|  | //===- InstructionCombining.cpp - Combine multiple instructions -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // InstructionCombining - Combine instructions to form fewer, simple | 
|  | // instructions.  This pass does not modify the CFG.  This pass is where | 
|  | // algebraic simplification happens. | 
|  | // | 
|  | // This pass combines things like: | 
|  | //    %Y = add i32 %X, 1 | 
|  | //    %Z = add i32 %Y, 1 | 
|  | // into: | 
|  | //    %Z = add i32 %X, 2 | 
|  | // | 
|  | // This is a simple worklist driven algorithm. | 
|  | // | 
|  | // This pass guarantees that the following canonicalizations are performed on | 
|  | // the program: | 
|  | //    1. If a binary operator has a constant operand, it is moved to the RHS | 
|  | //    2. Bitwise operators with constant operands are always grouped so that | 
|  | //       shifts are performed first, then or's, then and's, then xor's. | 
|  | //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible | 
|  | //    4. All cmp instructions on boolean values are replaced with logical ops | 
|  | //    5. add X, X is represented as (X*2) => (X << 1) | 
|  | //    6. Multiplies with a power-of-two constant argument are transformed into | 
|  | //       shifts. | 
|  | //   ... etc. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/MallocHelper.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/ConstantRange.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Support/IRBuilder.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | #include <climits> | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | STATISTIC(NumCombined , "Number of insts combined"); | 
|  | STATISTIC(NumConstProp, "Number of constant folds"); | 
|  | STATISTIC(NumDeadInst , "Number of dead inst eliminated"); | 
|  | STATISTIC(NumDeadStore, "Number of dead stores eliminated"); | 
|  | STATISTIC(NumSunkInst , "Number of instructions sunk"); | 
|  |  | 
|  | namespace { | 
|  | /// InstCombineWorklist - This is the worklist management logic for | 
|  | /// InstCombine. | 
|  | class InstCombineWorklist { | 
|  | SmallVector<Instruction*, 256> Worklist; | 
|  | DenseMap<Instruction*, unsigned> WorklistMap; | 
|  |  | 
|  | void operator=(const InstCombineWorklist&RHS);   // DO NOT IMPLEMENT | 
|  | InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT | 
|  | public: | 
|  | InstCombineWorklist() {} | 
|  |  | 
|  | bool isEmpty() const { return Worklist.empty(); } | 
|  |  | 
|  | /// Add - Add the specified instruction to the worklist if it isn't already | 
|  | /// in it. | 
|  | void Add(Instruction *I) { | 
|  | if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) { | 
|  | DEBUG(errs() << "IC: ADD: " << *I << '\n'); | 
|  | Worklist.push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddValue(Value *V) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | Add(I); | 
|  | } | 
|  |  | 
|  | // Remove - remove I from the worklist if it exists. | 
|  | void Remove(Instruction *I) { | 
|  | DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I); | 
|  | if (It == WorklistMap.end()) return; // Not in worklist. | 
|  |  | 
|  | // Don't bother moving everything down, just null out the slot. | 
|  | Worklist[It->second] = 0; | 
|  |  | 
|  | WorklistMap.erase(It); | 
|  | } | 
|  |  | 
|  | Instruction *RemoveOne() { | 
|  | Instruction *I = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  | WorklistMap.erase(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | /// AddUsersToWorkList - When an instruction is simplified, add all users of | 
|  | /// the instruction to the work lists because they might get more simplified | 
|  | /// now. | 
|  | /// | 
|  | void AddUsersToWorkList(Instruction &I) { | 
|  | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); | 
|  | UI != UE; ++UI) | 
|  | Add(cast<Instruction>(*UI)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Zap - check that the worklist is empty and nuke the backing store for | 
|  | /// the map if it is large. | 
|  | void Zap() { | 
|  | assert(WorklistMap.empty() && "Worklist empty, but map not?"); | 
|  |  | 
|  | // Do an explicit clear, this shrinks the map if needed. | 
|  | WorklistMap.clear(); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace. | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// InstCombineIRInserter - This is an IRBuilder insertion helper that works | 
|  | /// just like the normal insertion helper, but also adds any new instructions | 
|  | /// to the instcombine worklist. | 
|  | class InstCombineIRInserter : public IRBuilderDefaultInserter<true> { | 
|  | InstCombineWorklist &Worklist; | 
|  | public: | 
|  | InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {} | 
|  |  | 
|  | void InsertHelper(Instruction *I, const Twine &Name, | 
|  | BasicBlock *BB, BasicBlock::iterator InsertPt) const { | 
|  | IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt); | 
|  | Worklist.Add(I); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | class InstCombiner : public FunctionPass, | 
|  | public InstVisitor<InstCombiner, Instruction*> { | 
|  | TargetData *TD; | 
|  | bool MustPreserveLCSSA; | 
|  | bool MadeIRChange; | 
|  | public: | 
|  | /// Worklist - All of the instructions that need to be simplified. | 
|  | InstCombineWorklist Worklist; | 
|  |  | 
|  | /// Builder - This is an IRBuilder that automatically inserts new | 
|  | /// instructions into the worklist when they are created. | 
|  | typedef IRBuilder<true, ConstantFolder, InstCombineIRInserter> BuilderTy; | 
|  | BuilderTy *Builder; | 
|  |  | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {} | 
|  |  | 
|  | LLVMContext *Context; | 
|  | LLVMContext *getContext() const { return Context; } | 
|  |  | 
|  | public: | 
|  | virtual bool runOnFunction(Function &F); | 
|  |  | 
|  | bool DoOneIteration(Function &F, unsigned ItNum); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addPreservedID(LCSSAID); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  |  | 
|  | TargetData *getTargetData() const { return TD; } | 
|  |  | 
|  | // Visitation implementation - Implement instruction combining for different | 
|  | // instruction types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //    null        - No change was made | 
|  | //     I          - Change was made, I is still valid, I may be dead though | 
|  | //   otherwise    - Change was made, replace I with returned instruction | 
|  | // | 
|  | Instruction *visitAdd(BinaryOperator &I); | 
|  | Instruction *visitFAdd(BinaryOperator &I); | 
|  | Instruction *visitSub(BinaryOperator &I); | 
|  | Instruction *visitFSub(BinaryOperator &I); | 
|  | Instruction *visitMul(BinaryOperator &I); | 
|  | Instruction *visitFMul(BinaryOperator &I); | 
|  | Instruction *visitURem(BinaryOperator &I); | 
|  | Instruction *visitSRem(BinaryOperator &I); | 
|  | Instruction *visitFRem(BinaryOperator &I); | 
|  | bool SimplifyDivRemOfSelect(BinaryOperator &I); | 
|  | Instruction *commonRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonIRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonDivTransforms(BinaryOperator &I); | 
|  | Instruction *commonIDivTransforms(BinaryOperator &I); | 
|  | Instruction *visitUDiv(BinaryOperator &I); | 
|  | Instruction *visitSDiv(BinaryOperator &I); | 
|  | Instruction *visitFDiv(BinaryOperator &I); | 
|  | Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); | 
|  | Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS); | 
|  | Instruction *visitAnd(BinaryOperator &I); | 
|  | Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); | 
|  | Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS); | 
|  | Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, | 
|  | Value *A, Value *B, Value *C); | 
|  | Instruction *visitOr (BinaryOperator &I); | 
|  | Instruction *visitXor(BinaryOperator &I); | 
|  | Instruction *visitShl(BinaryOperator &I); | 
|  | Instruction *visitAShr(BinaryOperator &I); | 
|  | Instruction *visitLShr(BinaryOperator &I); | 
|  | Instruction *commonShiftTransforms(BinaryOperator &I); | 
|  | Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, | 
|  | Constant *RHSC); | 
|  | Instruction *visitFCmpInst(FCmpInst &I); | 
|  | Instruction *visitICmpInst(ICmpInst &I); | 
|  | Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); | 
|  | Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, | 
|  | Instruction *LHS, | 
|  | ConstantInt *RHS); | 
|  | Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, | 
|  | ConstantInt *DivRHS); | 
|  |  | 
|  | Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, Instruction &I); | 
|  | Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, | 
|  | BinaryOperator &I); | 
|  | Instruction *commonCastTransforms(CastInst &CI); | 
|  | Instruction *commonIntCastTransforms(CastInst &CI); | 
|  | Instruction *commonPointerCastTransforms(CastInst &CI); | 
|  | Instruction *visitTrunc(TruncInst &CI); | 
|  | Instruction *visitZExt(ZExtInst &CI); | 
|  | Instruction *visitSExt(SExtInst &CI); | 
|  | Instruction *visitFPTrunc(FPTruncInst &CI); | 
|  | Instruction *visitFPExt(CastInst &CI); | 
|  | Instruction *visitFPToUI(FPToUIInst &FI); | 
|  | Instruction *visitFPToSI(FPToSIInst &FI); | 
|  | Instruction *visitUIToFP(CastInst &CI); | 
|  | Instruction *visitSIToFP(CastInst &CI); | 
|  | Instruction *visitPtrToInt(PtrToIntInst &CI); | 
|  | Instruction *visitIntToPtr(IntToPtrInst &CI); | 
|  | Instruction *visitBitCast(BitCastInst &CI); | 
|  | Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI); | 
|  | Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*); | 
|  | Instruction *visitSelectInst(SelectInst &SI); | 
|  | Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); | 
|  | Instruction *visitCallInst(CallInst &CI); | 
|  | Instruction *visitInvokeInst(InvokeInst &II); | 
|  | Instruction *visitPHINode(PHINode &PN); | 
|  | Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); | 
|  | Instruction *visitAllocationInst(AllocationInst &AI); | 
|  | Instruction *visitFreeInst(FreeInst &FI); | 
|  | Instruction *visitLoadInst(LoadInst &LI); | 
|  | Instruction *visitStoreInst(StoreInst &SI); | 
|  | Instruction *visitBranchInst(BranchInst &BI); | 
|  | Instruction *visitSwitchInst(SwitchInst &SI); | 
|  | Instruction *visitInsertElementInst(InsertElementInst &IE); | 
|  | Instruction *visitExtractElementInst(ExtractElementInst &EI); | 
|  | Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); | 
|  | Instruction *visitExtractValueInst(ExtractValueInst &EV); | 
|  |  | 
|  | // visitInstruction - Specify what to return for unhandled instructions... | 
|  | Instruction *visitInstruction(Instruction &I) { return 0; } | 
|  |  | 
|  | private: | 
|  | Instruction *visitCallSite(CallSite CS); | 
|  | bool transformConstExprCastCall(CallSite CS); | 
|  | Instruction *transformCallThroughTrampoline(CallSite CS); | 
|  | Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, | 
|  | bool DoXform = true); | 
|  | bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); | 
|  | DbgDeclareInst *hasOneUsePlusDeclare(Value *V); | 
|  |  | 
|  |  | 
|  | public: | 
|  | // InsertNewInstBefore - insert an instruction New before instruction Old | 
|  | // in the program.  Add the new instruction to the worklist. | 
|  | // | 
|  | Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { | 
|  | assert(New && New->getParent() == 0 && | 
|  | "New instruction already inserted into a basic block!"); | 
|  | BasicBlock *BB = Old.getParent(); | 
|  | BB->getInstList().insert(&Old, New);  // Insert inst | 
|  | Worklist.Add(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // ReplaceInstUsesWith - This method is to be used when an instruction is | 
|  | // found to be dead, replacable with another preexisting expression.  Here | 
|  | // we add all uses of I to the worklist, replace all uses of I with the new | 
|  | // value, then return I, so that the inst combiner will know that I was | 
|  | // modified. | 
|  | // | 
|  | Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { | 
|  | Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist. | 
|  |  | 
|  | // If we are replacing the instruction with itself, this must be in a | 
|  | // segment of unreachable code, so just clobber the instruction. | 
|  | if (&I == V) | 
|  | V = UndefValue::get(I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // EraseInstFromFunction - When dealing with an instruction that has side | 
|  | // effects or produces a void value, we can't rely on DCE to delete the | 
|  | // instruction.  Instead, visit methods should return the value returned by | 
|  | // this function. | 
|  | Instruction *EraseInstFromFunction(Instruction &I) { | 
|  | DEBUG(errs() << "IC: ERASE " << I << '\n'); | 
|  |  | 
|  | assert(I.use_empty() && "Cannot erase instruction that is used!"); | 
|  | // Make sure that we reprocess all operands now that we reduced their | 
|  | // use counts. | 
|  | if (I.getNumOperands() < 8) { | 
|  | for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(*i)) | 
|  | Worklist.Add(Op); | 
|  | } | 
|  | Worklist.Remove(&I); | 
|  | I.eraseFromParent(); | 
|  | MadeIRChange = true; | 
|  | return 0;  // Don't do anything with FI | 
|  | } | 
|  |  | 
|  | void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, | 
|  | APInt &KnownOne, unsigned Depth = 0) const { | 
|  | return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); | 
|  | } | 
|  |  | 
|  | bool MaskedValueIsZero(Value *V, const APInt &Mask, | 
|  | unsigned Depth = 0) const { | 
|  | return llvm::MaskedValueIsZero(V, Mask, TD, Depth); | 
|  | } | 
|  | unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const { | 
|  | return llvm::ComputeNumSignBits(Op, TD, Depth); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// SimplifyCommutative - This performs a few simplifications for | 
|  | /// commutative operators. | 
|  | bool SimplifyCommutative(BinaryOperator &I); | 
|  |  | 
|  | /// SimplifyCompare - This reorders the operands of a CmpInst to get them in | 
|  | /// most-complex to least-complex order. | 
|  | bool SimplifyCompare(CmpInst &I); | 
|  |  | 
|  | /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value | 
|  | /// based on the demanded bits. | 
|  | Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, | 
|  | APInt& KnownZero, APInt& KnownOne, | 
|  | unsigned Depth); | 
|  | bool SimplifyDemandedBits(Use &U, APInt DemandedMask, | 
|  | APInt& KnownZero, APInt& KnownOne, | 
|  | unsigned Depth=0); | 
|  |  | 
|  | /// SimplifyDemandedInstructionBits - Inst is an integer instruction that | 
|  | /// SimplifyDemandedBits knows about.  See if the instruction has any | 
|  | /// properties that allow us to simplify its operands. | 
|  | bool SimplifyDemandedInstructionBits(Instruction &Inst); | 
|  |  | 
|  | Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, | 
|  | APInt& UndefElts, unsigned Depth = 0); | 
|  |  | 
|  | // FoldOpIntoPhi - Given a binary operator, cast instruction, or select | 
|  | // which has a PHI node as operand #0, see if we can fold the instruction | 
|  | // into the PHI (which is only possible if all operands to the PHI are | 
|  | // constants). | 
|  | // | 
|  | // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms | 
|  | // that would normally be unprofitable because they strongly encourage jump | 
|  | // threading. | 
|  | Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false); | 
|  |  | 
|  | // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
|  | // operator and they all are only used by the PHI, PHI together their | 
|  | // inputs, and do the operation once, to the result of the PHI. | 
|  | Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); | 
|  |  | 
|  |  | 
|  | Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, BinaryOperator &TheAnd); | 
|  |  | 
|  | Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, | 
|  | bool isSub, Instruction &I); | 
|  | Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, | 
|  | bool isSigned, bool Inside, Instruction &IB); | 
|  | Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI); | 
|  | Instruction *MatchBSwap(BinaryOperator &I); | 
|  | bool SimplifyStoreAtEndOfBlock(StoreInst &SI); | 
|  | Instruction *SimplifyMemTransfer(MemIntrinsic *MI); | 
|  | Instruction *SimplifyMemSet(MemSetInst *MI); | 
|  |  | 
|  |  | 
|  | Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); | 
|  |  | 
|  | bool CanEvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | unsigned CastOpc, int &NumCastsRemoved); | 
|  | unsigned GetOrEnforceKnownAlignment(Value *V, | 
|  | unsigned PrefAlign = 0); | 
|  |  | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char InstCombiner::ID = 0; | 
|  | static RegisterPass<InstCombiner> | 
|  | X("instcombine", "Combine redundant instructions"); | 
|  |  | 
|  | // getComplexity:  Assign a complexity or rank value to LLVM Values... | 
|  | //   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst | 
|  | static unsigned getComplexity(Value *V) { | 
|  | if (isa<Instruction>(V)) { | 
|  | if (BinaryOperator::isNeg(V) || | 
|  | BinaryOperator::isFNeg(V) || | 
|  | BinaryOperator::isNot(V)) | 
|  | return 3; | 
|  | return 4; | 
|  | } | 
|  | if (isa<Argument>(V)) return 3; | 
|  | return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; | 
|  | } | 
|  |  | 
|  | // isOnlyUse - Return true if this instruction will be deleted if we stop using | 
|  | // it. | 
|  | static bool isOnlyUse(Value *V) { | 
|  | return V->hasOneUse() || isa<Constant>(V); | 
|  | } | 
|  |  | 
|  | // getPromotedType - Return the specified type promoted as it would be to pass | 
|  | // though a va_arg area... | 
|  | static const Type *getPromotedType(const Type *Ty) { | 
|  | if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { | 
|  | if (ITy->getBitWidth() < 32) | 
|  | return Type::getInt32Ty(Ty->getContext()); | 
|  | } | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// getBitCastOperand - If the specified operand is a CastInst, a constant | 
|  | /// expression bitcast, or a GetElementPtrInst with all zero indices, return the | 
|  | /// operand value, otherwise return null. | 
|  | static Value *getBitCastOperand(Value *V) { | 
|  | if (Operator *O = dyn_cast<Operator>(V)) { | 
|  | if (O->getOpcode() == Instruction::BitCast) | 
|  | return O->getOperand(0); | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) | 
|  | if (GEP->hasAllZeroIndices()) | 
|  | return GEP->getPointerOperand(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function is a wrapper around CastInst::isEliminableCastPair. It | 
|  | /// simply extracts arguments and returns what that function returns. | 
|  | static Instruction::CastOps | 
|  | isEliminableCastPair( | 
|  | const CastInst *CI, ///< The first cast instruction | 
|  | unsigned opcode,       ///< The opcode of the second cast instruction | 
|  | const Type *DstTy,     ///< The target type for the second cast instruction | 
|  | TargetData *TD         ///< The target data for pointer size | 
|  | ) { | 
|  |  | 
|  | const Type *SrcTy = CI->getOperand(0)->getType();   // A from above | 
|  | const Type *MidTy = CI->getType();                  // B from above | 
|  |  | 
|  | // Get the opcodes of the two Cast instructions | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opcode); | 
|  |  | 
|  | unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, | 
|  | DstTy, | 
|  | TD ? TD->getIntPtrType(CI->getContext()) : 0); | 
|  |  | 
|  | // We don't want to form an inttoptr or ptrtoint that converts to an integer | 
|  | // type that differs from the pointer size. | 
|  | if ((Res == Instruction::IntToPtr && | 
|  | (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || | 
|  | (Res == Instruction::PtrToInt && | 
|  | (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) | 
|  | Res = 0; | 
|  |  | 
|  | return Instruction::CastOps(Res); | 
|  | } | 
|  |  | 
|  | /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results | 
|  | /// in any code being generated.  It does not require codegen if V is simple | 
|  | /// enough or if the cast can be folded into other casts. | 
|  | static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, | 
|  | const Type *Ty, TargetData *TD) { | 
|  | if (V->getType() == Ty || isa<Constant>(V)) return false; | 
|  |  | 
|  | // If this is another cast that can be eliminated, it isn't codegen either. | 
|  | if (const CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | if (isEliminableCastPair(CI, opcode, Ty, TD)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SimplifyCommutative - This performs a few simplifications for commutative | 
|  | // operators: | 
|  | // | 
|  | //  1. Order operands such that they are listed from right (least complex) to | 
|  | //     left (most complex).  This puts constants before unary operators before | 
|  | //     binary operators. | 
|  | // | 
|  | //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) | 
|  | //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) | 
|  | // | 
|  | bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { | 
|  | bool Changed = false; | 
|  | if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) | 
|  | Changed = !I.swapOperands(); | 
|  |  | 
|  | if (!I.isAssociative()) return Changed; | 
|  | Instruction::BinaryOps Opcode = I.getOpcode(); | 
|  | if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) | 
|  | if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { | 
|  | if (isa<Constant>(I.getOperand(1))) { | 
|  | Constant *Folded = ConstantExpr::get(I.getOpcode(), | 
|  | cast<Constant>(I.getOperand(1)), | 
|  | cast<Constant>(Op->getOperand(1))); | 
|  | I.setOperand(0, Op->getOperand(0)); | 
|  | I.setOperand(1, Folded); | 
|  | return true; | 
|  | } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1))) | 
|  | if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && | 
|  | isOnlyUse(Op) && isOnlyUse(Op1)) { | 
|  | Constant *C1 = cast<Constant>(Op->getOperand(1)); | 
|  | Constant *C2 = cast<Constant>(Op1->getOperand(1)); | 
|  |  | 
|  | // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) | 
|  | Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); | 
|  | Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), | 
|  | Op1->getOperand(0), | 
|  | Op1->getName(), &I); | 
|  | Worklist.Add(New); | 
|  | I.setOperand(0, New); | 
|  | I.setOperand(1, Folded); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// SimplifyCompare - For a CmpInst this function just orders the operands | 
|  | /// so that theyare listed from right (least complex) to left (most complex). | 
|  | /// This puts constants before unary operators before binary operators. | 
|  | bool InstCombiner::SimplifyCompare(CmpInst &I) { | 
|  | if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1))) | 
|  | return false; | 
|  | I.swapOperands(); | 
|  | // Compare instructions are not associative so there's nothing else we can do. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction | 
|  | // if the LHS is a constant zero (which is the 'negate' form). | 
|  | // | 
|  | static inline Value *dyn_castNegVal(Value *V) { | 
|  | if (BinaryOperator::isNeg(V)) | 
|  | return BinaryOperator::getNegArgument(V); | 
|  |  | 
|  | // Constants can be considered to be negated values if they can be folded. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
|  | return ConstantExpr::getNeg(C); | 
|  |  | 
|  | if (ConstantVector *C = dyn_cast<ConstantVector>(V)) | 
|  | if (C->getType()->getElementType()->isInteger()) | 
|  | return ConstantExpr::getNeg(C); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the | 
|  | // instruction if the LHS is a constant negative zero (which is the 'negate' | 
|  | // form). | 
|  | // | 
|  | static inline Value *dyn_castFNegVal(Value *V) { | 
|  | if (BinaryOperator::isFNeg(V)) | 
|  | return BinaryOperator::getFNegArgument(V); | 
|  |  | 
|  | // Constants can be considered to be negated values if they can be folded. | 
|  | if (ConstantFP *C = dyn_cast<ConstantFP>(V)) | 
|  | return ConstantExpr::getFNeg(C); | 
|  |  | 
|  | if (ConstantVector *C = dyn_cast<ConstantVector>(V)) | 
|  | if (C->getType()->getElementType()->isFloatingPoint()) | 
|  | return ConstantExpr::getFNeg(C); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline Value *dyn_castNotVal(Value *V) { | 
|  | if (BinaryOperator::isNot(V)) | 
|  | return BinaryOperator::getNotArgument(V); | 
|  |  | 
|  | // Constants can be considered to be not'ed values... | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
|  | return ConstantInt::get(C->getType(), ~C->getValue()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // dyn_castFoldableMul - If this value is a multiply that can be folded into | 
|  | // other computations (because it has a constant operand), return the | 
|  | // non-constant operand of the multiply, and set CST to point to the multiplier. | 
|  | // Otherwise, return null. | 
|  | // | 
|  | static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { | 
|  | if (V->hasOneUse() && V->getType()->isInteger()) | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (I->getOpcode() == Instruction::Mul) | 
|  | if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) | 
|  | return I->getOperand(0); | 
|  | if (I->getOpcode() == Instruction::Shl) | 
|  | if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { | 
|  | // The multiplier is really 1 << CST. | 
|  | uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); | 
|  | uint32_t CSTVal = CST->getLimitedValue(BitWidth); | 
|  | CST = ConstantInt::get(V->getType()->getContext(), | 
|  | APInt(BitWidth, 1).shl(CSTVal)); | 
|  | return I->getOperand(0); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// AddOne - Add one to a ConstantInt | 
|  | static Constant *AddOne(Constant *C) { | 
|  | return ConstantExpr::getAdd(C, | 
|  | ConstantInt::get(C->getType(), 1)); | 
|  | } | 
|  | /// SubOne - Subtract one from a ConstantInt | 
|  | static Constant *SubOne(ConstantInt *C) { | 
