  | /// instruction. | 
|  | /// Return true if any changes are made. | 
|  | static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, | 
|  | const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | BasicBlock *DefBB = ShiftI->getParent(); | 
|  |  | 
|  | /// Only insert instructions in each block once. | 
|  | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; | 
|  |  | 
|  | bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); | 
|  | UI != E;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(User)) | 
|  | continue; | 
|  |  | 
|  | if (!isExtractBitsCandidateUse(User)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  |  | 
|  | if (UserBB == DefBB) { | 
|  | // If the shift and truncate instruction are in the same BB. The use of | 
|  | // the truncate(TruncUse) may still introduce another truncate if not | 
|  | // legal. In this case, we would like to sink both shift and truncate | 
|  | // instruction to the BB of TruncUse. | 
|  | // for example: | 
|  | // BB1: | 
|  | // i64 shift.result = lshr i64 opnd, imm | 
|  | // trunc.result = trunc shift.result to i16 | 
|  | // | 
|  | // BB2: | 
|  | //   ----> We will have an implicit truncate here if the architecture does | 
|  | //   not have i16 compare. | 
|  | // cmp i16 trunc.result, opnd2 | 
|  | // | 
|  | if (isa<TruncInst>(User) && shiftIsLegal | 
|  | // If the type of the truncate is legal, no trucate will be | 
|  | // introduced in other basic blocks. | 
|  | && | 
|  | (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) | 
|  | MadeChange = | 
|  | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | // If we have already inserted a shift into this block, use it. | 
|  | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; | 
|  |  | 
|  | if (!InsertedShift) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  |  | 
|  | if (ShiftI->getOpcode() == Instruction::AShr) | 
|  | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | else | 
|  | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  |  | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Replace a use of the shift with a use of the new shift. | 
|  | TheUse = InsertedShift; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the shift. | 
|  | if (ShiftI->use_empty()) | 
|  | ShiftI->eraseFromParent(); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Translate a masked load intrinsic like | 
|  | // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, | 
|  | //                               <16 x i1> %mask, <16 x i32> %passthru) | 
|  | // to a chain of basic blocks, with loading element one-by-one if | 
|  | // the appropriate mask bit is set | 
|  | // | 
|  | //  %1 = bitcast i8* %addr to i32* | 
|  | //  %2 = extractelement <16 x i1> %mask, i32 0 | 
|  | //  %3 = icmp eq i1 %2, true | 
|  | //  br i1 %3, label %cond.load, label %else | 
|  | // | 
|  | //cond.load:                                        ; preds = %0 | 
|  | //  %4 = getelementptr i32* %1, i32 0 | 
|  | //  %5 = load i32* %4 | 
|  | //  %6 = insertelement <16 x i32> undef, i32 %5, i32 0 | 
|  | //  br label %else | 
|  | // | 
|  | //else:                                             ; preds = %0, %cond.load | 
|  | //  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] | 
|  | //  %7 = extractelement <16 x i1> %mask, i32 1 | 
|  | //  %8 = icmp eq i1 %7, true | 
|  | //  br i1 %8, label %cond.load1, label %else2 | 
|  | // | 
|  | //cond.load1:                                       ; preds = %else | 
|  | //  %9 = getelementptr i32* %1, i32 1 | 
|  | //  %10 = load i32* %9 | 
|  | //  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 | 
|  | //  br label %else2 | 
|  | // | 
|  | //else2:                                            ; preds = %else, %cond.load1 | 
|  | //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] | 
|  | //  %12 = extractelement <16 x i1> %mask, i32 2 | 
|  | //  %13 = icmp eq i1 %12, true | 
|  | //  br i1 %13, label %cond.load4, label %else5 | 
|  | // | 
|  | static void scalarizeMaskedLoad(CallInst *CI) { | 
|  | Value *Ptr  = CI->getArgOperand(0); | 
|  | Value *Alignment = CI->getArgOperand(1); | 
|  | Value *Mask = CI->getArgOperand(2); | 
|  | Value *Src0 = CI->getArgOperand(3); | 
|  |  | 
|  | unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); | 
|  | VectorType *VecType = dyn_cast<VectorType>(CI->getType()); | 
|  | assert(VecType && "Unexpected return type of masked load intrinsic"); | 
|  |  | 
|  | Type *EltTy = CI->getType()->getVectorElementType(); | 
|  |  | 
|  | IRBuilder<> Builder(CI->getContext()); | 
|  | Instruction *InsertPt = CI; | 
|  | BasicBlock *IfBlock = CI->getParent(); | 
|  | BasicBlock *CondBlock = nullptr; | 
|  | BasicBlock *PrevIfBlock = CI->getParent(); | 
|  |  | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); | 
|  |  | 
|  | // Short-cut if the mask is all-true. | 
|  | bool IsAllOnesMask = isa<Constant>(Mask) && | 
|  | cast<Constant>(Mask)->isAllOnesValue(); | 
|  |  | 
|  | if (IsAllOnesMask) { | 
|  | Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); | 
|  | CI->replaceAllUsesWith(NewI); | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Adjust alignment for the scalar instruction. | 
|  | AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); | 
|  | // Bitcast %addr fron i8* to EltTy* | 
|  | Type *NewPtrType = | 
|  | EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); | 
|  | Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); | 
|  | unsigned VectorWidth = VecType->getNumElements(); | 
|  |  | 
|  | Value *UndefVal = UndefValue::get(VecType); | 
|  |  | 
|  | // The result vector | 
|  | Value *VResult = UndefVal; | 
|  |  | 
|  | if (isa<ConstantVector>(Mask)) { | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  | if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) | 
|  | continue; | 
|  | Value *Gep = | 
|  | Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); | 
|  | LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); | 
|  | VResult = Builder.CreateInsertElement(VResult, Load, | 
|  | Builder.getInt32(Idx)); | 
|  | } | 
|  | Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); | 
|  | CI->replaceAllUsesWith(NewI); | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PHINode *Phi = nullptr; | 
|  | Value *PrevPhi = UndefVal; | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  |  | 
|  | // Fill the "else" block, created in the previous iteration | 
|  | // | 
|  | //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] | 
|  | //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx | 
|  | //  %to_load = icmp eq i1 %mask_1, true | 
|  | //  br i1 %to_load, label %cond.load, label %else | 
|  | // | 
|  | if (Idx > 0) { | 
|  | Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); | 
|  | Phi->addIncoming(VResult, CondBlock); | 
|  | Phi->addIncoming(PrevPhi, PrevIfBlock); | 
|  | PrevPhi = Phi; | 
|  | VResult = Phi; | 
|  | } | 
|  |  | 
|  | Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); | 
|  | Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, | 
|  | ConstantInt::get(Predicate->getType(), 1)); | 
|  |  | 
|  | // Create "cond" block | 
|  | // | 
|  | //  %EltAddr = getelementptr i32* %1, i32 0 | 
|  | //  %Elt = load i32* %EltAddr | 
|  | //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx | 
|  | // | 
|  | CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  |  | 
|  | Value *Gep = | 
|  | Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); | 
|  | LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); | 
|  | VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); | 
|  |  | 
|  | // Create "else" block, fill it in the next iteration | 
|  | BasicBlock *NewIfBlock = | 
|  | CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Instruction *OldBr = IfBlock->getTerminator(); | 
|  | BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); | 
|  | OldBr->eraseFromParent(); | 
|  | PrevIfBlock = IfBlock; | 
|  | IfBlock = NewIfBlock; | 
|  | } | 
|  |  | 
|  | Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); | 
|  | Phi->addIncoming(VResult, CondBlock); | 
|  | Phi->addIncoming(PrevPhi, PrevIfBlock); | 
|  | Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); | 
|  | CI->replaceAllUsesWith(NewI); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Translate a masked store intrinsic, like | 
|  | // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, | 
|  | //                               <16 x i1> %mask) | 
|  | // to a chain of basic blocks, that stores element one-by-one if | 
|  | // the appropriate mask bit is set | 
|  | // | 
|  | //   %1 = bitcast i8* %addr to i32* | 
|  | //   %2 = extractelement <16 x i1> %mask, i32 0 | 
|  | //   %3 = icmp eq i1 %2, true | 
|  | //   br i1 %3, label %cond.store, label %else | 
|  | // | 
|  | // cond.store:                                       ; preds = %0 | 
|  | //   %4 = extractelement <16 x i32> %val, i32 0 | 
|  | //   %5 = getelementptr i32* %1, i32 0 | 
|  | //   store i32 %4, i32* %5 | 
|  | //   br label %else | 
|  | // | 
|  | // else:                                             ; preds = %0, %cond.store | 
|  | //   %6 = extractelement <16 x i1> %mask, i32 1 | 
|  | //   %7 = icmp eq i1 %6, true | 
|  | //   br i1 %7, label %cond.store1, label %else2 | 
|  | // | 
|  | // cond.store1:                                      ; preds = %else | 
|  | //   %8 = extractelement <16 x i32> %val, i32 1 | 
|  | //   %9 = getelementptr i32* %1, i32 1 | 
|  | //   store i32 %8, i32* %9 | 
|  | //   br label %else2 | 
|  | //   . . . | 
|  | static void scalarizeMaskedStore(CallInst *CI) { | 
|  | Value *Src = CI->getArgOperand(0); | 
|  | Value *Ptr  = CI->getArgOperand(1); | 
|  | Value *Alignment = CI->getArgOperand(2); | 
|  | Value *Mask = CI->getArgOperand(3); | 
|  |  | 
|  | unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); | 
|  | VectorType *VecType = dyn_cast<VectorType>(Src->getType()); | 
|  | assert(VecType && "Unexpected data type in masked store intrinsic"); | 
|  |  | 
|  | Type *EltTy = VecType->getElementType(); | 
|  |  | 
|  | IRBuilder<> Builder(CI->getContext()); | 
|  | Instruction *InsertPt = CI; | 
|  | BasicBlock *IfBlock = CI->getParent(); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); | 
|  |  | 
|  | // Short-cut if the mask is all-true. | 
|  | bool IsAllOnesMask = isa<Constant>(Mask) && | 
|  | cast<Constant>(Mask)->isAllOnesValue(); | 
|  |  | 
|  | if (IsAllOnesMask) { | 
|  | Builder.CreateAlignedStore(Src, Ptr, AlignVal); | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Adjust alignment for the scalar instruction. | 
|  | AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); | 
|  | // Bitcast %addr fron i8* to EltTy* | 
|  | Type *NewPtrType = | 
|  | EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); | 
|  | Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); | 
|  | unsigned VectorWidth = VecType->getNumElements(); | 
|  |  | 
|  | if (isa<ConstantVector>(Mask)) { | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  | if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) | 
|  | continue; | 
|  | Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); | 
|  | Value *Gep = | 
|  | Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); | 
|  | Builder.CreateAlignedStore(OneElt, Gep, AlignVal); | 
|  | } | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  |  | 
|  | // Fill the "else" block, created in the previous iteration | 
|  | // | 
|  | //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx | 
|  | //  %to_store = icmp eq i1 %mask_1, true | 
|  | //  br i1 %to_store, label %cond.store, label %else | 
|  | // | 
|  | Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); | 
|  | Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, | 
|  | ConstantInt::get(Predicate->getType(), 1)); | 
|  |  | 
|  | // Create "cond" block | 
|  | // | 
|  | //  %OneElt = extractelement <16 x i32> %Src, i32 Idx | 
|  | //  %EltAddr = getelementptr i32* %1, i32 0 | 
|  | //  %store i32 %OneElt, i32* %EltAddr | 
|  | // | 
|  | BasicBlock *CondBlock = | 
|  | IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  |  | 
|  | Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); | 
|  | Value *Gep = | 
|  | Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); | 
|  | Builder.CreateAlignedStore(OneElt, Gep, AlignVal); | 
|  |  | 
|  | // Create "else" block, fill it in the next iteration | 
|  | BasicBlock *NewIfBlock = | 
|  | CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Instruction *OldBr = IfBlock->getTerminator(); | 
|  | BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); | 
|  | OldBr->eraseFromParent(); | 
|  | IfBlock = NewIfBlock; | 
|  | } | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Translate a masked gather intrinsic like | 
|  | // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, | 
|  | //                               <16 x i1> %Mask, <16 x i32> %Src) | 
|  | // to a chain of basic blocks, with loading element one-by-one if | 
|  | // the appropriate mask bit is set | 
|  | // | 
|  | // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind | 
|  | // % Mask0 = extractelement <16 x i1> %Mask, i32 0 | 
|  | // % ToLoad0 = icmp eq i1 % Mask0, true | 
|  | // br i1 % ToLoad0, label %cond.load, label %else | 
|  | // | 
|  | // cond.load: | 
|  | // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 | 
|  | // % Load0 = load i32, i32* % Ptr0, align 4 | 
|  | // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 | 
|  | // br label %else | 
|  | // | 
|  | // else: | 
|  | // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] | 
|  | // % Mask1 = extractelement <16 x i1> %Mask, i32 1 | 
|  | // % ToLoad1 = icmp eq i1 % Mask1, true | 
|  | // br i1 % ToLoad1, label %cond.load1, label %else2 | 
|  | // | 
|  | // cond.load1: | 
|  | // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 | 
|  | // % Load1 = load i32, i32* % Ptr1, align 4 | 
|  | // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 | 
|  | // br label %else2 | 
|  | // . . . | 
|  | // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src | 
|  | // ret <16 x i32> %Result | 
|  | static void scalarizeMaskedGather(CallInst *CI) { | 
|  | Value *Ptrs = CI->getArgOperand(0); | 
|  | Value *Alignment = CI->getArgOperand(1); | 
|  | Value *Mask = CI->getArgOperand(2); | 
|  | Value *Src0 = CI->getArgOperand(3); | 
|  |  | 
|  | VectorType *VecType = dyn_cast<VectorType>(CI->getType()); | 
|  |  | 
|  | assert(VecType && "Unexpected return type of masked load intrinsic"); | 
|  |  | 
|  | IRBuilder<> Builder(CI->getContext()); | 
|  | Instruction *InsertPt = CI; | 
|  | BasicBlock *IfBlock = CI->getParent(); | 
|  | BasicBlock *CondBlock = nullptr; | 
|  | BasicBlock *PrevIfBlock = CI->getParent(); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); | 
|  |  | 
|  | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); | 
|  |  | 
|  | Value *UndefVal = UndefValue::get(VecType); | 
|  |  | 
|  | // The result vector | 
|  | Value *VResult = UndefVal; | 
|  | unsigned VectorWidth = VecType->getNumElements(); | 
|  |  | 
|  | // Shorten the way if the mask is a vector of constants. | 
|  | bool IsConstMask = isa<ConstantVector>(Mask); | 
|  |  | 
|  | if (IsConstMask) { | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  | if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) | 
|  | continue; | 
|  | Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), | 
|  | "Ptr" + Twine(Idx)); | 
|  | LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, | 
|  | "Load" + Twine(Idx)); | 
|  | VResult = Builder.CreateInsertElement(VResult, Load, | 
|  | Builder.getInt32(Idx), | 
|  | "Res" + Twine(Idx)); | 
|  | } | 
|  | Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); | 
|  | CI->replaceAllUsesWith(NewI); | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PHINode *Phi = nullptr; | 
|  | Value *PrevPhi = UndefVal; | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  |  | 
|  | // Fill the "else" block, created in the previous iteration | 
|  | // | 
|  | //  %Mask1 = extractelement <16 x i1> %Mask, i32 1 | 
|  | //  %ToLoad1 = icmp eq i1 %Mask1, true | 
|  | //  br i1 %ToLoad1, label %cond.load, label %else | 
|  | // | 
|  | if (Idx > 0) { | 
|  | Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); | 
|  | Phi->addIncoming(VResult, CondBlock); | 
|  | Phi->addIncoming(PrevPhi, PrevIfBlock); | 
|  | PrevPhi = Phi; | 
|  | VResult = Phi; | 
|  | } | 
|  |  | 
|  | Value *Predicate = Builder.CreateExtractElement(Mask, | 
|  | Builder.getInt32(Idx), | 
|  | "Mask" + Twine(Idx)); | 
|  | Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, | 
|  | ConstantInt::get(Predicate->getType(), 1), | 
|  | "ToLoad" + Twine(Idx)); | 
|  |  | 
|  | // Create "cond" block | 
|  | // | 
|  | //  %EltAddr = getelementptr i32* %1, i32 0 | 
|  | //  %Elt = load i32* %EltAddr | 
|  | //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx | 
|  | // | 
|  | CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  |  | 
|  | Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), | 
|  | "Ptr" + Twine(Idx)); | 
|  | LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, | 
|  | "Load" + Twine(Idx)); | 
|  | VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), | 
|  | "Res" + Twine(Idx)); | 
|  |  | 
|  | // Create "else" block, fill it in the next iteration | 
|  | BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Instruction *OldBr = IfBlock->getTerminator(); | 
|  | BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); | 
|  | OldBr->eraseFromParent(); | 
|  | PrevIfBlock = IfBlock; | 
|  | IfBlock = NewIfBlock; | 
|  | } | 
|  |  | 
|  | Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); | 
|  | Phi->addIncoming(VResult, CondBlock); | 
|  | Phi->addIncoming(PrevPhi, PrevIfBlock); | 
|  | Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); | 
|  | CI->replaceAllUsesWith(NewI); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Translate a masked scatter intrinsic, like | 
|  | // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, | 
|  | //                                  <16 x i1> %Mask) | 
|  | // to a chain of basic blocks, that stores element one-by-one if | 
|  | // the appropriate mask bit is set. | 
|  | // | 
|  | // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind | 
|  | // % Mask0 = extractelement <16 x i1> % Mask, i32 0 | 
|  | // % ToStore0 = icmp eq i1 % Mask0, true | 
|  | // br i1 %ToStore0, label %cond.store, label %else | 
|  | // | 
|  | // cond.store: | 
|  | // % Elt0 = extractelement <16 x i32> %Src, i32 0 | 
|  | // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 | 
|  | // store i32 %Elt0, i32* % Ptr0, align 4 | 
|  | // br label %else | 
|  | // | 
|  | // else: | 
|  | // % Mask1 = extractelement <16 x i1> % Mask, i32 1 | 
|  | // % ToStore1 = icmp eq i1 % Mask1, true | 
|  | // br i1 % ToStore1, label %cond.store1, label %else2 | 
|  | // | 
|  | // cond.store1: | 
|  | // % Elt1 = extractelement <16 x i32> %Src, i32 1 | 
|  | // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 | 
|  | // store i32 % Elt1, i32* % Ptr1, align 4 | 
|  | // br label %else2 | 
|  | //   . . . | 
|  | static void scalarizeMaskedScatter(CallInst *CI) { | 
|  | Value *Src = CI->getArgOperand(0); | 
|  | Value *Ptrs = CI->getArgOperand(1); | 
|  | Value *Alignment = CI->getArgOperand(2); | 
|  | Value *Mask = CI->getArgOperand(3); | 
|  |  | 
|  | assert(isa<VectorType>(Src->getType()) && | 
|  | "Unexpected data type in masked scatter intrinsic"); | 
|  | assert(isa<VectorType>(Ptrs->getType()) && | 
|  | isa<PointerType>(Ptrs->getType()->getVectorElementType()) && | 
|  | "Vector of pointers is expected in masked scatter intrinsic"); | 
|  |  | 
|  | IRBuilder<> Builder(CI->getContext()); | 
|  | Instruction *InsertPt = CI; | 
|  | BasicBlock *IfBlock = CI->getParent(); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); | 
|  |  | 
|  | unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); | 
|  | unsigned VectorWidth = Src->getType()->getVectorNumElements(); | 
|  |  | 
|  | // Shorten the way if the mask is a vector of constants. | 
|  | bool IsConstMask = isa<ConstantVector>(Mask); | 
|  |  | 
|  | if (IsConstMask) { | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  | if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) | 
|  | continue; | 
|  | Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), | 
|  | "Elt" + Twine(Idx)); | 
|  | Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), | 
|  | "Ptr" + Twine(Idx)); | 
|  | Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); | 
|  | } | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  | for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { | 
|  | // Fill the "else" block, created in the previous iteration | 
|  | // | 
|  | //  % Mask1 = extractelement <16 x i1> % Mask, i32 Idx | 
|  | //  % ToStore = icmp eq i1 % Mask1, true | 
|  | //  br i1 % ToStore, label %cond.store, label %else | 
|  | // | 
|  | Value *Predicate = Builder.CreateExtractElement(Mask, | 
|  | Builder.getInt32(Idx), | 
|  | "Mask" + Twine(Idx)); | 
|  | Value *Cmp = | 
|  | Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, | 
