|  | //===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Strategy: | 
|  | //    Priority ordering rules: | 
|  | //    (1) Max delay, which is the order of the heap S.candsAsHeap. | 
|  | //    (2) Instruction that frees up a register. | 
|  | //    (3) Instruction that has the maximum number of dependent instructions. | 
|  | //    Note that rules 2 and 3 are only used if issue conflicts prevent | 
|  | //    choosing a higher priority instruction by rule 1. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SchedPriorities.h" | 
|  | #include "../LiveVar/FunctionLiveVarInfo.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include <iostream> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) { | 
|  | return os << "Delay for node " << nd->node->getNodeId() | 
|  | << " = " << (long)nd->delay << "\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  | SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G, | 
|  | FunctionLiveVarInfo &LVI) | 
|  | : curTime(0), graph(G), methodLiveVarInfo(LVI), | 
|  | nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious | 
|  | earliestReadyTimeForNode(G->getNumNodes(), 0), | 
|  | earliestReadyTime(0), | 
|  | nextToTry(candsAsHeap.begin()) | 
|  | { | 
|  | computeDelays(graph); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | SchedPriorities::initialize() { | 
|  | initializeReadyHeap(graph); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | SchedPriorities::computeDelays(const SchedGraph* graph) { | 
|  | po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph); | 
|  | for ( ; poIter != poEnd; ++poIter) { | 
|  | const SchedGraphNode* node = *poIter; | 
|  | cycles_t nodeDelay; | 
|  | if (node->beginOutEdges() == node->endOutEdges()) | 
|  | nodeDelay = node->getLatency(); | 
|  | else { | 
|  | // Iterate over the out-edges of the node to compute delay | 
|  | nodeDelay = 0; | 
|  | for (SchedGraphNode::const_iterator E=node->beginOutEdges(); | 
|  | E != node->endOutEdges(); ++E) { | 
|  | cycles_t sinkDelay = getNodeDelay((SchedGraphNode*)(*E)->getSink()); | 
|  | nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay()); | 
|  | } | 
|  | } | 
|  | getNodeDelayRef(node) = nodeDelay; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | SchedPriorities::initializeReadyHeap(const SchedGraph* graph) { | 
|  | const SchedGraphNode* graphRoot = (const SchedGraphNode*)graph->getRoot(); | 
|  | assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root"); | 
|  |  | 
|  | // Insert immediate successors of dummy root, which are the actual roots | 
|  | sg_succ_const_iterator SEnd = succ_end(graphRoot); | 
|  | for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S) | 
|  | this->insertReady(*S); | 
|  |  | 
|  | #undef TEST_HEAP_CONVERSION | 
|  | #ifdef TEST_HEAP_CONVERSION | 
|  | std::cerr << "Before heap conversion:\n"; | 
|  | copy(candsAsHeap.begin(), candsAsHeap.end(), | 
|  | ostream_iterator<NodeDelayPair*>(std::cerr,"\n")); | 
|  | #endif | 
|  |  | 
|  | candsAsHeap.makeHeap(); | 
|  |  | 
|  | nextToTry = candsAsHeap.begin(); | 
|  |  | 
|  | #ifdef TEST_HEAP_CONVERSION | 
|  | std::cerr << "After heap conversion:\n"; | 
|  | copy(candsAsHeap.begin(), candsAsHeap.end(), | 
|  | ostream_iterator<NodeDelayPair*>(std::cerr,"\n")); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void | 
|  | SchedPriorities::insertReady(const SchedGraphNode* node) { | 
|  | candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]); | 
|  | candsAsSet.insert(node); | 
|  | mcands.clear(); // ensure reset choices is called before any more choices | 
|  | earliestReadyTime = std::min(earliestReadyTime, | 
|  | getEarliestReadyTimeForNode(node)); | 
|  |  | 
|  | if (SchedDebugLevel >= Sched_PrintSchedTrace) { | 
|  | std::cerr << " Node " << node->getNodeId() << " will be ready in Cycle " | 
|  | << getEarliestReadyTimeForNode(node) << "; " | 
|  | << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n" | 
|  | << "        " << *node->getMachineInstr() << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | SchedPriorities::issuedReadyNodeAt(cycles_t curTime, | 
|  | const SchedGraphNode* node) { | 
|  | candsAsHeap.removeNode(node); | 
|  | candsAsSet.erase(node); | 
|  | mcands.clear(); // ensure reset choices is called before any more choices | 
|  |  | 
|  | if (earliestReadyTime == getEarliestReadyTimeForNode(node)) { | 
|  | // earliestReadyTime may have been due to this node, so recompute it | 
|  | earliestReadyTime = HUGE_LATENCY; | 
|  | for (NodeHeap::const_iterator I=candsAsHeap.begin(); | 
|  | I != candsAsHeap.end(); ++I) | 
|  | if (candsAsHeap.getNode(I)) { | 
|  | earliestReadyTime = | 
|  | std::min(earliestReadyTime, | 
|  | getEarliestReadyTimeForNode(candsAsHeap.getNode(I))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now update ready times for successors | 
|  | for (SchedGraphNode::const_iterator E=node->beginOutEdges(); | 
|  | E != node->endOutEdges(); ++E) { | 
|  | cycles_t& etime = | 
|  | getEarliestReadyTimeForNodeRef((SchedGraphNode*)(*E)->getSink()); | 