|  | return ConstantExpr::getSub(C, | 
|  | ConstantInt::get(C->getType(), 1)); | 
|  | } | 
|  | /// MultiplyOverflows - True if the multiply can not be expressed in an int | 
|  | /// this size. | 
|  | static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { | 
|  | uint32_t W = C1->getBitWidth(); | 
|  | APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); | 
|  | if (sign) { | 
|  | LHSExt.sext(W * 2); | 
|  | RHSExt.sext(W * 2); | 
|  | } else { | 
|  | LHSExt.zext(W * 2); | 
|  | RHSExt.zext(W * 2); | 
|  | } | 
|  |  | 
|  | APInt MulExt = LHSExt * RHSExt; | 
|  |  | 
|  | if (sign) { | 
|  | APInt Min = APInt::getSignedMinValue(W).sext(W * 2); | 
|  | APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); | 
|  | return MulExt.slt(Min) || MulExt.sgt(Max); | 
|  | } else | 
|  | return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ShrinkDemandedConstant - Check to see if the specified operand of the | 
|  | /// specified instruction is a constant integer.  If so, check to see if there | 
|  | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
|  | /// constant and return true. | 
|  | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, | 
|  | APInt Demanded) { | 
|  | assert(I && "No instruction?"); | 
|  | assert(OpNo < I->getNumOperands() && "Operand index too large"); | 
|  |  | 
|  | // If the operand is not a constant integer, nothing to do. | 
|  | ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); | 
|  | if (!OpC) return false; | 
|  |  | 
|  | // If there are no bits set that aren't demanded, nothing to do. | 
|  | Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); | 
|  | if ((~Demanded & OpC->getValue()) == 0) | 
|  | return false; | 
|  |  | 
|  | // This instruction is producing bits that are not demanded. Shrink the RHS. | 
|  | Demanded &= OpC->getValue(); | 
|  | I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a | 
|  | // set of known zero and one bits, compute the maximum and minimum values that | 
|  | // could have the specified known zero and known one bits, returning them in | 
|  | // min/max. | 
|  | static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, | 
|  | const APInt& KnownOne, | 
|  | APInt& Min, APInt& Max) { | 
|  | assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && | 
|  | KnownZero.getBitWidth() == Min.getBitWidth() && | 
|  | KnownZero.getBitWidth() == Max.getBitWidth() && | 
|  | "KnownZero, KnownOne and Min, Max must have equal bitwidth."); | 
|  | APInt UnknownBits = ~(KnownZero|KnownOne); | 
|  |  | 
|  | // The minimum value is when all unknown bits are zeros, EXCEPT for the sign | 
|  | // bit if it is unknown. | 
|  | Min = KnownOne; | 
|  | Max = KnownOne|UnknownBits; | 
|  |  | 
|  | if (UnknownBits.isNegative()) { // Sign bit is unknown | 
|  | Min.set(Min.getBitWidth()-1); | 
|  | Max.clear(Max.getBitWidth()-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and | 
|  | // a set of known zero and one bits, compute the maximum and minimum values that | 
|  | // could have the specified known zero and known one bits, returning them in | 
|  | // min/max. | 
|  | static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, | 
|  | const APInt &KnownOne, | 
|  | APInt &Min, APInt &Max) { | 
|  | assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && | 
|  | KnownZero.getBitWidth() == Min.getBitWidth() && | 
|  | KnownZero.getBitWidth() == Max.getBitWidth() && | 
|  | "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); | 
|  | APInt UnknownBits = ~(KnownZero|KnownOne); | 
|  |  | 
|  | // The minimum value is when the unknown bits are all zeros. | 
|  | Min = KnownOne; | 
|  | // The maximum value is when the unknown bits are all ones. | 
|  | Max = KnownOne|UnknownBits; | 
|  | } | 
|  |  | 
|  | /// SimplifyDemandedInstructionBits - Inst is an integer instruction that | 
|  | /// SimplifyDemandedBits knows about.  See if the instruction has any | 
|  | /// properties that allow us to simplify its operands. | 
|  | bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { | 
|  | unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); | 
|  |  | 
|  | Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, | 
|  | KnownZero, KnownOne, 0); | 
|  | if (V == 0) return false; | 
|  | if (V == &Inst) return true; | 
|  | ReplaceInstUsesWith(Inst, V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the | 
|  | /// specified instruction operand if possible, updating it in place.  It returns | 
|  | /// true if it made any change and false otherwise. | 
|  | bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, | 
|  | APInt &KnownZero, APInt &KnownOne, | 
|  | unsigned Depth) { | 
|  | Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, | 
|  | KnownZero, KnownOne, Depth); | 
|  | if (NewVal == 0) return false; | 
|  | U = NewVal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler | 
|  | /// value based on the demanded bits.  When this function is called, it is known | 
|  | /// that only the bits set in DemandedMask of the result of V are ever used | 
|  | /// downstream. Consequently, depending on the mask and V, it may be possible | 
|  | /// to replace V with a constant or one of its operands. In such cases, this | 
|  | /// function does the replacement and returns true. In all other cases, it | 
|  | /// returns false after analyzing the expression and setting KnownOne and known | 
|  | /// to be one in the expression.  KnownZero contains all the bits that are known | 
|  | /// to be zero in the expression. These are provided to potentially allow the | 
|  | /// caller (which might recursively be SimplifyDemandedBits itself) to simplify | 
|  | /// the expression. KnownOne and KnownZero always follow the invariant that | 
|  | /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that | 
|  | /// the bits in KnownOne and KnownZero may only be accurate for those bits set | 
|  | /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero | 
|  | /// and KnownOne must all be the same. | 
|  | /// | 
|  | /// This returns null if it did not change anything and it permits no | 
|  | /// simplification.  This returns V itself if it did some simplification of V's | 
|  | /// operands based on the information about what bits are demanded. This returns | 
|  | /// some other non-null value if it found out that V is equal to another value | 
|  | /// in the context where the specified bits are demanded, but not for all users. | 
|  | Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, | 
|  | APInt &KnownZero, APInt &KnownOne, | 
|  | unsigned Depth) { | 
|  | assert(V != 0 && "Null pointer of Value???"); | 
|  | assert(Depth <= 6 && "Limit Search Depth"); | 
|  | uint32_t BitWidth = DemandedMask.getBitWidth(); | 
|  | const Type *VTy = V->getType(); | 
|  | assert((TD || !isa<PointerType>(VTy)) && | 
|  | "SimplifyDemandedBits needs to know bit widths!"); | 
|  | assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && | 
|  | (!VTy->isIntOrIntVector() || | 
|  | VTy->getScalarSizeInBits() == BitWidth) && | 
|  | KnownZero.getBitWidth() == BitWidth && | 
|  | KnownOne.getBitWidth() == BitWidth && | 
|  | "Value *V, DemandedMask, KnownZero and KnownOne " | 
|  | "must have same BitWidth"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = CI->getValue() & DemandedMask; | 
|  | KnownZero = ~KnownOne & DemandedMask; | 
|  | return 0; | 
|  | } | 
|  | if (isa<ConstantPointerNull>(V)) { | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne.clear(); | 
|  | KnownZero = DemandedMask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | KnownZero.clear(); | 
|  | KnownOne.clear(); | 
|  | if (DemandedMask == 0) {   // Not demanding any bits from V. | 
|  | if (isa<UndefValue>(V)) | 
|  | return 0; | 
|  | return UndefValue::get(VTy); | 
|  | } | 
|  |  | 
|  | if (Depth == 6)        // Limit search depth. | 
|  | return 0; | 
|  |  | 
|  | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); | 
|  | APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) { | 
|  | ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); | 
|  | return 0;        // Only analyze instructions. | 
|  | } | 
|  |  | 
|  | // If there are multiple uses of this value and we aren't at the root, then | 
|  | // we can't do any simplifications of the operands, because DemandedMask | 
|  | // only reflects the bits demanded by *one* of the users. | 
|  | if (Depth != 0 && !I->hasOneUse()) { | 
|  | // Despite the fact that we can't simplify this instruction in all User's | 
|  | // context, we can at least compute the knownzero/knownone bits, and we can | 
|  | // do simplifications that apply to *just* the one user if we know that | 
|  | // this instruction has a simpler value in that context. | 
|  | if (I->getOpcode() == Instruction::And) { | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | ComputeMaskedBits(I->getOperand(1), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and' in this | 
|  | // context. | 
|  | if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == | 
|  | (DemandedMask & ~LHSKnownZero)) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == | 
|  | (DemandedMask & ~RHSKnownZero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) | 
|  | return Constant::getNullValue(VTy); | 
|  |  | 
|  | } else if (I->getOpcode() == Instruction::Or) { | 
|  | // We can simplify (X|Y) -> X or Y in the user's context if we know that | 
|  | // only bits from X or Y are demanded. | 
|  |  | 
|  | // If either the LHS or the RHS are One, the result is One. | 
|  | ComputeMaskedBits(I->getOperand(1), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the | 
|  | // other.  These bits cannot contribute to the result of the 'or' in this | 
|  | // context. | 
|  | if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == | 
|  | (DemandedMask & ~LHSKnownOne)) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == | 
|  | (DemandedMask & ~RHSKnownOne)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If all of the potentially set bits on one side are known to be set on | 
|  | // the other side, just use the 'other' side. | 
|  | if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == | 
|  | (DemandedMask & (~RHSKnownZero))) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == | 
|  | (DemandedMask & (~LHSKnownZero))) | 
|  | return I->getOperand(1); | 
|  | } | 
|  |  | 
|  | // Compute the KnownZero/KnownOne bits to simplify things downstream. | 
|  | ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the DemandedMask to all bits so that we can try to simplify the | 
|  | // operands.  This allows visitTruncInst (for example) to simplify the | 
|  | // operand of a trunc without duplicating all the logic below. | 
|  | if (Depth == 0 && !V->hasOneUse()) | 
|  | DemandedMask = APInt::getAllOnesValue(BitWidth); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); | 
|  | break; | 
|  | case Instruction::And: | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == | 
|  | (DemandedMask & ~LHSKnownZero)) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == | 
|  | (DemandedMask & ~RHSKnownZero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) | 
|  | return Constant::getNullValue(VTy); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) | 
|  | return I; | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | RHSKnownOne &= LHSKnownOne; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | RHSKnownZero |= LHSKnownZero; | 
|  | break; | 
|  | case Instruction::Or: | 
|  | // If either the LHS or the RHS are One, the result is One. | 
|  | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == | 
|  | (DemandedMask & ~LHSKnownOne)) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == | 
|  | (DemandedMask & ~RHSKnownOne)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If all of the potentially set bits on one side are known to be set on | 
|  | // the other side, just use the 'other' side. | 
|  | if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == | 
|  | (DemandedMask & (~RHSKnownZero))) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == | 
|  | (DemandedMask & (~LHSKnownZero))) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | RHSKnownZero &= LHSKnownZero; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | RHSKnownOne |= LHSKnownOne; | 
|  | break; | 
|  | case Instruction::Xor: { | 
|  | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if ((DemandedMask & RHSKnownZero) == DemandedMask) | 
|  | return I->getOperand(0); | 
|  | if ((DemandedMask & LHSKnownZero) == DemandedMask) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | | 
|  | (RHSKnownOne & LHSKnownOne); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | | 
|  | (RHSKnownOne & LHSKnownZero); | 
|  |  | 
|  | // If all of the demanded bits are known to be zero on one side or the | 
|  | // other, turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { | 
|  | Instruction *Or = | 
|  | BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), | 
|  | I->getName()); | 
|  | return InsertNewInstBefore(Or, *I); | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits on one side are known, and all of the set | 
|  | // bits on that side are also known to be set on the other side, turn this | 
|  | // into an AND, as we know the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { | 
|  | // all known | 
|  | if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { | 
|  | Constant *AndC = Constant::getIntegerValue(VTy, | 
|  | ~RHSKnownOne & DemandedMask); | 
|  | Instruction *And = | 
|  | BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); | 
|  | return InsertNewInstBefore(And, *I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | RHSKnownZero = KnownZeroOut; | 
|  | RHSKnownOne  = KnownOneOut; | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: | 
|  | if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask) || | 
|  | ShrinkDemandedConstant(I, 2, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | RHSKnownOne &= LHSKnownOne; | 
|  | RHSKnownZero &= LHSKnownZero; | 
|  | break; | 
|  | case Instruction::Trunc: { | 
|  | unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  | DemandedMask.zext(truncBf); | 
|  | RHSKnownZero.zext(truncBf); | 
|  | RHSKnownOne.zext(truncBf); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | DemandedMask.trunc(BitWidth); | 
|  | RHSKnownZero.trunc(BitWidth); | 
|  | RHSKnownOne.trunc(BitWidth); | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | if (!I->getOperand(0)->getType()->isIntOrIntVector()) | 
|  | return false;  // vector->int or fp->int? | 
|  |  | 
|  | if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { | 
|  | if (const VectorType *SrcVTy = | 
|  | dyn_cast<VectorType>(I->getOperand(0)->getType())) { | 
|  | if (DstVTy->getNumElements() != SrcVTy->getNumElements()) | 
|  | // Don't touch a bitcast between vectors of different element counts. | 
|  | return false; | 
|  | } else | 
|  | // Don't touch a scalar-to-vector bitcast. | 
|  | return false; | 
|  | } else if (isa<VectorType>(I->getOperand(0)->getType())) | 
|  | // Don't touch a vector-to-scalar bitcast. | 
|  | return false; | 
|  |  | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | case Instruction::ZExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | DemandedMask.trunc(SrcBitWidth); | 
|  | RHSKnownZero.trunc(SrcBitWidth); | 
|  | RHSKnownOne.trunc(SrcBitWidth); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | DemandedMask.zext(BitWidth); | 
|  | RHSKnownZero.zext(BitWidth); | 
|  | RHSKnownOne.zext(BitWidth); | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | // The top bits are known to be zero. | 
|  | RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
|  | break; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | APInt InputDemandedBits = DemandedMask & | 
|  | APInt::getLowBitsSet(BitWidth, SrcBitWidth); | 
|  |  | 
|  | APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); | 
|  | // If any of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | if ((NewBits & DemandedMask) != 0) | 
|  | InputDemandedBits.set(SrcBitWidth-1); | 
|  |  | 
|  | InputDemandedBits.trunc(SrcBitWidth); | 
|  | RHSKnownZero.trunc(SrcBitWidth); | 
|  | RHSKnownOne.trunc(SrcBitWidth); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | InputDemandedBits.zext(BitWidth); | 
|  | RHSKnownZero.zext(BitWidth); | 
|  | RHSKnownOne.zext(BitWidth); | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  |  | 
|  | // If the input sign bit is known zero, or if the NewBits are not demanded | 
|  | // convert this into a zero extension. | 
|  | if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { | 
|  | // Convert to ZExt cast | 
|  | CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); | 
|  | return InsertNewInstBefore(NewCast, *I); | 
|  | } else if (RHSKnownOne[SrcBitWidth-1]) {    // Input sign bit known set | 
|  | RHSKnownOne |= NewBits; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: { | 
|  | // Figure out what the input bits are.  If the top bits of the and result | 
|  | // are not demanded, then the add doesn't demand them from its input | 
|  | // either. | 
|  | unsigned NLZ = DemandedMask.countLeadingZeros(); | 
|  |  | 
|  | // If there is a constant on the RHS, there are a variety of xformations | 
|  | // we can do. | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // If null, this should be simplified elsewhere.  Some of the xforms here | 
|  | // won't work if the RHS is zero. | 
|  | if (RHS->isZero()) | 
|  | break; | 
|  |  | 
|  | // If the top bit of the output is demanded, demand everything from the | 
|  | // input.  Otherwise, we demand all the input bits except NLZ top bits. | 
|  | APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); | 
|  |  | 
|  | // Find information about known zero/one bits in the input. | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  |  | 
|  | // If the RHS of the add has bits set that can't affect the input, reduce | 
|  | // the constant. | 
|  | if (ShrinkDemandedConstant(I, 1, InDemandedBits)) | 
|  | return I; | 
|  |  | 
|  | // Avoid excess work. | 
|  | if (LHSKnownZero == 0 && LHSKnownOne == 0) | 
|  | break; | 
|  |  | 
|  | // Turn it into OR if input bits are zero. | 
|  | if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { | 
|  | Instruction *Or = | 
|  | BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), | 
|  | I->getName()); | 
|  | return InsertNewInstBefore(Or, *I); | 
|  | } | 
|  |  | 
|  | // We can say something about the output known-zero and known-one bits, | 
|  | // depending on potential carries from the input constant and the | 
|  | // unknowns.  For example if the LHS is known to have at most the 0x0F0F0 | 
|  | // bits set and the RHS constant is 0x01001, then we know we have a known | 
|  | // one mask of 0x00001 and a known zero mask of 0xE0F0E. | 
|  |  | 
|  | // To compute this, we first compute the potential carry bits.  These are | 
|  | // the bits which may be modified.  I'm not aware of a better way to do | 
|  | // this scan. | 
|  | const APInt &RHSVal = RHS->getValue(); | 
|  | APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); | 
|  |  | 
|  | // Now that we know which bits have carries, compute the known-1/0 sets. | 
|  |  | 
|  | // Bits are known one if they are known zero in one operand and one in the | 
|  | // other, and there is no input carry. | 
|  | RHSKnownOne = ((LHSKnownZero & RHSVal) | | 
|  | (LHSKnownOne & ~RHSVal)) & ~CarryBits; | 
|  |  | 
|  | // Bits are known zero if they are known zero in both operands and there | 
|  | // is no input carry. | 
|  | RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; | 
|  | } else { | 
|  | // If the high-bits of this ADD are not demanded, then it does not demand | 
|  | // the high bits of its LHS or RHS. | 
|  | if (DemandedMask[BitWidth-1] == 0) { | 
|  | // Right fill the mask of bits for this ADD to demand the most | 
|  | // significant bit and all those below it. | 
|  | APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Sub: | 
|  | // If the high-bits of this SUB are not demanded, then it does not demand | 
|  | // the high bits of its LHS or RHS. | 
|  | if (DemandedMask[BitWidth-1] == 0) { | 
|  | // Right fill the mask of bits for this SUB to demand the most | 
|  | // significant bit and all those below it. | 
|  | uint32_t NLZ = DemandedMask.countLeadingZeros(); | 
|  | APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | } | 
|  | // Otherwise just hand the sub off to ComputeMaskedBits to fill in | 
|  | // the known zeros and ones. | 
|  | ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
|  | APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | RHSKnownZero <<= ShiftAmt; | 
|  | RHSKnownOne  <<= ShiftAmt; | 
|  | // low bits known zero. | 
|  | if (ShiftAmt) | 
|  | RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // For a logical shift right | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
|  |  | 
|  | // Unsigned shift right. | 
|  | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); | 
|  | RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt); | 
|  | if (ShiftAmt) { | 
|  | // Compute the new bits that are at the top now. | 
|  | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
|  | RHSKnownZero |= HighBits;  // high bits known zero. | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (DemandedMask == 1) { | 
|  | // Perform the logical shift right. | 
|  | Instruction *NewVal = BinaryOperator::CreateLShr( | 
|  | I->getOperand(0), I->getOperand(1), I->getName()); | 
|  | return InsertNewInstBefore(NewVal, *I); | 
|  | } | 
|  |  | 
|  | // If the sign bit is the only bit demanded by this ashr, then there is no | 
|  | // need to do it, the shift doesn't change the high bit. | 
|  | if (DemandedMask.isSignBit()) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint32_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
|  |  | 
|  | // Signed shift right. | 
|  | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
|  | // If any of the "high bits" are demanded, we should set the sign bit as | 
|  | // demanded. | 
|  | if (DemandedMask.countLeadingZeros() <= ShiftAmt) | 
|  | DemandedMaskIn.set(BitWidth-1); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, | 
|  | RHSKnownZero, RHSKnownOne, Depth+1)) | 
|  | return I; | 
|  | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); | 
|  | // Compute the new bits that are at the top now. | 
|  | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
|  | RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); | 
|  | RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt); | 
|  |  | 
|  | // Handle the sign bits. | 
|  | APInt SignBit(APInt::getSignBit(BitWidth)); | 
|  | // Adjust to where it is now in the mask. | 
|  | SignBit = APIntOps::lshr(SignBit, ShiftAmt); | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] || | 
|  | (HighBits & ~DemandedMask) == HighBits) { | 
|  | // Perform the logical shift right. | 
|  | Instruction *NewVal = BinaryOperator::CreateLShr( | 
|  | I->getOperand(0), SA, I->getName()); | 
|  | return InsertNewInstBefore(NewVal, *I); | 
|  | } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one. | 
|  | RHSKnownOne |= HighBits; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::SRem: | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | APInt RA = Rem->getValue().abs(); | 
|  | if (RA.isPowerOf2()) { | 
|  | if (DemandedMask.ult(RA))    // srem won't affect demanded bits | 
|  | return I->getOperand(0); | 
|  |  | 
|  | APInt LowBits = RA - 1; | 
|  | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, | 
|  | LHSKnownZero, LHSKnownOne, Depth+1)) | 
|  | return I; | 
|  |  | 
|  | if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) | 
|  | LHSKnownZero |= ~LowBits; | 
|  |  | 
|  | KnownZero |= LHSKnownZero & DemandedMask; | 
|  |  | 
|  | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::URem: { | 
|  | APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); | 
|  | APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
|  | if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, | 
|  | KnownZero2, KnownOne2, Depth+1) || | 
|  | SimplifyDemandedBits(I->getOperandUse(1), AllOnes, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return I; | 
|  |  | 
|  | unsigned Leaders = KnownZero2.countLeadingOnes(); | 
|  | Leaders = std::max(Leaders, | 
|  | KnownZero2.countLeadingOnes()); | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; | 
|  | break; | 
|  | } | 
|  | case Instruction::Call: | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bswap: { | 
|  | // If the only bits demanded come from one byte of the bswap result, | 
|  | // just shift the input byte into position to eliminate the bswap. | 
|  | unsigned NLZ = DemandedMask.countLeadingZeros(); | 
|  | unsigned NTZ = DemandedMask.countTrailingZeros(); | 
|  |  | 
|  | // Round NTZ down to the next byte.  If we have 11 trailing zeros, then | 
|  | // we need all the bits down to bit 8.  Likewise, round NLZ.  If we | 
|  | // have 14 leading zeros, round to 8. | 
|  | NLZ &= ~7; | 
|  | NTZ &= ~7; | 
|  | // If we need exactly one byte, we can do this transformation. | 
|  | if (BitWidth-NLZ-NTZ == 8) { | 
|  | unsigned ResultBit = NTZ; | 
|  | unsigned InputBit = BitWidth-NTZ-8; | 
|  |  | 
|  | // Replace this with either a left or right shift to get the byte into | 
|  | // the right place. | 
|  | Instruction *NewVal; | 
|  | if (InputBit > ResultBit) | 
|  | NewVal = BinaryOperator::CreateLShr(I->getOperand(1), | 
|  | ConstantInt::get(I->getType(), InputBit-ResultBit)); | 
|  | else | 
|  | NewVal = BinaryOperator::CreateShl(I->getOperand(1), | 
|  | ConstantInt::get(I->getType(), ResultBit-InputBit)); | 
|  | NewVal->takeName(I); | 
|  | return InsertNewInstBefore(NewVal, *I); | 
|  | } | 
|  |  | 
|  | // TODO: Could compute known zero/one bits based on the input. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) | 