|  | ConstantInt::get(Predicate->getType(), 1), | 
|  | "ToStore" + Twine(Idx)); | 
|  |  | 
|  | // Create "cond" block | 
|  | // | 
|  | //  % Elt1 = extractelement <16 x i32> %Src, i32 1 | 
|  | //  % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 | 
|  | //  %store i32 % Elt1, i32* % Ptr1 | 
|  | // | 
|  | BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  |  | 
|  | Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), | 
|  | "Elt" + Twine(Idx)); | 
|  | Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), | 
|  | "Ptr" + Twine(Idx)); | 
|  | Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); | 
|  |  | 
|  | // Create "else" block, fill it in the next iteration | 
|  | BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | Instruction *OldBr = IfBlock->getTerminator(); | 
|  | BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); | 
|  | OldBr->eraseFromParent(); | 
|  | IfBlock = NewIfBlock; | 
|  | } | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// If counting leading or trailing zeros is an expensive operation and a zero | 
|  | /// input is defined, add a check for zero to avoid calling the intrinsic. | 
|  | /// | 
|  | /// We want to transform: | 
|  | ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) | 
|  | /// | 
|  | /// into: | 
|  | ///   entry: | 
|  | ///     %cmpz = icmp eq i64 %A, 0 | 
|  | ///     br i1 %cmpz, label %cond.end, label %cond.false | 
|  | ///   cond.false: | 
|  | ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) | 
|  | ///     br label %cond.end | 
|  | ///   cond.end: | 
|  | ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] | 
|  | /// | 
|  | /// If the transform is performed, return true and set ModifiedDT to true. | 
|  | static bool despeculateCountZeros(IntrinsicInst *CountZeros, | 
|  | const TargetLowering *TLI, | 
|  | const DataLayout *DL, | 
|  | bool &ModifiedDT) { | 
|  | if (!TLI || !DL) | 
|  | return false; | 
|  |  | 
|  | // If a zero input is undefined, it doesn't make sense to despeculate that. | 
|  | if (match(CountZeros->getOperand(1), m_One())) | 
|  | return false; | 
|  |  | 
|  | // If it's cheap to speculate, there's nothing to do. | 
|  | auto IntrinsicID = CountZeros->getIntrinsicID(); | 
|  | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || | 
|  | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) | 
|  | return false; | 
|  |  | 
|  | // Only handle legal scalar cases. Anything else requires too much work. | 
|  | Type *Ty = CountZeros->getType(); | 
|  | unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); | 
|  | if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) | 
|  | return false; | 
|  |  | 
|  | // The intrinsic will be sunk behind a compare against zero and branch. | 
|  | BasicBlock *StartBlock = CountZeros->getParent(); | 
|  | BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); | 
|  |  | 
|  | // Create another block after the count zero intrinsic. A PHI will be added | 
|  | // in this block to select the result of the intrinsic or the bit-width | 
|  | // constant if the input to the intrinsic is zero. | 
|  | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); | 
|  | BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); | 
|  |  | 
|  | // Set up a builder to create a compare, conditional branch, and PHI. | 
|  | IRBuilder<> Builder(CountZeros->getContext()); | 
|  | Builder.SetInsertPoint(StartBlock->getTerminator()); | 
|  | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); | 
|  |  | 
|  | // Replace the unconditional branch that was created by the first split with | 
|  | // a compare against zero and a conditional branch. | 
|  | Value *Zero = Constant::getNullValue(Ty); | 
|  | Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); | 
|  | Builder.CreateCondBr(Cmp, EndBlock, CallBlock); | 
|  | StartBlock->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Create a PHI in the end block to select either the output of the intrinsic | 
|  | // or the bit width of the operand. | 
|  | Builder.SetInsertPoint(&EndBlock->front()); | 
|  | PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); | 
|  | CountZeros->replaceAllUsesWith(PN); | 
|  | Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); | 
|  | PN->addIncoming(BitWidth, StartBlock); | 
|  | PN->addIncoming(CountZeros, CallBlock); | 
|  |  | 
|  | // We are explicitly handling the zero case, so we can set the intrinsic's | 
|  | // undefined zero argument to 'true'. This will also prevent reprocessing the | 
|  | // intrinsic; we only despeculate when a zero input is defined. | 
|  | CountZeros->setArgOperand(1, Builder.getTrue()); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { | 
|  | BasicBlock *BB = CI->getParent(); | 
|  |  | 
|  | // Lower inline assembly if we can. | 
|  | // If we found an inline asm expession, and if the target knows how to | 
|  | // lower it to normal LLVM code, do so now. | 
|  | if (TLI && isa<InlineAsm>(CI->getCalledValue())) { | 
|  | if (TLI->ExpandInlineAsm(CI)) { | 
|  | // Avoid invalidating the iterator. | 
|  | CurInstIterator = BB->begin(); | 
|  | // Avoid processing instructions out of order, which could cause | 
|  | // reuse before a value is defined. | 
|  | SunkAddrs.clear(); | 
|  | return true; | 
|  | } | 
|  | // Sink address computing for memory operands into the block. | 
|  | if (optimizeInlineAsmInst(CI)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Align the pointer arguments to this call if the target thinks it's a good | 
|  | // idea | 
|  | unsigned MinSize, PrefAlign; | 
|  | if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { | 
|  | for (auto &Arg : CI->arg_operands()) { | 
|  | // We want to align both objects whose address is used directly and | 
|  | // objects whose address is used in casts and GEPs, though it only makes | 
|  | // sense for GEPs if the offset is a multiple of the desired alignment and | 
|  | // if size - offset meets the size threshold. | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | APInt Offset(DL->getPointerSizeInBits( | 
|  | cast<PointerType>(Arg->getType())->getAddressSpace()), | 
|  | 0); | 
|  | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); | 
|  | uint64_t Offset2 = Offset.getLimitedValue(); | 
|  | if ((Offset2 & (PrefAlign-1)) != 0) | 
|  | continue; | 
|  | AllocaInst *AI; | 
|  | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && | 
|  | DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) | 
|  | AI->setAlignment(PrefAlign); | 
|  | // Global variables can only be aligned if they are defined in this | 
|  | // object (i.e. they are uniquely initialized in this object), and | 
|  | // over-aligning global variables that have an explicit section is | 
|  | // forbidden. | 
|  | GlobalVariable *GV; | 
|  | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && | 
|  | GV->getAlignment() < PrefAlign && | 
|  | DL->getTypeAllocSize(GV->getValueType()) >= | 
|  | MinSize + Offset2) | 
|  | GV->setAlignment(PrefAlign); | 
|  | } | 
|  | // If this is a memcpy (or similar) then we may be able to improve the | 
|  | // alignment | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { | 
|  | unsigned Align = getKnownAlignment(MI->getDest(), *DL); | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); | 
|  | if (Align > MI->getAlignment()) | 
|  | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); | 
|  | } | 
|  | } | 
|  |  | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | 
|  | if (II) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::objectsize: { | 
|  | // Lower all uses of llvm.objectsize.* | 
|  | bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); | 
|  | Type *ReturnTy = CI->getType(); | 
|  | Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); | 
|  |  | 
|  | // Substituting this can cause recursive simplifications, which can | 
|  | // invalidate our iterator.  Use a WeakVH to hold onto it in case this | 
|  | // happens. | 
|  | WeakVH IterHandle(&*CurInstIterator); | 
|  |  | 
|  | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | 
|  |  | 
|  | // If the iterator instruction was recursively deleted, start over at the | 
|  | // start of the block. | 
|  | if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { | 
|  | CurInstIterator = BB->begin(); | 
|  | SunkAddrs.clear(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::masked_load: { | 
|  | // Scalarize unsupported vector masked load | 
|  | if (!TTI->isLegalMaskedLoad(CI->getType())) { | 
|  | scalarizeMaskedLoad(CI); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Intrinsic::masked_store: { | 
|  | if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { | 
|  | scalarizeMaskedStore(CI); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Intrinsic::masked_gather: { | 
|  | if (!TTI->isLegalMaskedGather(CI->getType())) { | 
|  | scalarizeMaskedGather(CI); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Intrinsic::masked_scatter: { | 
|  | if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { | 
|  | scalarizeMaskedScatter(CI); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Intrinsic::aarch64_stlxr: | 
|  | case Intrinsic::aarch64_stxr: { | 
|  | ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); | 
|  | if (!ExtVal || !ExtVal->hasOneUse() || | 
|  | ExtVal->getParent() == CI->getParent()) | 
|  | return false; | 
|  | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. | 
|  | ExtVal->moveBefore(CI); | 
|  | // Mark this instruction as "inserted by CGP", so that other | 
|  | // optimizations don't touch it. | 
|  | InsertedInsts.insert(ExtVal); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::invariant_group_barrier: | 
|  | II->replaceAllUsesWith(II->getArgOperand(0)); | 
|  | II->eraseFromParent(); | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::cttz: | 
|  | case Intrinsic::ctlz: | 
|  | // If counting zeros is expensive, try to avoid it. | 
|  | return despeculateCountZeros(II, TLI, DL, ModifiedDT); | 
|  | } | 
|  |  | 
|  | if (TLI) { | 
|  | // Unknown address space. | 
|  | // TODO: Target hook to pick which address space the intrinsic cares | 
|  | // about? | 
|  | unsigned AddrSpace = ~0u; | 
|  | SmallVector<Value*, 2> PtrOps; | 
|  | Type *AccessTy; | 
|  | if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) | 
|  | while (!PtrOps.empty()) | 
|  | if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // From here on out we're working with named functions. | 
|  | if (!CI->getCalledFunction()) return false; | 
|  |  | 
|  | // Lower all default uses of _chk calls.  This is very similar | 
|  | // to what InstCombineCalls does, but here we are only lowering calls | 
|  | // to fortified library functions (e.g. __memcpy_chk) that have the default | 
|  | // "don't know" as the objectsize.  Anything else should be left alone. | 
|  | FortifiedLibCallSimplifier Simplifier(TLInfo, true); | 
|  | if (Value *V = Simplifier.optimizeCall(CI)) { | 
|  | CI->replaceAllUsesWith(V); | 
|  | CI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Look for opportunities to duplicate return instructions to the predecessor | 
|  | /// to enable tail call optimizations. The case it is currently looking for is: | 
|  | /// @code | 
|  | /// bb0: | 
|  | ///   %tmp0 = tail call i32 @f0() | 
|  | ///   br label %return | 
|  | /// bb1: | 
|  | ///   %tmp1 = tail call i32 @f1() | 
|  | ///   br label %return | 
|  | /// bb2: | 
|  | ///   %tmp2 = tail call i32 @f2() | 
|  | ///   br label %return | 
|  | /// return: | 
|  | ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] | 
|  | ///   ret i32 %retval | 
|  | /// @endcode | 
|  | /// | 
|  | /// => | 
|  | /// | 
|  | /// @code | 
|  | /// bb0: | 
|  | ///   %tmp0 = tail call i32 @f0() | 
|  | ///   ret i32 %tmp0 | 
|  | /// bb1: | 
|  | ///   %tmp1 = tail call i32 @f1() | 
|  | ///   ret i32 %tmp1 | 
|  | /// bb2: | 
|  | ///   %tmp2 = tail call i32 @f2() | 
|  | ///   ret i32 %tmp2 | 
|  | /// @endcode | 
|  | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { | 
|  | if (!TLI) | 
|  | return false; | 
|  |  | 
|  | ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); | 
|  | if (!RI) | 
|  | return false; | 
|  |  | 
|  | PHINode *PN = nullptr; | 
|  | BitCastInst *BCI = nullptr; | 
|  | Value *V = RI->getReturnValue(); | 
|  | if (V) { | 
|  | BCI = dyn_cast<BitCastInst>(V); | 
|  | if (BCI) | 
|  | V = BCI->getOperand(0); | 
|  |  | 
|  | PN = dyn_cast<PHINode>(V); | 
|  | if (!PN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (PN && PN->getParent() != BB) | 
|  | return false; | 
|  |  | 
|  | // It's not safe to eliminate the sign / zero extension of the return value. | 
|  | // See llvm::isInTailCallPosition(). | 
|  | const Function *F = BB->getParent(); | 
|  | AttributeSet CallerAttrs = F->getAttributes(); | 
|  | if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || | 
|  | CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | // Make sure there are no instructions between the PHI and return, or that the | 
|  | // return is the first instruction in the block. | 
|  | if (PN) { | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); | 
|  | if (&*BI == BCI) | 
|  | // Also skip over the bitcast. | 
|  | ++BI; | 
|  | if (&*BI != RI) | 
|  | return false; | 
|  | } else { | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | while (isa<DbgInfoIntrinsic>(BI)) ++BI; | 
|  | if (&*BI != RI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail | 
|  | /// call. | 
|  | SmallVector<CallInst*, 4> TailCalls; | 
|  | if (PN) { | 
|  | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | 
|  | CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); | 
|  | // Make sure the phi value is indeed produced by the tail call. | 
|  | if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && | 
|  | TLI->mayBeEmittedAsTailCall(CI)) | 
|  | TailCalls.push_back(CI); | 
|  | } | 
|  | } else { | 
|  | SmallPtrSet<BasicBlock*, 4> VisitedBBs; | 
|  | for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { | 
|  | if (!VisitedBBs.insert(*PI).second) | 
|  | continue; | 
|  |  | 
|  | BasicBlock::InstListType &InstList = (*PI)->getInstList(); | 
|  | BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); | 
|  | BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); | 
|  | do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); | 
|  | if (RI == RE) | 
|  | continue; | 
|  |  | 
|  | CallInst *CI = dyn_cast<CallInst>(&*RI); | 
|  | if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) | 
|  | TailCalls.push_back(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { | 
|  | CallInst *CI = TailCalls[i]; | 
|  | CallSite CS(CI); | 
|  |  | 
|  | // Conservatively require the attributes of the call to match those of the | 
|  | // return. Ignore noalias because it doesn't affect the call sequence. | 
|  | AttributeSet CalleeAttrs = CS.getAttributes(); | 
|  | if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). | 
|  | removeAttribute(Attribute::NoAlias) != | 
|  | AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). | 
|  | removeAttribute(Attribute::NoAlias)) | 
|  | continue; | 
|  |  | 
|  | // Make sure the call instruction is followed by an unconditional branch to | 
|  | // the return block. | 
|  | BasicBlock *CallBB = CI->getParent(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) | 
|  | continue; | 
|  |  | 
|  | // Duplicate the return into CallBB. | 
|  | (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); | 
|  | ModifiedDT = Changed = true; | 
|  | ++NumRetsDup; | 
|  | } | 
|  |  | 
|  | // If we eliminated all predecessors of the block, delete the block now. | 
|  | if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Memory Optimization | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This is an extended version of TargetLowering::AddrMode | 
|  | /// which holds actual Value*'s for register values. | 
|  | struct ExtAddrMode : public TargetLowering::AddrMode { | 
|  | Value *BaseReg; | 
|  | Value *ScaledReg; | 
|  | ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | bool operator==(const ExtAddrMode& O) const { | 
|  | return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && | 
|  | (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && | 
|  | (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { | 
|  | AM.print(OS); | 
|  | return OS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ExtAddrMode::print(raw_ostream &OS) const { | 
|  | bool NeedPlus = false; | 
|  | OS << "["; | 
|  | if (BaseGV) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << "GV:"; | 
|  | BaseGV->printAsOperand(OS, /*PrintType=*/false); | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (BaseOffs) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << BaseOffs; | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (BaseReg) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << "Base:"; | 
|  | BaseReg->printAsOperand(OS, /*PrintType=*/false); | 
|  | NeedPlus = true; | 
|  | } | 
|  | if (Scale) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << Scale << "*"; | 
|  | ScaledReg->printAsOperand(OS, /*PrintType=*/false); | 
|  | } | 
|  |  | 
|  | OS << ']'; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void ExtAddrMode::dump() const { | 
|  | print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// \brief This class provides transaction based operation on the IR. | 
|  | /// Every change made through this class is recorded in the internal state and | 
|  | /// can be undone (rollback) until commit is called. | 
|  | class TypePromotionTransaction { | 
|  |  | 
|  | /// \brief This represents the common interface of the individual transaction. | 
|  | /// Each class implements the logic for doing one specific modification on | 
|  | /// the IR via the TypePromotionTransaction. | 
|  | class TypePromotionAction { | 
|  | protected: | 
|  | /// The Instruction modified. | 
|  | Instruction *Inst; | 
|  |  | 
|  | public: | 
|  | /// \brief Constructor of the action. | 
|  | /// The constructor performs the related action on the IR. | 
|  | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} | 
|  |  | 
|  | virtual ~TypePromotionAction() {} | 
|  |  | 
|  | /// \brief Undo the modification done by this action. | 
|  | /// When this method is called, the IR must be in the same state as it was | 
|  | /// before this action was applied. | 
|  | /// \pre Undoing the action works if and only if the IR is in the exact same | 
|  | /// state as it was directly after this action was applied. | 
|  | virtual void undo() = 0; | 
|  |  | 
|  | /// \brief Advocate every change made by this action. | 
|  | /// When the results on the IR of the action are to be kept, it is important | 
|  | /// to call this function, otherwise hidden information may be kept forever. | 
|  | virtual void commit() { | 
|  | // Nothing to be done, this action is not doing anything. | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Utility to remember the position of an instruction. | 
|  | class InsertionHandler { | 
|  | /// Position of an instruction. | 
|  | /// Either an instruction: | 
|  | /// - Is the first in a basic block: BB is used. | 
|  | /// - Has a previous instructon: PrevInst is used. | 
|  | union { | 
|  | Instruction *PrevInst; | 
|  | BasicBlock *BB; | 
|  | } Point; | 
|  | /// Remember whether or not the instruction had a previous instruction. | 
|  | bool HasPrevInstruction; | 
|  |  | 
|  | public: | 
|  | /// \brief Record the position of \p Inst. | 
|  | InsertionHandler(Instruction *Inst) { | 
|  | BasicBlock::iterator It = Inst->getIterator(); | 
|  | HasPrevInstruction = (It != (Inst->getParent()->begin())); | 
|  | if (HasPrevInstruction) | 
|  | Point.PrevInst = &*--It; | 
|  | else | 
|  | Point.BB = Inst->getParent(); | 
|  | } | 
|  |  | 
|  | /// \brief Insert \p Inst at the recorded position. | 
|  | void insert(Instruction *Inst) { | 
|  | if (HasPrevInstruction) { | 
|  | if (Inst->getParent()) | 
|  | Inst->removeFromParent(); | 
|  | Inst->insertAfter(Point.PrevInst); | 
|  | } else { | 
|  | Instruction *Position = &*Point.BB->getFirstInsertionPt(); | 
|  | if (Inst->getParent()) | 
|  | Inst->moveBefore(Position); | 
|  | else | 
|  | Inst->insertBefore(Position); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Move an instruction before another. | 
|  | class InstructionMoveBefore : public TypePromotionAction { | 
|  | /// Original position of the instruction. | 
|  | InsertionHandler Position; | 
|  |  | 
|  | public: | 
|  | /// \brief Move \p Inst before \p Before. | 
|  | InstructionMoveBefore(Instruction *Inst, Instruction *Before) | 
|  | : TypePromotionAction(Inst), Position(Inst) { | 
|  | DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); | 
|  | Inst->moveBefore(Before); | 
|  | } | 
|  |  | 
|  | /// \brief Move the instruction back to its original position. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); | 
|  | Position.insert(Inst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Set the operand of an instruction with a new value. | 
|  | class OperandSetter : public TypePromotionAction { | 
|  | /// Original operand of the instruction. | 
|  | Value *Origin; | 