|  | etime = std::max(etime, curTime + (*E)->getMinDelay()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------- | 
|  | // Priority ordering rules: | 
|  | // (1) Max delay, which is the order of the heap S.candsAsHeap. | 
|  | // (2) Instruction that frees up a register. | 
|  | // (3) Instruction that has the maximum number of dependent instructions. | 
|  | // Note that rules 2 and 3 are only used if issue conflicts prevent | 
|  | // choosing a higher priority instruction by rule 1. | 
|  | //---------------------------------------------------------------------- | 
|  |  | 
|  | inline int | 
|  | SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands) { | 
|  | return (mcands.size() == 1)? 0	// only one choice exists so take it | 
|  | : -1;	// -1 indicates multiple choices | 
|  | } | 
|  |  | 
|  | inline int | 
|  | SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands) { | 
|  | assert(mcands.size() >= 1 && "Should have at least one candidate here."); | 
|  | for (unsigned i=0, N = mcands.size(); i < N; i++) | 
|  | if (instructionHasLastUse(methodLiveVarInfo, | 
|  | candsAsHeap.getNode(mcands[i]))) | 
|  | return i; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | inline int | 
|  | SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands) { | 
|  | assert(mcands.size() >= 1 && "Should have at least one candidate here."); | 
|  | int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges(); | 
|  | int indexWithMaxUses = 0; | 
|  | for (unsigned i=1, N = mcands.size(); i < N; i++) { | 
|  | int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges(); | 
|  | if (numUses > maxUses) { | 
|  | maxUses = numUses; | 
|  | indexWithMaxUses = i; | 
|  | } | 
|  | } | 
|  | return indexWithMaxUses; | 
|  | } | 
|  |  | 
|  | const SchedGraphNode* | 
|  | SchedPriorities::getNextHighest(const SchedulingManager& S, | 
|  | cycles_t curTime) { | 
|  | int nextIdx = -1; | 
|  | const SchedGraphNode* nextChoice = NULL; | 
|  |  | 
|  | if (mcands.size() == 0) | 
|  | findSetWithMaxDelay(mcands, S); | 
|  |  | 
|  | while (nextIdx < 0 && mcands.size() > 0) { | 
|  | nextIdx = chooseByRule1(mcands);	 // rule 1 | 
|  |  | 
|  | if (nextIdx == -1) | 
|  | nextIdx = chooseByRule2(mcands); // rule 2 | 
|  |  | 
|  | if (nextIdx == -1) | 
|  | nextIdx = chooseByRule3(mcands); // rule 3 | 
|  |  | 
|  | if (nextIdx == -1) | 
|  | nextIdx = 0;			 // default to first choice by delays | 
|  |  | 
|  | // We have found the next best candidate.  Check if it ready in | 
|  | // the current cycle, and if it is feasible. | 
|  | // If not, remove it from mcands and continue.  Refill mcands if | 
|  | // it becomes empty. | 
|  | nextChoice = candsAsHeap.getNode(mcands[nextIdx]); | 
|  | if (getEarliestReadyTimeForNode(nextChoice) > curTime | 
|  | || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpcode())) | 
|  | { | 
|  | mcands.erase(mcands.begin() + nextIdx); | 
|  | nextIdx = -1; | 
|  | if (mcands.size() == 0) | 
|  | findSetWithMaxDelay(mcands, S); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nextIdx >= 0) { | 
|  | mcands.erase(mcands.begin() + nextIdx); | 
|  | return nextChoice; | 
|  | } else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands, | 
|  | const SchedulingManager& S) | 
|  | { | 
|  | if (mcands.size() == 0 && nextToTry != candsAsHeap.end()) | 
|  | { // out of choices at current maximum delay; | 
|  | // put nodes with next highest delay in mcands | 
|  | candIndex next = nextToTry; | 
|  | cycles_t maxDelay = candsAsHeap.getDelay(next); | 
|  | for (; next != candsAsHeap.end() | 
|  | && candsAsHeap.getDelay(next) == maxDelay; ++next) | 
|  | mcands.push_back(next); | 
|  |  | 
|  | nextToTry = next; | 
|  |  | 
|  | if (SchedDebugLevel >= Sched_PrintSchedTrace) { | 
|  | std::cerr << "    Cycle " << (long)getTime() << ": " | 
|  | << "Next highest delay = " << (long)maxDelay << " : " | 
|  | << mcands.size() << " Nodes with this delay: "; | 
|  | for (unsigned i=0; i < mcands.size(); i++) | 
|  | std::cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", "; | 
|  | std::cerr << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI, | 
|  | const SchedGraphNode* graphNode) { | 
|  | const MachineInstr *MI = graphNode->getMachineInstr(); | 
|  |  | 
|  | hash_map<const MachineInstr*, bool>::const_iterator | 
|  | ui = lastUseMap.find(MI); | 
|  | if (ui != lastUseMap.end()) | 
|  | return ui->second; | 
|  |  | 
|  | // else check if instruction is a last use and save it in the hash_map | 
|  | bool hasLastUse = false; | 
|  | const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock(); | 
|  | const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb); | 
|  |  | 
|  | for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end(); | 
|  | OI != OE; ++OI) | 
|  | if (!LVs.count(*OI)) { | 
|  | hasLastUse = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return lastUseMap[MI] = hasLastUse; | 
|  | } | 
|  |  | 
|  | } // End llvm namespace |