|  | return Constant::getIntegerValue(VTy, RHSKnownOne); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyDemandedVectorElts - The specified value produces a vector with | 
|  | /// any number of elements. DemandedElts contains the set of elements that are | 
|  | /// actually used by the caller.  This method analyzes which elements of the | 
|  | /// operand are undef and returns that information in UndefElts. | 
|  | /// | 
|  | /// If the information about demanded elements can be used to simplify the | 
|  | /// operation, the operation is simplified, then the resultant value is | 
|  | /// returned.  This returns null if no change was made. | 
|  | Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, | 
|  | APInt& UndefElts, | 
|  | unsigned Depth) { | 
|  | unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); | 
|  | APInt EltMask(APInt::getAllOnesValue(VWidth)); | 
|  | assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | // If the entire vector is undefined, just return this info. | 
|  | UndefElts = EltMask; | 
|  | return 0; | 
|  | } else if (DemandedElts == 0) { // If nothing is demanded, provide undef. | 
|  | UndefElts = EltMask; | 
|  | return UndefValue::get(V->getType()); | 
|  | } | 
|  |  | 
|  | UndefElts = 0; | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) { | 
|  | const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); | 
|  | Constant *Undef = UndefValue::get(EltTy); | 
|  |  | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0; i != VWidth; ++i) | 
|  | if (!DemandedElts[i]) {   // If not demanded, set to undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts.set(i); | 
|  | } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts.set(i); | 
|  | } else {                               // Otherwise, defined. | 
|  | Elts.push_back(CP->getOperand(i)); | 
|  | } | 
|  |  | 
|  | // If we changed the constant, return it. | 
|  | Constant *NewCP = ConstantVector::get(Elts); | 
|  | return NewCP != CP ? NewCP : 0; | 
|  | } else if (isa<ConstantAggregateZero>(V)) { | 
|  | // Simplify the CAZ to a ConstantVector where the non-demanded elements are | 
|  | // set to undef. | 
|  |  | 
|  | // Check if this is identity. If so, return 0 since we are not simplifying | 
|  | // anything. | 
|  | if (DemandedElts == ((1ULL << VWidth) -1)) | 
|  | return 0; | 
|  |  | 
|  | const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); | 
|  | Constant *Zero = Constant::getNullValue(EltTy); | 
|  | Constant *Undef = UndefValue::get(EltTy); | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Constant *Elt = DemandedElts[i] ? Zero : Undef; | 
|  | Elts.push_back(Elt); | 
|  | } | 
|  | UndefElts = DemandedElts ^ EltMask; | 
|  | return ConstantVector::get(Elts); | 
|  | } | 
|  |  | 
|  | // Limit search depth. | 
|  | if (Depth == 10) | 
|  | return 0; | 
|  |  | 
|  | // If multiple users are using the root value, procede with | 
|  | // simplification conservatively assuming that all elements | 
|  | // are needed. | 
|  | if (!V->hasOneUse()) { | 
|  | // Quit if we find multiple users of a non-root value though. | 
|  | // They'll be handled when it's their turn to be visited by | 
|  | // the main instcombine process. | 
|  | if (Depth != 0) | 
|  | // TODO: Just compute the UndefElts information recursively. | 
|  | return 0; | 
|  |  | 
|  | // Conservatively assume that all elements are needed. | 
|  | DemandedElts = EltMask; | 
|  | } | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return 0;        // Only analyze instructions. | 
|  |  | 
|  | bool MadeChange = false; | 
|  | APInt UndefElts2(VWidth, 0); | 
|  | Value *TmpV; | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case Instruction::InsertElement: { | 
|  | // If this is a variable index, we don't know which element it overwrites. | 
|  | // demand exactly the same input as we produce. | 
|  | ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); | 
|  | if (Idx == 0) { | 
|  | // Note that we can't propagate undef elt info, because we don't know | 
|  | // which elt is getting updated. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is inserting an element that isn't demanded, remove this | 
|  | // insertelement. | 
|  | unsigned IdxNo = Idx->getZExtValue(); | 
|  | if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { | 
|  | Worklist.Add(I); | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Otherwise, the element inserted overwrites whatever was there, so the | 
|  | // input demanded set is simpler than the output set. | 
|  | APInt DemandedElts2 = DemandedElts; | 
|  | DemandedElts2.clear(IdxNo); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // The inserted element is defined. | 
|  | UndefElts.clear(IdxNo); | 
|  | break; | 
|  | } | 
|  | case Instruction::ShuffleVector: { | 
|  | ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); | 
|  | uint64_t LHSVWidth = | 
|  | cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); | 
|  | APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); | 
|  | for (unsigned i = 0; i < VWidth; i++) { | 
|  | if (DemandedElts[i]) { | 
|  | unsigned MaskVal = Shuffle->getMaskValue(i); | 
|  | if (MaskVal != -1u) { | 
|  | assert(MaskVal < LHSVWidth * 2 && | 
|  | "shufflevector mask index out of range!"); | 
|  | if (MaskVal < LHSVWidth) | 
|  | LeftDemanded.set(MaskVal); | 
|  | else | 
|  | RightDemanded.set(MaskVal - LHSVWidth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt UndefElts4(LHSVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, | 
|  | UndefElts4, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | APInt UndefElts3(LHSVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, | 
|  | UndefElts3, Depth+1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | bool NewUndefElts = false; | 
|  | for (unsigned i = 0; i < VWidth; i++) { | 
|  | unsigned MaskVal = Shuffle->getMaskValue(i); | 
|  | if (MaskVal == -1u) { | 
|  | UndefElts.set(i); | 
|  | } else if (MaskVal < LHSVWidth) { | 
|  | if (UndefElts4[MaskVal]) { | 
|  | NewUndefElts = true; | 
|  | UndefElts.set(i); | 
|  | } | 
|  | } else { | 
|  | if (UndefElts3[MaskVal - LHSVWidth]) { | 
|  | NewUndefElts = true; | 
|  | UndefElts.set(i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewUndefElts) { | 
|  | // Add additional discovered undefs. | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0; i < VWidth; ++i) { | 
|  | if (UndefElts[i]) | 
|  | Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | else | 
|  | Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), | 
|  | Shuffle->getMaskValue(i))); | 
|  | } | 
|  | I->setOperand(2, ConstantVector::get(Elts)); | 
|  | MadeChange = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | // Vector->vector casts only. | 
|  | const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); | 
|  | if (!VTy) break; | 
|  | unsigned InVWidth = VTy->getNumElements(); | 
|  | APInt InputDemandedElts(InVWidth, 0); | 
|  | unsigned Ratio; | 
|  |  | 
|  | if (VWidth == InVWidth) { | 
|  | // If we are converting from <4 x i32> -> <4 x f32>, we demand the same | 
|  | // elements as are demanded of us. | 
|  | Ratio = 1; | 
|  | InputDemandedElts = DemandedElts; | 
|  | } else if (VWidth > InVWidth) { | 
|  | // Untested so far. | 
|  | break; | 
|  |  | 
|  | // If there are more elements in the result than there are in the source, | 
|  | // then an input element is live if any of the corresponding output | 
|  | // elements are live. | 
|  | Ratio = VWidth/InVWidth; | 
|  | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { | 
|  | if (DemandedElts[OutIdx]) | 
|  | InputDemandedElts.set(OutIdx/Ratio); | 
|  | } | 
|  | } else { | 
|  | // Untested so far. | 
|  | break; | 
|  |  | 
|  | // If there are more elements in the source than there are in the result, | 
|  | // then an input element is live if the corresponding output element is | 
|  | // live. | 
|  | Ratio = InVWidth/VWidth; | 
|  | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) | 
|  | if (DemandedElts[InIdx/Ratio]) | 
|  | InputDemandedElts.set(InIdx); | 
|  | } | 
|  |  | 
|  | // div/rem demand all inputs, because they don't want divide by zero. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { | 
|  | I->setOperand(0, TmpV); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | UndefElts = UndefElts2; | 
|  | if (VWidth > InVWidth) { | 
|  | llvm_unreachable("Unimp"); | 
|  | // If there are more elements in the result than there are in the source, | 
|  | // then an output element is undef if the corresponding input element is | 
|  | // undef. | 
|  | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) | 
|  | if (UndefElts2[OutIdx/Ratio]) | 
|  | UndefElts.set(OutIdx); | 
|  | } else if (VWidth < InVWidth) { | 
|  | llvm_unreachable("Unimp"); | 
|  | // If there are more elements in the source than there are in the result, | 
|  | // then a result element is undef if all of the corresponding input | 
|  | // elements are undef. | 
|  | UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef. | 
|  | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) | 
|  | if (!UndefElts2[InIdx])            // Not undef? | 
|  | UndefElts.clear(InIdx/Ratio);    // Clear undef bit. | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // div/rem demand all inputs, because they don't want divide by zero. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Output elements are undefined if both are undefined.  Consider things | 
|  | // like undef&0.  The result is known zero, not undef. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  |  | 
|  | case Instruction::Call: { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
|  | if (!II) break; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  |  | 
|  | // Binary vector operations that work column-wise.  A dest element is a | 
|  | // function of the corresponding input elements from the two inputs. | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse_min_ss: | 
|  | case Intrinsic::x86_sse_max_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | case Intrinsic::x86_sse2_min_sd: | 
|  | case Intrinsic::x86_sse2_max_sd: | 
|  | TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If only the low elt is demanded and this is a scalarizable intrinsic, | 
|  | // scalarize it now. | 
|  | if (DemandedElts == 1) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | // TODO: Lower MIN/MAX/ABS/etc | 
|  | Value *LHS = II->getOperand(1); | 
|  | Value *RHS = II->getOperand(2); | 
|  | // Extract the element as scalars. | 
|  | LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS, | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II); | 
|  | RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS, | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II); | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: llvm_unreachable("Case stmts out of sync!"); | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS, | 
|  | II->getName()), *II); | 
|  | break; | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS, | 
|  | II->getName()), *II); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Instruction *New = | 
|  | InsertElementInst::Create( | 
|  | UndefValue::get(II->getType()), TmpV, | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName()); | 
|  | InsertNewInstBefore(New, *II); | 
|  | return New; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Output elements are undefined if both are undefined.  Consider things | 
|  | // like undef&0.  The result is known zero, not undef. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return MadeChange ? I : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AssociativeOpt - Perform an optimization on an associative operator.  This | 
|  | /// function is designed to check a chain of associative operators for a | 
|  | /// potential to apply a certain optimization.  Since the optimization may be | 
|  | /// applicable if the expression was reassociated, this checks the chain, then | 
|  | /// reassociates the expression as necessary to expose the optimization | 
|  | /// opportunity.  This makes use of a special Functor, which must define | 
|  | /// 'shouldApply' and 'apply' methods. | 
|  | /// | 
|  | template<typename Functor> | 
|  | static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { | 
|  | unsigned Opcode = Root.getOpcode(); | 
|  | Value *LHS = Root.getOperand(0); | 
|  |  | 
|  | // Quick check, see if the immediate LHS matches... | 
|  | if (F.shouldApply(LHS)) | 
|  | return F.apply(Root); | 
|  |  | 
|  | // Otherwise, if the LHS is not of the same opcode as the root, return. | 
|  | Instruction *LHSI = dyn_cast<Instruction>(LHS); | 
|  | while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { | 
|  | // Should we apply this transform to the RHS? | 
|  | bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); | 
|  |  | 
|  | // If not to the RHS, check to see if we should apply to the LHS... | 
|  | if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { | 
|  | cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS | 
|  | ShouldApply = true; | 
|  | } | 
|  |  | 
|  | // If the functor wants to apply the optimization to the RHS of LHSI, | 
|  | // reassociate the expression from ((? op A) op B) to (? op (A op B)) | 
|  | if (ShouldApply) { | 
|  | // Now all of the instructions are in the current basic block, go ahead | 
|  | // and perform the reassociation. | 
|  | Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0)); | 
|  |  | 
|  | // First move the selected RHS to the LHS of the root... | 
|  | Root.setOperand(0, LHSI->getOperand(1)); | 
|  |  | 
|  | // Make what used to be the LHS of the root be the user of the root... | 
|  | Value *ExtraOperand = TmpLHSI->getOperand(1); | 
|  | if (&Root == TmpLHSI) { | 
|  | Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); | 
|  | return 0; | 
|  | } | 
|  | Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI | 
|  | TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root | 
|  | BasicBlock::iterator ARI = &Root; ++ARI; | 
|  | TmpLHSI->moveBefore(ARI);                  // Move TmpLHSI to after Root | 
|  | ARI = Root; | 
|  |  | 
|  | // Now propagate the ExtraOperand down the chain of instructions until we | 
|  | // get to LHSI. | 
|  | while (TmpLHSI != LHSI) { | 
|  | Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0)); | 
|  | // Move the instruction to immediately before the chain we are | 
|  | // constructing to avoid breaking dominance properties. | 
|  | NextLHSI->moveBefore(ARI); | 
|  | ARI = NextLHSI; | 
|  |  | 
|  | Value *NextOp = NextLHSI->getOperand(1); | 
|  | NextLHSI->setOperand(1, ExtraOperand); | 
|  | TmpLHSI = NextLHSI; | 
|  | ExtraOperand = NextOp; | 
|  | } | 
|  |  | 
|  | // Now that the instructions are reassociated, have the functor perform | 
|  | // the transformation... | 
|  | return F.apply(Root); | 
|  | } | 
|  |  | 
|  | LHSI = dyn_cast<Instruction>(LHSI->getOperand(0)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // AddRHS - Implements: X + X --> X << 1 | 
|  | struct AddRHS { | 
|  | Value *RHS; | 
|  | explicit AddRHS(Value *rhs) : RHS(rhs) {} | 
|  | bool shouldApply(Value *LHS) const { return LHS == RHS; } | 
|  | Instruction *apply(BinaryOperator &Add) const { | 
|  | return BinaryOperator::CreateShl(Add.getOperand(0), | 
|  | ConstantInt::get(Add.getType(), 1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) | 
|  | //                 iff C1&C2 == 0 | 
|  | struct AddMaskingAnd { | 
|  | Constant *C2; | 
|  | explicit AddMaskingAnd(Constant *c) : C2(c) {} | 
|  | bool shouldApply(Value *LHS) const { | 
|  | ConstantInt *C1; | 
|  | return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && | 
|  | ConstantExpr::getAnd(C1, C2)->isNullValue(); | 
|  | } | 
|  | Instruction *apply(BinaryOperator &Add) const { | 
|  | return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, | 
|  | InstCombiner *IC) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(&I)) | 
|  | return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); | 
|  |  | 
|  | // Figure out if the constant is the left or the right argument. | 
|  | bool ConstIsRHS = isa<Constant>(I.getOperand(1)); | 
|  | Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); | 
|  |  | 
|  | if (Constant *SOC = dyn_cast<Constant>(SO)) { | 
|  | if (ConstIsRHS) | 
|  | return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); | 
|  | return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); | 
|  | } | 
|  |  | 
|  | Value *Op0 = SO, *Op1 = ConstOperand; | 
|  | if (!ConstIsRHS) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) | 
|  | return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, | 
|  | SO->getName()+".op"); | 
|  | if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) | 
|  | return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, | 
|  | SO->getName()+".cmp"); | 
|  | if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) | 
|  | return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, | 
|  | SO->getName()+".cmp"); | 
|  | llvm_unreachable("Unknown binary instruction type!"); | 
|  | } | 
|  |  | 
|  | // FoldOpIntoSelect - Given an instruction with a select as one operand and a | 
|  | // constant as the other operand, try to fold the binary operator into the | 
|  | // select arguments.  This also works for Cast instructions, which obviously do | 
|  | // not have a second operand. | 
|  | static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, | 
|  | InstCombiner *IC) { | 
|  | // Don't modify shared select instructions | 
|  | if (!SI->hasOneUse()) return 0; | 
|  | Value *TV = SI->getOperand(1); | 
|  | Value *FV = SI->getOperand(2); | 
|  |  | 
|  | if (isa<Constant>(TV) || isa<Constant>(FV)) { | 
|  | // Bool selects with constant operands can be folded to logical ops. | 
|  | if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0; | 
|  |  | 
|  | Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); | 
|  | Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); | 
|  |  | 
|  | return SelectInst::Create(SI->getCondition(), SelectTrueVal, | 
|  | SelectFalseVal); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which | 
|  | /// has a PHI node as operand #0, see if we can fold the instruction into the | 
|  | /// PHI (which is only possible if all operands to the PHI are constants). | 
|  | /// | 
|  | /// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms | 
|  | /// that would normally be unprofitable because they strongly encourage jump | 
|  | /// threading. | 
|  | Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, | 
|  | bool AllowAggressive) { | 
|  | AllowAggressive = false; | 
|  | PHINode *PN = cast<PHINode>(I.getOperand(0)); | 
|  | unsigned NumPHIValues = PN->getNumIncomingValues(); | 
|  | if (NumPHIValues == 0 || | 
|  | // We normally only transform phis with a single use, unless we're trying | 
|  | // hard to make jump threading happen. | 
|  | (!PN->hasOneUse() && !AllowAggressive)) | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | // Check to see if all of the operands of the PHI are simple constants | 
|  | // (constantint/constantfp/undef).  If there is one non-constant value, | 
|  | // remember the BB it is in.  If there is more than one or if *it* is a PHI, | 
|  | // bail out.  We don't do arbitrary constant expressions here because moving | 
|  | // their computation can be expensive without a cost model. | 
|  | BasicBlock *NonConstBB = 0; | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) | 
|  | if (!isa<Constant>(PN->getIncomingValue(i)) || | 
|  | isa<ConstantExpr>(PN->getIncomingValue(i))) { | 
|  | if (NonConstBB) return 0;  // More than one non-const value. | 
|  | if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi. | 
|  | NonConstBB = PN->getIncomingBlock(i); | 
|  |  | 
|  | // If the incoming non-constant value is in I's block, we have an infinite | 
|  | // loop. | 
|  | if (NonConstBB == I.getParent()) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If there is exactly one non-constant value, we can insert a copy of the | 
|  | // operation in that block.  However, if this is a critical edge, we would be | 
|  | // inserting the computation one some other paths (e.g. inside a loop).  Only | 
|  | // do this if the pred block is unconditionally branching into the phi block. | 
|  | if (NonConstBB != 0 && !AllowAggressive) { | 
|  | BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional()) return 0; | 
|  | } | 
|  |  | 
|  | // Okay, we can do the transformation: create the new PHI node. | 
|  | PHINode *NewPN = PHINode::Create(I.getType(), ""); | 
|  | NewPN->reserveOperandSpace(PN->getNumOperands()/2); | 
|  | InsertNewInstBefore(NewPN, *PN); | 
|  | NewPN->takeName(PN); | 
|  |  | 
|  | // Next, add all of the operands to the PHI. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { | 
|  | // We only currently try to fold the condition of a select when it is a phi, | 
|  | // not the true/false values. | 
|  | Value *TrueV = SI->getTrueValue(); | 
|  | Value *FalseV = SI->getFalseValue(); | 
|  | BasicBlock *PhiTransBB = PN->getParent(); | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) { | 
|  | BasicBlock *ThisBB = PN->getIncomingBlock(i); | 
|  | Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); | 
|  | Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); | 
|  | Value *InV = 0; | 
|  | if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { | 
|  | InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; | 
|  | } else { | 
|  | assert(PN->getIncomingBlock(i) == NonConstBB); | 
|  | InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred, | 
|  | FalseVInPred, | 
|  | "phitmp", NonConstBB->getTerminator()); | 
|  | Worklist.Add(cast<Instruction>(InV)); | 
|  | } | 
|  | NewPN->addIncoming(InV, ThisBB); | 
|  | } | 
|  | } else if (I.getNumOperands() == 2) { | 
|  | Constant *C = cast<Constant>(I.getOperand(1)); | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) { | 
|  | Value *InV = 0; | 
|  | if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(&I)) | 
|  | InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); | 
|  | else | 
|  | InV = ConstantExpr::get(I.getOpcode(), InC, C); | 
|  | } else { | 
|  | assert(PN->getIncomingBlock(i) == NonConstBB); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) | 
|  | InV = BinaryOperator::Create(BO->getOpcode(), | 
|  | PN->getIncomingValue(i), C, "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) | 
|  | InV = CmpInst::Create(CI->getOpcode(), | 
|  | CI->getPredicate(), | 
|  | PN->getIncomingValue(i), C, "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | else | 
|  | llvm_unreachable("Unknown binop!"); | 
|  |  | 
|  | Worklist.Add(cast<Instruction>(InV)); | 
|  | } | 
|  | NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
|  | } | 
|  | } else { | 
|  | CastInst *CI = cast<CastInst>(&I); | 
|  | const Type *RetTy = CI->getType(); | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) { | 
|  | Value *InV; | 
|  | if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { | 
|  | InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); | 
|  | } else { | 
|  | assert(PN->getIncomingBlock(i) == NonConstBB); | 
|  | InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), | 
|  | I.getType(), "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | Worklist.Add(cast<Instruction>(InV)); | 
|  | } | 
|  | NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
|  | } | 
|  | } | 
|  | return ReplaceInstUsesWith(I, NewPN); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// WillNotOverflowSignedAdd - Return true if we can prove that: | 
|  | ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS)) | 
|  | /// This basically requires proving that the add in the original type would not | 
|  | /// overflow to change the sign bit or have a carry out. | 
|  | bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { | 
|  | // There are different heuristics we can use for this.  Here are some simple | 
|  | // ones. | 
|  |  | 
|  | // Add has the property that adding any two 2's complement numbers can only | 
|  | // have one carry bit which can change a sign.  As such, if LHS and RHS each | 
|  | // have at least two sign bits, we know that the addition of the two values will | 
|  | // sign extend fine. | 
|  | if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) | 
|  | return true; | 
|  |  | 
|  |  | 
|  | // If one of the operands only has one non-zero bit, and if the other operand | 
|  | // has a known-zero bit in a more significant place than it (not including the | 
|  | // sign bit) the ripple may go up to and fill the zero, but won't change the | 
|  | // sign.  For example, (X & ~4) + 1. | 
|  |  | 
|  | // TODO: Implement. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitAdd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | // X + undef -> undef | 
|  | if (isa<UndefValue>(RHS)) | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  |  | 
|  | // X + 0 --> X | 
|  | if (RHSC->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { | 
|  | // X + (signbit) --> X ^ signbit | 
|  | const APInt& Val = CI->getValue(); | 
|  | uint32_t BitWidth = Val.getBitWidth(); | 
|  | if (Val == APInt::getSignBit(BitWidth)) | 
|  | return BinaryOperator::CreateXor(LHS, RHS); | 
|  |  | 
|  | // See if SimplifyDemandedBits can simplify this.  This handles stuff like | 
|  | // (X & 254)+1 -> (X&254)|1 | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // zext(bool) + C -> bool ? C + 1 : C | 
|  | if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) | 
|  | if (ZI->getSrcTy() == Type::getInt1Ty(*Context)) | 
|  | return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | ConstantInt *XorRHS = 0; | 
|  | Value *XorLHS = 0; | 
|  | if (isa<ConstantInt>(RHSC) && | 
|  | match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { | 
|  | uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); | 
|  | const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue(); | 
|  |  | 
|  | uint32_t Size = TySizeBits / 2; | 