|  | /// Index of the modified instruction. | 
|  | unsigned Idx; | 
|  |  | 
|  | public: | 
|  | /// \brief Set \p Idx operand of \p Inst with \p NewVal. | 
|  | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) | 
|  | : TypePromotionAction(Inst), Idx(Idx) { | 
|  | DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" | 
|  | << "for:" << *Inst << "\n" | 
|  | << "with:" << *NewVal << "\n"); | 
|  | Origin = Inst->getOperand(Idx); | 
|  | Inst->setOperand(Idx, NewVal); | 
|  | } | 
|  |  | 
|  | /// \brief Restore the original value of the instruction. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" | 
|  | << "for: " << *Inst << "\n" | 
|  | << "with: " << *Origin << "\n"); | 
|  | Inst->setOperand(Idx, Origin); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Hide the operands of an instruction. | 
|  | /// Do as if this instruction was not using any of its operands. | 
|  | class OperandsHider : public TypePromotionAction { | 
|  | /// The list of original operands. | 
|  | SmallVector<Value *, 4> OriginalValues; | 
|  |  | 
|  | public: | 
|  | /// \brief Remove \p Inst from the uses of the operands of \p Inst. | 
|  | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { | 
|  | DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); | 
|  | unsigned NumOpnds = Inst->getNumOperands(); | 
|  | OriginalValues.reserve(NumOpnds); | 
|  | for (unsigned It = 0; It < NumOpnds; ++It) { | 
|  | // Save the current operand. | 
|  | Value *Val = Inst->getOperand(It); | 
|  | OriginalValues.push_back(Val); | 
|  | // Set a dummy one. | 
|  | // We could use OperandSetter here, but that would imply an overhead | 
|  | // that we are not willing to pay. | 
|  | Inst->setOperand(It, UndefValue::get(Val->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Restore the original list of uses. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); | 
|  | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) | 
|  | Inst->setOperand(It, OriginalValues[It]); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Build a truncate instruction. | 
|  | class TruncBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  | public: | 
|  | /// \brief Build a truncate instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// trunc Opnd to Ty. | 
|  | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { | 
|  | IRBuilder<> Builder(Opnd); | 
|  | Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); | 
|  | DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// \brief Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// \brief Remove the built instruction. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Build a sign extension instruction. | 
|  | class SExtBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  | public: | 
|  | /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// sext Opnd to Ty. | 
|  | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | 
|  | : TypePromotionAction(InsertPt) { | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | Val = Builder.CreateSExt(Opnd, Ty, "promoted"); | 
|  | DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// \brief Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// \brief Remove the built instruction. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Build a zero extension instruction. | 
|  | class ZExtBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  | public: | 
|  | /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// zext Opnd to Ty. | 
|  | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | 
|  | : TypePromotionAction(InsertPt) { | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | Val = Builder.CreateZExt(Opnd, Ty, "promoted"); | 
|  | DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// \brief Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// \brief Remove the built instruction. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Mutate an instruction to another type. | 
|  | class TypeMutator : public TypePromotionAction { | 
|  | /// Record the original type. | 
|  | Type *OrigTy; | 
|  |  | 
|  | public: | 
|  | /// \brief Mutate the type of \p Inst into \p NewTy. | 
|  | TypeMutator(Instruction *Inst, Type *NewTy) | 
|  | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { | 
|  | DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy | 
|  | << "\n"); | 
|  | Inst->mutateType(NewTy); | 
|  | } | 
|  |  | 
|  | /// \brief Mutate the instruction back to its original type. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy | 
|  | << "\n"); | 
|  | Inst->mutateType(OrigTy); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Replace the uses of an instruction by another instruction. | 
|  | class UsesReplacer : public TypePromotionAction { | 
|  | /// Helper structure to keep track of the replaced uses. | 
|  | struct InstructionAndIdx { | 
|  | /// The instruction using the instruction. | 
|  | Instruction *Inst; | 
|  | /// The index where this instruction is used for Inst. | 
|  | unsigned Idx; | 
|  | InstructionAndIdx(Instruction *Inst, unsigned Idx) | 
|  | : Inst(Inst), Idx(Idx) {} | 
|  | }; | 
|  |  | 
|  | /// Keep track of the original uses (pair Instruction, Index). | 
|  | SmallVector<InstructionAndIdx, 4> OriginalUses; | 
|  | typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; | 
|  |  | 
|  | public: | 
|  | /// \brief Replace all the use of \p Inst by \p New. | 
|  | UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { | 
|  | DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New | 
|  | << "\n"); | 
|  | // Record the original uses. | 
|  | for (Use &U : Inst->uses()) { | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  | OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); | 
|  | } | 
|  | // Now, we can replace the uses. | 
|  | Inst->replaceAllUsesWith(New); | 
|  | } | 
|  |  | 
|  | /// \brief Reassign the original uses of Inst to Inst. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); | 
|  | for (use_iterator UseIt = OriginalUses.begin(), | 
|  | EndIt = OriginalUses.end(); | 
|  | UseIt != EndIt; ++UseIt) { | 
|  | UseIt->Inst->setOperand(UseIt->Idx, Inst); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Remove an instruction from the IR. | 
|  | class InstructionRemover : public TypePromotionAction { | 
|  | /// Original position of the instruction. | 
|  | InsertionHandler Inserter; | 
|  | /// Helper structure to hide all the link to the instruction. In other | 
|  | /// words, this helps to do as if the instruction was removed. | 
|  | OperandsHider Hider; | 
|  | /// Keep track of the uses replaced, if any. | 
|  | UsesReplacer *Replacer; | 
|  |  | 
|  | public: | 
|  | /// \brief Remove all reference of \p Inst and optinally replace all its | 
|  | /// uses with New. | 
|  | /// \pre If !Inst->use_empty(), then New != nullptr | 
|  | InstructionRemover(Instruction *Inst, Value *New = nullptr) | 
|  | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), | 
|  | Replacer(nullptr) { | 
|  | if (New) | 
|  | Replacer = new UsesReplacer(Inst, New); | 
|  | DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); | 
|  | Inst->removeFromParent(); | 
|  | } | 
|  |  | 
|  | ~InstructionRemover() override { delete Replacer; } | 
|  |  | 
|  | /// \brief Really remove the instruction. | 
|  | void commit() override { delete Inst; } | 
|  |  | 
|  | /// \brief Resurrect the instruction and reassign it to the proper uses if | 
|  | /// new value was provided when build this action. | 
|  | void undo() override { | 
|  | DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); | 
|  | Inserter.insert(Inst); | 
|  | if (Replacer) | 
|  | Replacer->undo(); | 
|  | Hider.undo(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | public: | 
|  | /// Restoration point. | 
|  | /// The restoration point is a pointer to an action instead of an iterator | 
|  | /// because the iterator may be invalidated but not the pointer. | 
|  | typedef const TypePromotionAction *ConstRestorationPt; | 
|  | /// Advocate every changes made in that transaction. | 
|  | void commit(); | 
|  | /// Undo all the changes made after the given point. | 
|  | void rollback(ConstRestorationPt Point); | 
|  | /// Get the current restoration point. | 
|  | ConstRestorationPt getRestorationPoint() const; | 
|  |  | 
|  | /// \name API for IR modification with state keeping to support rollback. | 
|  | /// @{ | 
|  | /// Same as Instruction::setOperand. | 
|  | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); | 
|  | /// Same as Instruction::eraseFromParent. | 
|  | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); | 
|  | /// Same as Value::replaceAllUsesWith. | 
|  | void replaceAllUsesWith(Instruction *Inst, Value *New); | 
|  | /// Same as Value::mutateType. | 
|  | void mutateType(Instruction *Inst, Type *NewTy); | 
|  | /// Same as IRBuilder::createTrunc. | 
|  | Value *createTrunc(Instruction *Opnd, Type *Ty); | 
|  | /// Same as IRBuilder::createSExt. | 
|  | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); | 
|  | /// Same as IRBuilder::createZExt. | 
|  | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); | 
|  | /// Same as Instruction::moveBefore. | 
|  | void moveBefore(Instruction *Inst, Instruction *Before); | 
|  | /// @} | 
|  |  | 
|  | private: | 
|  | /// The ordered list of actions made so far. | 
|  | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; | 
|  | typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; | 
|  | }; | 
|  |  | 
|  | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, | 
|  | Value *NewVal) { | 
|  | Actions.push_back( | 
|  | make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, | 
|  | Value *NewVal) { | 
|  | Actions.push_back( | 
|  | make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, | 
|  | Value *New) { | 
|  | Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { | 
|  | Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, | 
|  | Type *Ty) { | 
|  | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createSExt(Instruction *Inst, | 
|  | Value *Opnd, Type *Ty) { | 
|  | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createZExt(Instruction *Inst, | 
|  | Value *Opnd, Type *Ty) { | 
|  | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::moveBefore(Instruction *Inst, | 
|  | Instruction *Before) { | 
|  | Actions.push_back( | 
|  | make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); | 
|  | } | 
|  |  | 
|  | TypePromotionTransaction::ConstRestorationPt | 
|  | TypePromotionTransaction::getRestorationPoint() const { | 
|  | return !Actions.empty() ? Actions.back().get() : nullptr; | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::commit() { | 
|  | for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; | 
|  | ++It) | 
|  | (*It)->commit(); | 
|  | Actions.clear(); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::rollback( | 
|  | TypePromotionTransaction::ConstRestorationPt Point) { | 
|  | while (!Actions.empty() && Point != Actions.back().get()) { | 
|  | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); | 
|  | Curr->undo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief A helper class for matching addressing modes. | 
|  | /// | 
|  | /// This encapsulates the logic for matching the target-legal addressing modes. | 
|  | class AddressingModeMatcher { | 
|  | SmallVectorImpl<Instruction*> &AddrModeInsts; | 
|  | const TargetMachine &TM; | 
|  | const TargetLowering &TLI; | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and | 
|  | /// the memory instruction that we're computing this address for. | 
|  | Type *AccessTy; | 
|  | unsigned AddrSpace; | 
|  | Instruction *MemoryInst; | 
|  |  | 
|  | /// This is the addressing mode that we're building up. This is | 
|  | /// part of the return value of this addressing mode matching stuff. | 
|  | ExtAddrMode &AddrMode; | 
|  |  | 
|  | /// The instructions inserted by other CodeGenPrepare optimizations. | 
|  | const SetOfInstrs &InsertedInsts; | 
|  | /// A map from the instructions to their type before promotion. | 
|  | InstrToOrigTy &PromotedInsts; | 
|  | /// The ongoing transaction where every action should be registered. | 
|  | TypePromotionTransaction &TPT; | 
|  |  | 
|  | /// This is set to true when we should not do profitability checks. | 
|  | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. | 
|  | bool IgnoreProfitability; | 
|  |  | 
|  | AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, | 
|  | const TargetMachine &TM, Type *AT, unsigned AS, | 
|  | Instruction *MI, ExtAddrMode &AM, | 
|  | const SetOfInstrs &InsertedInsts, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | TypePromotionTransaction &TPT) | 
|  | : AddrModeInsts(AMI), TM(TM), | 
|  | TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) | 
|  | ->getTargetLowering()), | 
|  | DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), | 
|  | MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), | 
|  | PromotedInsts(PromotedInsts), TPT(TPT) { | 
|  | IgnoreProfitability = false; | 
|  | } | 
|  | public: | 
|  |  | 
|  | /// Find the maximal addressing mode that a load/store of V can fold, | 
|  | /// give an access type of AccessTy.  This returns a list of involved | 
|  | /// instructions in AddrModeInsts. | 
|  | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare | 
|  | /// optimizations. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p The ongoing transaction where every action should be registered. | 
|  | static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, | 
|  | Instruction *MemoryInst, | 
|  | SmallVectorImpl<Instruction*> &AddrModeInsts, | 
|  | const TargetMachine &TM, | 
|  | const SetOfInstrs &InsertedInsts, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | TypePromotionTransaction &TPT) { | 
|  | ExtAddrMode Result; | 
|  |  | 
|  | bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, | 
|  | MemoryInst, Result, InsertedInsts, | 
|  | PromotedInsts, TPT).matchAddr(V, 0); | 
|  | (void)Success; assert(Success && "Couldn't select *anything*?"); | 
|  | return Result; | 
|  | } | 
|  | private: | 
|  | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); | 
|  | bool matchAddr(Value *V, unsigned Depth); | 
|  | bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, | 
|  | bool *MovedAway = nullptr); | 
|  | bool isProfitableToFoldIntoAddressingMode(Instruction *I, | 
|  | ExtAddrMode &AMBefore, | 
|  | ExtAddrMode &AMAfter); | 
|  | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); | 
|  | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, | 
|  | Value *PromotedOperand) const; | 
|  | }; | 
|  |  | 
|  | /// Try adding ScaleReg*Scale to the current addressing mode. | 
|  | /// Return true and update AddrMode if this addr mode is legal for the target, | 
|  | /// false if not. | 
|  | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, | 
|  | unsigned Depth) { | 
|  | // If Scale is 1, then this is the same as adding ScaleReg to the addressing | 
|  | // mode.  Just process that directly. | 
|  | if (Scale == 1) | 
|  | return matchAddr(ScaleReg, Depth); | 
|  |  | 
|  | // If the scale is 0, it takes nothing to add this. | 
|  | if (Scale == 0) | 
|  | return true; | 
|  |  | 
|  | // If we already have a scale of this value, we can add to it, otherwise, we | 
|  | // need an available scale field. | 
|  | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) | 
|  | return false; | 
|  |  | 
|  | ExtAddrMode TestAddrMode = AddrMode; | 
|  |  | 
|  | // Add scale to turn X*4+X*3 -> X*7.  This could also do things like | 
|  | // [A+B + A*7] -> [B+A*8]. | 
|  | TestAddrMode.Scale += Scale; | 
|  | TestAddrMode.ScaledReg = ScaleReg; | 
|  |  | 
|  | // If the new address isn't legal, bail out. | 
|  | if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) | 
|  | return false; | 
|  |  | 
|  | // It was legal, so commit it. | 
|  | AddrMode = TestAddrMode; | 
|  |  | 
|  | // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now | 
|  | // to see if ScaleReg is actually X+C.  If so, we can turn this into adding | 
|  | // X*Scale + C*Scale to addr mode. | 
|  | ConstantInt *CI = nullptr; Value *AddLHS = nullptr; | 
|  | if (isa<Instruction>(ScaleReg) &&  // not a constant expr. | 
|  | match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { | 
|  | TestAddrMode.ScaledReg = AddLHS; | 
|  | TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; | 
|  |  | 
|  | // If this addressing mode is legal, commit it and remember that we folded | 
|  | // this instruction. | 
|  | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { | 
|  | AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); | 
|  | AddrMode = TestAddrMode; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, not (x+c)*scale, just return what we have. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This is a little filter, which returns true if an addressing computation | 
|  | /// involving I might be folded into a load/store accessing it. | 
|  | /// This doesn't need to be perfect, but needs to accept at least | 
|  | /// the set of instructions that MatchOperationAddr can. | 
|  | static bool MightBeFoldableInst(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | // Don't touch identity bitcasts. | 
|  | if (I->getType() == I->getOperand(0)->getType()) | 
|  | return false; | 
|  | return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); | 
|  | case Instruction::PtrToInt: | 
|  | // PtrToInt is always a noop, as we know that the int type is pointer sized. | 
|  | return true; | 
|  | case Instruction::IntToPtr: | 
|  | // We know the input is intptr_t, so this is foldable. | 
|  | return true; | 
|  | case Instruction::Add: | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | // Can only handle X*C and X << C. | 
|  | return isa<ConstantInt>(I->getOperand(1)); | 
|  | case Instruction::GetElementPtr: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Check whether or not \p Val is a legal instruction for \p TLI. | 
|  | /// \note \p Val is assumed to be the product of some type promotion. | 
|  | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed | 
|  | /// to be legal, as the non-promoted value would have had the same state. | 
|  | static bool isPromotedInstructionLegal(const TargetLowering &TLI, | 
|  | const DataLayout &DL, Value *Val) { | 
|  | Instruction *PromotedInst = dyn_cast<Instruction>(Val); | 
|  | if (!PromotedInst) | 
|  | return false; | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); | 
|  | // If the ISDOpcode is undefined, it was undefined before the promotion. | 
|  | if (!ISDOpcode) | 
|  | return true; | 
|  | // Otherwise, check if the promoted instruction is legal or not. | 
|  | return TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); | 
|  | } | 
|  |  | 
|  | /// \brief Hepler class to perform type promotion. | 
|  | class TypePromotionHelper { | 
|  | /// \brief Utility function to check whether or not a sign or zero extension | 
|  | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by | 
|  | /// either using the operands of \p Inst or promoting \p Inst. | 
|  | /// The type of the extension is defined by \p IsSExt. | 
|  | /// In other words, check if: | 
|  | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. | 
|  | /// #1 Promotion applies: | 
|  | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). | 
|  | /// #2 Operand reuses: | 
|  | /// ext opnd1 to ConsideredExtType. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, | 
|  | const InstrToOrigTy &PromotedInsts, bool IsSExt); | 
|  |  | 
|  | /// \brief Utility function to determine if \p OpIdx should be promoted when | 
|  | /// promoting \p Inst. | 
|  | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { | 
|  | return !(isa<SelectInst>(Inst) && OpIdx == 0); | 
|  | } | 
|  |  | 
|  | /// \brief Utility function to promote the operand of \p Ext when this | 
|  | /// operand is a promotable trunc or sext or zext. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p CreatedInstsCost[out] contains the cost of all instructions | 
|  | /// created to promote the operand of Ext. | 
|  | /// Newly added extensions are inserted in \p Exts. | 
|  | /// Newly added truncates are inserted in \p Truncs. | 
|  | /// Should never be called directly. | 
|  | /// \return The promoted value which is used instead of Ext. | 
|  | static Value *promoteOperandForTruncAndAnyExt( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); | 
|  |  | 
|  | /// \brief Utility function to promote the operand of \p Ext when this | 
|  | /// operand is promotable and is not a supported trunc or sext. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p CreatedInstsCost[out] contains the cost of all the instructions | 
|  | /// created to promote the operand of Ext. | 
|  | /// Newly added extensions are inserted in \p Exts. | 
|  | /// Newly added truncates are inserted in \p Truncs. | 
|  | /// Should never be called directly. | 
|  | /// \return The promoted value which is used instead of Ext. | 
|  | static Value *promoteOperandForOther(Instruction *Ext, | 
|  | TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, | 
|  | const TargetLowering &TLI, bool IsSExt); | 
|  |  | 
|  | /// \see promoteOperandForOther. | 