|  | APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); | 
|  | APInt CFF80Val(-C0080Val); | 
|  | do { | 
|  | if (TySizeBits > Size) { | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. | 
|  | if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || | 
|  | (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { | 
|  | // This is a sign extend if the top bits are known zero. | 
|  | if (!MaskedValueIsZero(XorLHS, | 
|  | APInt::getHighBitsSet(TySizeBits, TySizeBits - Size))) | 
|  | Size = 0;  // Not a sign ext, but can't be any others either. | 
|  | break; | 
|  | } | 
|  | } | 
|  | Size >>= 1; | 
|  | C0080Val = APIntOps::lshr(C0080Val, Size); | 
|  | CFF80Val = APIntOps::ashr(CFF80Val, Size); | 
|  | } while (Size >= 1); | 
|  |  | 
|  | // FIXME: This shouldn't be necessary. When the backends can handle types | 
|  | // with funny bit widths then this switch statement should be removed. It | 
|  | // is just here to get the size of the "middle" type back up to something | 
|  | // that the back ends can handle. | 
|  | const Type *MiddleType = 0; | 
|  | switch (Size) { | 
|  | default: break; | 
|  | case 32: MiddleType = Type::getInt32Ty(*Context); break; | 
|  | case 16: MiddleType = Type::getInt16Ty(*Context); break; | 
|  | case  8: MiddleType = Type::getInt8Ty(*Context); break; | 
|  | } | 
|  | if (MiddleType) { | 
|  | Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext"); | 
|  | return new SExtInst(NewTrunc, I.getType(), I.getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.getType() == Type::getInt1Ty(*Context)) | 
|  | return BinaryOperator::CreateXor(LHS, RHS); | 
|  |  | 
|  | // X + X --> X << 1 | 
|  | if (I.getType()->isInteger()) { | 
|  | if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) | 
|  | return Result; | 
|  |  | 
|  | if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) { | 
|  | if (RHSI->getOpcode() == Instruction::Sub) | 
|  | if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B | 
|  | return ReplaceInstUsesWith(I, RHSI->getOperand(0)); | 
|  | } | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) { | 
|  | if (LHSI->getOpcode() == Instruction::Sub) | 
|  | if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B | 
|  | return ReplaceInstUsesWith(I, LHSI->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -A + B  -->  B - A | 
|  | // -A + -B  -->  -(A + B) | 
|  | if (Value *LHSV = dyn_castNegVal(LHS)) { | 
|  | if (LHS->getType()->isIntOrIntVector()) { | 
|  | if (Value *RHSV = dyn_castNegVal(RHS)) { | 
|  | Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); | 
|  | return BinaryOperator::CreateNeg(NewAdd); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BinaryOperator::CreateSub(RHS, LHSV); | 
|  | } | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *V = dyn_castNegVal(RHS)) | 
|  | return BinaryOperator::CreateSub(LHS, V); | 
|  |  | 
|  |  | 
|  | ConstantInt *C2; | 
|  | if (Value *X = dyn_castFoldableMul(LHS, C2)) { | 
|  | if (X == RHS)   // X*C + X --> X * (C+1) | 
|  | return BinaryOperator::CreateMul(RHS, AddOne(C2)); | 
|  |  | 
|  | // X*C1 + X*C2 --> X * (C1+C2) | 
|  | ConstantInt *C1; | 
|  | if (X == dyn_castFoldableMul(RHS, C1)) | 
|  | return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); | 
|  | } | 
|  |  | 
|  | // X + X*C --> X * (C+1) | 
|  | if (dyn_castFoldableMul(RHS, C2) == LHS) | 
|  | return BinaryOperator::CreateMul(LHS, AddOne(C2)); | 
|  |  | 
|  | // X + ~X --> -1   since   ~X = -X-1 | 
|  | if (dyn_castNotVal(LHS) == RHS || | 
|  | dyn_castNotVal(RHS) == LHS) | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  |  | 
|  |  | 
|  | // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) | 
|  | if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) | 
|  | return R; | 
|  |  | 
|  | // A+B --> A|B iff A and B have no bits set in common. | 
|  | if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { | 
|  | APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); | 
|  | APInt LHSKnownOne(IT->getBitWidth(), 0); | 
|  | APInt LHSKnownZero(IT->getBitWidth(), 0); | 
|  | ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); | 
|  | if (LHSKnownZero != 0) { | 
|  | APInt RHSKnownOne(IT->getBitWidth(), 0); | 
|  | APInt RHSKnownZero(IT->getBitWidth(), 0); | 
|  | ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); | 
|  |  | 
|  | // No bits in common -> bitwise or. | 
|  | if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) | 
|  | return BinaryOperator::CreateOr(LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // W*X + Y*Z --> W * (X+Z)  iff W == Y | 
|  | if (I.getType()->isIntOrIntVector()) { | 
|  | Value *W, *X, *Y, *Z; | 
|  | if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && | 
|  | match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { | 
|  | if (W != Y) { | 
|  | if (W == Z) { | 
|  | std::swap(Y, Z); | 
|  | } else if (Y == X) { | 
|  | std::swap(W, X); | 
|  | } else if (X == Z) { | 
|  | std::swap(Y, Z); | 
|  | std::swap(W, X); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (W == Y) { | 
|  | Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); | 
|  | return BinaryOperator::CreateMul(W, NewAdd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { | 
|  | Value *X = 0; | 
|  | if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X | 
|  | return BinaryOperator::CreateSub(SubOne(CRHS), X); | 
|  |  | 
|  | // (X & FF00) + xx00  -> (X+xx00) & FF00 | 
|  | if (LHS->hasOneUse() && | 
|  | match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { | 
|  | Constant *Anded = ConstantExpr::getAnd(CRHS, C2); | 
|  | if (Anded == CRHS) { | 
|  | // See if all bits from the first bit set in the Add RHS up are included | 
|  | // in the mask.  First, get the rightmost bit. | 
|  | const APInt& AddRHSV = CRHS->getValue(); | 
|  |  | 
|  | // Form a mask of all bits from the lowest bit added through the top. | 
|  | APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); | 
|  |  | 
|  | // See if the and mask includes all of these bits. | 
|  | APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); | 
|  |  | 
|  | if (AddRHSHighBits == AddRHSHighBitsAnd) { | 
|  | // Okay, the xform is safe.  Insert the new add pronto. | 
|  | Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); | 
|  | return BinaryOperator::CreateAnd(NewAdd, C2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant add into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // add (select X 0 (sub n A)) A  -->  select X A n | 
|  | { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(LHS); | 
|  | Value *A = RHS; | 
|  | if (!SI) { | 
|  | SI = dyn_cast<SelectInst>(RHS); | 
|  | A = LHS; | 
|  | } | 
|  | if (SI && SI->hasOneUse()) { | 
|  | Value *TV = SI->getTrueValue(); | 
|  | Value *FV = SI->getFalseValue(); | 
|  | Value *N; | 
|  |  | 
|  | // Can we fold the add into the argument of the select? | 
|  | // We check both true and false select arguments for a matching subtract. | 
|  | if (match(FV, m_Zero()) && | 
|  | match(TV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the true select value. | 
|  | return SelectInst::Create(SI->getCondition(), N, A); | 
|  | if (match(TV, m_Zero()) && | 
|  | match(FV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the false select value. | 
|  | return SelectInst::Create(SI->getCondition(), A, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for (add (sext x), y), see if we can merge this into an | 
|  | // integer add followed by a sext. | 
|  | if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { | 
|  | // (add (sext x), cst) --> (sext (add x, cst')) | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { | 
|  | Constant *CI = | 
|  | ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); | 
|  | if (LHSConv->hasOneUse() && | 
|  | ConstantExpr::getSExt(CI, I.getType()) == RHSC && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { | 
|  | // Insert the new, smaller add. | 
|  | Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), | 
|  | CI, "addconv"); | 
|  | return new SExtInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (add (sext x), (sext y)) --> (sext (add int x, y)) | 
|  | if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { | 
|  | // Only do this if x/y have the same type, if at last one of them has a | 
|  | // single use (so we don't increase the number of sexts), and if the | 
|  | // integer add will not overflow. | 
|  | if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& | 
|  | (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0))) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0), "addconv"); | 
|  | return new SExtInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | // X + 0 --> X | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { | 
|  | if (CFP->isExactlyValue(ConstantFP::getNegativeZero | 
|  | (I.getType())->getValueAPF())) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // -A + B  -->  B - A | 
|  | // -A + -B  -->  -(A + B) | 
|  | if (Value *LHSV = dyn_castFNegVal(LHS)) | 
|  | return BinaryOperator::CreateFSub(RHS, LHSV); | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *V = dyn_castFNegVal(RHS)) | 
|  | return BinaryOperator::CreateFSub(LHS, V); | 
|  |  | 
|  | // Check for X+0.0.  Simplify it to X if we know X is not -0.0. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) | 
|  | if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  |  | 
|  | // Check for (add double (sitofp x), y), see if we can merge this into an | 
|  | // integer add followed by a promotion. | 
|  | if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { | 
|  | // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) | 
|  | // ... if the constant fits in the integer value.  This is useful for things | 
|  | // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer | 
|  | // requires a constant pool load, and generally allows the add to be better | 
|  | // instcombined. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { | 
|  | Constant *CI = | 
|  | ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); | 
|  | if (LHSConv->hasOneUse() && | 
|  | ConstantExpr::getSIToFP(CI, I.getType()) == CFP && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), | 
|  | CI, "addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) | 
|  | if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { | 
|  | // Only do this if x/y have the same type, if at last one of them has a | 
|  | // single use (so we don't increase the number of int->fp conversions), | 
|  | // and if the integer add will not overflow. | 
|  | if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& | 
|  | (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0))) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0), "addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSub(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Op0 == Op1)                        // sub X, X  -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A... | 
|  | if (Value *V = dyn_castNegVal(Op1)) | 
|  | return BinaryOperator::CreateAdd(Op0, V); | 
|  |  | 
|  | if (isa<UndefValue>(Op0)) | 
|  | return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { | 
|  | // Replace (-1 - A) with (~A)... | 
|  | if (C->isAllOnesValue()) | 
|  | return BinaryOperator::CreateNot(Op1); | 
|  |  | 
|  | // C - ~X == X + (1+C) | 
|  | Value *X = 0; | 
|  | if (match(Op1, m_Not(m_Value(X)))) | 
|  | return BinaryOperator::CreateAdd(X, AddOne(C)); | 
|  |  | 
|  | // -(X >>u 31) -> (X >>s 31) | 
|  | // -(X >>s 31) -> (X >>u 31) | 
|  | if (C->isZero()) { | 
|  | if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (SI->getOpcode() == Instruction::LShr) { | 
|  | if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { | 
|  | // Check to see if we are shifting out everything but the sign bit. | 
|  | if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == | 
|  | SI->getType()->getPrimitiveSizeInBits()-1) { | 
|  | // Ok, the transformation is safe.  Insert AShr. | 
|  | return BinaryOperator::Create(Instruction::AShr, | 
|  | SI->getOperand(0), CU, SI->getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (SI->getOpcode() == Instruction::AShr) { | 
|  | if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { | 
|  | // Check to see if we are shifting out everything but the sign bit. | 
|  | if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == | 
|  | SI->getType()->getPrimitiveSizeInBits()-1) { | 
|  | // Ok, the transformation is safe.  Insert LShr. | 
|  | return BinaryOperator::CreateLShr( | 
|  | SI->getOperand(0), CU, SI->getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant sub into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | // C - zext(bool) -> bool ? C - 1 : C | 
|  | if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) | 
|  | if (ZI->getSrcTy() == Type::getInt1Ty(*Context)) | 
|  | return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); | 
|  | } | 
|  |  | 
|  | if (I.getType() == Type::getInt1Ty(*Context)) | 
|  | return BinaryOperator::CreateXor(Op0, Op1); | 
|  |  | 
|  | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (Op1I->getOpcode() == Instruction::Add) { | 
|  | if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y | 
|  | return BinaryOperator::CreateNeg(Op1I->getOperand(1), | 
|  | I.getName()); | 
|  | else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y | 
|  | return BinaryOperator::CreateNeg(Op1I->getOperand(0), | 
|  | I.getName()); | 
|  | else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) | 
|  | // C1-(X+C2) --> (C1-C2)-X | 
|  | return BinaryOperator::CreateSub( | 
|  | ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1I->hasOneUse()) { | 
|  | // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression | 
|  | // is not used by anyone else... | 
|  | // | 
|  | if (Op1I->getOpcode() == Instruction::Sub) { | 
|  | // Swap the two operands of the subexpr... | 
|  | Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); | 
|  | Op1I->setOperand(0, IIOp1); | 
|  | Op1I->setOperand(1, IIOp0); | 
|  |  | 
|  | // Create the new top level add instruction... | 
|  | return BinaryOperator::CreateAdd(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... | 
|  | // | 
|  | if (Op1I->getOpcode() == Instruction::And && | 
|  | (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { | 
|  | Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); | 
|  |  | 
|  | Value *NewNot = Builder->CreateNot(OtherOp, "B.not"); | 
|  | return BinaryOperator::CreateAnd(Op0, NewNot); | 
|  | } | 
|  |  | 
|  | // 0 - (X sdiv C)  -> (X sdiv -C) | 
|  | if (Op1I->getOpcode() == Instruction::SDiv) | 
|  | if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) | 
|  | if (CSI->isZero()) | 
|  | if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1))) | 
|  | return BinaryOperator::CreateSDiv(Op1I->getOperand(0), | 
|  | ConstantExpr::getNeg(DivRHS)); | 
|  |  | 
|  | // X - X*C --> X * (1-C) | 
|  | ConstantInt *C2 = 0; | 
|  | if (dyn_castFoldableMul(Op1I, C2) == Op0) { | 
|  | Constant *CP1 = | 
|  | ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), | 
|  | C2); | 
|  | return BinaryOperator::CreateMul(Op0, CP1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | if (Op0I->getOpcode() == Instruction::Add) { | 
|  | if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(1)); | 
|  | else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(0)); | 
|  | } else if (Op0I->getOpcode() == Instruction::Sub) { | 
|  | if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y | 
|  | return BinaryOperator::CreateNeg(Op0I->getOperand(1), | 
|  | I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantInt *C1; | 
|  | if (Value *X = dyn_castFoldableMul(Op0, C1)) { | 
|  | if (X == Op1)  // X*C - X --> X * (C-1) | 
|  | return BinaryOperator::CreateMul(Op1, SubOne(C1)); | 
|  |  | 
|  | ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2) | 
|  | if (X == dyn_castFoldableMul(Op1, C2)) | 
|  | return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFSub(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A... | 
|  | if (Value *V = dyn_castFNegVal(Op1)) | 
|  | return BinaryOperator::CreateFAdd(Op0, V); | 
|  |  | 
|  | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (Op1I->getOpcode() == Instruction::FAdd) { | 
|  | if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y | 
|  | return BinaryOperator::CreateFNeg(Op1I->getOperand(1), | 
|  | I.getName()); | 
|  | else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y | 
|  | return BinaryOperator::CreateFNeg(Op1I->getOperand(0), | 
|  | I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isSignBitCheck - Given an exploded icmp instruction, return true if the | 
|  | /// comparison only checks the sign bit.  If it only checks the sign bit, set | 
|  | /// TrueIfSigned if the result of the comparison is true when the input value is | 
|  | /// signed. | 
|  | static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, | 
|  | bool &TrueIfSigned) { | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_SLT:   // True if LHS s< 0 | 
|  | TrueIfSigned = true; | 
|  | return RHS->isZero(); | 
|  | case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1 | 
|  | TrueIfSigned = true; | 
|  | return RHS->isAllOnesValue(); | 
|  | case ICmpInst::ICMP_SGT:   // True if LHS s> -1 | 
|  | TrueIfSigned = false; | 
|  | return RHS->isAllOnesValue(); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // True if LHS u> RHS and RHS == high-bit-mask - 1 | 
|  | TrueIfSigned = true; | 
|  | return RHS->getValue() == | 
|  | APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits()); | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) | 
|  | TrueIfSigned = true; | 
|  | return RHS->getValue().isSignBit(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0); | 
|  |  | 
|  | if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  |  | 
|  | // ((X << C1)*C2) == (X * (C2 << C1)) | 
|  | if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (SI->getOpcode() == Instruction::Shl) | 
|  | if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | return BinaryOperator::CreateMul(SI->getOperand(0), | 
|  | ConstantExpr::getShl(CI, ShOp)); | 
|  |  | 
|  | if (CI->isZero()) | 
|  | return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0 | 
|  | if (CI->equalsInt(1))                  // X * 1  == X | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | if (CI->isAllOnesValue())              // X * -1 == 0 - X | 
|  | return BinaryOperator::CreateNeg(Op0, I.getName()); | 
|  |  | 
|  | const APInt& Val = cast<ConstantInt>(CI)->getValue(); | 
|  | if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C | 
|  | return BinaryOperator::CreateShl(Op0, | 
|  | ConstantInt::get(Op0->getType(), Val.logBase2())); | 
|  | } | 
|  | } else if (isa<VectorType>(Op1->getType())) { | 
|  | if (Op1->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { | 
|  | if (Op1V->isAllOnesValue())              // X * -1 == 0 - X | 
|  | return BinaryOperator::CreateNeg(Op0, I.getName()); | 
|  |  | 
|  | // As above, vector X*splat(1.0) -> X in all defined cases. | 
|  | if (Constant *Splat = Op1V->getSplatValue()) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat)) | 
|  | if (CI->equalsInt(1)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && | 
|  | isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) { | 
|  | // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. | 
|  | Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1, "tmp"); | 
|  | Value *C1C2 = Builder->CreateMul(Op1, Op0I->getOperand(1)); | 
|  | return BinaryOperator::CreateAdd(Add, C1C2); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) | 
|  | return BinaryOperator::CreateMul(Op0v, Op1v); | 
|  |  | 
|  | // (X / Y) *  Y = X - (X % Y) | 
|  | // (X / Y) * -Y = (X % Y) - X | 
|  | { | 
|  | Value *Op1 = I.getOperand(1); | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); | 
|  | if (!BO || | 
|  | (BO->getOpcode() != Instruction::UDiv && | 
|  | BO->getOpcode() != Instruction::SDiv)) { | 
|  | Op1 = Op0; | 
|  | BO = dyn_cast<BinaryOperator>(I.getOperand(1)); | 
|  | } | 
|  | Value *Neg = dyn_castNegVal(Op1); | 
|  | if (BO && BO->hasOneUse() && | 
|  | (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) && | 
|  | (BO->getOpcode() == Instruction::UDiv || | 
|  | BO->getOpcode() == Instruction::SDiv)) { | 
|  | Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); | 
|  |  | 
|  | // If the division is exact, X % Y is zero. | 
|  | if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO)) | 
|  | if (SDiv->isExact()) { | 
|  | if (Op1BO == Op1) | 
|  | return ReplaceInstUsesWith(I, Op0BO); | 
|  | else | 
|  | return BinaryOperator::CreateNeg(Op0BO); | 
|  | } | 
|  |  | 
|  | Value *Rem; | 
|  | if (BO->getOpcode() == Instruction::UDiv) | 
|  | Rem = Builder->CreateURem(Op0BO, Op1BO); | 
|  | else | 
|  | Rem = Builder->CreateSRem(Op0BO, Op1BO); | 
|  | Rem->takeName(BO); | 
|  |  | 
|  | if (Op1BO == Op1) | 
|  | return BinaryOperator::CreateSub(Op0BO, Rem); | 
|  | return BinaryOperator::CreateSub(Rem, Op0BO); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// i1 mul -> i1 and. | 
|  | if (I.getType() == Type::getInt1Ty(*Context)) | 
|  | return BinaryOperator::CreateAnd(Op0, I.getOperand(1)); | 
|  |  | 
|  | // X*(1 << Y) --> X << Y | 
|  | // (1 << Y)*X --> X << Y | 
|  | { | 
|  | Value *Y; | 
|  | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(I.getOperand(1), Y); | 
|  | if (match(I.getOperand(1), m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(Op0, Y); | 
|  | } | 
|  |  | 
|  | // If one of the operands of the multiply is a cast from a boolean value, then | 
|  | // we know the bool is either zero or one, so this is a 'masking' multiply. | 
|  | //   X * Y (where Y is 0 or 1) -> X & (0-Y) | 
|  | if (!isa<VectorType>(I.getType())) { | 
|  | // -2 is "-1 << 1" so it is all bits set except the low one. | 
|  | APInt Negative2(I.getType()->getPrimitiveSizeInBits(), -2, true); | 
|  |  | 
|  | Value *BoolCast = 0, *OtherOp = 0; | 
|  | if (MaskedValueIsZero(Op0, Negative2)) | 
|  | BoolCast = Op0, OtherOp = I.getOperand(1); | 
|  | else if (MaskedValueIsZero(I.getOperand(1), Negative2)) | 
|  | BoolCast = I.getOperand(1), OtherOp = Op0; | 
|  |  | 
|  | if (BoolCast) { | 
|  | Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), | 
|  | BoolCast, "tmp"); | 
|  | return BinaryOperator::CreateAnd(V, OtherOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0); | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS... | 
|  | if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) { | 
|  | if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) { | 
|  | // "In IEEE floating point, x*1 is not equivalent to x for nans.  However, | 
|  | // ANSI says we can drop signals, so we can do this anyway." (from GCC) | 
|  | if (Op1F->isExactlyValue(1.0)) | 
|  | return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0' | 
|  | } else if (isa<VectorType>(Op1->getType())) { | 
|  | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { | 
|  | // As above, vector X*splat(1.0) -> X in all defined cases. | 
|  | if (Constant *Splat = Op1V->getSplatValue()) { | 
|  | if (ConstantFP *F = dyn_cast<ConstantFP>(Splat)) | 
|  | if (F->isExactlyValue(1.0)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castFNegVal(I.getOperand(1))) | 
|  | return BinaryOperator::CreateFMul(Op0v, Op1v); | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select | 
|  | /// instruction. | 
|  | bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { | 
|  | SelectInst *SI = cast<SelectInst>(I.getOperand(1)); | 
|  |  | 
|  | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y | 
|  | int NonNullOperand = -1; | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 2; | 
|  | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 1; | 
|  |  | 
|  | if (NonNullOperand == -1) | 
|  | return false; | 
|  |  | 
|  | Value *SelectCond = SI->getOperand(0); | 
|  |  | 
|  | // Change the div/rem to use 'Y' instead of the select. | 
|  | I.setOperand(1, SI->getOperand(NonNullOperand)); | 
|  |  | 
|  | // Okay, we know we replace the operand of the div/rem with 'Y' with no | 
|  | // problem.  However, the select, or the condition of the select may have | 
|  | // multiple uses.  Based on our knowledge that the operand must be non-zero, | 
|  | // propagate the known value for the select into other uses of it, and | 
|  | // propagate a known value of the condition into its other users. | 
|  |  | 
|  | // If the select and condition only have a single use, don't bother with this, | 
|  | // early exit. | 
|  | if (SI->use_empty() && SelectCond->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Scan the current block backward, looking for other uses of SI. | 
|  | BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); | 
|  |  | 
|  | while (BBI != BBFront) { | 
|  | --BBI; | 
|  | // If we found a call to a function, we can't assume it will return, so | 
|  | // information from below it cannot be propagated above it. | 
|  | if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) | 
|  | break; | 
|  |  | 
|  | // Replace uses of the select or its condition with the known values. | 
|  | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); | 
|  | I != E; ++I) { | 
|  | if (*I == SI) { | 
|  | *I = SI->getOperand(NonNullOperand); | 
|  | Worklist.Add(BBI); | 
|  | } else if (*I == SelectCond) { | 
|  | *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) : | 
|  | ConstantInt::getFalse(*Context); | 
|  | Worklist.Add(BBI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we past the instruction, quit looking for it. | 
|  | if (&*BBI == SI) | 
|  | SI = 0; | 
|  | if (&*BBI == SelectCond) | 
|  | SelectCond = 0; | 
|  |  | 
|  | // If we ran out of things to eliminate, break out of the loop. | 
|  | if (SelectCond == 0 && SI == 0) | 
|  | break; | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This function implements the transforms on div instructions that work | 
|  | /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is | 
|  | /// used by the visitors to those instructions. | 
|  | /// @brief Transforms common to all three div instructions | 
|  | Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // undef / X -> 0        for integer. | 
|  | // undef / X -> undef    for FP (the undef could be a snan). | 
|  | if (isa<UndefValue>(Op0)) { | 
|  | if (Op0->getType()->isFPOrFPVector()) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  |  | 
|  | // X / undef -> undef | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer division | 
|  | /// instructions (udiv and sdiv). It is called by the visitors to those integer | 
|  | /// division instructions. | 
|  | /// @brief Common integer divide transforms | 
|  | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // (sdiv X, X) --> 1     (udiv X, X) --> 1 | 
|  | if (Op0 == Op1) { | 
|  | if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) { | 
|  | Constant *CI = ConstantInt::get(Ty->getElementType(), 1); | 
|  | std::vector<Constant*> Elts(Ty->getNumElements(), CI); | 
|  | return ReplaceInstUsesWith(I, ConstantVector::get(Elts)); | 
|  | } | 
|  |  | 
|  | Constant *CI = ConstantInt::get(I.getType(), 1); | 
|  | return ReplaceInstUsesWith(I, CI); | 
|  | } | 
|  |  | 
|  | if (Instruction *Common = commonDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | // Handle cases involving: [su]div X, (select Cond, Y, Z) | 
|  | // This does not apply for fdiv. | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // div X, 1 == X | 
|  | if (RHS->equalsInt(1)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // (X / C1) / C2  -> X / (C1*C2) | 
|  | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) | 
|  | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) | 
|  | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { | 
|  | if (MultiplyOverflows(RHS, LHSRHS, | 
|  | I.getOpcode()==Instruction::SDiv)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | else | 
|  | return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), | 
|  | ConstantExpr::getMul(RHS, LHSRHS)); | 
|  | } | 
|  |  | 
|  | if (!RHS->isZero()) { // avoid X udiv 0 | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 0 / X == 0, we don't need to preserve faults! | 
|  | if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0)) | 
|  | if (LHS->equalsInt(0)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // It can't be division by zero, hence it must be division by one. | 
|  | if (I.getType() == Type::getInt1Ty(*Context)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { | 
|  | if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue())) | 
|  | // div X, 1 == X | 
|  | if (X->isOne()) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X udiv C^2 -> X >> C | 
|  | // Check to see if this is an unsigned division with an exact power of 2, | 
|  | // if so, convert to a right shift. | 
|  | if (C->getValue().isPowerOf2())  // 0 not included in isPowerOf2 | 
|  | return BinaryOperator::CreateLShr(Op0, | 
|  | ConstantInt::get(Op0->getType(), C->getValue().logBase2())); | 
|  |  | 
|  | // X udiv C, where C >= signbit | 
|  | if (C->getValue().isNegative()) { | 
|  | Value *IC = Builder->CreateICmpULT( Op0, C); | 
|  | return SelectInst::Create(IC, Constant::getNullValue(I.getType()), | 
|  | ConstantInt::get(I.getType(), 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) { | 
|  | if (RHSI->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(RHSI->getOperand(0))) { | 
|  | const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue(); | 
|  | if (C1.isPowerOf2()) { | 
|  | Value *N = RHSI->getOperand(1); | 
|  | const Type *NTy = N->getType(); | 
|  | if (uint32_t C2 = C1.logBase2()) | 
|  | N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp"); | 
|  | return BinaryOperator::CreateLShr(Op0, N); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) | 
|  | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2)))  { | 
|  | const APInt &TVA = STO->getValue(), &FVA = SFO->getValue(); | 
|  | if (TVA.isPowerOf2() && FVA.isPowerOf2()) { | 
|  | // Compute the shift amounts | 
|  | uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2(); | 
|  | // Construct the "on true" case of the select | 
|  | Constant *TC = ConstantInt::get(Op0->getType(), TSA); | 
|  | Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t"); | 
|  |  | 
|  | // Construct the "on false" case of the select | 
|  | Constant *FC = ConstantInt::get(Op0->getType(), FSA); | 
|  | Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f"); | 
|  |  | 
|  | // construct the select instruction and return it. | 
|  | return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName()); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // sdiv X, -1 == -X | 
|  | if (RHS->isAllOnesValue()) | 
|  | return BinaryOperator::CreateNeg(Op0); | 
|  |  | 
|  | // sdiv X, C  -->  ashr X, log2(C) | 
|  | if (cast<SDivOperator>(&I)->isExact() && | 
|  | RHS->getValue().isNonNegative() && | 
|  | RHS->getValue().isPowerOf2()) { | 
|  | Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), | 
|  | RHS->getValue().exactLogBase2()); | 
|  | return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName()); | 
|  | } | 
|  |  | 
|  | // -X/C  -->  X/-C  provided the negation doesn't overflow. | 
|  | if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) | 
|  | if (isa<Constant>(Sub->getOperand(0)) && | 
|  | cast<Constant>(Sub->getOperand(0))->isNullValue() && | 
|  | Sub->hasNoSignedWrap()) | 
|  | return BinaryOperator::CreateSDiv(Sub->getOperand(1), | 
|  | ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a udiv. | 
|  | if (I.getType()->isInteger()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op0, Mask)) { | 
|  | if (MaskedValueIsZero(Op1, Mask)) { | 
|  | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  | ConstantInt *ShiftedInt; | 
|  | if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) && | 
|  | ShiftedInt->getValue().isPowerOf2()) { | 
|  | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) | 
|  | // Safe because the only negative value (1 << Y) can take on is | 
|  | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have | 
|  | // the sign bit set. | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { | 
|  | return commonDivTransforms(I); | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms on rem instructions that work | 
|  | /// regardless of the kind of rem instruction it is (urem, srem, or frem). It | 
|  | /// is used by the visitors to those instructions. | 
|  | /// @brief Transforms common to all three rem instructions | 
|  | Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op0)) {             // undef % X -> 0 | 
|  | if (I.getType()->isFPOrFPVector()) | 
|  | return ReplaceInstUsesWith(I, Op0);  // X % undef -> undef (could be SNaN) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer remainder | 
|  | /// instructions (urem and srem). It is called by the visitors to those integer | 
|  | /// remainder instructions. | 
|  | /// @brief Common integer remainder transforms | 
|  | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *common = commonRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | // 0 % X == 0 for integer, we don't need to preserve faults! | 
|  | if (Constant *LHS = dyn_cast<Constant>(Op0)) | 
|  | if (LHS->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X % 0 == undef, we don't need to preserve faults! | 
|  | if (RHS->equalsInt(0)) | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); | 
|  |  | 
|  | if (RHS->equalsInt(1))  // X % 1 == 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | } else if (isa<PHINode>(Op0I)) { | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // See if we can fold away this rem instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitURem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X urem C^2 -> X and C | 
|  | // Check to see if this is an unsigned remainder with an exact power of 2, | 
|  | // if so, convert to a bitwise and. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(RHS)) | 
|  | if (C->getValue().isPowerOf2()) | 
|  | return BinaryOperator::CreateAnd(Op0, SubOne(C)); | 
|  | } | 
|  |  | 
|  | if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) { | 
|  | // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) | 
|  | if (RHSI->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(RHSI->getOperand(0))) { | 
|  | if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) { | 
|  | Constant *N1 = Constant::getAllOnesValue(I.getType()); | 
|  | Value *Add = Builder->CreateAdd(RHSI, N1, "tmp"); | 
|  | return BinaryOperator::CreateAnd(Op0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { | 
|  | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) | 
|  | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { | 
|  | // STO == 0 and SFO == 0 handled above. | 
|  | if ((STO->getValue().isPowerOf2()) && | 
|  | (SFO->getValue().isPowerOf2())) { | 
|  | Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO), | 
|  | SI->getName()+".t"); | 
|  | Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO), | 
|  | SI->getName()+".f"); | 
|  | return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Handle the integer rem common cases | 
|  | if (Instruction *Common = commonIRemTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (Value *RHSNeg = dyn_castNegVal(Op1)) | 
|  | if (!isa<Constant>(RHSNeg) || | 
|  | (isa<ConstantInt>(RHSNeg) && | 
|  | cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { | 
|  | // X % -Y -> X % Y | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, RHSNeg); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a urem. | 
|  | if (I.getType()->isInteger()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { | 
|  | // X srem Y -> X urem Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's a constant vector, flip any negative values positive. | 
|  | if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) { | 
|  | unsigned VWidth = RHSV->getNumOperands(); | 
|  |  | 
|  | bool hasNegative = false; | 
|  | for (unsigned i = 0; !hasNegative && i != VWidth; ++i) | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) | 
|  | if (RHS->getValue().isNegative()) | 
|  | hasNegative = true; | 
|  |  | 
|  | if (hasNegative) { | 
|  | std::vector<Constant *> Elts(VWidth); | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) { | 
|  | if (RHS->getValue().isNegative()) | 
|  | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); | 
|  | else | 
|  | Elts[i] = RHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *NewRHSV = ConstantVector::get(Elts); | 
|  | if (NewRHSV != RHSV) { | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, NewRHSV); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { | 
|  | return commonRemTransforms(I); | 
|  | } | 
|  |  | 
|  | // isOneBitSet - Return true if there is exactly one bit set in the specified | 
|  | // constant. | 
|  | static bool isOneBitSet(const ConstantInt *CI) { | 
|  | return CI->getValue().isPowerOf2(); | 
|  | } | 
|  |  | 
|  | // isHighOnes - Return true if the constant is of the form 1+0+. | 
|  | // This is the same as lowones(~X). | 
|  | static bool isHighOnes(const ConstantInt *CI) { | 
|  | return (~CI->getValue() + 1).isPowerOf2(); | 
|  | } | 
|  |  | 
|  | /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits | 
|  | /// are carefully arranged to allow folding of expressions such as: | 
|  | /// | 
|  | ///      (A < B) | (A > B) --> (A != B) | 
|  | /// | 
|  | /// Note that this is only valid if the first and second predicates have the | 
|  | /// same sign. Is illegal to do: (A u< B) | (A s> B) | 
|  | /// | 
|  | /// Three bits are used to represent the condition, as follows: | 
|  | ///   0  A > B | 
|  | ///   1  A == B | 
|  | ///   2  A < B | 
|  | /// | 
|  | /// <=>  Value  Definition | 
|  | /// 000     0   Always false | 
|  | /// 001     1   A >  B | 
|  | /// 010     2   A == B | 
|  | /// 011     3   A >= B | 
|  | /// 100     4   A <  B | 
|  | /// 101     5   A != B | 
|  | /// 110     6   A <= B | 
|  | /// 111     7   Always true | 
|  | /// | 
|  | static unsigned getICmpCode(const ICmpInst *ICI) { | 
|  | switch (ICI->getPredicate()) { | 
|  | // False -> 0 | 
|  | case ICmpInst::ICMP_UGT: return 1;  // 001 | 
|  | case ICmpInst::ICMP_SGT: return 1;  // 001 | 
|  | case ICmpInst::ICMP_EQ:  return 2;  // 010 | 
|  | case ICmpInst::ICMP_UGE: return 3;  // 011 | 
|  | case ICmpInst::ICMP_SGE: return 3;  // 011 | 
|  | case ICmpInst::ICMP_ULT: return 4;  // 100 | 
|  | case ICmpInst::ICMP_SLT: return 4;  // 100 | 
|  | case ICmpInst::ICMP_NE:  return 5;  // 101 | 
|  | case ICmpInst::ICMP_ULE: return 6;  // 110 | 
|  | case ICmpInst::ICMP_SLE: return 6;  // 110 | 
|  | // True -> 7 | 
|  | default: | 
|  | llvm_unreachable("Invalid ICmp predicate!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp | 
|  | /// predicate into a three bit mask. It also returns whether it is an ordered | 
|  | /// predicate by reference. | 
|  | static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { | 
|  | isOrdered = false; | 
|  | switch (CC) { | 
|  | case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000 | 
|  | case FCmpInst::FCMP_UNO:                   return 0;  // 000 | 
|  | case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001 | 
|  | case FCmpInst::FCMP_UGT:                   return 1;  // 001 | 
|  | case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010 | 
|  | case FCmpInst::FCMP_UEQ:                   return 2;  // 010 | 
|  | case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011 | 
|  | case FCmpInst::FCMP_UGE:                   return 3;  // 011 | 
|  | case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100 | 
|  | case FCmpInst::FCMP_ULT:                   return 4;  // 100 | 
|  | case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101 | 
|  | case FCmpInst::FCMP_UNE:                   return 5;  // 101 | 
|  | case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110 | 
|  | case FCmpInst::FCMP_ULE:                   return 6;  // 110 | 
|  | // True -> 7 | 
|  | default: | 
|  | // Not expecting FCMP_FALSE and FCMP_TRUE; | 
|  | llvm_unreachable("Unexpected FCmp predicate!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getICmpValue - This is the complement of getICmpCode, which turns an | 
|  | /// opcode and two operands into either a constant true or false, or a brand | 
|  | /// new ICmp instruction. The sign is passed in to determine which kind | 
|  | /// of predicate to use in the new icmp instruction. | 
|  | static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS, | 
|  | LLVMContext *Context) { | 
|  | switch (code) { | 
|  | default: llvm_unreachable("Illegal ICmp code!"); | 
|  | case  0: return ConstantInt::getFalse(*Context); | 
|  | case  1: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); | 
|  | case  2: return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS); | 
|  | case  3: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); | 
|  | case  4: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); | 
|  | case  5: return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS); | 
|  | case  6: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); | 
|  | case  7: return ConstantInt::getTrue(*Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFCmpValue - This is the complement of getFCmpCode, which turns an | 
|  | /// opcode and two operands into either a FCmp instruction. isordered is passed | 
|  | /// in to determine which kind of predicate to use in the new fcmp instruction. | 
|  | static Value *getFCmpValue(bool isordered, unsigned code, | 
|  | Value *LHS, Value *RHS, LLVMContext *Context) { | 
|  | switch (code) { | 
|  | default: llvm_unreachable("Illegal FCmp code!"); | 
|  | case  0: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS); | 
|  | case  1: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS); | 
|  | case  2: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS); | 
|  | case  3: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS); | 
|  | case  4: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS); | 
|  | case  5: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS); | 
|  | case  6: | 
|  | if (isordered) | 
|  | return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS); | 
|  | else | 
|  | return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS); | 
|  | case  7: return ConstantInt::getTrue(*Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// PredicatesFoldable - Return true if both predicates match sign or if at | 
|  | /// least one of them is an equality comparison (which is signless). | 
|  | static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { | 
|  | return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) || | 
|  | (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) || | 
|  | (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) | 
|  | struct FoldICmpLogical { | 
|  | InstCombiner &IC; | 
|  | Value *LHS, *RHS; | 
|  | ICmpInst::Predicate pred; | 
|  | FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI) | 
|  | : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)), | 
|  | pred(ICI->getPredicate()) {} | 
|  | bool shouldApply(Value *V) const { | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(V)) | 
|  | if (PredicatesFoldable(pred, ICI->getPredicate())) | 
|  | return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) || | 
|  | (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS)); | 
|  | return false; | 
|  | } | 
|  | Instruction *apply(Instruction &Log) const { | 
|  | ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0)); | 
|  | if (ICI->getOperand(0) != LHS) { | 
|  | assert(ICI->getOperand(1) == LHS); | 
|  | ICI->swapOperands();  // Swap the LHS and RHS of the ICmp | 
|  | } | 
|  |  | 
|  | ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1)); | 
|  | unsigned LHSCode = getICmpCode(ICI); | 
|  | unsigned RHSCode = getICmpCode(RHSICI); | 
|  | unsigned Code; | 
|  | switch (Log.getOpcode()) { | 
|  | case Instruction::And: Code = LHSCode & RHSCode; break; | 
|  | case Instruction::Or:  Code = LHSCode | RHSCode; break; | 
|  | case Instruction::Xor: Code = LHSCode ^ RHSCode; break; | 
|  | default: llvm_unreachable("Illegal logical opcode!"); return 0; | 
|  | } | 
|  |  | 
|  | bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || | 
|  | ICmpInst::isSignedPredicate(ICI->getPredicate()); | 
|  |  | 
|  | Value *RV = getICmpValue(isSigned, Code, LHS, RHS, IC.getContext()); | 
|  | if (Instruction *I = dyn_cast<Instruction>(RV)) | 
|  | return I; | 
|  | // Otherwise, it's a constant boolean value... | 
|  | return IC.ReplaceInstUsesWith(Log, RV); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where | 
|  | // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is | 
|  | // guaranteed to be a binary operator. | 
|  | Instruction *InstCombiner::OptAndOp(Instruction *Op, | 
|  | ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, | 
|  | BinaryOperator &TheAnd) { | 
|  | Value *X = Op->getOperand(0); | 
|  | Constant *Together = 0; | 
|  | if (!Op->isShift()) | 
|  | Together = ConstantExpr::getAnd(AndRHS, OpRHS); | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | case Instruction::Xor: | 
|  | if (Op->hasOneUse()) { | 
|  | // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) | 
|  | Value *And = Builder->CreateAnd(X, AndRHS); | 
|  | And->takeName(Op); | 
|  | return BinaryOperator::CreateXor(And, Together); | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (Together == AndRHS) // (X | C) & C --> C | 
|  | return ReplaceInstUsesWith(TheAnd, AndRHS); | 
|  |  | 
|  | if (Op->hasOneUse() && Together != OpRHS) { | 
|  | // (X | C1) & C2 --> (X | (C1&C2)) & C2 | 
|  | Value *Or = Builder->CreateOr(X, Together); | 
|  | Or->takeName(Op); | 
|  | return BinaryOperator::CreateAnd(Or, AndRHS); | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | if (Op->hasOneUse()) { | 
|  | // Adding a one to a single bit bit-field should be turned into an XOR | 
|  | // of the bit.  First thing to check is to see if this AND is with a | 
|  | // single bit constant. | 
|  | const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue(); | 
|  |  | 
|  | // If there is only one bit set... | 
|  | if (isOneBitSet(cast<ConstantInt>(AndRHS))) { | 
|  | // Ok, at this point, we know that we are masking the result of the | 
|  | // ADD down to exactly one bit.  If the constant we are adding has | 
|  | // no bits set below this bit, then we can eliminate the ADD. | 
|  | const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue(); | 
|  |  | 
|  | // Check to see if any bits below the one bit set in AndRHSV are set. | 
|  | if ((AddRHS & (AndRHSV-1)) == 0) { | 
|  | // If not, the only thing that can effect the output of the AND is | 
|  | // the bit specified by AndRHSV.  If that bit is set, the effect of | 
|  | // the XOR is to toggle the bit.  If it is clear, then the ADD has | 
|  | // no effect. | 
|  | if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop | 
|  | TheAnd.setOperand(0, X); | 
|  | return &TheAnd; | 
|  | } else { | 
|  | // Pull the XOR out of the AND. | 
|  | Value *NewAnd = Builder->CreateAnd(X, AndRHS); | 
|  | NewAnd->takeName(Op); | 
|  | return BinaryOperator::CreateXor(NewAnd, AndRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | // We know that the AND will not produce any of the bits shifted in, so if | 
|  | // the anded constant includes them, clear them now! | 
|  | // | 
|  | uint32_t BitWidth = AndRHS->getType()->getBitWidth(); | 
|  | uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); | 
|  | APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); | 
|  | ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask); | 
|  |  | 
|  | if (CI->getValue() == ShlMask) { | 
|  | // Masking out bits that the shift already masks | 
|  | return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and. | 
|  | } else if (CI != AndRHS) {                  // Reducing bits set in and. | 
|  | TheAnd.setOperand(1, CI); | 
|  | return &TheAnd; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: | 
|  | { | 
|  | // We know that the AND will not produce any of the bits shifted in, so if | 
|  | // the anded constant includes them, clear them now!  This only applies to | 
|  | // unsigned shifts, because a signed shr may bring in set bits! | 
|  | // | 
|  | uint32_t BitWidth = AndRHS->getType()->getBitWidth(); | 
|  | uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); | 
|  | APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); | 
|  | ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask); | 
|  |  | 
|  | if (CI->getValue() == ShrMask) { | 
|  | // Masking out bits that the shift already masks. | 
|  | return ReplaceInstUsesWith(TheAnd, Op); | 
|  | } else if (CI != AndRHS) { | 
|  | TheAnd.setOperand(1, CI);  // Reduce bits set in and cst. | 
|  | return &TheAnd; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: | 
|  | // Signed shr. | 
|  | // See if this is shifting in some sign extension, then masking it out | 
|  | // with an and. | 
|  | if (Op->hasOneUse()) { | 
|  | uint32_t BitWidth = AndRHS->getType()->getBitWidth(); | 
|  | uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); | 
|  | APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); | 
|  | Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask); | 
|  | if (C == AndRHS) {          // Masking out bits shifted in. | 
|  | // (Val ashr C1) & C2 -> (Val lshr C1) & C2 | 
|  | // Make the argument unsigned. | 
|  | Value *ShVal = Op->getOperand(0); | 
|  | ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); | 
|  | return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is | 
|  | /// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient | 
|  | /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates | 
|  | /// whether to treat the V, Lo and HI as signed or not. IB is the location to | 
|  | /// insert new instructions. | 
|  | Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, | 
|  | bool isSigned, bool Inside, | 
|  | Instruction &IB) { | 
|  | assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? | 
|  | ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && | 
|  | "Lo is not <= Hi in range emission code!"); | 
|  |  | 
|  | if (Inside) { | 
|  | if (Lo == Hi)  // Trivially false. | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, V, V); | 
|  |  | 
|  | // V >= Min && V < Hi --> V < Hi | 
|  | if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { | 
|  | ICmpInst::Predicate pred = (isSigned ? | 
|  | ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); | 
|  | return new ICmpInst(pred, V, Hi); | 
|  | } | 
|  |  | 
|  | // Emit V-Lo <u Hi-Lo | 
|  | Constant *NegLo = ConstantExpr::getNeg(Lo); | 
|  | Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); | 
|  | Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); | 
|  | } | 
|  |  | 
|  | if (Lo == Hi)  // Trivially true. | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, V, V); | 
|  |  | 
|  | // V < Min || V >= Hi -> V > Hi-1 | 
|  | Hi = SubOne(cast<ConstantInt>(Hi)); | 
|  | if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { | 
|  | ICmpInst::Predicate pred = (isSigned ? | 
|  | ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); | 
|  | return new ICmpInst(pred, V, Hi); | 
|  | } | 
|  |  | 
|  | // Emit V-Lo >u Hi-1-Lo | 
|  | // Note that Hi has already had one subtracted from it, above. | 
|  | ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); | 
|  | Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); | 
|  | Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); | 
|  | } | 
|  |  | 
|  | // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with | 
|  | // any number of 0s on either side.  The 1s are allowed to wrap from LSB to | 
|  | // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is | 
|  | // not, since all 1s are not contiguous. | 