|  | static Value *signExtendOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | 
|  | Exts, Truncs, TLI, true); | 
|  | } | 
|  |  | 
|  | /// \see promoteOperandForOther. | 
|  | static Value *zeroExtendOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | 
|  | Exts, Truncs, TLI, false); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Type for the utility function that promotes the operand of Ext. | 
|  | typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, | 
|  | const TargetLowering &TLI); | 
|  | /// \brief Given a sign/zero extend instruction \p Ext, return the approriate | 
|  | /// action to promote the operand of \p Ext instead of using Ext. | 
|  | /// \return NULL if no promotable action is possible with the current | 
|  | /// sign extension. | 
|  | /// \p InsertedInsts keeps track of all the instructions inserted by the | 
|  | /// other CodeGenPrepare optimizations. This information is important | 
|  | /// because we do not want to promote these instructions as CodeGenPrepare | 
|  | /// will reinsert them later. Thus creating an infinite loop: create/remove. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, | 
|  | const TargetLowering &TLI, | 
|  | const InstrToOrigTy &PromotedInsts); | 
|  | }; | 
|  |  | 
|  | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, | 
|  | Type *ConsideredExtType, | 
|  | const InstrToOrigTy &PromotedInsts, | 
|  | bool IsSExt) { | 
|  | // The promotion helper does not know how to deal with vector types yet. | 
|  | // To be able to fix that, we would need to fix the places where we | 
|  | // statically extend, e.g., constants and such. | 
|  | if (Inst->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | // We can always get through zext. | 
|  | if (isa<ZExtInst>(Inst)) | 
|  | return true; | 
|  |  | 
|  | // sext(sext) is ok too. | 
|  | if (IsSExt && isa<SExtInst>(Inst)) | 
|  | return true; | 
|  |  | 
|  | // We can get through binary operator, if it is legal. In other words, the | 
|  | // binary operator must have a nuw or nsw flag. | 
|  | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); | 
|  | if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && | 
|  | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || | 
|  | (IsSExt && BinOp->hasNoSignedWrap()))) | 
|  | return true; | 
|  |  | 
|  | // Check if we can do the following simplification. | 
|  | // ext(trunc(opnd)) --> ext(opnd) | 
|  | if (!isa<TruncInst>(Inst)) | 
|  | return false; | 
|  |  | 
|  | Value *OpndVal = Inst->getOperand(0); | 
|  | // Check if we can use this operand in the extension. | 
|  | // If the type is larger than the result type of the extension, we cannot. | 
|  | if (!OpndVal->getType()->isIntegerTy() || | 
|  | OpndVal->getType()->getIntegerBitWidth() > | 
|  | ConsideredExtType->getIntegerBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // If the operand of the truncate is not an instruction, we will not have | 
|  | // any information on the dropped bits. | 
|  | // (Actually we could for constant but it is not worth the extra logic). | 
|  | Instruction *Opnd = dyn_cast<Instruction>(OpndVal); | 
|  | if (!Opnd) | 
|  | return false; | 
|  |  | 
|  | // Check if the source of the type is narrow enough. | 
|  | // I.e., check that trunc just drops extended bits of the same kind of | 
|  | // the extension. | 
|  | // #1 get the type of the operand and check the kind of the extended bits. | 
|  | const Type *OpndType; | 
|  | InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); | 
|  | if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) | 
|  | OpndType = It->second.getPointer(); | 
|  | else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) | 
|  | OpndType = Opnd->getOperand(0)->getType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // #2 check that the truncate just drops extended bits. | 
|  | return Inst->getType()->getIntegerBitWidth() >= | 
|  | OpndType->getIntegerBitWidth(); | 
|  | } | 
|  |  | 
|  | TypePromotionHelper::Action TypePromotionHelper::getAction( | 
|  | Instruction *Ext, const SetOfInstrs &InsertedInsts, | 
|  | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { | 
|  | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && | 
|  | "Unexpected instruction type"); | 
|  | Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); | 
|  | Type *ExtTy = Ext->getType(); | 
|  | bool IsSExt = isa<SExtInst>(Ext); | 
|  | // If the operand of the extension is not an instruction, we cannot | 
|  | // get through. | 
|  | // If it, check we can get through. | 
|  | if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) | 
|  | return nullptr; | 
|  |  | 
|  | // Do not promote if the operand has been added by codegenprepare. | 
|  | // Otherwise, it means we are undoing an optimization that is likely to be | 
|  | // redone, thus causing potential infinite loop. | 
|  | if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) | 
|  | return nullptr; | 
|  |  | 
|  | // SExt or Trunc instructions. | 
|  | // Return the related handler. | 
|  | if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || | 
|  | isa<ZExtInst>(ExtOpnd)) | 
|  | return promoteOperandForTruncAndAnyExt; | 
|  |  | 
|  | // Regular instruction. | 
|  | // Abort early if we will have to insert non-free instructions. | 
|  | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) | 
|  | return nullptr; | 
|  | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( | 
|  | llvm::Instruction *SExt, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | // By construction, the operand of SExt is an instruction. Otherwise we cannot | 
|  | // get through it and this method should not be called. | 
|  | Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); | 
|  | Value *ExtVal = SExt; | 
|  | bool HasMergedNonFreeExt = false; | 
|  | if (isa<ZExtInst>(SExtOpnd)) { | 
|  | // Replace s|zext(zext(opnd)) | 
|  | // => zext(opnd). | 
|  | HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); | 
|  | Value *ZExt = | 
|  | TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); | 
|  | TPT.replaceAllUsesWith(SExt, ZExt); | 
|  | TPT.eraseInstruction(SExt); | 
|  | ExtVal = ZExt; | 
|  | } else { | 
|  | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) | 
|  | // => z|sext(opnd). | 
|  | TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); | 
|  | } | 
|  | CreatedInstsCost = 0; | 
|  |  | 
|  | // Remove dead code. | 
|  | if (SExtOpnd->use_empty()) | 
|  | TPT.eraseInstruction(SExtOpnd); | 
|  |  | 
|  | // Check if the extension is still needed. | 
|  | Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); | 
|  | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { | 
|  | if (ExtInst) { | 
|  | if (Exts) | 
|  | Exts->push_back(ExtInst); | 
|  | CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; | 
|  | } | 
|  | return ExtVal; | 
|  | } | 
|  |  | 
|  | // At this point we have: ext ty opnd to ty. | 
|  | // Reassign the uses of ExtInst to the opnd and remove ExtInst. | 
|  | Value *NextVal = ExtInst->getOperand(0); | 
|  | TPT.eraseInstruction(ExtInst, NextVal); | 
|  | return NextVal; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionHelper::promoteOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, | 
|  | bool IsSExt) { | 
|  | // By construction, the operand of Ext is an instruction. Otherwise we cannot | 
|  | // get through it and this method should not be called. | 
|  | Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); | 
|  | CreatedInstsCost = 0; | 
|  | if (!ExtOpnd->hasOneUse()) { | 
|  | // ExtOpnd will be promoted. | 
|  | // All its uses, but Ext, will need to use a truncated value of the | 
|  | // promoted version. | 
|  | // Create the truncate now. | 
|  | Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); | 
|  | if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { | 
|  | ITrunc->removeFromParent(); | 
|  | // Insert it just after the definition. | 
|  | ITrunc->insertAfter(ExtOpnd); | 
|  | if (Truncs) | 
|  | Truncs->push_back(ITrunc); | 
|  | } | 
|  |  | 
|  | TPT.replaceAllUsesWith(ExtOpnd, Trunc); | 
|  | // Restore the operand of Ext (which has been replaced by the previous call | 
|  | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. | 
|  | TPT.setOperand(Ext, 0, ExtOpnd); | 
|  | } | 
|  |  | 
|  | // Get through the Instruction: | 
|  | // 1. Update its type. | 
|  | // 2. Replace the uses of Ext by Inst. | 
|  | // 3. Extend each operand that needs to be extended. | 
|  |  | 
|  | // Remember the original type of the instruction before promotion. | 
|  | // This is useful to know that the high bits are sign extended bits. | 
|  | PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( | 
|  | ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); | 
|  | // Step #1. | 
|  | TPT.mutateType(ExtOpnd, Ext->getType()); | 
|  | // Step #2. | 
|  | TPT.replaceAllUsesWith(Ext, ExtOpnd); | 
|  | // Step #3. | 
|  | Instruction *ExtForOpnd = Ext; | 
|  |  | 
|  | DEBUG(dbgs() << "Propagate Ext to operands\n"); | 
|  | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; | 
|  | ++OpIdx) { | 
|  | DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); | 
|  | if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || | 
|  | !shouldExtOperand(ExtOpnd, OpIdx)) { | 
|  | DEBUG(dbgs() << "No need to propagate\n"); | 
|  | continue; | 
|  | } | 
|  | // Check if we can statically extend the operand. | 
|  | Value *Opnd = ExtOpnd->getOperand(OpIdx); | 
|  | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { | 
|  | DEBUG(dbgs() << "Statically extend\n"); | 
|  | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); | 
|  | APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) | 
|  | : Cst->getValue().zext(BitWidth); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); | 
|  | continue; | 
|  | } | 
|  | // UndefValue are typed, so we have to statically sign extend them. | 
|  | if (isa<UndefValue>(Opnd)) { | 
|  | DEBUG(dbgs() << "Statically extend\n"); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to explicity sign extend the operand. | 
|  | // Check if Ext was reused to extend an operand. | 
|  | if (!ExtForOpnd) { | 
|  | // If yes, create a new one. | 
|  | DEBUG(dbgs() << "More operands to ext\n"); | 
|  | Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) | 
|  | : TPT.createZExt(Ext, Opnd, Ext->getType()); | 
|  | if (!isa<Instruction>(ValForExtOpnd)) { | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); | 
|  | continue; | 
|  | } | 
|  | ExtForOpnd = cast<Instruction>(ValForExtOpnd); | 
|  | } | 
|  | if (Exts) | 
|  | Exts->push_back(ExtForOpnd); | 
|  | TPT.setOperand(ExtForOpnd, 0, Opnd); | 
|  |  | 
|  | // Move the sign extension before the insertion point. | 
|  | TPT.moveBefore(ExtForOpnd, ExtOpnd); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); | 
|  | CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); | 
|  | // If more sext are required, new instructions will have to be created. | 
|  | ExtForOpnd = nullptr; | 
|  | } | 
|  | if (ExtForOpnd == Ext) { | 
|  | DEBUG(dbgs() << "Extension is useless now\n"); | 
|  | TPT.eraseInstruction(Ext); | 
|  | } | 
|  | return ExtOpnd; | 
|  | } | 
|  |  | 
|  | /// Check whether or not promoting an instruction to a wider type is profitable. | 
|  | /// \p NewCost gives the cost of extension instructions created by the | 
|  | /// promotion. | 
|  | /// \p OldCost gives the cost of extension instructions before the promotion | 
|  | /// plus the number of instructions that have been | 
|  | /// matched in the addressing mode the promotion. | 
|  | /// \p PromotedOperand is the value that has been promoted. | 
|  | /// \return True if the promotion is profitable, false otherwise. | 
|  | bool AddressingModeMatcher::isPromotionProfitable( | 
|  | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { | 
|  | DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); | 
|  | // The cost of the new extensions is greater than the cost of the | 
|  | // old extension plus what we folded. | 
|  | // This is not profitable. | 
|  | if (NewCost > OldCost) | 
|  | return false; | 
|  | if (NewCost < OldCost) | 
|  | return true; | 
|  | // The promotion is neutral but it may help folding the sign extension in | 
|  | // loads for instance. | 
|  | // Check that we did not create an illegal instruction. | 
|  | return isPromotedInstructionLegal(TLI, DL, PromotedOperand); | 
|  | } | 
|  |  | 
|  | /// Given an instruction or constant expr, see if we can fold the operation | 
|  | /// into the addressing mode. If so, update the addressing mode and return | 
|  | /// true, otherwise return false without modifying AddrMode. | 
|  | /// If \p MovedAway is not NULL, it contains the information of whether or | 
|  | /// not AddrInst has to be folded into the addressing mode on success. | 
|  | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing | 
|  | /// because it has been moved away. | 
|  | /// Thus AddrInst must not be added in the matched instructions. | 
|  | /// This state can happen when AddrInst is a sext, since it may be moved away. | 
|  | /// Therefore, AddrInst may not be valid when MovedAway is true and it must | 
|  | /// not be referenced anymore. | 
|  | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, | 
|  | unsigned Depth, | 
|  | bool *MovedAway) { | 
|  | // Avoid exponential behavior on extremely deep expression trees. | 
|  | if (Depth >= 5) return false; | 
|  |  | 
|  | // By default, all matched instructions stay in place. | 
|  | if (MovedAway) | 
|  | *MovedAway = false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case Instruction::PtrToInt: | 
|  | // PtrToInt is always a noop, as we know that the int type is pointer sized. | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | case Instruction::IntToPtr: { | 
|  | auto AS = AddrInst->getType()->getPointerAddressSpace(); | 
|  | auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); | 
|  | // This inttoptr is a no-op if the integer type is pointer sized. | 
|  | if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | // BitCast is always a noop, and we can handle it as long as it is | 
|  | // int->int or pointer->pointer (we don't want int<->fp or something). | 
|  | if ((AddrInst->getOperand(0)->getType()->isPointerTy() || | 
|  | AddrInst->getOperand(0)->getType()->isIntegerTy()) && | 
|  | // Don't touch identity bitcasts.  These were probably put here by LSR, | 
|  | // and we don't want to mess around with them.  Assume it knows what it | 
|  | // is doing. | 
|  | AddrInst->getOperand(0)->getType() != AddrInst->getType()) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | case Instruction::AddrSpaceCast: { | 
|  | unsigned SrcAS | 
|  | = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); | 
|  | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); | 
|  | if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | } | 
|  | case Instruction::Add: { | 
|  | // Check to see if we can merge in the RHS then the LHS.  If so, we win. | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  | // Start a transaction at this point. | 
|  | // The LHS may match but not the RHS. | 
|  | // Therefore, we need a higher level restoration point to undo partially | 
|  | // matched operation. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  |  | 
|  | if (matchAddr(AddrInst->getOperand(1), Depth+1) && | 
|  | matchAddr(AddrInst->getOperand(0), Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Restore the old addr mode info. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  |  | 
|  | // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS. | 
|  | if (matchAddr(AddrInst->getOperand(0), Depth+1) && | 
|  | matchAddr(AddrInst->getOperand(1), Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we definitely can't merge the ADD in. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  | break; | 
|  | } | 
|  | //case Instruction::Or: | 
|  | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. | 
|  | //break; | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: { | 
|  | // Can only handle X*C and X << C. | 
|  | ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); | 
|  | if (!RHS) | 
|  | return false; | 
|  | int64_t Scale = RHS->getSExtValue(); | 
|  | if (Opcode == Instruction::Shl) | 
|  | Scale = 1LL << Scale; | 
|  |  | 
|  | return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | // Scan the GEP.  We check it if it contains constant offsets and at most | 
|  | // one variable offset. | 
|  | int VariableOperand = -1; | 
|  | unsigned VariableScale = 0; | 
|  |  | 
|  | int64_t ConstantOffset = 0; | 
|  | gep_type_iterator GTI = gep_type_begin(AddrInst); | 
|  | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | unsigned Idx = | 
|  | cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); | 
|  | ConstantOffset += SL->getElementOffset(Idx); | 
|  | } else { | 
|  | uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { | 
|  | ConstantOffset += CI->getSExtValue()*TypeSize; | 
|  | } else if (TypeSize) {  // Scales of zero don't do anything. | 
|  | // We only allow one variable index at the moment. | 
|  | if (VariableOperand != -1) | 
|  | return false; | 
|  |  | 
|  | // Remember the variable index. | 
|  | VariableOperand = i; | 
|  | VariableScale = TypeSize; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // A common case is for the GEP to only do a constant offset.  In this case, | 
|  | // just add it to the disp field and check validity. | 
|  | if (VariableOperand == -1) { | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  | if (ConstantOffset == 0 || | 
|  | TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { | 
|  | // Check to see if we can fold the base pointer in too. | 
|  | if (matchAddr(AddrInst->getOperand(0), Depth+1)) | 
|  | return true; | 
|  | } | 
|  | AddrMode.BaseOffs -= ConstantOffset; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Save the valid addressing mode in case we can't match. | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | // See if the scale and offset amount is valid for this target. | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  |  | 
|  | // Match the base operand of the GEP. | 
|  | if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { | 
|  | // If it couldn't be matched, just stuff the value in a register. | 
|  | if (AddrMode.HasBaseReg) { | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | return false; | 
|  | } | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = AddrInst->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Match the remaining variable portion of the GEP. | 
|  | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, | 
|  | Depth)) { | 
|  | // If it couldn't be matched, try stuffing the base into a register | 
|  | // instead of matching it, and retrying the match of the scale. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | if (AddrMode.HasBaseReg) | 
|  | return false; | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = AddrInst->getOperand(0); | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), | 
|  | VariableScale, Depth)) { | 
|  | // If even that didn't work, bail. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Instruction::SExt: | 
|  | case Instruction::ZExt: { | 
|  | Instruction *Ext = dyn_cast<Instruction>(AddrInst); | 
|  | if (!Ext) | 
|  | return false; | 
|  |  | 
|  | // Try to move this ext out of the way of the addressing mode. | 
|  | // Ask for a method for doing so. | 
|  | TypePromotionHelper::Action TPH = | 
|  | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); | 
|  | if (!TPH) | 
|  | return false; | 
|  |  | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | unsigned CreatedInstsCost = 0; | 
|  | unsigned ExtCost = !TLI.isExtFree(Ext); | 
|  | Value *PromotedOperand = | 
|  | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); | 
|  | // SExt has been moved away. | 
|  | // Thus either it will be rematched later in the recursive calls or it is | 
|  | // gone. Anyway, we must not fold it into the addressing mode at this point. | 
|  | // E.g., | 
|  | // op = add opnd, 1 | 
|  | // idx = ext op | 
|  | // addr = gep base, idx | 
|  | // is now: | 
|  | // promotedOpnd = ext opnd            <- no match here | 
|  | // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls) | 
|  | // addr = gep base, op                <- match | 
|  | if (MovedAway) | 
|  | *MovedAway = true; | 
|  |  | 
|  | assert(PromotedOperand && | 
|  | "TypePromotionHelper should have filtered out those cases"); | 
|  |  | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | if (!matchAddr(PromotedOperand, Depth) || | 
|  | // The total of the new cost is equal to the cost of the created | 
|  | // instructions. | 
|  | // The total of the old cost is equal to the cost of the extension plus | 
|  | // what we have saved in the addressing mode. | 
|  | !isPromotionProfitable(CreatedInstsCost, | 
|  | ExtCost + (AddrModeInsts.size() - OldSize), | 
|  | PromotedOperand)) { | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If we can, try to add the value of 'Addr' into the current addressing mode. | 
|  | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode | 