|  | static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { | 
|  | const APInt& V = Val->getValue(); | 
|  | uint32_t BitWidth = Val->getType()->getBitWidth(); | 
|  | if (!APIntOps::isShiftedMask(BitWidth, V)) return false; | 
|  |  | 
|  | // look for the first zero bit after the run of ones | 
|  | MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); | 
|  | // look for the first non-zero bit | 
|  | ME = V.getActiveBits(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, | 
|  | /// where isSub determines whether the operator is a sub.  If we can fold one of | 
|  | /// the following xforms: | 
|  | /// | 
|  | /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask | 
|  | /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 | 
|  | /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 | 
|  | /// | 
|  | /// return (A +/- B). | 
|  | /// | 
|  | Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, | 
|  | ConstantInt *Mask, bool isSub, | 
|  | Instruction &I) { | 
|  | Instruction *LHSI = dyn_cast<Instruction>(LHS); | 
|  | if (!LHSI || LHSI->getNumOperands() != 2 || | 
|  | !isa<ConstantInt>(LHSI->getOperand(1))) return 0; | 
|  |  | 
|  | ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); | 
|  |  | 
|  | switch (LHSI->getOpcode()) { | 
|  | default: return 0; | 
|  | case Instruction::And: | 
|  | if (ConstantExpr::getAnd(N, Mask) == Mask) { | 
|  | // If the AndRHS is a power of two minus one (0+1+), this is simple. | 
|  | if ((Mask->getValue().countLeadingZeros() + | 
|  | Mask->getValue().countPopulation()) == | 
|  | Mask->getValue().getBitWidth()) | 
|  | break; | 
|  |  | 
|  | // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ | 
|  | // part, we don't need any explicit masks to take them out of A.  If that | 
|  | // is all N is, ignore it. | 
|  | uint32_t MB = 0, ME = 0; | 
|  | if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive | 
|  | uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); | 
|  | APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); | 
|  | if (MaskedValueIsZero(RHS, Mask)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 | 
|  | if ((Mask->getValue().countLeadingZeros() + | 
|  | Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() | 
|  | && ConstantExpr::getAnd(N, Mask)->isNullValue()) | 
|  | break; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (isSub) | 
|  | return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); | 
|  | return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); | 
|  | } | 
|  |  | 
|  | /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. | 
|  | Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, | 
|  | ICmpInst *LHS, ICmpInst *RHS) { | 
|  | Value *Val, *Val2; | 
|  | ConstantInt *LHSCst, *RHSCst; | 
|  | ICmpInst::Predicate LHSCC, RHSCC; | 
|  |  | 
|  | // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). | 
|  | if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), | 
|  | m_ConstantInt(LHSCst))) || | 
|  | !match(RHS, m_ICmp(RHSCC, m_Value(Val2), | 
|  | m_ConstantInt(RHSCst)))) | 
|  | return 0; | 
|  |  | 
|  | // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) | 
|  | // where C is a power of 2 | 
|  | if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT && | 
|  | LHSCst->getValue().isPowerOf2()) { | 
|  | Value *NewOr = Builder->CreateOr(Val, Val2); | 
|  | return new ICmpInst(LHSCC, NewOr, LHSCst); | 
|  | } | 
|  |  | 
|  | // From here on, we only handle: | 
|  | //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. | 
|  | if (Val != Val2) return 0; | 
|  |  | 
|  | // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. | 
|  | if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || | 
|  | RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || | 
|  | LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || | 
|  | RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) | 
|  | return 0; | 
|  |  | 
|  | // We can't fold (ugt x, C) & (sgt x, C2). | 
|  | if (!PredicatesFoldable(LHSCC, RHSCC)) | 
|  | return 0; | 
|  |  | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | bool ShouldSwap; | 
|  | if (ICmpInst::isSignedPredicate(LHSCC) || | 
|  | (ICmpInst::isEquality(LHSCC) && | 
|  | ICmpInst::isSignedPredicate(RHSCC))) | 
|  | ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); | 
|  | else | 
|  | ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); | 
|  |  | 
|  | if (ShouldSwap) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSCst, RHSCst); | 
|  | std::swap(LHSCC, RHSCC); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have have two icmp instructions | 
|  | // comparing a value against two constants and and'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know | 
|  | // (from the FoldICmpLogical check above), that the two constants | 
|  | // are not equal and that the larger constant is on the RHS | 
|  | assert(LHSCst != RHSCst && "Compares not folded above?"); | 
|  |  | 
|  | switch (LHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false | 
|  | case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13 | 
|  | case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13 | 
|  | case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | } | 
|  | case ICmpInst::ICMP_NE: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst); | 
|  | break;                        // (X != 13 & X u< 15) -> no change | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst); | 
|  | break;                        // (X != 13 & X s< 15) -> no change | 
|  | case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15 | 
|  | case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15 | 
|  | case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 | 
|  | Constant *AddCST = ConstantExpr::getNeg(LHSCst); | 
|  | Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Add, | 
|  | ConstantInt::get(Add->getType(), 1)); | 
|  | } | 
|  | break;                        // (X != 13 & X != 15) -> no change | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13 | 
|  | case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13 | 
|  | case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15 | 
|  | case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 | 
|  | return new ICmpInst(LHSCC, Val, RHSCst); | 
|  | break;                        // (X u> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1 | 
|  | return InsertRangeTest(Val, AddOne(LHSCst), | 
|  | RHSCst, false, true, I); | 
|  | case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15 | 
|  | case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 | 
|  | return new ICmpInst(LHSCC, Val, RHSCst); | 
|  | break;                        // (X s> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1 | 
|  | return InsertRangeTest(Val, AddOne(LHSCst), | 
|  | RHSCst, true, true, I); | 
|  | case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, | 
|  | FCmpInst *RHS) { | 
|  |  | 
|  | if (LHS->getPredicate() == FCmpInst::FCMP_ORD && | 
|  | RHS->getPredicate() == FCmpInst::FCMP_ORD) { | 
|  | // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y) | 
|  | if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) | 
|  | if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { | 
|  | // If either of the constants are nans, then the whole thing returns | 
|  | // false. | 
|  | if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | return new FCmpInst(FCmpInst::FCMP_ORD, | 
|  | LHS->getOperand(0), RHS->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Handle vector zeros.  This occurs because the canonical form of | 
|  | // "fcmp ord x,x" is "fcmp ord x, 0". | 
|  | if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && | 
|  | isa<ConstantAggregateZero>(RHS->getOperand(1))) | 
|  | return new FCmpInst(FCmpInst::FCMP_ORD, | 
|  | LHS->getOperand(0), RHS->getOperand(0)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); | 
|  | Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); | 
|  | FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); | 
|  |  | 
|  |  | 
|  | if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { | 
|  | // Swap RHS operands to match LHS. | 
|  | Op1CC = FCmpInst::getSwappedPredicate(Op1CC); | 
|  | std::swap(Op1LHS, Op1RHS); | 
|  | } | 
|  |  | 
|  | if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { | 
|  | // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). | 
|  | if (Op0CC == Op1CC) | 
|  | return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); | 
|  |  | 
|  | if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | if (Op0CC == FCmpInst::FCMP_TRUE) | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | if (Op1CC == FCmpInst::FCMP_TRUE) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  |  | 
|  | bool Op0Ordered; | 
|  | bool Op1Ordered; | 
|  | unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); | 
|  | unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); | 
|  | if (Op1Pred == 0) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(Op0Pred, Op1Pred); | 
|  | std::swap(Op0Ordered, Op1Ordered); | 
|  | } | 
|  | if (Op0Pred == 0) { | 
|  | // uno && ueq -> uno && (uno || eq) -> ueq | 
|  | // ord && olt -> ord && (ord && lt) -> olt | 
|  | if (Op0Ordered == Op1Ordered) | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  |  | 
|  | // uno && oeq -> uno && (ord && eq) -> false | 
|  | // uno && ord -> false | 
|  | if (!Op0Ordered) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | // ord && ueq -> ord && (uno || eq) -> oeq | 
|  | return cast<Instruction>(getFCmpValue(true, Op1Pred, | 
|  | Op0LHS, Op0RHS, Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitAnd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                         // X & undef -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // and X, X = X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | if (isa<VectorType>(I.getType())) { | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { | 
|  | if (CP->isAllOnesValue())            // X & <-1,-1> -> X | 
|  | return ReplaceInstUsesWith(I, I.getOperand(0)); | 
|  | } else if (isa<ConstantAggregateZero>(Op1)) { | 
|  | return ReplaceInstUsesWith(I, Op1);  // X & <0,0> -> <0,0> | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | const APInt& AndRHSMask = AndRHS->getValue(); | 
|  | APInt NotAndRHS(~AndRHSMask); | 
|  |  | 
|  | // Optimize a variety of ((val OP C1) & C2) combinations... | 
|  | if (isa<BinaryOperator>(Op0)) { | 
|  | Instruction *Op0I = cast<Instruction>(Op0); | 
|  | Value *Op0LHS = Op0I->getOperand(0); | 
|  | Value *Op0RHS = Op0I->getOperand(1); | 
|  | switch (Op0I->getOpcode()) { | 
|  | case Instruction::Xor: | 
|  | case Instruction::Or: | 
|  | // If the mask is only needed on one incoming arm, push it up. | 
|  | if (Op0I->hasOneUse()) { | 
|  | if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { | 
|  | // Not masking anything out for the LHS, move to RHS. | 
|  | Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, | 
|  | Op0RHS->getName()+".masked"); | 
|  | return BinaryOperator::Create( | 
|  | cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS); | 
|  | } | 
|  | if (!isa<Constant>(Op0RHS) && | 
|  | MaskedValueIsZero(Op0RHS, NotAndRHS)) { | 
|  | // Not masking anything out for the RHS, move to LHS. | 
|  | Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, | 
|  | Op0LHS->getName()+".masked"); | 
|  | return BinaryOperator::Create( | 
|  | cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | case Instruction::Add: | 
|  | // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. | 
|  | // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 | 
|  | // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) | 
|  | return BinaryOperator::CreateAnd(V, AndRHS); | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) | 
|  | return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes | 
|  | break; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. | 
|  | // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 | 
|  | // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) | 
|  | return BinaryOperator::CreateAnd(V, AndRHS); | 
|  |  | 
|  | // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS | 
|  | // has 1's for all bits that the subtraction with A might affect. | 
|  | if (Op0I->hasOneUse()) { | 
|  | uint32_t BitWidth = AndRHSMask.getBitWidth(); | 
|  | uint32_t Zeros = AndRHSMask.countLeadingZeros(); | 
|  | APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); | 
|  |  | 
|  | ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS); | 
|  | if (!(A && A->isZero()) &&               // avoid infinite recursion. | 
|  | MaskedValueIsZero(Op0LHS, Mask)) { | 
|  | Value *NewNeg = Builder->CreateNeg(Op0RHS); | 
|  | return BinaryOperator::CreateAnd(NewNeg, AndRHS); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | // (1 << x) & 1 --> zext(x == 0) | 
|  | // (1 >> x) & 1 --> zext(x == 0) | 
|  | if (AndRHSMask == 1 && Op0LHS == AndRHS) { | 
|  | Value *NewICmp = | 
|  | Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); | 
|  | return new ZExtInst(NewICmp, I.getType()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) | 
|  | if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) | 
|  | return Res; | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) { | 
|  | // If this is an integer truncation or change from signed-to-unsigned, and | 
|  | // if the source is an and/or with immediate, transform it.  This | 
|  | // frequently occurs for bitfield accesses. | 
|  | if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) { | 
|  | if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) && | 
|  | CastOp->getNumOperands() == 2) | 
|  | if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) { | 
|  | if (CastOp->getOpcode() == Instruction::And) { | 
|  | // Change: and (cast (and X, C1) to T), C2 | 
|  | // into  : and (cast X to T), trunc_or_bitcast(C1)&C2 | 
|  | // This will fold the two constants together, which may allow | 
|  | // other simplifications. | 
|  | Value *NewCast = Builder->CreateTruncOrBitCast( | 
|  | CastOp->getOperand(0), I.getType(), | 
|  | CastOp->getName()+".shrunk"); | 
|  | // trunc_or_bitcast(C1)&C2 | 
|  | Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); | 
|  | C3 = ConstantExpr::getAnd(C3, AndRHS); | 
|  | return BinaryOperator::CreateAnd(NewCast, C3); | 
|  | } else if (CastOp->getOpcode() == Instruction::Or) { | 
|  | // Change: and (cast (or X, C1) to T), C2 | 
|  | // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2 | 
|  | Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); | 
|  | if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) | 
|  | // trunc(C1)&C2 | 
|  | return ReplaceInstUsesWith(I, AndRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | Value *Op0NotVal = dyn_castNotVal(Op0); | 
|  | Value *Op1NotVal = dyn_castNotVal(Op1); | 
|  |  | 
|  | if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // (~A & ~B) == (~(A | B)) - De Morgan's Law | 
|  | if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { | 
|  | Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal, | 
|  | I.getName()+".demorgan"); | 
|  | return BinaryOperator::CreateNot(Or); | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *A = 0, *B = 0, *C = 0, *D = 0; | 
|  | if (match(Op0, m_Or(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1 || B == Op1)    // (A | ?) & A  --> A | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | // (A|B) & ~(A&B) -> A^B | 
|  | if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) { | 
|  | if ((A == C && B == D) || (A == D && B == C)) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Or(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op0 || B == Op0)    // A & (A | ?)  --> A | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // ~(A&B) & (A|B) -> A^B | 
|  | if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) { | 
|  | if ((A == C && B == D) || (A == D && B == C)) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1) {                                // (A^B)&A -> A&(A^B) | 
|  | I.swapOperands();     // Simplify below | 
|  | std::swap(Op0, Op1); | 
|  | } else if (B == Op1) {                         // (A^B)&B -> B&(B^A) | 
|  | cast<BinaryOperator>(Op0)->swapOperands(); | 
|  | I.swapOperands();     // Simplify below | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1->hasOneUse() && | 
|  | match(Op1, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (B == Op0) {                                // B&(A^B) -> B&(B^A) | 
|  | cast<BinaryOperator>(Op1)->swapOperands(); | 
|  | std::swap(A, B); | 
|  | } | 
|  | if (A == Op0)                                // A&(A^B) -> A & ~B | 
|  | return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp")); | 
|  | } | 
|  |  | 
|  | // (A&((~A)|B)) -> A&B | 
|  | if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || | 
|  | match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) | 
|  | return BinaryOperator::CreateAnd(A, Op1); | 
|  | if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || | 
|  | match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) | 
|  | return BinaryOperator::CreateAnd(A, Op0); | 
|  | } | 
|  |  | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) { | 
|  | // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0)) | 
|  | if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // fold (and (cast A), (cast B)) -> (cast (and A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && | 
|  | SrcTy->isIntOrIntVector() && | 
|  | // Only do this if the casts both really cause code to be generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), I.getName()); | 
|  | return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts. | 
|  | if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && | 
|  | SI0->getOperand(1) == SI1->getOperand(1) && | 
|  | (SI0->hasOneUse() || SI1->hasOneUse())) { | 
|  | Value *NewOp = | 
|  | Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0), | 
|  | SI0->getName()); | 
|  | return BinaryOperator::Create(SI1->getOpcode(), NewOp, | 
|  | SI1->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If and'ing two fcmp, try combine them into one. | 
|  | if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { | 
|  | if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) | 
|  | if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// CollectBSwapParts - Analyze the specified subexpression and see if it is | 
|  | /// capable of providing pieces of a bswap.  The subexpression provides pieces | 
|  | /// of a bswap if it is proven that each of the non-zero bytes in the output of | 
|  | /// the expression came from the corresponding "byte swapped" byte in some other | 
|  | /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then | 
|  | /// we know that the expression deposits the low byte of %X into the high byte | 
|  | /// of the bswap result and that all other bytes are zero.  This expression is | 
|  | /// accepted, the high byte of ByteValues is set to X to indicate a correct | 
|  | /// match. | 
|  | /// | 
|  | /// This function returns true if the match was unsuccessful and false if so. | 
|  | /// On entry to the function the "OverallLeftShift" is a signed integer value | 
|  | /// indicating the number of bytes that the subexpression is later shifted.  For | 
|  | /// example, if the expression is later right shifted by 16 bits, the | 
|  | /// OverallLeftShift value would be -2 on entry.  This is used to specify which | 
|  | /// byte of ByteValues is actually being set. | 
|  | /// | 
|  | /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding | 
|  | /// byte is masked to zero by a user.  For example, in (X & 255), X will be | 
|  | /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits | 
|  | /// this function to working on up to 32-byte (256 bit) values.  ByteMask is | 
|  | /// always in the local (OverallLeftShift) coordinate space. | 
|  | /// | 
|  | static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, | 
|  | SmallVector<Value*, 8> &ByteValues) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | // If this is an or instruction, it may be an inner node of the bswap. | 
|  | if (I->getOpcode() == Instruction::Or) { | 
|  | return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, | 
|  | ByteValues) || | 
|  | CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask, | 
|  | ByteValues); | 
|  | } | 
|  |  | 
|  | // If this is a logical shift by a constant multiple of 8, recurse with | 
|  | // OverallLeftShift and ByteMask adjusted. | 
|  | if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { | 
|  | unsigned ShAmt = | 
|  | cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); | 
|  | // Ensure the shift amount is defined and of a byte value. | 
|  | if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size())) | 
|  | return true; | 
|  |  | 
|  | unsigned ByteShift = ShAmt >> 3; | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // X << 2 -> collect(X, +2) | 
|  | OverallLeftShift += ByteShift; | 
|  | ByteMask >>= ByteShift; | 
|  | } else { | 
|  | // X >>u 2 -> collect(X, -2) | 
|  | OverallLeftShift -= ByteShift; | 
|  | ByteMask <<= ByteShift; | 
|  | ByteMask &= (~0U >> (32-ByteValues.size())); | 
|  | } | 
|  |  | 
|  | if (OverallLeftShift >= (int)ByteValues.size()) return true; | 
|  | if (OverallLeftShift <= -(int)ByteValues.size()) return true; | 
|  |  | 
|  | return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, | 
|  | ByteValues); | 
|  | } | 
|  |  | 
|  | // If this is a logical 'and' with a mask that clears bytes, clear the | 
|  | // corresponding bytes in ByteMask. | 
|  | if (I->getOpcode() == Instruction::And && | 
|  | isa<ConstantInt>(I->getOperand(1))) { | 
|  | // Scan every byte of the and mask, seeing if the byte is either 0 or 255. | 
|  | unsigned NumBytes = ByteValues.size(); | 
|  | APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255); | 
|  | const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); | 
|  |  | 
|  | for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) { | 
|  | // If this byte is masked out by a later operation, we don't care what | 
|  | // the and mask is. | 
|  | if ((ByteMask & (1 << i)) == 0) | 
|  | continue; | 
|  |  | 
|  | // If the AndMask is all zeros for this byte, clear the bit. | 
|  | APInt MaskB = AndMask & Byte; | 
|  | if (MaskB == 0) { | 
|  | ByteMask &= ~(1U << i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the AndMask is not all ones for this byte, it's not a bytezap. | 
|  | if (MaskB != Byte) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, this byte is kept. | 
|  | } | 
|  |  | 
|  | return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, | 
|  | ByteValues); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be | 
|  | // the input value to the bswap.  Some observations: 1) if more than one byte | 
|  | // is demanded from this input, then it could not be successfully assembled | 
|  | // into a byteswap.  At least one of the two bytes would not be aligned with | 
|  | // their ultimate destination. | 
|  | if (!isPowerOf2_32(ByteMask)) return true; | 
|  | unsigned InputByteNo = CountTrailingZeros_32(ByteMask); | 
|  |  | 
|  | // 2) The input and ultimate destinations must line up: if byte 3 of an i32 | 
|  | // is demanded, it needs to go into byte 0 of the result.  This means that the | 
|  | // byte needs to be shifted until it lands in the right byte bucket.  The | 
|  | // shift amount depends on the position: if the byte is coming from the high | 
|  | // part of the value (e.g. byte 3) then it must be shifted right.  If from the | 
|  | // low part, it must be shifted left. | 
|  | unsigned DestByteNo = InputByteNo + OverallLeftShift; | 
|  | if (InputByteNo < ByteValues.size()/2) { | 
|  | if (ByteValues.size()-1-DestByteNo != InputByteNo) | 
|  | return true; | 
|  | } else { | 
|  | if (ByteValues.size()-1-DestByteNo != InputByteNo) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the destination byte value is already defined, the values are or'd | 
|  | // together, which isn't a bswap (unless it's an or of the same bits). | 
|  | if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V) | 
|  | return true; | 
|  | ByteValues[DestByteNo] = V; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. | 
|  | /// If so, insert the new bswap intrinsic and return it. | 
|  | Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { | 
|  | const IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); | 
|  | if (!ITy || ITy->getBitWidth() % 16 || | 
|  | // ByteMask only allows up to 32-byte values. | 
|  | ITy->getBitWidth() > 32*8) | 
|  | return 0;   // Can only bswap pairs of bytes.  Can't do vectors. | 
|  |  | 
|  | /// ByteValues - For each byte of the result, we keep track of which value | 
|  | /// defines each byte. | 
|  | SmallVector<Value*, 8> ByteValues; | 
|  | ByteValues.resize(ITy->getBitWidth()/8); | 
|  |  | 
|  | // Try to find all the pieces corresponding to the bswap. | 
|  | uint32_t ByteMask = ~0U >> (32-ByteValues.size()); | 
|  | if (CollectBSwapParts(&I, 0, ByteMask, ByteValues)) | 
|  | return 0; | 
|  |  | 
|  | // Check to see if all of the bytes come from the same value. | 
|  | Value *V = ByteValues[0]; | 
|  | if (V == 0) return 0;  // Didn't find a byte?  Must be zero. | 
|  |  | 
|  | // Check to make sure that all of the bytes come from the same value. | 
|  | for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) | 
|  | if (ByteValues[i] != V) | 
|  | return 0; | 
|  | const Type *Tys[] = { ITy }; | 
|  | Module *M = I.getParent()->getParent()->getParent(); | 
|  | Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); | 
|  | return CallInst::Create(F, V); | 
|  | } | 
|  |  | 
|  | /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check | 
|  | /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then | 
|  | /// we can simplify this expression to "cond ? C : D or B". | 
|  | static Instruction *MatchSelectFromAndOr(Value *A, Value *B, | 
|  | Value *C, Value *D, | 
|  | LLVMContext *Context) { | 
|  | // If A is not a select of -1/0, this cannot match. | 
|  | Value *Cond = 0; | 
|  | if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond)))) | 
|  | return 0; | 
|  |  | 
|  | // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. | 
|  | if (match(D, m_SelectCst<0, -1>(m_Specific(Cond)))) | 
|  | return SelectInst::Create(Cond, C, B); | 
|  | if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) | 
|  | return SelectInst::Create(Cond, C, B); | 
|  | // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. | 
|  | if (match(B, m_SelectCst<0, -1>(m_Specific(Cond)))) | 
|  | return SelectInst::Create(Cond, C, D); | 
|  | if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) | 
|  | return SelectInst::Create(Cond, C, D); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. | 
|  | Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, | 
|  | ICmpInst *LHS, ICmpInst *RHS) { | 
|  | Value *Val, *Val2; | 
|  | ConstantInt *LHSCst, *RHSCst; | 
|  | ICmpInst::Predicate LHSCC, RHSCC; | 
|  |  | 
|  | // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). | 
|  | if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), | 
|  | m_ConstantInt(LHSCst))) || | 
|  | !match(RHS, m_ICmp(RHSCC, m_Value(Val2), | 
|  | m_ConstantInt(RHSCst)))) | 
|  | return 0; | 
|  |  | 
|  | // From here on, we only handle: | 
|  | //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. | 
|  | if (Val != Val2) return 0; | 
|  |  | 
|  | // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. | 
|  | if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || | 
|  | RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || | 
|  | LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || | 
|  | RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) | 
|  | return 0; | 
|  |  | 
|  | // We can't fold (ugt x, C) | (sgt x, C2). | 
|  | if (!PredicatesFoldable(LHSCC, RHSCC)) | 
|  | return 0; | 
|  |  | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | bool ShouldSwap; | 
|  | if (ICmpInst::isSignedPredicate(LHSCC) || | 
|  | (ICmpInst::isEquality(LHSCC) && | 
|  | ICmpInst::isSignedPredicate(RHSCC))) | 
|  | ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); | 
|  | else | 
|  | ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); | 
|  |  | 
|  | if (ShouldSwap) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSCst, RHSCst); | 
|  | std::swap(LHSCC, RHSCC); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have have two icmp instructions | 
|  | // comparing a value against two constants and or'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the | 
|  | // FoldICmpLogical check above), that the two constants are not | 
|  | // equal. | 
|  | assert(LHSCst != RHSCst && "Compares not folded above?"); | 
|  |  | 
|  | switch (LHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (LHSCst == SubOne(RHSCst)) { | 
|  | // (X == 13 | X == 14) -> X-13 <u 2 | 
|  | Constant *AddCST = ConstantExpr::getNeg(LHSCst); | 
|  | Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); | 
|  | AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); | 
|  | } | 
|  | break;                         // (X == 13 | X == 15) -> no change | 
|  | case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change | 
|  | case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15 | 
|  | case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13 | 
|  | case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13 | 
|  | case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true | 
|  | case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2 | 
|  | // If RHSCst is [us]MAXINT, it is always false.  Not handling | 
|  | // this can cause overflow. | 
|  | if (RHSCst->isMaxValue(false)) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), | 
|  | false, false, I); | 
|  | case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2 | 
|  | // If RHSCst is [us]MAXINT, it is always false.  Not handling | 
|  | // this can cause overflow. | 
|  | if (RHSCst->isMaxValue(true)) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), | 
|  | true, false, I); | 
|  | case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13 | 
|  | case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (RHSCC) { | 
|  | default: llvm_unreachable("Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13 | 
|  | case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, | 
|  | FCmpInst *RHS) { | 
|  | if (LHS->getPredicate() == FCmpInst::FCMP_UNO && | 
|  | RHS->getPredicate() == FCmpInst::FCMP_UNO && | 
|  | LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { | 
|  | if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) | 
|  | if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { | 
|  | // If either of the constants are nans, then the whole thing returns | 
|  | // true. | 
|  | if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  |  | 
|  | // Otherwise, no need to compare the two constants, compare the | 
|  | // rest. | 
|  | return new FCmpInst(FCmpInst::FCMP_UNO, | 
|  | LHS->getOperand(0), RHS->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Handle vector zeros.  This occurs because the canonical form of | 
|  | // "fcmp uno x,x" is "fcmp uno x, 0". | 
|  | if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && | 
|  | isa<ConstantAggregateZero>(RHS->getOperand(1))) | 
|  | return new FCmpInst(FCmpInst::FCMP_UNO, | 
|  | LHS->getOperand(0), RHS->getOperand(0)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); | 
|  | Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); | 
|  | FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); | 
|  |  | 
|  | if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { | 
|  | // Swap RHS operands to match LHS. | 
|  | Op1CC = FCmpInst::getSwappedPredicate(Op1CC); | 
|  | std::swap(Op1LHS, Op1RHS); | 
|  | } | 
|  | if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { | 
|  | // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). | 
|  | if (Op0CC == Op1CC) | 
|  | return new FCmpInst((FCmpInst::Predicate)Op0CC, | 
|  | Op0LHS, Op0RHS); | 
|  | if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0CC == FCmpInst::FCMP_FALSE) | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | if (Op1CC == FCmpInst::FCMP_FALSE) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | bool Op0Ordered; | 
|  | bool Op1Ordered; | 
|  | unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); | 
|  | unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); | 
|  | if (Op0Ordered == Op1Ordered) { | 
|  | // If both are ordered or unordered, return a new fcmp with | 
|  | // or'ed predicates. | 
|  | Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, | 
|  | Op0LHS, Op0RHS, Context); | 
|  | if (Instruction *I = dyn_cast<Instruction>(RV)) | 
|  | return I; | 
|  | // Otherwise, it's a constant boolean value... | 
|  | return ReplaceInstUsesWith(I, RV); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FoldOrWithConstants - This helper function folds: | 
|  | /// | 
|  | ///     ((A | B) & C1) | (B & C2) | 
|  | /// | 
|  | /// into: | 
|  | /// | 
|  | ///     (A & C1) | B | 
|  | /// | 
|  | /// when the XOR of the two constants is "all ones" (-1). | 
|  | Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, | 
|  | Value *A, Value *B, Value *C) { | 
|  | ConstantInt *CI1 = dyn_cast<ConstantInt>(C); | 
|  | if (!CI1) return 0; | 
|  |  | 
|  | Value *V1 = 0; | 
|  | ConstantInt *CI2 = 0; | 
|  | if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0; | 
|  |  | 
|  | APInt Xor = CI1->getValue() ^ CI2->getValue(); | 
|  | if (!Xor.isAllOnesValue()) return 0; | 
|  |  | 
|  | if (V1 == A || V1 == B) { | 
|  | Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1); | 
|  | return BinaryOperator::CreateOr(NewOp, V1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitOr(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                       // X | undef -> -1 | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  |  | 
|  | // or X, X = X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | if (isa<VectorType>(I.getType())) { | 
|  | if (isa<ConstantAggregateZero>(Op1)) { | 
|  | return ReplaceInstUsesWith(I, Op0);  // X | <0,0> -> X | 
|  | } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { | 
|  | if (CP->isAllOnesValue())            // X | <-1,-1> -> <-1,-1> | 
|  | return ReplaceInstUsesWith(I, I.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // or X, -1 == -1 | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | ConstantInt *C1 = 0; Value *X = 0; | 
|  | // (X & C1) | C2 --> (X | C2) & (C1|C2) | 
|  | if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && | 
|  | isOnlyUse(Op0)) { | 
|  | Value *Or = Builder->CreateOr(X, RHS); | 
|  | Or->takeName(Op0); | 
|  | return BinaryOperator::CreateAnd(Or, | 
|  | ConstantInt::get(*Context, RHS->getValue() | C1->getValue())); | 
|  | } | 
|  |  | 
|  | // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) | 
|  | if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && | 
|  | isOnlyUse(Op0)) { | 
|  | Value *Or = Builder->CreateOr(X, RHS); | 
|  | Or->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(Or, | 
|  | ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue())); | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | Value *A = 0, *B = 0; | 
|  | ConstantInt *C1 = 0, *C2 = 0; | 
|  |  | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B)))) | 
|  | if (A == Op1 || B == Op1)    // (A & ?) | A  --> A | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  | if (match(Op1, m_And(m_Value(A), m_Value(B)))) | 
|  | if (A == Op0 || B == Op0)    // A | (A & ?)  --> A | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // (A | B) | C  and  A | (B | C)                  -> bswap if possible. | 
|  | // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible. | 
|  | if (match(Op0, m_Or(m_Value(), m_Value())) || | 
|  | match(Op1, m_Or(m_Value(), m_Value())) || | 
|  | (match(Op0, m_Shift(m_Value(), m_Value())) && | 
|  | match(Op1, m_Shift(m_Value(), m_Value())))) { | 
|  | if (Instruction *BSwap = MatchBSwap(I)) | 
|  | return BSwap; | 
|  | } | 
|  |  | 
|  | // (X^C)|Y -> (X|Y)^C iff Y&C == 0 | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && | 
|  | MaskedValueIsZero(Op1, C1->getValue())) { | 
|  | Value *NOr = Builder->CreateOr(A, Op1); | 
|  | NOr->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(NOr, C1); | 
|  | } | 
|  |  | 
|  | // Y|(X^C) -> (X|Y)^C iff Y&C == 0 | 
|  | if (Op1->hasOneUse() && | 
|  | match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && | 
|  | MaskedValueIsZero(Op0, C1->getValue())) { | 
|  | Value *NOr = Builder->CreateOr(A, Op0); | 
|  | NOr->takeName(Op0); | 
|  | return BinaryOperator::CreateXor(NOr, C1); | 
|  | } | 
|  |  | 
|  | // (A & C)|(B & D) | 
|  | Value *C = 0, *D = 0; | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(C))) && | 
|  | match(Op1, m_And(m_Value(B), m_Value(D)))) { | 
|  | Value *V1 = 0, *V2 = 0, *V3 = 0; | 
|  | C1 = dyn_cast<ConstantInt>(C); | 
|  | C2 = dyn_cast<ConstantInt>(D); | 
|  | if (C1 && C2) {  // (A & C1)|(B & C2) | 
|  | // If we have: ((V + N) & C1) | (V & C2) | 
|  | // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 | 
|  | // replace with V+N. | 
|  | if (C1->getValue() == ~C2->getValue()) { | 
|  | if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+ | 
|  | match(A, m_Add(m_Value(V1), m_Value(V2)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) | 
|  | return ReplaceInstUsesWith(I, A); | 
|  | if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) | 
|  | return ReplaceInstUsesWith(I, A); | 
|  | } | 
|  | // Or commutes, try both ways. | 
|  | if ((C1->getValue() & (C1->getValue()+1)) == 0 && | 
|  | match(B, m_Add(m_Value(V1), m_Value(V2)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) | 
|  | return ReplaceInstUsesWith(I, B); | 
|  | if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) | 
|  | return ReplaceInstUsesWith(I, B); | 
|  | } | 
|  | } | 
|  | V1 = 0; V2 = 0; V3 = 0; | 
|  | } | 
|  |  | 
|  | // Check to see if we have any common things being and'ed.  If so, find the | 
|  | // terms for V1 & (V2|V3). | 
|  | if (isOnlyUse(Op0) || isOnlyUse(Op1)) { | 
|  | if (A == B)      // (A & C)|(A & D) == A & (C|D) | 
|  | V1 = A, V2 = C, V3 = D; | 
|  | else if (A == D) // (A & C)|(B & A) == A & (B|C) | 
|  | V1 = A, V2 = B, V3 = C; | 
|  | else if (C == B) // (A & C)|(C & D) == C & (A|D) | 
|  | V1 = C, V2 = A, V3 = D; | 
|  | else if (C == D) // (A & C)|(B & C) == C & (A|B) | 
|  | V1 = C, V2 = A, V3 = B; | 
|  |  | 
|  | if (V1) { | 
|  | Value *Or = Builder->CreateOr(V2, V3, "tmp"); | 
|  | return BinaryOperator::CreateAnd(V1, Or); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants | 
|  | if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context)) | 
|  | return Match; | 
|  | if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context)) | 
|  | return Match; | 
|  | if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context)) | 
|  | return Match; | 
|  | if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context)) | 
|  | return Match; | 
|  |  | 
|  | // ((A&~B)|(~A&B)) -> A^B | 
|  | if ((match(C, m_Not(m_Specific(D))) && | 
|  | match(B, m_Not(m_Specific(A))))) | 
|  | return BinaryOperator::CreateXor(A, D); | 
|  | // ((~B&A)|(~A&B)) -> A^B | 
|  | if ((match(A, m_Not(m_Specific(D))) && | 
|  | match(B, m_Not(m_Specific(C))))) | 
|  | return BinaryOperator::CreateXor(C, D); | 
|  | // ((A&~B)|(B&~A)) -> A^B | 
|  | if ((match(C, m_Not(m_Specific(B))) && | 
|  | match(D, m_Not(m_Specific(A))))) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | // ((~B&A)|(B&~A)) -> A^B | 
|  | if ((match(A, m_Not(m_Specific(B))) && | 
|  | match(D, m_Not(m_Specific(C))))) | 
|  | return BinaryOperator::CreateXor(C, B); | 
|  | } | 
|  |  | 
|  | // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts. | 
|  | if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && | 
|  | SI0->getOperand(1) == SI1->getOperand(1) && | 
|  | (SI0->hasOneUse() || SI1->hasOneUse())) { | 
|  | Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0), | 
|  | SI0->getName()); | 
|  | return BinaryOperator::Create(SI1->getOpcode(), NewOp, | 
|  | SI1->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ((A|B)&1)|(B&-2) -> (A&1) | B | 
|  | if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || | 
|  | match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { | 
|  | Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C); | 
|  | if (Ret) return Ret; | 
|  | } | 
|  | // (B&-2)|((A|B)&1) -> (A&1) | B | 
|  | if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || | 
|  | match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { | 
|  | Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C); | 
|  | if (Ret) return Ret; | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1 | 
|  | if (A == Op1)   // ~A | A == -1 | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  | } else { | 
|  | A = 0; | 
|  | } | 
|  | // Note, A is still live here! | 
|  | if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B | 
|  | if (Op0 == B) | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  |  | 
|  | // (~A | ~B) == (~(A & B)) - De Morgan's Law | 
|  | if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { | 
|  | Value *And = Builder->CreateAnd(A, B, I.getName()+".demorgan"); | 
|  | return BinaryOperator::CreateNot(And); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) { | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) | 
|  | if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // fold (or (cast A), (cast B)) -> (cast (or A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? | 
|  | if (!isa<ICmpInst>(Op0C->getOperand(0)) || | 
|  | !isa<ICmpInst>(Op1C->getOperand(0))) { | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && | 
|  | SrcTy->isIntOrIntVector() && | 
|  | // Only do this if the casts both really cause code to be | 
|  | // generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Value *NewOp = Builder->CreateOr(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), I.getName()); | 
|  | return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y) | 
|  | if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { | 
|  | if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) | 
|  | if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // XorSelf - Implements: X ^ X --> 0 | 
|  | struct XorSelf { | 
|  | Value *RHS; | 
|  | XorSelf(Value *rhs) : RHS(rhs) {} | 
|  | bool shouldApply(Value *LHS) const { return LHS == RHS; } | 
|  | Instruction *apply(BinaryOperator &Xor) const { | 
|  | return &Xor; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitXor(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1)) { | 
|  | if (isa<UndefValue>(Op0)) | 
|  | // Handle undef ^ undef -> 0 special case. This is a common | 
|  | // idiom (misuse). | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef | 
|  | } | 
|  |  | 
|  | // xor X, X = 0, even if X is nested in a sequence of Xor's. | 
|  | if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { | 
|  | assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result; | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | if (isa<VectorType>(I.getType())) | 
|  | if (isa<ConstantAggregateZero>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op0);  // X ^ <0,0> -> X | 
|  |  | 
|  | // Is this a ~ operation? | 
|  | if (Value *NotOp = dyn_castNotVal(&I)) { | 
|  | // ~(~X & Y) --> (X | ~Y) - De Morgan's Law | 
|  | // ~(~X | Y) === (X & ~Y) - De Morgan's Law | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { | 
|  | if (Op0I->getOpcode() == Instruction::And || | 
|  | Op0I->getOpcode() == Instruction::Or) { | 
|  | if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); | 
|  | if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { | 
|  | Value *NotY = | 
|  | Builder->CreateNot(Op0I->getOperand(1), | 
|  | Op0I->getOperand(1)->getName()+".not"); | 
|  | if (Op0I->getOpcode() == Instruction::And) | 
|  | return BinaryOperator::CreateOr(Op0NotVal, NotY); | 
|  | return BinaryOperator::CreateAnd(Op0NotVal, NotY); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (RHS == ConstantInt::getTrue(*Context) && Op0->hasOneUse()) { | 
|  | // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0)) | 
|  | return new ICmpInst(ICI->getInversePredicate(), | 
|  | ICI->getOperand(0), ICI->getOperand(1)); | 
|  |  | 
|  | if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0)) | 
|  | return new FCmpInst(FCI->getInversePredicate(), | 
|  | FCI->getOperand(0), FCI->getOperand(1)); | 
|  | } | 
|  |  | 
|  | // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { | 
|  | if (CI->hasOneUse() && Op0C->hasOneUse()) { | 
|  | Instruction::CastOps Opcode = Op0C->getOpcode(); | 
|  | if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && | 
|  | (RHS == ConstantExpr::getCast(Opcode, | 
|  | ConstantInt::getTrue(*Context), | 
|  | Op0C->getDestTy()))) { | 
|  | CI->setPredicate(CI->getInversePredicate()); | 
|  | return CastInst::Create(Opcode, CI, Op0C->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | // ~(c-X) == X-c-1 == X+(-c-1) | 
|  | if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) | 
|  | if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { | 
|  | Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); | 
|  | Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, | 
|  | ConstantInt::get(I.getType(), 1)); | 
|  | return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { | 
|  | if (Op0I->getOpcode() == Instruction::Add) { | 
|  | // ~(X-c) --> (-c-1)-X | 
|  | if (RHS->isAllOnesValue()) { | 
|  | Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); | 
|  | return BinaryOperator::CreateSub( | 
|  | ConstantExpr::getSub(NegOp0CI, | 
|  | ConstantInt::get(I.getType(), 1)), | 
|  | Op0I->getOperand(0)); | 
|  | } else if (RHS->getValue().isSignBit()) { | 
|  | // (X + C) ^ signbit -> (X + C + signbit) | 
|  | Constant *C = ConstantInt::get(*Context, | 
|  | RHS->getValue() + Op0CI->getValue()); | 
|  | return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); | 
|  |  | 
|  | } | 
|  | } else if (Op0I->getOpcode() == Instruction::Or) { | 
|  | // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 | 
|  | if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) { | 
|  | Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); | 
|  | // Anything in both C1 and C2 is known to be zero, remove it from | 
|  | // NewRHS. | 
|  | Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); | 
|  | NewRHS = ConstantExpr::getAnd(NewRHS, | 
|  | ConstantExpr::getNot(CommonBits)); | 
|  | Worklist.Add(Op0I); | 
|  | I.setOperand(0, Op0I->getOperand(0)); | 
|  | I.setOperand(1, NewRHS); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1 | 
|  | if (X == Op1) | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  |  | 
|  | if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1 | 
|  | if (X == Op0) | 
|  | return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); | 
|  |  | 
|  |  | 
|  | BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); | 
|  | if (Op1I) { | 
|  | Value *A, *B; | 
|  | if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op0) {              // B^(B|A) == (A|B)^B | 
|  | Op1I->swapOperands(); | 
|  | I.swapOperands(); | 
|  | std::swap(Op0, Op1); | 
|  | } else if (B == Op0) {       // B^(A|B) == (A|B)^B | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) { | 
|  | return ReplaceInstUsesWith(I, B);                      // A^(A^B) == B | 
|  | } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) { | 
|  | return ReplaceInstUsesWith(I, A);                      // A^(B^A) == B | 
|  | } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && | 
|  | Op1I->hasOneUse()){ | 
|  | if (A == Op0) {                                      // A^(A&B) -> A^(B&A) | 
|  | Op1I->swapOperands(); | 
|  | std::swap(A, B); | 
|  | } | 
|  | if (B == Op0) {                                      // A^(B&A) -> (B&A)^A | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); | 
|  | if (Op0I) { | 
|  | Value *A, *B; | 
|  | if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && | 
|  | Op0I->hasOneUse()) { | 
|  | if (A == Op1)                                  // (B|A)^B == (A|B)^B | 
|  | std::swap(A, B); | 
|  | if (B == Op1)                                  // (A|B)^B == A & ~B | 
|  | return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp")); | 
|  | } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) { | 
|  | return ReplaceInstUsesWith(I, B);                      // (A^B)^A == B | 
|  | } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) { | 
|  | return ReplaceInstUsesWith(I, A);                      // (B^A)^A == B | 
|  | } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && | 
|  | Op0I->hasOneUse()){ | 
|  | if (A == Op1)                                        // (A&B)^A -> (B&A)^A | 
|  | std::swap(A, B); | 
|  | if (B == Op1 &&                                      // (B&A)^A == ~B & A | 
|  | !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C | 
|  | return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts. | 
|  | if (Op0I && Op1I && Op0I->isShift() && | 
|  | Op0I->getOpcode() == Op1I->getOpcode() && | 
|  | Op0I->getOperand(1) == Op1I->getOperand(1) && | 
|  | (Op1I->hasOneUse() || Op1I->hasOneUse())) { | 
|  | Value *NewOp = | 
|  | Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0), | 
|  | Op0I->getName()); | 
|  | return BinaryOperator::Create(Op1I->getOpcode(), NewOp, | 
|  | Op1I->getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (Op0I && Op1I) { | 
|  | Value *A, *B, *C, *D; | 
|  | // (A & B)^(A | B) -> A ^ B | 
|  | if (match(Op0I, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1I, m_Or(m_Value(C), m_Value(D)))) { | 
|  | if ((A == C && B == D) || (A == D && B == C)) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | } | 
|  | // (A | B)^(A & B) -> A ^ B | 
|  | if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && | 
|  | match(Op1I, m_And(m_Value(C), m_Value(D)))) { | 
|  | if ((A == C && B == D) || (A == D && B == C)) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | } | 
|  |  | 
|  | // (A & B)^(C & D) | 
|  | if ((Op0I->hasOneUse() || Op1I->hasOneUse()) && | 
|  | match(Op0I, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1I, m_And(m_Value(C), m_Value(D)))) { | 
|  | // (X & Y)^(X & Y) -> (Y^Z) & X | 
|  | Value *X = 0, *Y = 0, *Z = 0; | 
|  | if (A == C) | 
|  | X = A, Y = B, Z = D; | 
|  | else if (A == D) | 
|  | X = A, Y = B, Z = C; | 
|  | else if (B == C) | 
|  | X = B, Y = A, Z = D; | 
|  | else if (B == D) | 
|  | X = B, Y = A, Z = C; | 
|  |  | 
|  | if (X) { | 
|  | Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName()); | 
|  | return BinaryOperator::CreateAnd(NewOp, X); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && | 
|  | // Only do this if the casts both really cause code to be generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Value *NewOp = Builder->CreateXor(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), I.getName()); | 
|  | return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | static ConstantInt *ExtractElement(Constant *V, Constant *Idx, | 
|  | LLVMContext *Context) { | 
|  | return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); | 
|  | } | 
|  |  | 
|  | static bool HasAddOverflow(ConstantInt *Result, | 
|  | ConstantInt *In1, ConstantInt *In2, | 
|  | bool IsSigned) { | 
|  | if (IsSigned) | 
|  | if (In2->getValue().isNegative()) | 
|  | return Result->getValue().sgt(In1->getValue()); | 
|  | else | 
|  | return Result->getValue().slt(In1->getValue()); | 
|  | else | 
|  | return Result->getValue().ult(In1->getValue()); | 
|  | } | 
|  |  | 
|  | /// AddWithOverflow - Compute Result = In1+In2, returning true if the result | 
|  | /// overflowed for this type. | 