|  | /// unmodified. This assumes that Addr is either a pointer type or intptr_t | 
|  | /// for the target. | 
|  | /// | 
|  | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { | 
|  | // Start a transaction at this point that we will rollback if the matching | 
|  | // fails. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { | 
|  | // Fold in immediates if legal for the target. | 
|  | AddrMode.BaseOffs += CI->getSExtValue(); | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.BaseOffs -= CI->getSExtValue(); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { | 
|  | // If this is a global variable, try to fold it into the addressing mode. | 
|  | if (!AddrMode.BaseGV) { | 
|  | AddrMode.BaseGV = GV; | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.BaseGV = nullptr; | 
|  | } | 
|  | } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | // Check to see if it is possible to fold this operation. | 
|  | bool MovedAway = false; | 
|  | if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { | 
|  | // This instruction may have been moved away. If so, there is nothing | 
|  | // to check here. | 
|  | if (MovedAway) | 
|  | return true; | 
|  | // Okay, it's possible to fold this.  Check to see if it is actually | 
|  | // *profitable* to do so.  We use a simple cost model to avoid increasing | 
|  | // register pressure too much. | 
|  | if (I->hasOneUse() || | 
|  | isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { | 
|  | AddrModeInsts.push_back(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // It isn't profitable to do this, roll back. | 
|  | //cerr << "NOT FOLDING: " << *I; | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  | } | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | 
|  | if (matchOperationAddr(CE, CE->getOpcode(), Depth)) | 
|  | return true; | 
|  | TPT.rollback(LastKnownGood); | 
|  | } else if (isa<ConstantPointerNull>(Addr)) { | 
|  | // Null pointer gets folded without affecting the addressing mode. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Worse case, the target should support [reg] addressing modes. :) | 
|  | if (!AddrMode.HasBaseReg) { | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = Addr; | 
|  | // Still check for legality in case the target supports [imm] but not [i+r]. | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.HasBaseReg = false; | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } | 
|  |  | 
|  | // If the base register is already taken, see if we can do [r+r]. | 
|  | if (AddrMode.Scale == 0) { | 
|  | AddrMode.Scale = 1; | 
|  | AddrMode.ScaledReg = Addr; | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.Scale = 0; | 
|  | AddrMode.ScaledReg = nullptr; | 
|  | } | 
|  | // Couldn't match. | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check to see if all uses of OpVal by the specified inline asm call are due | 
|  | /// to memory operands. If so, return true, otherwise return false. | 
|  | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, | 
|  | const TargetMachine &TM) { | 
|  | const Function *F = CI->getParent()->getParent(); | 
|  | const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); | 
|  | const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = | 
|  | TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, | 
|  | ImmutableCallSite(CI)); | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | 
|  |  | 
|  | // If this asm operand is our Value*, and if it isn't an indirect memory | 
|  | // operand, we can't fold it! | 
|  | if (OpInfo.CallOperandVal == OpVal && | 
|  | (OpInfo.ConstraintType != TargetLowering::C_Memory || | 
|  | !OpInfo.isIndirect)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recursively walk all the uses of I until we find a memory use. | 
|  | /// If we find an obviously non-foldable instruction, return true. | 
|  | /// Add the ultimately found memory instructions to MemoryUses. | 
|  | static bool FindAllMemoryUses( | 
|  | Instruction *I, | 
|  | SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, | 
|  | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { | 
|  | // If we already considered this instruction, we're done. | 
|  | if (!ConsideredInsts.insert(I).second) | 
|  | return false; | 
|  |  | 
|  | // If this is an obviously unfoldable instruction, bail out. | 
|  | if (!MightBeFoldableInst(I)) | 
|  | return true; | 
|  |  | 
|  | // Loop over all the uses, recursively processing them. | 
|  | for (Use &U : I->uses()) { | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { | 
|  | MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { | 
|  | unsigned opNo = U.getOperandNo(); | 
|  | if (opNo == 0) return true; // Storing addr, not into addr. | 
|  | MemoryUses.push_back(std::make_pair(SI, opNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(UserI)) { | 
|  | InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); | 
|  | if (!IA) return true; | 
|  |  | 
|  | // If this is a memory operand, we're cool, otherwise bail out. | 
|  | if (!IsOperandAMemoryOperand(CI, IA, I, TM)) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if Val is already known to be live at the use site that we're | 
|  | /// folding it into. If so, there is no cost to include it in the addressing | 
|  | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the | 
|  | /// instruction already. | 
|  | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, | 
|  | Value *KnownLive2) { | 
|  | // If Val is either of the known-live values, we know it is live! | 
|  | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) | 
|  | return true; | 
|  |  | 
|  | // All values other than instructions and arguments (e.g. constants) are live. | 
|  | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; | 
|  |  | 
|  | // If Val is a constant sized alloca in the entry block, it is live, this is | 
|  | // true because it is just a reference to the stack/frame pointer, which is | 
|  | // live for the whole function. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) | 
|  | if (AI->isStaticAlloca()) | 
|  | return true; | 
|  |  | 
|  | // Check to see if this value is already used in the memory instruction's | 
|  | // block.  If so, it's already live into the block at the very least, so we | 
|  | // can reasonably fold it. | 
|  | return Val->isUsedInBasicBlock(MemoryInst->getParent()); | 
|  | } | 
|  |  | 
|  | /// It is possible for the addressing mode of the machine to fold the specified | 
|  | /// instruction into a load or store that ultimately uses it. | 
|  | /// However, the specified instruction has multiple uses. | 
|  | /// Given this, it may actually increase register pressure to fold it | 
|  | /// into the load. For example, consider this code: | 
|  | /// | 
|  | ///     X = ... | 
|  | ///     Y = X+1 | 
|  | ///     use(Y)   -> nonload/store | 
|  | ///     Z = Y+1 | 
|  | ///     load Z | 
|  | /// | 
|  | /// In this case, Y has multiple uses, and can be folded into the load of Z | 
|  | /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to | 
|  | /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one | 
|  | /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the | 
|  | /// number of computations either. | 
|  | /// | 
|  | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If | 
|  | /// X was live across 'load Z' for other reasons, we actually *would* want to | 
|  | /// fold the addressing mode in the Z case.  This would make Y die earlier. | 
|  | bool AddressingModeMatcher:: | 
|  | isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, | 
|  | ExtAddrMode &AMAfter) { | 
|  | if (IgnoreProfitability) return true; | 
|  |  | 
|  | // AMBefore is the addressing mode before this instruction was folded into it, | 
|  | // and AMAfter is the addressing mode after the instruction was folded.  Get | 
|  | // the set of registers referenced by AMAfter and subtract out those | 
|  | // referenced by AMBefore: this is the set of values which folding in this | 
|  | // address extends the lifetime of. | 
|  | // | 
|  | // Note that there are only two potential values being referenced here, | 
|  | // BaseReg and ScaleReg (global addresses are always available, as are any | 
|  | // folded immediates). | 
|  | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; | 
|  |  | 
|  | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their | 
|  | // lifetime wasn't extended by adding this instruction. | 
|  | if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | 
|  | BaseReg = nullptr; | 
|  | if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | 
|  | ScaledReg = nullptr; | 
|  |  | 
|  | // If folding this instruction (and it's subexprs) didn't extend any live | 
|  | // ranges, we're ok with it. | 
|  | if (!BaseReg && !ScaledReg) | 
|  | return true; | 
|  |  | 
|  | // If all uses of this instruction are ultimately load/store/inlineasm's, | 
|  | // check to see if their addressing modes will include this instruction.  If | 
|  | // so, we can fold it into all uses, so it doesn't matter if it has multiple | 
|  | // uses. | 
|  | SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; | 
|  | SmallPtrSet<Instruction*, 16> ConsideredInsts; | 
|  | if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) | 
|  | return false;  // Has a non-memory, non-foldable use! | 
|  |  | 
|  | // Now that we know that all uses of this instruction are part of a chain of | 
|  | // computation involving only operations that could theoretically be folded | 
|  | // into a memory use, loop over each of these uses and see if they could | 
|  | // *actually* fold the instruction. | 
|  | SmallVector<Instruction*, 32> MatchedAddrModeInsts; | 
|  | for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { | 
|  | Instruction *User = MemoryUses[i].first; | 
|  | unsigned OpNo = MemoryUses[i].second; | 
|  |  | 
|  | // Get the access type of this use.  If the use isn't a pointer, we don't | 
|  | // know what it accesses. | 
|  | Value *Address = User->getOperand(OpNo); | 
|  | PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); | 
|  | if (!AddrTy) | 
|  | return false; | 
|  | Type *AddressAccessTy = AddrTy->getElementType(); | 
|  | unsigned AS = AddrTy->getAddressSpace(); | 
|  |  | 
|  | // Do a match against the root of this address, ignoring profitability. This | 
|  | // will tell us if the addressing mode for the memory operation will | 
|  | // *actually* cover the shared instruction. | 
|  | ExtAddrMode Result; | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, | 
|  | MemoryInst, Result, InsertedInsts, | 
|  | PromotedInsts, TPT); | 
|  | Matcher.IgnoreProfitability = true; | 
|  | bool Success = Matcher.matchAddr(Address, 0); | 
|  | (void)Success; assert(Success && "Couldn't select *anything*?"); | 
|  |  | 
|  | // The match was to check the profitability, the changes made are not | 
|  | // part of the original matcher. Therefore, they should be dropped | 
|  | // otherwise the original matcher will not present the right state. | 
|  | TPT.rollback(LastKnownGood); | 
|  |  | 
|  | // If the match didn't cover I, then it won't be shared by it. | 
|  | if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), | 
|  | I) == MatchedAddrModeInsts.end()) | 
|  | return false; | 
|  |  | 
|  | MatchedAddrModeInsts.clear(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Return true if the specified values are defined in a | 
|  | /// different basic block than BB. | 
|  | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() != BB; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Load and Store Instructions often have addressing modes that can do | 
|  | /// significant amounts of computation. As such, instruction selection will try | 
|  | /// to get the load or store to do as much computation as possible for the | 
|  | /// program. The problem is that isel can only see within a single block. As | 
|  | /// such, we sink as much legal addressing mode work into the block as possible. | 
|  | /// | 
|  | /// This method is used to optimize both load/store and inline asms with memory | 
|  | /// operands. | 
|  | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | 
|  | Type *AccessTy, unsigned AddrSpace) { | 
|  | Value *Repl = Addr; | 
|  |  | 
|  | // Try to collapse single-value PHI nodes.  This is necessary to undo | 
|  | // unprofitable PRE transformations. | 
|  | SmallVector<Value*, 8> worklist; | 
|  | SmallPtrSet<Value*, 16> Visited; | 
|  | worklist.push_back(Addr); | 
|  |  | 
|  | // Use a worklist to iteratively look through PHI nodes, and ensure that | 
|  | // the addressing mode obtained from the non-PHI roots of the graph | 
|  | // are equivalent. | 
|  | Value *Consensus = nullptr; | 
|  | unsigned NumUsesConsensus = 0; | 
|  | bool IsNumUsesConsensusValid = false; | 
|  | SmallVector<Instruction*, 16> AddrModeInsts; | 
|  | ExtAddrMode AddrMode; | 
|  | TypePromotionTransaction TPT; | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | while (!worklist.empty()) { | 
|  | Value *V = worklist.back(); | 
|  | worklist.pop_back(); | 
|  |  | 
|  | // Break use-def graph loops. | 
|  | if (!Visited.insert(V).second) { | 
|  | Consensus = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // For a PHI node, push all of its incoming values. | 
|  | if (PHINode *P = dyn_cast<PHINode>(V)) { | 
|  | for (Value *IncValue : P->incoming_values()) | 
|  | worklist.push_back(IncValue); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For non-PHIs, determine the addressing mode being computed. | 
|  | SmallVector<Instruction*, 16> NewAddrModeInsts; | 
|  | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( | 
|  | V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, | 
|  | InsertedInsts, PromotedInsts, TPT); | 
|  |  | 
|  | // This check is broken into two cases with very similar code to avoid using | 
|  | // getNumUses() as much as possible. Some values have a lot of uses, so | 
|  | // calling getNumUses() unconditionally caused a significant compile-time | 
|  | // regression. | 
|  | if (!Consensus) { | 
|  | Consensus = V; | 
|  | AddrMode = NewAddrMode; | 
|  | AddrModeInsts = NewAddrModeInsts; | 
|  | continue; | 
|  | } else if (NewAddrMode == AddrMode) { | 
|  | if (!IsNumUsesConsensusValid) { | 
|  | NumUsesConsensus = Consensus->getNumUses(); | 
|  | IsNumUsesConsensusValid = true; | 
|  | } | 
|  |  | 
|  | // Ensure that the obtained addressing mode is equivalent to that obtained | 
|  | // for all other roots of the PHI traversal.  Also, when choosing one | 
|  | // such root as representative, select the one with the most uses in order | 
|  | // to keep the cost modeling heuristics in AddressingModeMatcher | 
|  | // applicable. | 
|  | unsigned NumUses = V->getNumUses(); | 
|  | if (NumUses > NumUsesConsensus) { | 
|  | Consensus = V; | 
|  | NumUsesConsensus = NumUses; | 
|  | AddrModeInsts = NewAddrModeInsts; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Consensus = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the addressing mode couldn't be determined, or if multiple different | 
|  | // ones were determined, bail out now. | 
|  | if (!Consensus) { | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  | TPT.commit(); | 
|  |  | 
|  | // Check to see if any of the instructions supersumed by this addr mode are | 
|  | // non-local to I's BB. | 
|  | bool AnyNonLocal = false; | 
|  | for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { | 
|  | if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { | 
|  | AnyNonLocal = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all the instructions matched are already in this BB, don't do anything. | 
|  | if (!AnyNonLocal) { | 
|  | DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Insert this computation right after this user.  Since our caller is | 
|  | // scanning from the top of the BB to the bottom, reuse of the expr are | 
|  | // guaranteed to happen later. | 
|  | IRBuilder<> Builder(MemoryInst); | 
|  |  | 
|  | // Now that we determined the addressing expression we want to use and know | 
|  | // that we have to sink it into this block.  Check to see if we have already | 
|  | // done this for some other load/store instr in this block.  If so, reuse the | 
|  | // computation. | 
|  | Value *&SunkAddr = SunkAddrs[Addr]; | 
|  | if (SunkAddr) { | 
|  | DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " | 
|  | << *MemoryInst << "\n"); | 
|  | if (SunkAddr->getType() != Addr->getType()) | 
|  | SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); | 
|  | } else if (AddrSinkUsingGEPs || | 
|  | (!AddrSinkUsingGEPs.getNumOccurrences() && TM && | 
|  | TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) | 
|  | ->useAA())) { | 
|  | // By default, we use the GEP-based method when AA is used later. This | 
|  | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. | 
|  | DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " | 
|  | << *MemoryInst << "\n"); | 
|  | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | 
|  | Value *ResultPtr = nullptr, *ResultIndex = nullptr; | 
|  |  | 
|  | // First, find the pointer. | 
|  | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { | 
|  | ResultPtr = AddrMode.BaseReg; | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } | 
|  |  | 
|  | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { | 
|  | // We can't add more than one pointer together, nor can we scale a | 
|  | // pointer (both of which seem meaningless). | 
|  | if (ResultPtr || AddrMode.Scale != 1) | 
|  | return false; | 
|  |  | 
|  | ResultPtr = AddrMode.ScaledReg; | 
|  | AddrMode.Scale = 0; | 
|  | } | 
|  |  | 
|  | if (AddrMode.BaseGV) { | 
|  | if (ResultPtr) | 
|  | return false; | 
|  |  | 
|  | ResultPtr = AddrMode.BaseGV; | 
|  | } | 
|  |  | 
|  | // If the real base value actually came from an inttoptr, then the matcher | 
|  | // will look through it and provide only the integer value. In that case, | 
|  | // use it here. | 
|  | if (!ResultPtr && AddrMode.BaseReg) { | 
|  | ResultPtr = | 
|  | Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } else if (!ResultPtr && AddrMode.Scale == 1) { | 
|  | ResultPtr = | 
|  | Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); | 
|  | AddrMode.Scale = 0; | 
|  | } | 
|  |  | 
|  | if (!ResultPtr && | 
|  | !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { | 
|  | SunkAddr = Constant::getNullValue(Addr->getType()); | 
|  | } else if (!ResultPtr) { | 
|  | return false; | 
|  | } else { | 
|  | Type *I8PtrTy = | 
|  | Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); | 
|  | Type *I8Ty = Builder.getInt8Ty(); | 
|  |  | 
|  | // Start with the base register. Do this first so that subsequent address | 
|  | // matching finds it last, which will prevent it from trying to match it | 
|  | // as the scaled value in case it happens to be a mul. That would be | 
|  | // problematic if we've sunk a different mul for the scale, because then | 
|  | // we'd end up sinking both muls. | 
|  | if (AddrMode.BaseReg) { | 
|  | Value *V = AddrMode.BaseReg; | 
|  | if (V->getType() != IntPtrTy) | 
|  | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | 
|  |  | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | // Add the scale value. | 
|  | if (AddrMode.Scale) { | 
|  | Value *V = AddrMode.ScaledReg; | 
|  | if (V->getType() == IntPtrTy) { | 
|  | // done. | 
|  | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | 
|  | cast<IntegerType>(V->getType())->getBitWidth()) { | 
|  | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | 
|  | } else { | 
|  | // It is only safe to sign extend the BaseReg if we know that the math | 
|  | // required to create it did not overflow before we extend it. Since | 
|  | // the original IR value was tossed in favor of a constant back when | 
|  | // the AddrMode was created we need to bail out gracefully if widths | 
|  | // do not match instead of extending it. | 
|  | Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); | 
|  | if (I && (ResultIndex != AddrMode.BaseReg)) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AddrMode.Scale != 1) | 
|  | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | 
|  | "sunkaddr"); | 
|  | if (ResultIndex) | 
|  | ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); | 
|  | else | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | // Add in the Base Offset if present. | 
|  | if (AddrMode.BaseOffs) { | 
|  | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | 
|  | if (ResultIndex) { | 
|  | // We need to add this separately from the scale above to help with | 
|  | // SDAG consecutive load/store merging. | 
|  | if (ResultPtr->getType() != I8PtrTy) | 
|  | ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); | 
|  | ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); | 
|  | } | 
|  |  | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | if (!ResultIndex) { | 
|  | SunkAddr = ResultPtr; | 
|  | } else { | 
|  | if (ResultPtr->getType() != I8PtrTy) | 
|  | ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); | 
|  | SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); | 
|  | } | 
|  |  | 
|  | if (SunkAddr->getType() != Addr->getType()) | 
|  | SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); | 
|  | } | 
|  | } else { | 
|  | DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " | 
|  | << *MemoryInst << "\n"); | 
|  | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | 
|  | Value *Result = nullptr; | 
|  |  | 
|  | // Start with the base register. Do this first so that subsequent address | 
|  | // matching finds it last, which will prevent it from trying to match it | 
|  | // as the scaled value in case it happens to be a mul. That would be | 
|  | // problematic if we've sunk a different mul for the scale, because then | 
|  | // we'd end up sinking both muls. | 
|  | if (AddrMode.BaseReg) { | 
|  | Value *V = AddrMode.BaseReg; | 
|  | if (V->getType()->isPointerTy()) | 
|  | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | 
|  | if (V->getType() != IntPtrTy) | 
|  | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add the scale value. | 
|  | if (AddrMode.Scale) { | 
|  | Value *V = AddrMode.ScaledReg; | 
|  | if (V->getType() == IntPtrTy) { | 
|  | // done. | 
|  | } else if (V->getType()->isPointerTy()) { | 
|  | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | 
|  | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | 
|  | cast<IntegerType>(V->getType())->getBitWidth()) { | 
|  | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | 
|  | } else { | 
|  | // It is only safe to sign extend the BaseReg if we know that the math | 
|  | // required to create it did not overflow before we extend it. Since | 
|  | // the original IR value was tossed in favor of a constant back when | 
|  | // the AddrMode was created we need to bail out gracefully if widths | 
|  | // do not match instead of extending it. | 
|  | Instruction *I = dyn_cast_or_null<Instruction>(Result); | 
|  | if (I && (Result != AddrMode.BaseReg)) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  | if (AddrMode.Scale != 1) | 
|  | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | 
|  | "sunkaddr"); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add in the BaseGV if present. | 
|  | if (AddrMode.BaseGV) { | 
|  | Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add in the Base Offset if present. | 
|  | if (AddrMode.BaseOffs) { | 
|  | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | if (!Result) | 
|  | SunkAddr = Constant::getNullValue(Addr->getType()); | 
|  | else | 
|  | SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); | 
|  | } | 
|  |  | 
|  | MemoryInst->replaceUsesOfWith(Repl, SunkAddr); | 
|  |  | 
|  | // If we have no uses, recursively delete the value and all dead instructions | 
|  | // using it. | 
|  | if (Repl->use_empty()) { | 
|  | // This can cause recursive deletion, which can invalidate our iterator. | 
|  | // Use a WeakVH to hold onto it in case this happens. | 
|  | WeakVH IterHandle(&*CurInstIterator); | 
|  | BasicBlock *BB = CurInstIterator->getParent(); | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); | 
|  |  | 
|  | if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { | 
|  | // If the iterator instruction was recursively deleted, start over at the | 
|  | // start of the block. | 
|  | CurInstIterator = BB->begin(); | 
|  | SunkAddrs.clear(); | 
|  | } | 
|  | } | 
|  | ++NumMemoryInsts; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If there are any memory operands, use OptimizeMemoryInst to sink their | 
|  | /// address computing into the block when possible / profitable. | 
|  | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = | 
|  | TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = | 
|  | TLI->ParseConstraints(*DL, TRI, CS); | 
|  | unsigned ArgNo = 0; | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | OpInfo.isIndirect) { | 
|  | Value *OpVal = CS->getArgOperand(ArgNo++); | 
|  | MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); | 
|  | } else if (OpInfo.Type == InlineAsm::isInput) | 
|  | ArgNo++; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or | 
|  | /// sign extensions. | 
|  | static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { | 
|  | assert(!Inst->use_empty() && "Input must have at least one use"); | 
|  | const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); | 
|  | bool IsSExt = isa<SExtInst>(FirstUser); | 
|  | Type *ExtTy = FirstUser->getType(); | 
|  | for (const User *U : Inst->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) | 
|  | return false; | 
|  | Type *CurTy = UI->getType(); | 
|  | // Same input and output types: Same instruction after CSE. | 
|  | if (CurTy == ExtTy) | 
|  | continue; | 
|  |  | 
|  | // If IsSExt is true, we are in this situation: | 
|  | // a = Inst | 
|  | // b = sext ty1 a to ty2 | 
|  | // c = sext ty1 a to ty3 | 
|  | // Assuming ty2 is shorter than ty3, this could be turned into: | 
|  | // a = Inst | 
|  | // b = sext ty1 a to ty2 | 
|  | // c = sext ty2 b to ty3 | 
|  | // However, the last sext is not free. | 
|  | if (IsSExt) | 
|  | return false; | 
|  |  | 
|  | // This is a ZExt, maybe this is free to extend from one type to another. | 
|  | // In that case, we would not account for a different use. | 
|  | Type *NarrowTy; | 
|  | Type *LargeTy; | 
|  | if (ExtTy->getScalarType()->getIntegerBitWidth() > | 
|  | CurTy->getScalarType()->getIntegerBitWidth()) { | 
|  | NarrowTy = CurTy; | 
|  | LargeTy = ExtTy; | 
|  | } else { | 
|  | NarrowTy = ExtTy; | 
|  | LargeTy = CurTy; | 
|  | } | 
|  |  | 
|  | if (!TLI.isZExtFree(NarrowTy, LargeTy)) | 
|  | return false; | 
|  | } | 
|  | // All uses are the same or can be derived from one another for free. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Try to form ExtLd by promoting \p Exts until they reach a | 
|  | /// load instruction. | 
|  | /// If an ext(load) can be formed, it is returned via \p LI for the load | 
|  | /// and \p Inst for the extension. | 
|  | /// Otherwise LI == nullptr and Inst == nullptr. | 
|  | /// When some promotion happened, \p TPT contains the proper state to | 
|  | /// revert them. | 
|  | /// | 
|  | /// \return true when promoting was necessary to expose the ext(load) | 
|  | /// opportunity, false otherwise. | 
|  | /// | 
|  | /// Example: | 
|  | /// \code | 
|  | /// %ld = load i32* %addr | 
|  | /// %add = add nuw i32 %ld, 4 | 
|  | /// %zext = zext i32 %add to i64 | 
|  | /// \endcode | 
|  | /// => | 
|  | /// \code | 
|  | /// %ld = load i32* %addr | 
|  | /// %zext = zext i32 %ld to i64 | 
|  | /// %add = add nuw i64 %zext, 4 | 
|  | /// \encode | 
|  | /// Thanks to the promotion, we can match zext(load i32*) to i64. | 
|  | bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, | 
|  | LoadInst *&LI, Instruction *&Inst, | 
|  | const SmallVectorImpl<Instruction *> &Exts, | 
|  | unsigned CreatedInstsCost = 0) { | 
|  | // Iterate over all the extensions to see if one form an ext(load). | 
|  | for (auto I : Exts) { | 
|  | // Check if we directly have ext(load). | 
|  | if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { | 
|  | Inst = I; | 
|  | // No promotion happened here. | 
|  | return false; | 
|  | } | 
|  | // Check whether or not we want to do any promotion. | 
|  | if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) | 
|  | continue; | 
|  | // Get the action to perform the promotion. | 
|  | TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( | 
|  | I, InsertedInsts, *TLI, PromotedInsts); | 
|  | // Check if we can promote. | 
|  | if (!TPH) | 
|  | continue; | 
|  | // Save the current state. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | SmallVector<Instruction *, 4> NewExts; | 
|  | unsigned NewCreatedInstsCost = 0; | 
|  | unsigned ExtCost = !TLI->isExtFree(I); | 
|  | // Promote. | 
|  | Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, | 
|  | &NewExts, nullptr, *TLI); | 
|  | assert(PromotedVal && | 
|  | "TypePromotionHelper should have filtered out those cases"); | 
|  |  | 
|  | // We would be able to merge only one extension in a load. | 
|  | // Therefore, if we have more than 1 new extension we heuristically | 
|  | // cut this search path, because it means we degrade the code quality. | 
|  | // With exactly 2, the transformation is neutral, because we will merge | 
|  | // one extension but leave one. However, we optimistically keep going, | 
|  | // because the new extension may be removed too. | 
|  | long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; | 
|  | TotalCreatedInstsCost -= ExtCost; | 
|  | if (!StressExtLdPromotion && | 
|  | (TotalCreatedInstsCost > 1 || | 
|  | !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { | 
|  | // The promotion is not profitable, rollback to the previous state. | 
|  | TPT.rollback(LastKnownGood); | 
|  | continue; | 
|  | } | 
|  | // The promotion is profitable. | 
|  | // Check if it exposes an ext(load). | 
|  | (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); | 
|  | if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || | 
|  | // If we have created a new extension, i.e., now we have two | 
|  | // extensions. We must make sure one of them is merged with | 
|  | // the load, otherwise we may degrade the code quality. | 
|  | (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) | 
|  | // Promotion happened. | 
|  | return true; | 
|  | // If this does not help to expose an ext(load) then, rollback. | 
|  | TPT.rollback(LastKnownGood); | 
|  | } | 
|  | // None of the extension can form an ext(load). | 
|  | LI = nullptr; | 
|  | Inst = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Move a zext or sext fed by a load into the same basic block as the load, | 
|  | /// unless conditions are unfavorable. This allows SelectionDAG to fold the | 
|  | /// extend into the load. | 
|  | /// \p I[in/out] the extension may be modified during the process if some | 
|  | /// promotions apply. | 
|  | /// | 
|  | bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { | 
|  | // Try to promote a chain of computation if it allows to form | 
|  | // an extended load. | 
|  | TypePromotionTransaction TPT; | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | SmallVector<Instruction *, 1> Exts; | 
|  | Exts.push_back(I); | 
|  | // Look for a load being extended. | 
|  | LoadInst *LI = nullptr; | 
|  | Instruction *OldExt = I; | 
|  | bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); | 
|  | if (!LI || !I) { | 
|  | assert(!HasPromoted && !LI && "If we did not match any load instruction " | 
|  | "the code must remain the same"); | 
|  | I = OldExt; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If they're already in the same block, there's nothing to do. | 
|  | // Make the cheap checks first if we did not promote. | 
|  | // If we promoted, we need to check if it is indeed profitable. | 
|  | if (!HasPromoted && LI->getParent() == I->getParent()) | 
|  | return false; | 
|  |  | 
|  | EVT VT = TLI->getValueType(*DL, I->getType()); | 
|  | EVT LoadVT = TLI->getValueType(*DL, LI->getType()); | 
|  |  | 
|  | // If the load has other users and the truncate is not free, this probably | 
|  | // isn't worthwhile. | 
|  | if (!LI->hasOneUse() && TLI && | 
|  | (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && | 
|  | !TLI->isTruncateFree(I->getType(), LI->getType())) { | 
|  | I = OldExt; | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check whether the target supports casts folded into loads. | 
|  | unsigned LType; | 
|  | if (isa<ZExtInst>(I)) | 
|  | LType = ISD::ZEXTLOAD; | 
|  | else { | 
|  | assert(isa<SExtInst>(I) && "Unexpected ext type!"); | 
|  | LType = ISD::SEXTLOAD; | 
|  | } | 
|  | if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { | 
|  | I = OldExt; | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Move the extend into the same block as the load, so that SelectionDAG | 
|  | // can fold it. | 
|  | TPT.commit(); | 
|  | I->removeFromParent(); | 
|  | I->insertAfter(LI); | 
|  | ++NumExtsMoved; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeExtUses(Instruction *I) { | 
|  | BasicBlock *DefBB = I->getParent(); | 
|  |  | 
|  | // If the result of a {s|z}ext and its source are both live out, rewrite all | 
|  | // other uses of the source with result of extension. | 
|  | Value *Src = I->getOperand(0); | 
|  | if (Src->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Only do this xform if truncating is free. | 
|  | if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) | 
|  | return false; | 
|  |  | 
|  | // Only safe to perform the optimization if the source is also defined in | 
|  | // this block. | 
|  | if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) | 
|  | return false; | 
|  |  | 
|  | bool DefIsLiveOut = false; | 
|  | for (User *U : I->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  | DefIsLiveOut = true; | 
|  | break; | 
|  | } | 
|  | if (!DefIsLiveOut) | 
|  | return false; | 
|  |  | 
|  | // Make sure none of the uses are PHI nodes. | 
|  | for (User *U : Src->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  | // Be conservative. We don't want this xform to end up introducing | 
|  | // reloads just before load / store instructions. | 
|  | if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // InsertedTruncs - Only insert one trunc in each block once. | 
|  | DenseMap<BasicBlock*, Instruction*> InsertedTruncs; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Use &U : Src->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // Both src and def are live in this block. Rewrite the use. | 
|  | Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; | 
|  |  | 
|  | if (!InsertedTrunc) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); | 
|  | InsertedInsts.insert(InsertedTrunc); | 
|  | } | 
|  |  | 
|  | // Replace a use of the {s|z}ext source with a use of the result. | 
|  | U = InsertedTrunc; | 
|  | ++NumExtUses; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Find loads whose uses only use some of the loaded value's bits.  Add an "and" | 
|  | // just after the load if the target can fold this into one extload instruction, | 
|  | // with the hope of eliminating some of the other later "and" instructions using | 
|  | // the loaded value.  "and"s that are made trivially redundant by the insertion | 
|  | // of the new "and" are removed by this function, while others (e.g. those whose | 
|  | // path from the load goes through a phi) are left for isel to potentially | 
|  | // remove. | 
|  | // | 
|  | // For example: | 
|  | // | 
|  | // b0: | 
|  | //   x = load i32 | 
|  | //   ... | 
|  | // b1: | 
|  | //   y = and x, 0xff | 
|  | //   z = use y | 
|  | // | 
|  | // becomes: | 
|  | // | 
|  | // b0: | 
|  | //   x = load i32 | 
|  | //   x' = and x, 0xff | 
|  | //   ... | 
|  | // b1: | 
|  | //   z = use x' | 
|  | // | 
|  | // whereas: | 
|  | // | 
|  | // b0: | 
|  | //   x1 = load i32 | 
|  | //   ... | 
|  | // b1: | 
|  | //   x2 = load i32 | 
|  | //   ... | 
|  | // b2: | 
|  | //   x = phi x1, x2 | 
|  | //   y = and x, 0xff | 
|  | // | 
|  | // becomes (after a call to optimizeLoadExt for each load): | 
|  | // | 
|  | // b0: | 
|  | //   x1 = load i32 | 
|  | //   x1' = and x1, 0xff | 
|  | //   ... | 
|  | // b1: | 
|  | //   x2 = load i32 | 
|  | //   x2' = and x2, 0xff | 
|  | //   ... | 
|  | // b2: | 
|  | //   x = phi x1', x2' | 
|  | //   y = and x, 0xff | 
|  | // | 
|  |  | 
|  | bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { | 
|  |  | 
|  | if (!Load->isSimple() || | 
|  | !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) | 
|  | return false; | 
|  |  | 
|  | // Skip loads we've already transformed or have no reason to transform. | 
|  | if (Load->hasOneUse()) { | 
|  | User *LoadUser = *Load->user_begin(); | 
|  | if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && | 
|  | !dyn_cast<PHINode>(LoadUser)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look at all uses of Load, looking through phis, to determine how many bits | 
|  | // of the loaded value are needed. | 
|  | SmallVector<Instruction *, 8> WorkList; | 
|  | SmallPtrSet<Instruction *, 16> Visited; | 
|  | SmallVector<Instruction *, 8> AndsToMaybeRemove; | 
|  | for (auto *U : Load->users()) | 
|  | WorkList.push_back(cast<Instruction>(U)); | 
|  |  | 
|  | EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); | 
|  | unsigned BitWidth = LoadResultVT.getSizeInBits(); | 
|  | APInt DemandBits(BitWidth, 0); | 
|  | APInt WidestAndBits(BitWidth, 0); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | Instruction *I = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // Break use-def graph loops. | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | // For a PHI node, push all of its users. | 
|  | if (auto *Phi = dyn_cast<PHINode>(I)) { | 
|  | for (auto *U : Phi->users()) | 
|  | WorkList.push_back(cast<Instruction>(U)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case llvm::Instruction::And: { | 
|  | auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (!AndC) | 
|  | return false; | 
|  | APInt AndBits = AndC->getValue(); | 
|  | DemandBits |= AndBits; | 
|  | // Keep track of the widest and mask we see. | 
|  | if (AndBits.ugt(WidestAndBits)) | 
|  | WidestAndBits = AndBits; | 
|  | if (AndBits == WidestAndBits && I->getOperand(0) == Load) | 
|  | AndsToMaybeRemove.push_back(I); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case llvm::Instruction::Shl: { | 
|  | auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (!ShlC) | 
|  | return false; | 
|  | uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); | 
|  | auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); | 
|  | DemandBits |= ShlDemandBits; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case llvm::Instruction::Trunc: { | 
|  | EVT TruncVT = TLI->getValueType(*DL, I->getType()); | 
|  | unsigned TruncBitWidth = TruncVT.getSizeInBits(); | 
|  | auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); | 
|  | DemandBits |= TruncBits; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t ActiveBits = DemandBits.getActiveBits(); | 
|  | // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the | 
|  | // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example, | 
|  | // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but | 
|  | // (and (load x) 1) is not matched as a single instruction, rather as a LDR | 
|  | // followed by an AND. | 
|  | // TODO: Look into removing this restriction by fixing backends to either | 
|  | // return false for isLoadExtLegal for i1 or have them select this pattern to | 
|  | // a single instruction. | 
|  | // | 
|  | // Also avoid hoisting if we didn't see any ands with the exact DemandBits | 
|  | // mask, since these are the only ands that will be removed by isel. | 
|  | if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || | 
|  | WidestAndBits != DemandBits) | 
|  | return false; | 
|  |  | 
|  | LLVMContext &Ctx = Load->getType()->getContext(); | 
|  | Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); | 
|  | EVT TruncVT = TLI->getValueType(*DL, TruncTy); | 
|  |  | 
|  | // Reject cases that won't be matched as extloads. | 
|  | if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || | 
|  | !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(Load->getNextNode()); | 
|  | auto *NewAnd = dyn_cast<Instruction>( | 
|  | Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); | 
|  |  | 
|  | // Replace all uses of load with new and (except for the use of load in the | 
|  | // new and itself). | 
|  | Load->replaceAllUsesWith(NewAnd); | 
|  | NewAnd->setOperand(0, Load); | 
|  |  | 
|  | // Remove any and instructions that are now redundant. | 
|  | for (auto *And : AndsToMaybeRemove) | 
|  | // Check that the and mask is the same as the one we decided to put on the | 
|  | // new and. | 
|  | if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { | 
|  | And->replaceAllUsesWith(NewAnd); | 
|  | if (&*CurInstIterator == And) | 
|  | CurInstIterator = std::next(And->getIterator()); | 
|  | And->eraseFromParent(); | 
|  | ++NumAndUses; | 
|  | } | 
|  |  | 
|  | ++NumAndsAdded; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if V (an operand of a select instruction) is an expensive instruction | 
|  | /// that is only used once. | 
|  | static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | // If it's safe to speculatively execute, then it should not have side | 
|  | // effects; therefore, it's safe to sink and possibly *not* execute. | 
|  | return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && | 
|  | TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; | 
|  | } | 
|  |  | 
|  | /// Returns true if a SelectInst should be turned into an explicit branch. | 
|  | static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, | 
|  | SelectInst *SI) { | 
|  | // FIXME: This should use the same heuristics as IfConversion to determine | 
|  | // whether a select is better represented as a branch.  This requires that | 
|  | // branch probability metadata is preserved for the select, which is not the | 
|  | // case currently. | 
|  |  | 
|  | CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); | 
|  |  | 
|  | // If a branch is predictable, an out-of-order CPU can avoid blocking on its | 
|  | // comparison condition. If the compare has more than one use, there's | 
|  | // probably another cmov or setcc around, so it's not worth emitting a branch. | 
|  | if (!Cmp || !Cmp->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | Value *CmpOp0 = Cmp->getOperand(0); | 
|  | Value *CmpOp1 = Cmp->getOperand(1); | 
|  |  | 
|  | // Emit "cmov on compare with a memory operand" as a branch to avoid stalls | 
|  | // on a load from memory. But if the load is used more than once, do not | 
|  | // change the select to a branch because the load is probably needed | 
|  | // regardless of whether the branch is taken or not. | 
|  | if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || | 
|  | (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) | 
|  | return true; | 
|  |  | 
|  | // If either operand of the select is expensive and only needed on one side | 
|  | // of the select, we should form a branch. | 
|  | if (sinkSelectOperand(TTI, SI->getTrueValue()) || | 
|  | sinkSelectOperand(TTI, SI->getFalseValue())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// If we have a SelectInst that will likely profit from branch prediction, | 
|  | /// turn it into a branch. | 
|  | bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { | 
|  | bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); | 
|  |  | 
|  | // Can we convert the 'select' to CF ? | 
|  | if (DisableSelectToBranch || OptSize || !TLI || VectorCond) | 
|  | return false; | 
|  |  | 
|  | TargetLowering::SelectSupportKind SelectKind; | 
|  | if (VectorCond) | 
|  | SelectKind = TargetLowering::VectorMaskSelect; | 
|  | else if (SI->getType()->isVectorTy()) | 
|  | SelectKind = TargetLowering::ScalarCondVectorVal; | 
|  | else | 
|  | SelectKind = TargetLowering::ScalarValSelect; | 
|  |  | 
|  | // Do we have efficient codegen support for this kind of 'selects' ? | 
|  | if (TLI->isSelectSupported(SelectKind)) { | 
|  | // We have efficient codegen support for the select instruction. | 
|  | // Check if it is profitable to keep this 'select'. | 
|  | if (!TLI->isPredictableSelectExpensive() || | 
|  | !isFormingBranchFromSelectProfitable(TTI, SI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ModifiedDT = true; | 
|  |  | 
|  | // Transform a sequence like this: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       %sel = select i1 %cmp, i32 %c, i32 %d | 
|  | // | 
|  | // Into: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       br i1 %cmp, label %select.true, label %select.false | 
|  | //    select.true: | 
|  | //       br label %select.end | 
|  | //    select.false: | 
|  | //       br label %select.end | 
|  | //    select.end: | 
|  | //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] | 
|  | // | 
|  | // In addition, we may sink instructions that produce %c or %d from | 
|  | // the entry block into the destination(s) of the new branch. | 
|  | // If the true or false blocks do not contain a sunken instruction, that | 
|  | // block and its branch may be optimized away. In that case, one side of the | 
|  | // first branch will point directly to select.end, and the corresponding PHI | 
|  | // predecessor block will be the start block. | 
|  |  | 
|  | // First, we split the block containing the select into 2 blocks. | 
|  | BasicBlock *StartBlock = SI->getParent(); | 
|  | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); | 
|  | BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); | 
|  |  | 
|  | // Delete the unconditional branch that was just created by the split. | 
|  | StartBlock->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // These are the new basic blocks for the conditional branch. | 
|  | // At least one will become an actual new basic block. | 
|  | BasicBlock *TrueBlock = nullptr; | 
|  | BasicBlock *FalseBlock = nullptr; | 
|  |  | 
|  | // Sink expensive instructions into the conditional blocks to avoid executing | 
|  | // them speculatively. | 
|  | if (sinkSelectOperand(TTI, SI->getTrueValue())) { | 
|  | TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); | 
|  | auto *TrueInst = cast<Instruction>(SI->getTrueValue()); | 
|  | TrueInst->moveBefore(TrueBranch); | 
|  | } | 
|  | if (sinkSelectOperand(TTI, SI->getFalseValue())) { | 
|  | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | 
|  | auto *FalseInst = cast<Instruction>(SI->getFalseValue()); | 
|  | FalseInst->moveBefore(FalseBranch); | 
|  | } | 
|  |  | 
|  | // If there was nothing to sink, then arbitrarily choose the 'false' side | 
|  | // for a new input value to the PHI. | 
|  | if (TrueBlock == FalseBlock) { | 
|  | assert(TrueBlock == nullptr && | 
|  | "Unexpected basic block transform while optimizing select"); | 
|  |  | 
|  | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | BranchInst::Create(EndBlock, FalseBlock); | 
|  | } | 
|  |  | 
|  | // Insert the real conditional branch based on the original condition. | 
|  | // If we did not create a new block for one of the 'true' or 'false' paths | 
|  | // of the condition, it means that side of the branch goes to the end block | 
|  | // directly and the path originates from the start block from the point of | 
|  | // view of the new PHI. | 
|  | if (TrueBlock == nullptr) { | 
|  | BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); | 
|  | TrueBlock = StartBlock; | 
|  | } else if (FalseBlock == nullptr) { | 
|  | BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); | 
|  | FalseBlock = StartBlock; | 
|  | } else { | 
|  | BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); | 
|  | } | 
|  |  | 
|  | // The select itself is replaced with a PHI Node. | 
|  | PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); | 
|  | PN->takeName(SI); | 
|  | PN->addIncoming(SI->getTrueValue(), TrueBlock); | 
|  | PN->addIncoming(SI->getFalseValue(), FalseBlock); | 
|  |  | 
|  | SI->replaceAllUsesWith(PN); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // Instruct OptimizeBlock to skip to the next block. | 
|  | CurInstIterator = StartBlock->end(); | 
|  | ++NumSelectsExpanded; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { | 
|  | SmallVector<int, 16> Mask(SVI->getShuffleMask()); | 
|  | int SplatElem = -1; | 
|  | for (unsigned i = 0; i < Mask.size(); ++i) { | 
|  | if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) | 
|  | return false; | 
|  | SplatElem = Mask[i]; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Some targets have expensive vector shifts if the lanes aren't all the same | 
|  | /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases | 
|  | /// it's often worth sinking a shufflevector splat down to its use so that | 
|  | /// codegen can spot all lanes are identical. | 
|  | bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { | 
|  | BasicBlock *DefBB = SVI->getParent(); | 
|  |  | 
|  | // Only do this xform if variable vector shifts are particularly expensive. | 
|  | if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) | 
|  | return false; | 
|  |  | 
|  | // We only expect better codegen by sinking a shuffle if we can recognise a | 
|  | // constant splat. | 
|  | if (!isBroadcastShuffle(SVI)) | 
|  | return false; | 
|  |  | 
|  | // InsertedShuffles - Only insert a shuffle in each block once. | 
|  | DenseMap<BasicBlock*, Instruction*> InsertedShuffles; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (User *U : SVI->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // For now only apply this when the splat is used by a shift instruction. | 
|  | if (!UI->isShift()) continue; | 
|  |  | 
|  | // Everything checks out, sink the shuffle if the user's block doesn't | 
|  | // already have a copy. | 
|  | Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; | 
|  |  | 
|  | if (!InsertedShuffle) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedShuffle = | 
|  | new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), | 
|  | SVI->getOperand(2), "", &*InsertPt); | 
|  | } | 
|  |  | 
|  | UI->replaceUsesOfWith(SVI, InsertedShuffle); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the shuffle. | 
|  | if (SVI->use_empty()) { | 
|  | SVI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { | 
|  | if (!TLI || !DL) | 
|  | return false; | 
|  |  | 
|  | Value *Cond = SI->getCondition(); | 
|  | Type *OldType = Cond->getType(); | 
|  | LLVMContext &Context = Cond->getContext(); | 
|  | MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); | 
|  | unsigned RegWidth = RegType.getSizeInBits(); | 
|  |  | 
|  | if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // If the register width is greater than the type width, expand the condition | 
|  | // of the switch instruction and each case constant to the width of the | 
|  | // register. By widening the type of the switch condition, subsequent | 
|  | // comparisons (for case comparisons) will not need to be extended to the | 
|  | // preferred register width, so we will potentially eliminate N-1 extends, | 
|  | // where N is the number of cases in the switch. | 
|  | auto *NewType = Type::getIntNTy(Context, RegWidth); | 
|  |  | 
|  | // Zero-extend the switch condition and case constants unless the switch | 
|  | // condition is a function argument that is already being sign-extended. | 
|  | // In that case, we can avoid an unnecessary mask/extension by sign-extending | 
|  | // everything instead. | 
|  | Instruction::CastOps ExtType = Instruction::ZExt; | 
|  | if (auto *Arg = dyn_cast<Argument>(Cond)) | 
|  | if (Arg->hasSExtAttr()) | 
|  | ExtType = Instruction::SExt; | 
|  |  | 
|  | auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); | 
|  | ExtInst->insertBefore(SI); | 
|  | SI->setCondition(ExtInst); | 
|  | for (SwitchInst::CaseIt Case : SI->cases()) { | 
|  | APInt NarrowConst = Case.getCaseValue()->getValue(); | 
|  | APInt WideConst = (ExtType == Instruction::ZExt) ? | 
|  | NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); | 
|  | Case.setValue(ConstantInt::get(Context, WideConst)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Helper class to promote a scalar operation to a vector one. | 
|  | /// This class is used to move downward extractelement transition. | 
|  | /// E.g., | 
|  | /// a = vector_op <2 x i32> | 
|  | /// b = extractelement <2 x i32> a, i32 0 | 
|  | /// c = scalar_op b | 
|  | /// store c | 
|  | /// | 
|  | /// => | 
|  | /// a = vector_op <2 x i32> | 
|  | /// c = vector_op a (equivalent to scalar_op on the related lane) | 
|  | /// * d = extractelement <2 x i32> c, i32 0 | 
|  | /// * store d | 
|  | /// Assuming both extractelement and store can be combine, we get rid of the | 
|  | /// transition. | 
|  | class VectorPromoteHelper { | 
|  | /// DataLayout associated with the current module. | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// Used to perform some checks on the legality of vector operations. | 
|  | const TargetLowering &TLI; | 
|  |  | 
|  | /// Used to estimated the cost of the promoted chain. | 
|  | const TargetTransformInfo &TTI; | 
|  |  | 
|  | /// The transition being moved downwards. | 
|  | Instruction *Transition; | 
|  | /// The sequence of instructions to be promoted. | 
|  | SmallVector<Instruction *, 4> InstsToBePromoted; | 
|  | /// Cost of combining a store and an extract. | 
|  | unsigned StoreExtractCombineCost; | 
|  | /// Instruction that will be combined with the transition. | 
|  | Instruction *CombineInst; | 
|  |  | 
|  | /// \brief The instruction that represents the current end of the transition. | 
|  | /// Since we are faking the promotion until we reach the end of the chain | 
|  | /// of computation, we need a way to get the current end of the transition. | 
|  | Instruction *getEndOfTransition() const { | 
|  | if (InstsToBePromoted.empty()) | 
|  | return Transition; | 
|  | return InstsToBePromoted.back(); | 
|  | } | 
|  |  | 
|  | /// \brief Return the index of the original value in the transition. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, | 
|  | /// c, is at index 0. | 
|  | unsigned getTransitionOriginalValueIdx() const { | 
|  | assert(isa<ExtractElementInst>(Transition) && | 
|  | "Other kind of transitions are not supported yet"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Return the index of the index in the transition. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 0" the index | 
|  | /// is at index 1. | 
|  | unsigned getTransitionIdx() const { | 
|  | assert(isa<ExtractElementInst>(Transition) && | 
|  | "Other kind of transitions are not supported yet"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// \brief Get the type of the transition. | 
|  | /// This is the type of the original value. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the | 
|  | /// transition is <2 x i32>. | 
|  | Type *getTransitionType() const { | 
|  | return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); | 
|  | } | 
|  |  | 
|  | /// \brief Promote \p ToBePromoted by moving \p Def downward through. | 
|  | /// I.e., we have the following sequence: | 
|  | /// Def = Transition <ty1> a to <ty2> | 
|  | /// b = ToBePromoted <ty2> Def, ... | 
|  | /// => | 
|  | /// b = ToBePromoted <ty1> a, ... | 
|  | /// Def = Transition <ty1> ToBePromoted to <ty2> | 
|  | void promoteImpl(Instruction *ToBePromoted); | 
|  |  | 
|  | /// \brief Check whether or not it is profitable to promote all the | 
|  | /// instructions enqueued to be promoted. | 
|  | bool isProfitableToPromote() { | 
|  | Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); | 
|  | unsigned Index = isa<ConstantInt>(ValIdx) | 
|  | ? cast<ConstantInt>(ValIdx)->getZExtValue() | 
|  | : -1; | 
|  | Type *PromotedType = getTransitionType(); | 
|  |  | 
|  | StoreInst *ST = cast<StoreInst>(CombineInst); | 
|  | unsigned AS = ST->getPointerAddressSpace(); | 
|  | unsigned Align = ST->getAlignment(); | 
|  | // Check if this store is supported. | 
|  | if (!TLI.allowsMisalignedMemoryAccesses( | 
|  | TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, | 
|  | Align)) { | 
|  | // If this is not supported, there is no way we can combine | 
|  | // the extract with the store. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The scalar chain of computation has to pay for the transition | 
|  | // scalar to vector. | 
|  | // The vector chain has to account for the combining cost. | 
|  | uint64_t ScalarCost = | 
|  | TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); | 
|  | uint64_t VectorCost = StoreExtractCombineCost; | 
|  | for (const auto &Inst : InstsToBePromoted) { | 
|  | // Compute the cost. | 
|  | // By construction, all instructions being promoted are arithmetic ones. | 
|  | // Moreover, one argument is a constant that can be viewed as a splat | 
|  | // constant. | 
|  | Value *Arg0 = Inst->getOperand(0); | 
|  | bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || | 
|  | isa<ConstantFP>(Arg0); | 
|  | TargetTransformInfo::OperandValueKind Arg0OVK = | 
|  | IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue | 
|  | : TargetTransformInfo::OK_AnyValue; | 
|  | TargetTransformInfo::OperandValueKind Arg1OVK = | 
|  | !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue | 
|  | : TargetTransformInfo::OK_AnyValue; | 
|  | ScalarCost += TTI.getArithmeticInstrCost( | 
|  | Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); | 
|  | VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, | 
|  | Arg0OVK, Arg1OVK); | 
|  | } | 
|  | DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " | 
|  | << ScalarCost << "\nVector: " << VectorCost << '\n'); | 
|  | return ScalarCost > VectorCost; | 
|  | } | 
|  |  | 
|  | /// \brief Generate a constant vector with \p Val with the same | 
|  | /// number of elements as the transition. | 
|  | /// \p UseSplat defines whether or not \p Val should be replicated | 
|  | /// across the whole vector. | 
|  | /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, | 
|  | /// otherwise we generate a vector with as many undef as possible: | 
|  | /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only | 
|  | /// used at the index of the extract. | 
|  | Value *getConstantVector(Constant *Val, bool UseSplat) const { | 
|  | unsigned ExtractIdx = UINT_MAX; | 
|  | if (!UseSplat) { | 
|  | // If we cannot determine where the constant must be, we have to | 
|  | // use a splat constant. | 
|  | Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); | 
|  | if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) | 
|  | ExtractIdx = CstVal->getSExtValue(); | 
|  | else | 
|  | UseSplat = true; | 
|  | } | 
|  |  | 
|  | unsigned End = getTransitionType()->getVectorNumElements(); | 
|  | if (UseSplat) | 
|  | return ConstantVector::getSplat(End, Val); | 
|  |  | 
|  | SmallVector<Constant *, 4> ConstVec; | 
|  | UndefValue *UndefVal = UndefValue::get(Val->getType()); | 
|  | for (unsigned Idx = 0; Idx != End; ++Idx) { | 
|  | if (Idx == ExtractIdx) | 
|  | ConstVec.push_back(Val); | 
|  | else | 
|  | ConstVec.push_back(UndefVal); | 
|  | } | 
|  | return ConstantVector::get(ConstVec); | 
|  | } | 
|  |  | 
|  | /// \brief Check if promoting to a vector type an operand at \p OperandIdx | 
|  | /// in \p Use can trigger undefined behavior. | 
|  | static bool canCauseUndefinedBehavior(const Instruction *Use, | 
|  | unsigned OperandIdx) { | 
|  | // This is not safe to introduce undef when the operand is on | 
|  | // the right hand side of a division-like instruction. | 
|  | if (OperandIdx != 1) | 
|  | return false; | 
|  | switch (Use->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | return true; | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | return !Use->hasNoNaNs(); | 
|  | } | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | public: | 
|  | VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, | 
|  | const TargetTransformInfo &TTI, Instruction *Transition, | 
|  | unsigned CombineCost) | 
|  | : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), | 
|  | StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { | 
|  | assert(Transition && "Do not know how to promote null"); | 
|  | } | 
|  |  | 
|  | /// \brief Check if we can promote \p ToBePromoted to \p Type. | 
|  | bool canPromote(const Instruction *ToBePromoted) const { | 
|  | // We could support CastInst too. | 
|  | return isa<BinaryOperator>(ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// \brief Check if it is profitable to promote \p ToBePromoted | 
|  | /// by moving downward the transition through. | 
|  | bool shouldPromote(const Instruction *ToBePromoted) const { | 
|  | // Promote only if all the operands can be statically expanded. | 
|  | // Indeed, we do not want to introduce any new kind of transitions. | 
|  | for (const Use &U : ToBePromoted->operands()) { | 
|  | const Value *Val = U.get(); | 
|  | if (Val == getEndOfTransition()) { | 
|  | // If the use is a division and the transition is on the rhs, | 
|  | // we cannot promote the operation, otherwise we may create a | 
|  | // division by zero. | 
|  | if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && | 
|  | !isa<ConstantFP>(Val)) | 
|  | return false; | 
|  | } | 
|  | // Check that the resulting operation is legal. | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); | 
|  | if (!ISDOpcode) | 
|  | return false; | 
|  | return StressStoreExtract || | 
|  | TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); | 
|  | } | 
|  |  | 
|  | /// \brief Check whether or not \p Use can be combined | 
|  | /// with the transition. | 
|  | /// I.e., is it possible to do Use(Transition) => AnotherUse? | 
|  | bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } | 
|  |  | 
|  | /// \brief Record \p ToBePromoted as part of the chain to be promoted. | 
|  | void enqueueForPromotion(Instruction *ToBePromoted) { | 
|  | InstsToBePromoted.push_back(ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// \brief Set the instruction that will be combined with the transition. | 
|  | void recordCombineInstruction(Instruction *ToBeCombined) { | 
|  | assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); | 
|  | CombineInst = ToBeCombined; | 
|  | } | 
|  |  | 
|  | /// \brief Promote all the instructions enqueued for promotion if it is | 
|  | /// is profitable. | 
|  | /// \return True if the promotion happened, false otherwise. | 
|  | bool promote() { | 
|  | // Check if there is something to promote. | 
|  | // Right now, if we do not have anything to combine with, | 
|  | // we assume the promotion is not profitable. | 
|  | if (InstsToBePromoted.empty() || !CombineInst) | 
|  | return false; | 
|  |  | 
|  | // Check cost. | 
|  | if (!StressStoreExtract && !isProfitableToPromote()) | 
|  | return false; | 
|  |  | 
|  | // Promote. | 
|  | for (auto &ToBePromoted : InstsToBePromoted) | 
|  | promoteImpl(ToBePromoted); | 
|  | InstsToBePromoted.clear(); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // End of anonymous namespace. | 
|  |  | 
|  | void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { | 
|  | // At this point, we know that all the operands of ToBePromoted but Def | 
|  | // can be statically promoted. | 
|  | // For Def, we need to use its parameter in ToBePromoted: | 
|  | // b = ToBePromoted ty1 a | 
|  | // Def = Transition ty1 b to ty2 | 
|  | // Move the transition down. | 
|  | // 1. Replace all uses of the promoted operation by the transition. | 
|  | // = ... b => = ... Def. | 
|  | assert(ToBePromoted->getType() == Transition->getType() && | 
|  | "The type of the result of the transition does not match " | 
|  | "the final type"); | 
|  | ToBePromoted->replaceAllUsesWith(Transition); | 
|  | // 2. Update the type of the uses. | 
|  | // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. | 
|  | Type *TransitionTy = getTransitionType(); | 
|  | ToBePromoted->mutateType(TransitionTy); | 
|  | // 3. Update all the operands of the promoted operation with promoted | 
|  | // operands. | 
|  | // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. | 
|  | for (Use &U : ToBePromoted->operands()) { | 
|  | Value *Val = U.get(); | 
|  | Value *NewVal = nullptr; | 
|  | if (Val == Transition) | 
|  | NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); | 
|  | else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || | 
|  | isa<ConstantFP>(Val)) { | 
|  | // Use a splat constant if it is not safe to use undef. | 
|  | NewVal = getConstantVector( | 
|  | cast<Constant>(Val), | 
|  | isa<UndefValue>(Val) || | 
|  | canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); | 
|  | } else | 
|  | llvm_unreachable("Did you modified shouldPromote and forgot to update " | 
|  | "this?"); | 
|  | ToBePromoted->setOperand(U.getOperandNo(), NewVal); | 
|  | } | 
|  | Transition->removeFromParent(); | 
|  | Transition->insertAfter(ToBePromoted); | 
|  | Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// Some targets can do store(extractelement) with one instruction. | 
|  | /// Try to push the extractelement towards the stores when the target | 
|  | /// has this feature and this is profitable. | 
|  | bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { | 
|  | unsigned CombineCost = UINT_MAX; | 
|  | if (DisableStoreExtract || !TLI || | 
|  | (!StressStoreExtract && | 
|  | !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), | 
|  | Inst->getOperand(1), CombineCost))) | 
|  | return false; | 
|  |  | 
|  | // At this point we know that Inst is a vector to scalar transition. | 
|  | // Try to move it down the def-use chain, until: | 
|  | // - We can combine the transition with its single use | 
|  | //   => we got rid of the transition. | 
|  | // - We escape the current basic block | 
|  | //   => we would need to check that we are moving it at a cheaper place and | 
|  | //      we do not do that for now. | 
|  | BasicBlock *Parent = Inst->getParent(); | 
|  | DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); | 
|  | VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); | 
|  | // If the transition has more than one use, assume this is not going to be | 
|  | // beneficial. | 
|  | while (Inst->hasOneUse()) { | 
|  | Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); | 
|  | DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); | 
|  |  | 
|  | if (ToBePromoted->getParent() != Parent) { | 
|  | DEBUG(dbgs() << "Instruction to promote is in a different block (" | 
|  | << ToBePromoted->getParent()->getName() | 
|  | << ") than the transition (" << Parent->getName() << ").\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VPH.canCombine(ToBePromoted)) { | 
|  | DEBUG(dbgs() << "Assume " << *Inst << '\n' | 
|  | << "will be combined with: " << *ToBePromoted << '\n'); | 
|  | VPH.recordCombineInstruction(ToBePromoted); | 
|  | bool Changed = VPH.promote(); | 
|  | NumStoreExtractExposed += Changed; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Try promoting.\n"); | 
|  | if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); | 
|  |  | 
|  | VPH.enqueueForPromotion(ToBePromoted); | 
|  | Inst = ToBePromoted; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { | 
|  | // Bail out if we inserted the instruction to prevent optimizations from | 
|  | // stepping on each other's toes. | 
|  | if (InsertedInsts.count(I)) | 
|  | return false; | 
|  |  | 
|  | if (PHINode *P = dyn_cast<PHINode>(I)) { | 
|  | // It is possible for very late stage optimizations (such as SimplifyCFG) | 
|  | // to introduce PHI nodes too late to be cleaned up.  If we detect such a | 
|  | // trivial PHI, go ahead and zap it here. | 
|  | if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { | 
|  | P->replaceAllUsesWith(V); | 
|  | P->eraseFromParent(); | 
|  | ++NumPHIsElim; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | // If the source of the cast is a constant, then this should have | 
|  | // already been constant folded.  The only reason NOT to constant fold | 
|  | // it is if something (e.g. LSR) was careful to place the constant | 
|  | // evaluation in a block other than then one that uses it (e.g. to hoist | 
|  | // the address of globals out of a loop).  If this is the case, we don't | 
|  | // want to forward-subst the cast. | 
|  | if (isa<Constant>(CI->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) | 
|  | return true; | 
|  |  | 
|  | if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { | 
|  | /// Sink a zext or sext into its user blocks if the target type doesn't | 
|  | /// fit in one register | 
|  | if (TLI && | 
|  | TLI->getTypeAction(CI->getContext(), | 
|  | TLI->getValueType(*DL, CI->getType())) == | 
|  | TargetLowering::TypeExpandInteger) { | 
|  | return SinkCast(CI); | 
|  | } else { | 
|  | bool MadeChange = moveExtToFormExtLoad(I); | 
|  | return MadeChange | optimizeExtUses(I); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | if (!TLI || !TLI->hasMultipleConditionRegisters()) | 
|  | return OptimizeCmpExpression(CI); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | stripInvariantGroupMetadata(*LI); | 
|  | if (TLI) { | 
|  | bool Modified = optimizeLoadExt(LI); | 
|  | unsigned AS = LI->getPointerAddressSpace(); | 
|  | Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); | 
|  | return Modified; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | stripInvariantGroupMetadata(*SI); | 
|  | if (TLI) { | 
|  | unsigned AS = SI->getPointerAddressSpace(); | 
|  | return optimizeMemoryInst(I, SI->getOperand(1), | 
|  | SI->getOperand(0)->getType(), AS); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); | 
|  |  | 
|  | if (BinOp && (BinOp->getOpcode() == Instruction::AShr || | 
|  | BinOp->getOpcode() == Instruction::LShr)) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); | 
|  | if (TLI && CI && TLI->hasExtractBitsInsn()) | 
|  | return OptimizeExtractBits(BinOp, CI, *TLI, *DL); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { | 
|  | if (GEPI->hasAllZeroIndices()) { | 
|  | /// The GEP operand must be a pointer, so must its result -> BitCast | 
|  | Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), | 
|  | GEPI->getName(), GEPI); | 
|  | GEPI->replaceAllUsesWith(NC); | 
|  | GEPI->eraseFromParent(); | 
|  | ++NumGEPsElim; | 
|  | optimizeInst(NC, ModifiedDT); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | return optimizeCallInst(CI, ModifiedDT); | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(I)) | 
|  | return optimizeSelectInst(SI); | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) | 
|  | return optimizeShuffleVectorInst(SVI); | 
|  |  | 
|  | if (auto *Switch = dyn_cast<SwitchInst>(I)) | 
|  | return optimizeSwitchInst(Switch); | 
|  |  | 
|  | if (isa<ExtractElementInst>(I)) | 
|  | return optimizeExtractElementInst(I); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given an OR instruction, check to see if this is a bitreverse | 
|  | /// idiom. If so, insert the new intrinsic and return true. | 
|  | static bool makeBitReverse(Instruction &I, const DataLayout &DL, | 
|  | const TargetLowering &TLI) { | 
|  | if (!I.getType()->isIntegerTy() || | 
|  | !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, | 
|  | TLI.getValueType(DL, I.getType(), true))) | 
|  | return false; | 
|  |  | 
|  | SmallVector<Instruction*, 4> Insts; | 
|  | if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts)) | 
|  | return false; | 
|  | Instruction *LastInst = Insts.back(); | 
|  | I.replaceAllUsesWith(LastInst); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(&I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In this pass we look for GEP and cast instructions that are used | 
|  | // across basic blocks and rewrite them to improve basic-block-at-a-time | 
|  | // selection. | 
|  | bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { | 
|  | SunkAddrs.clear(); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | CurInstIterator = BB.begin(); | 
|  | while (CurInstIterator != BB.end()) { | 
|  | MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); | 
|  | if (ModifiedDT) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MadeBitReverse = true; | 
|  | while (TLI && MadeBitReverse) { | 
|  | MadeBitReverse = false; | 
|  | for (auto &I : reverse(BB)) { | 
|  | if (makeBitReverse(I, *DL, *TLI)) { | 
|  | MadeBitReverse = MadeChange = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | MadeChange |= dupRetToEnableTailCallOpts(&BB); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // llvm.dbg.value is far away from the value then iSel may not be able | 
|  | // handle it properly. iSel will drop llvm.dbg.value if it can not | 
|  | // find a node corresponding to the value. | 
|  | bool CodeGenPrepare::placeDbgValues(Function &F) { | 
|  | bool MadeChange = false; | 
|  | for (BasicBlock &BB : F) { | 
|  | Instruction *PrevNonDbgInst = nullptr; | 
|  | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | 
|  | Instruction *Insn = &*BI++; | 
|  | DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); | 
|  | // Leave dbg.values that refer to an alloca alone. These | 
|  | // instrinsics describe the address of a variable (= the alloca) | 
|  | // being taken.  They should not be moved next to the alloca | 
|  | // (and to the beginning of the scope), but rather stay close to | 
|  | // where said address is used. | 
|  | if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { | 
|  | PrevNonDbgInst = Insn; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); | 
|  | if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { | 
|  | // If VI is a phi in a block with an EHPad terminator, we can't insert | 
|  | // after it. | 
|  | if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) | 
|  | continue; | 
|  | DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); | 
|  | DVI->removeFromParent(); | 
|  | if (isa<PHINode>(VI)) | 
|  | DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); | 
|  | else | 
|  | DVI->insertAfter(VI); | 
|  | MadeChange = true; | 
|  | ++NumDbgValueMoved; | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // If there is a sequence that branches based on comparing a single bit | 
|  | // against zero that can be combined into a single instruction, and the | 
|  | // target supports folding these into a single instruction, sink the | 
|  | // mask and compare into the branch uses. Do this before OptimizeBlock -> | 
|  | // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being | 
|  | // searched for. | 
|  | bool CodeGenPrepare::sinkAndCmp(Function &F) { | 
|  | if (!EnableAndCmpSinking) | 
|  | return false; | 
|  | if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) | 
|  | return false; | 
|  | bool MadeChange = false; | 
|  | for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { | 
|  | BasicBlock *BB = &*I++; | 
|  |  | 
|  | // Does this BB end with the following? | 
|  | //   %andVal = and %val, #single-bit-set | 
|  | //   %icmpVal = icmp %andResult, 0 | 
|  | //   br i1 %cmpVal label %dest1, label %dest2" | 
|  | BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!Brcc || !Brcc->isConditional()) | 
|  | continue; | 
|  | ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); | 
|  | if (!Cmp || Cmp->getParent() != BB) | 
|  | continue; | 
|  | ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); | 
|  | if (!Zero || !Zero->isZero()) | 
|  | continue; | 
|  | Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); | 
|  | if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) | 
|  | continue; | 
|  | ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); | 
|  | if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) | 
|  | continue; | 
|  | DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); | 
|  |  | 
|  | // Push the "and; icmp" for any users that are conditional branches. | 
|  | // Since there can only be one branch use per BB, we don't need to keep | 
|  | // track of which BBs we insert into. | 
|  | for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = *UI; | 
|  | // Find brcc use. | 
|  | BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); | 
|  | ++UI; | 
|  | if (!BrccUser || !BrccUser->isConditional()) | 
|  | continue; | 
|  | BasicBlock *UserBB = BrccUser->getParent(); | 
|  | if (UserBB == BB) continue; | 
|  | DEBUG(dbgs() << "found Brcc use\n"); | 
|  |  | 
|  | // Sink the "and; icmp" to use. | 
|  | MadeChange = true; | 
|  | BinaryOperator *NewAnd = | 
|  | BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", | 
|  | BrccUser); | 
|  | CmpInst *NewCmp = | 
|  | CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, | 
|  | "", BrccUser); | 
|  | TheUse = NewCmp; | 
|  | ++NumAndCmpsMoved; | 
|  | DEBUG(BrccUser->getParent()->dump()); | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// \brief Retrieve the probabilities of a conditional branch. Returns true on | 
|  | /// success, or returns false if no or invalid metadata was found. | 
|  | static bool extractBranchMetadata(BranchInst *BI, | 
|  | uint64_t &ProbTrue, uint64_t &ProbFalse) { | 
|  | assert(BI->isConditional() && | 
|  | "Looking for probabilities on unconditional branch?"); | 
|  | auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); | 
|  | if (!ProfileData || ProfileData->getNumOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | const auto *CITrue = | 
|  | mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); | 
|  | const auto *CIFalse = | 
|  | mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); | 
|  | if (!CITrue || !CIFalse) | 
|  | return false; | 
|  |  | 
|  | ProbTrue = CITrue->getValue().getZExtValue(); | 
|  | ProbFalse = CIFalse->getValue().getZExtValue(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Scale down both weights to fit into uint32_t. | 
|  | static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { | 
|  | uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; | 
|  | uint32_t Scale = (NewMax / UINT32_MAX) + 1; | 
|  | NewTrue = NewTrue / Scale; | 
|  | NewFalse = NewFalse / Scale; | 
|  | } | 
|  |  | 
|  | /// \brief Some targets prefer to split a conditional branch like: | 
|  | /// \code | 
|  | ///   %0 = icmp ne i32 %a, 0 | 
|  | ///   %1 = icmp ne i32 %b, 0 | 
|  | ///   %or.cond = or i1 %0, %1 | 
|  | ///   br i1 %or.cond, label %TrueBB, label %FalseBB | 
|  | /// \endcode | 
|  | /// into multiple branch instructions like: | 
|  | /// \code | 
|  | ///   bb1: | 
|  | ///     %0 = icmp ne i32 %a, 0 | 
|  | ///     br i1 %0, label %TrueBB, label %bb2 | 
|  | ///   bb2: | 
|  | ///     %1 = icmp ne i32 %b, 0 | 
|  | ///     br i1 %1, label %TrueBB, label %FalseBB | 
|  | /// \endcode | 
|  | /// This usually allows instruction selection to do even further optimizations | 
|  | /// and combine the compare with the branch instruction. Currently this is | 
|  | /// applied for targets which have "cheap" jump instructions. | 
|  | /// | 
|  | /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. | 
|  | /// | 
|  | bool CodeGenPrepare::splitBranchCondition(Function &F) { | 
|  | if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (auto &BB : F) { | 
|  | // Does this BB end with the following? | 
|  | //   %cond1 = icmp|fcmp|binary instruction ... | 
|  | //   %cond2 = icmp|fcmp|binary instruction ... | 
|  | //   %cond.or = or|and i1 %cond1, cond2 | 
|  | //   br i1 %cond.or label %dest1, label %dest2" | 
|  | BinaryOperator *LogicOp; | 
|  | BasicBlock *TBB, *FBB; | 
|  | if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) | 
|  | continue; | 
|  |  | 
|  | auto *Br1 = cast<BranchInst>(BB.getTerminator()); | 
|  | if (Br1->getMetadata(LLVMContext::MD_unpredictable)) | 
|  | continue; | 
|  |  | 
|  | unsigned Opc; | 
|  | Value *Cond1, *Cond2; | 
|  | if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), | 
|  | m_OneUse(m_Value(Cond2))))) | 
|  | Opc = Instruction::And; | 
|  | else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), | 
|  | m_OneUse(m_Value(Cond2))))) | 
|  | Opc = Instruction::Or; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || | 
|  | !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   ) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); | 
|  |  | 
|  | // Create a new BB. | 
|  | auto *InsertBefore = std::next(Function::iterator(BB)) | 
|  | .getNodePtrUnchecked(); | 
|  | auto TmpBB = BasicBlock::Create(BB.getContext(), | 
|  | BB.getName() + ".cond.split", | 
|  | BB.getParent(), InsertBefore); | 
|  |  | 
|  | // Update original basic block by using the first condition directly by the | 
|  | // branch instruction and removing the no longer needed and/or instruction. | 
|  | Br1->setCondition(Cond1); | 
|  | LogicOp->eraseFromParent(); | 
|  |  | 
|  | // Depending on the conditon we have to either replace the true or the false | 
|  | // successor of the original branch instruction. | 
|  | if (Opc == Instruction::And) | 
|  | Br1->setSuccessor(0, TmpBB); | 
|  | else | 
|  | Br1->setSuccessor(1, TmpBB); | 
|  |  | 
|  | // Fill in the new basic block. | 
|  | auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); | 
|  | if (auto *I = dyn_cast<Instruction>(Cond2)) { | 
|  | I->removeFromParent(); | 
|  | I->insertBefore(Br2); | 
|  | } | 
|  |  | 
|  | // Update PHI nodes in both successors. The original BB needs to be | 
|  | // replaced in one succesor's PHI nodes, because the branch comes now from | 
|  | // the newly generated BB (NewBB). In the other successor we need to add one | 
|  | // incoming edge to the PHI nodes, because both branch instructions target | 
|  | // now the same successor. Depending on the original branch condition | 
|  | // (and/or) we have to swap the successors (TrueDest, FalseDest), so that | 
|  | // we perfrom the correct update for the PHI nodes. | 
|  | // This doesn't change the successor order of the just created branch | 
|  | // instruction (or any other instruction). | 
|  | if (Opc == Instruction::Or) | 
|  | std::swap(TBB, FBB); | 
|  |  | 
|  | // Replace the old BB with the new BB. | 
|  | for (auto &I : *TBB) { | 
|  | PHINode *PN = dyn_cast<PHINode>(&I); | 
|  | if (!PN) | 
|  | break; | 
|  | int i; | 
|  | while ((i = PN->getBasicBlockIndex(&BB)) >= 0) | 
|  | PN->setIncomingBlock(i, TmpBB); | 
|  | } | 
|  |  | 
|  | // Add another incoming edge form the new BB. | 
|  | for (auto &I : *FBB) { | 
|  | PHINode *PN = dyn_cast<PHINode>(&I); | 
|  | if (!PN) | 
|  | break; | 
|  | auto *Val = PN->getIncomingValueForBlock(&BB); | 
|  | PN->addIncoming(Val, TmpBB); | 
|  | } | 
|  |  | 
|  | // Update the branch weights (from SelectionDAGBuilder:: | 
|  | // FindMergedConditions). | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for NewBB. | 
|  | // The requirement is that | 
|  | //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) | 
|  | //     = TrueProb for orignal BB. | 
|  | // Assuming the orignal weights are A and B, one choice is to set BB1's | 
|  | // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice | 
|  | // assumes that | 
|  | //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. | 
|  | // Another choice is to assume TrueProb for BB1 equals to TrueProb for | 
|  | // TmpBB, but the math is more complicated. | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { | 
|  | uint64_t NewTrueWeight = TrueWeight; | 
|  | uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  |  | 
|  | NewTrueWeight = TrueWeight; | 
|  | NewFalseWeight = 2 * FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  | } | 
|  | } else { | 
|  | // Codegen X & Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) | 
|  | //     = FalseProb for orignal BB. | 
|  | // Assuming the orignal weights are A and B, one choice is to set BB1's | 
|  | // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice | 
|  | // assumes that | 
|  | //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { | 
|  | uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; | 
|  | uint64_t NewFalseWeight = FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  |  | 
|  | NewTrueWeight = 2 * TrueWeight; | 
|  | NewFalseWeight = FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note: No point in getting fancy here, since the DT info is never | 
|  | // available to CodeGenPrepare. | 
|  | ModifiedDT = true; | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); | 
|  | TmpBB->dump()); | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { | 
|  | if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) | 
|  | I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); | 
|  | } |