|  | static bool AddWithOverflow(Constant *&Result, Constant *In1, | 
|  | Constant *In2, LLVMContext *Context, | 
|  | bool IsSigned = false) { | 
|  | Result = ConstantExpr::getAdd(In1, In2); | 
|  |  | 
|  | if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { | 
|  | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { | 
|  | Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i); | 
|  | if (HasAddOverflow(ExtractElement(Result, Idx, Context), | 
|  | ExtractElement(In1, Idx, Context), | 
|  | ExtractElement(In2, Idx, Context), | 
|  | IsSigned)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return HasAddOverflow(cast<ConstantInt>(Result), | 
|  | cast<ConstantInt>(In1), cast<ConstantInt>(In2), | 
|  | IsSigned); | 
|  | } | 
|  |  | 
|  | static bool HasSubOverflow(ConstantInt *Result, | 
|  | ConstantInt *In1, ConstantInt *In2, | 
|  | bool IsSigned) { | 
|  | if (IsSigned) | 
|  | if (In2->getValue().isNegative()) | 
|  | return Result->getValue().slt(In1->getValue()); | 
|  | else | 
|  | return Result->getValue().sgt(In1->getValue()); | 
|  | else | 
|  | return Result->getValue().ugt(In1->getValue()); | 
|  | } | 
|  |  | 
|  | /// SubWithOverflow - Compute Result = In1-In2, returning true if the result | 
|  | /// overflowed for this type. | 
|  | static bool SubWithOverflow(Constant *&Result, Constant *In1, | 
|  | Constant *In2, LLVMContext *Context, | 
|  | bool IsSigned = false) { | 
|  | Result = ConstantExpr::getSub(In1, In2); | 
|  |  | 
|  | if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { | 
|  | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { | 
|  | Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i); | 
|  | if (HasSubOverflow(ExtractElement(Result, Idx, Context), | 
|  | ExtractElement(In1, Idx, Context), | 
|  | ExtractElement(In2, Idx, Context), | 
|  | IsSigned)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return HasSubOverflow(cast<ConstantInt>(Result), | 
|  | cast<ConstantInt>(In1), cast<ConstantInt>(In2), | 
|  | IsSigned); | 
|  | } | 
|  |  | 
|  | /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the | 
|  | /// code necessary to compute the offset from the base pointer (without adding | 
|  | /// in the base pointer).  Return the result as a signed integer of intptr size. | 
|  | static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { | 
|  | TargetData &TD = *IC.getTargetData(); | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | const Type *IntPtrTy = TD.getIntPtrType(I.getContext()); | 
|  | Value *Result = Constant::getNullValue(IntPtrTy); | 
|  |  | 
|  | // Build a mask for high order bits. | 
|  | unsigned IntPtrWidth = TD.getPointerSizeInBits(); | 
|  | uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); | 
|  |  | 
|  | for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; | 
|  | ++i, ++GTI) { | 
|  | Value *Op = *i; | 
|  | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; | 
|  | if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { | 
|  | if (OpC->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); | 
|  |  | 
|  | Result = IC.Builder->CreateAdd(Result, | 
|  | ConstantInt::get(IntPtrTy, Size), | 
|  | GEP->getName()+".offs"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Constant *Scale = ConstantInt::get(IntPtrTy, Size); | 
|  | Constant *OC = | 
|  | ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); | 
|  | Scale = ConstantExpr::getMul(OC, Scale); | 
|  | // Emit an add instruction. | 
|  | Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); | 
|  | continue; | 
|  | } | 
|  | // Convert to correct type. | 
|  | if (Op->getType() != IntPtrTy) | 
|  | Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); | 
|  | if (Size != 1) { | 
|  | Constant *Scale = ConstantInt::get(IntPtrTy, Size); | 
|  | // We'll let instcombine(mul) convert this to a shl if possible. | 
|  | Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx"); | 
|  | } | 
|  |  | 
|  | // Emit an add instruction. | 
|  | Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EvaluateGEPOffsetExpression - Return a value that can be used to compare | 
|  | /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we | 
|  | /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can | 
|  | /// be complex, and scales are involved.  The above expression would also be | 
|  | /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). | 
|  | /// This later form is less amenable to optimization though, and we are allowed | 
|  | /// to generate the first by knowing that pointer arithmetic doesn't overflow. | 
|  | /// | 
|  | /// If we can't emit an optimized form for this expression, this returns null. | 
|  | /// | 
|  | static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I, | 
|  | InstCombiner &IC) { | 
|  | TargetData &TD = *IC.getTargetData(); | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  |  | 
|  | // Check to see if this gep only has a single variable index.  If so, and if | 
|  | // any constant indices are a multiple of its scale, then we can compute this | 
|  | // in terms of the scale of the variable index.  For example, if the GEP | 
|  | // implies an offset of "12 + i*4", then we can codegen this as "3 + i", | 
|  | // because the expression will cross zero at the same point. | 
|  | unsigned i, e = GEP->getNumOperands(); | 
|  | int64_t Offset = 0; | 
|  | for (i = 1; i != e; ++i, ++GTI) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { | 
|  | // Compute the aggregate offset of constant indices. | 
|  | if (CI->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += Size*CI->getSExtValue(); | 
|  | } | 
|  | } else { | 
|  | // Found our variable index. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are no variable indices, we must have a constant offset, just | 
|  | // evaluate it the general way. | 
|  | if (i == e) return 0; | 
|  |  | 
|  | Value *VariableIdx = GEP->getOperand(i); | 
|  | // Determine the scale factor of the variable element.  For example, this is | 
|  | // 4 if the variable index is into an array of i32. | 
|  | uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); | 
|  |  | 
|  | // Verify that there are no other variable indices.  If so, emit the hard way. | 
|  | for (++i, ++GTI; i != e; ++i, ++GTI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!CI) return 0; | 
|  |  | 
|  | // Compute the aggregate offset of constant indices. | 
|  | if (CI->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += Size*CI->getSExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we know we have a single variable index, which must be a | 
|  | // pointer/array/vector index.  If there is no offset, life is simple, return | 
|  | // the index. | 
|  | unsigned IntPtrWidth = TD.getPointerSizeInBits(); | 
|  | if (Offset == 0) { | 
|  | // Cast to intptrty in case a truncation occurs.  If an extension is needed, | 
|  | // we don't need to bother extending: the extension won't affect where the | 
|  | // computation crosses zero. | 
|  | if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) | 
|  | VariableIdx = new TruncInst(VariableIdx, | 
|  | TD.getIntPtrType(VariableIdx->getContext()), | 
|  | VariableIdx->getName(), &I); | 
|  | return VariableIdx; | 
|  | } | 
|  |  | 
|  | // Otherwise, there is an index.  The computation we will do will be modulo | 
|  | // the pointer size, so get it. | 
|  | uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); | 
|  |  | 
|  | Offset &= PtrSizeMask; | 
|  | VariableScale &= PtrSizeMask; | 
|  |  | 
|  | // To do this transformation, any constant index must be a multiple of the | 
|  | // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i", | 
|  | // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a | 
|  | // multiple of the variable scale. | 
|  | int64_t NewOffs = Offset / (int64_t)VariableScale; | 
|  | if (Offset != NewOffs*(int64_t)VariableScale) | 
|  | return 0; | 
|  |  | 
|  | // Okay, we can do this evaluation.  Start by converting the index to intptr. | 
|  | const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); | 
|  | if (VariableIdx->getType() != IntPtrTy) | 
|  | VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy, | 
|  | true /*SExt*/, | 
|  | VariableIdx->getName(), &I); | 
|  | Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); | 
|  | return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FoldGEPICmp - Fold comparisons between a GEP instruction and something | 
|  | /// else.  At this point we know that the GEP is on the LHS of the comparison. | 
|  | Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, | 
|  | Instruction &I) { | 
|  | // Look through bitcasts. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS)) | 
|  | RHS = BCI->getOperand(0); | 
|  |  | 
|  | Value *PtrBase = GEPLHS->getOperand(0); | 
|  | if (TD && PtrBase == RHS && GEPLHS->isInBounds()) { | 
|  | // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0). | 
|  | // This transformation (ignoring the base and scales) is valid because we | 
|  | // know pointers can't overflow since the gep is inbounds.  See if we can | 
|  | // output an optimized form. | 
|  | Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this); | 
|  |  | 
|  | // If not, synthesize the offset the hard way. | 
|  | if (Offset == 0) | 
|  | Offset = EmitGEPOffset(GEPLHS, I, *this); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, | 
|  | Constant::getNullValue(Offset->getType())); | 
|  | } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { | 
|  | // If the base pointers are different, but the indices are the same, just | 
|  | // compare the base pointer. | 
|  | if (PtrBase != GEPRHS->getOperand(0)) { | 
|  | bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); | 
|  | IndicesTheSame &= GEPLHS->getOperand(0)->getType() == | 
|  | GEPRHS->getOperand(0)->getType(); | 
|  | if (IndicesTheSame) | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | IndicesTheSame = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If all indices are the same, just compare the base pointers. | 
|  | if (IndicesTheSame) | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), | 
|  | GEPLHS->getOperand(0), GEPRHS->getOperand(0)); | 
|  |  | 
|  | // Otherwise, the base pointers are different and the indices are | 
|  | // different, bail out. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If one of the GEPs has all zero indices, recurse. | 
|  | bool AllZeros = true; | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEPLHS->getOperand(i)) || | 
|  | !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { | 
|  | AllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeros) | 
|  | return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), | 
|  | ICmpInst::getSwappedPredicate(Cond), I); | 
|  |  | 
|  | // If the other GEP has all zero indices, recurse. | 
|  | AllZeros = true; | 
|  | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEPRHS->getOperand(i)) || | 
|  | !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { | 
|  | AllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeros) | 
|  | return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); | 
|  |  | 
|  | if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { | 
|  | // If the GEPs only differ by one index, compare it. | 
|  | unsigned NumDifferences = 0;  // Keep track of # differences. | 
|  | unsigned DiffOperand = 0;     // The operand that differs. | 
|  | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != | 
|  | GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { | 
|  | // Irreconcilable differences. | 
|  | NumDifferences = 2; | 
|  | break; | 
|  | } else { | 
|  | if (NumDifferences++) break; | 
|  | DiffOperand = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumDifferences == 0)   // SAME GEP? | 
|  | return ReplaceInstUsesWith(I, // No comparison is needed here. | 
|  | ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | ICmpInst::isTrueWhenEqual(Cond))); | 
|  |  | 
|  | else if (NumDifferences == 1) { | 
|  | Value *LHSV = GEPLHS->getOperand(DiffOperand); | 
|  | Value *RHSV = GEPRHS->getOperand(DiffOperand); | 
|  | // Make sure we do a signed comparison here. | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only lower this if the icmp is the only user of the GEP or if we expect | 
|  | // the result to fold to a constant! | 
|  | if (TD && | 
|  | (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && | 
|  | (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { | 
|  | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2) | 
|  | Value *L = EmitGEPOffset(GEPLHS, I, *this); | 
|  | Value *R = EmitGEPOffset(GEPRHS, I, *this); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. | 
|  | /// | 
|  | Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, | 
|  | Instruction *LHSI, | 
|  | Constant *RHSC) { | 
|  | if (!isa<ConstantFP>(RHSC)) return 0; | 
|  | const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); | 
|  |  | 
|  | // Get the width of the mantissa.  We don't want to hack on conversions that | 
|  | // might lose information from the integer, e.g. "i64 -> float" | 
|  | int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); | 
|  | if (MantissaWidth == -1) return 0;  // Unknown. | 
|  |  | 
|  | // Check to see that the input is converted from an integer type that is small | 
|  | // enough that preserves all bits.  TODO: check here for "known" sign bits. | 
|  | // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. | 
|  | unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // If this is a uitofp instruction, we need an extra bit to hold the sign. | 
|  | bool LHSUnsigned = isa<UIToFPInst>(LHSI); | 
|  | if (LHSUnsigned) | 
|  | ++InputSize; | 
|  |  | 
|  | // If the conversion would lose info, don't hack on this. | 
|  | if ((int)InputSize > MantissaWidth) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise, we can potentially simplify the comparison.  We know that it | 
|  | // will always come through as an integer value and we know the constant is | 
|  | // not a NAN (it would have been previously simplified). | 
|  | assert(!RHS.isNaN() && "NaN comparison not already folded!"); | 
|  |  | 
|  | ICmpInst::Predicate Pred; | 
|  | switch (I.getPredicate()) { | 
|  | default: llvm_unreachable("Unexpected predicate!"); | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | Pred = ICmpInst::ICMP_EQ; | 
|  | break; | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_OGT: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; | 
|  | break; | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_OGE: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; | 
|  | break; | 
|  | case FCmpInst::FCMP_ULT: | 
|  | case FCmpInst::FCMP_OLT: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; | 
|  | break; | 
|  | case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_OLE: | 
|  | Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; | 
|  | break; | 
|  | case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_ONE: | 
|  | Pred = ICmpInst::ICMP_NE; | 
|  | break; | 
|  | case FCmpInst::FCMP_ORD: | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | } | 
|  |  | 
|  | const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); | 
|  |  | 
|  | // Now we know that the APFloat is a normal number, zero or inf. | 
|  |  | 
|  | // See if the FP constant is too large for the integer.  For example, | 
|  | // comparing an i8 to 300.0. | 
|  | unsigned IntWidth = IntTy->getScalarSizeInBits(); | 
|  |  | 
|  | if (!LHSUnsigned) { | 
|  | // If the RHS value is > SignedMax, fold the comparison.  This handles +INF | 
|  | // and large values. | 
|  | APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false); | 
|  | SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0 | 
|  | if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT || | 
|  | Pred == ICmpInst::ICMP_SLE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | } | 
|  | } else { | 
|  | // If the RHS value is > UnsignedMax, fold the comparison. This handles | 
|  | // +INF and large values. | 
|  | APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false); | 
|  | UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0 | 
|  | if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT || | 
|  | Pred == ICmpInst::ICMP_ULE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LHSUnsigned) { | 
|  | // See if the RHS value is < SignedMin. | 
|  | APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); | 
|  | SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 | 
|  | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || | 
|  | Pred == ICmpInst::ICMP_SGE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or | 
|  | // [0, UMAX], but it may still be fractional.  See if it is fractional by | 
|  | // casting the FP value to the integer value and back, checking for equality. | 
|  | // Don't do this for zero, because -0.0 is not fractional. | 
|  | Constant *RHSInt = LHSUnsigned | 
|  | ? ConstantExpr::getFPToUI(RHSC, IntTy) | 
|  | : ConstantExpr::getFPToSI(RHSC, IntTy); | 
|  | if (!RHS.isZero()) { | 
|  | bool Equal = LHSUnsigned | 
|  | ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC | 
|  | : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; | 
|  | if (!Equal) { | 
|  | // If we had a comparison against a fractional value, we have to adjust | 
|  | // the compare predicate and sometimes the value.  RHSC is rounded towards | 
|  | // zero at this point. | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unexpected integer comparison!"); | 
|  | case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // (float)int <= 4.4   --> int <= 4 | 
|  | // (float)int <= -4.4  --> false | 
|  | if (RHS.isNegative()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // (float)int <= 4.4   --> int <= 4 | 
|  | // (float)int <= -4.4  --> int < -4 | 
|  | if (RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | // (float)int < -4.4   --> false | 
|  | // (float)int < 4.4    --> int <= 4 | 
|  | if (RHS.isNegative()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | Pred = ICmpInst::ICMP_ULE; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // (float)int < -4.4   --> int < -4 | 
|  | // (float)int < 4.4    --> int <= 4 | 
|  | if (!RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SLE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // (float)int > 4.4    --> int > 4 | 
|  | // (float)int > -4.4   --> true | 
|  | if (RHS.isNegative()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | // (float)int > 4.4    --> int > 4 | 
|  | // (float)int > -4.4   --> int >= -4 | 
|  | if (RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SGE; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // (float)int >= -4.4   --> true | 
|  | // (float)int >= 4.4    --> int > 4 | 
|  | if (!RHS.isNegative()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // (float)int >= -4.4   --> int >= -4 | 
|  | // (float)int >= 4.4    --> int > 4 | 
|  | if (!RHS.isNegative()) | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lower this FP comparison into an appropriate integer version of the | 
|  | // comparison. | 
|  | return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { | 
|  | bool Changed = SimplifyCompare(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Fold trivial predicates. | 
|  | if (I.getPredicate() == FCmpInst::FCMP_FALSE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0)); | 
|  | if (I.getPredicate() == FCmpInst::FCMP_TRUE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1)); | 
|  |  | 
|  | // Simplify 'fcmp pred X, X' | 
|  | if (Op0 == Op1) { | 
|  | switch (I.getPredicate()) { | 
|  | default: llvm_unreachable("Unknown predicate!"); | 
|  | case FCmpInst::FCMP_UEQ:    // True if unordered or equal | 
|  | case FCmpInst::FCMP_UGE:    // True if unordered, greater than, or equal | 
|  | case FCmpInst::FCMP_ULE:    // True if unordered, less than, or equal | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1)); | 
|  | case FCmpInst::FCMP_OGT:    // True if ordered and greater than | 
|  | case FCmpInst::FCMP_OLT:    // True if ordered and less than | 
|  | case FCmpInst::FCMP_ONE:    // True if ordered and operands are unequal | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0)); | 
|  |  | 
|  | case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y) | 
|  | case FCmpInst::FCMP_ULT:    // True if unordered or less than | 
|  | case FCmpInst::FCMP_UGT:    // True if unordered or greater than | 
|  | case FCmpInst::FCMP_UNE:    // True if unordered or not equal | 
|  | // Canonicalize these to be 'fcmp uno %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_UNO); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  |  | 
|  | case FCmpInst::FCMP_ORD:    // True if ordered (no nans) | 
|  | case FCmpInst::FCMP_OEQ:    // True if ordered and equal | 
|  | case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal | 
|  | case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal | 
|  | // Canonicalize these to be 'fcmp ord %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_ORD); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                  // fcmp pred X, undef -> undef | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); | 
|  |  | 
|  | // Handle fcmp with constant RHS | 
|  | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { | 
|  | // If the constant is a nan, see if we can fold the comparison based on it. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { | 
|  | if (CFP->getValueAPF().isNaN()) { | 
|  | if (FCmpInst::isOrdered(I.getPredicate()))   // True if ordered and... | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | assert(FCmpInst::isUnordered(I.getPredicate()) && | 
|  | "Comparison must be either ordered or unordered!"); | 
|  | // True if unordered. | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | // Only fold fcmp into the PHI if the phi and fcmp are in the same | 
|  | // block.  If in the same block, we're encouraging jump threading.  If | 
|  | // not, we are just pessimizing the code by making an i1 phi. | 
|  | if (LHSI->getParent() == I.getParent()) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I, true)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::UIToFP: | 
|  | if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Select: | 
|  | // If either operand of the select is a constant, we can fold the | 
|  | // comparison into the select arms, which will cause one to be | 
|  | // constant folded and the select turned into a bitwise or. | 
|  | Value *Op1 = 0, *Op2 = 0; | 
|  | if (LHSI->hasOneUse()) { | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); | 
|  | // Insert a new FCmp of the other select operand. | 
|  | Op2 = Builder->CreateFCmp(I.getPredicate(), | 
|  | LHSI->getOperand(2), RHSC, I.getName()); | 
|  | } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); | 
|  | // Insert a new FCmp of the other select operand. | 
|  | Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1), | 
|  | RHSC, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1) | 
|  | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { | 
|  | bool Changed = SimplifyCompare(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | const Type *Ty = Op0->getType(); | 
|  |  | 
|  | // icmp X, X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), | 
|  | I.isTrueWhenEqual())); | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                  // X icmp undef -> undef | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); | 
|  |  | 
|  | // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value | 
|  | // addresses never equal each other!  We already know that Op0 != Op1. | 
|  | if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || | 
|  | isa<ConstantPointerNull>(Op0)) && | 
|  | (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || | 
|  | isa<ConstantPointerNull>(Op1))) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | !I.isTrueWhenEqual())); | 
|  |  | 
|  | // icmp's with boolean values can always be turned into bitwise operations | 
|  | if (Ty == Type::getInt1Ty(*Context)) { | 
|  | switch (I.getPredicate()) { | 
|  | default: llvm_unreachable("Invalid icmp instruction!"); | 
|  | case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B) | 
|  | Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); | 
|  | return BinaryOperator::CreateNot(Xor); | 
|  | } | 
|  | case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B | 
|  | return BinaryOperator::CreateXor(Op0, Op1); | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B | 
|  | Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); | 
|  | return BinaryOperator::CreateAnd(Not, Op1); | 
|  | } | 
|  | case ICmpInst::ICMP_SGT: | 
|  | std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B | 
|  | Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); | 
|  | return BinaryOperator::CreateAnd(Not, Op0); | 
|  | } | 
|  | case ICmpInst::ICMP_UGE: | 
|  | std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B | 
|  | Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); | 
|  | return BinaryOperator::CreateOr(Not, Op1); | 
|  | } | 
|  | case ICmpInst::ICMP_SGE: | 
|  | std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B | 
|  | Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); | 
|  | return BinaryOperator::CreateOr(Not, Op0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned BitWidth = 0; | 
|  | if (TD) | 
|  | BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); | 
|  | else if (Ty->isIntOrIntVector()) | 
|  | BitWidth = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | bool isSignBit = false; | 
|  |  | 
|  | // See if we are doing a comparison with a constant. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | Value *A = 0, *B = 0; | 
|  |  | 
|  | // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) | 
|  | if (I.isEquality() && CI->isNullValue() && | 
|  | match(Op0, m_Sub(m_Value(A), m_Value(B)))) { | 
|  | // (icmp cond A B) if cond is equality | 
|  | return new ICmpInst(I.getPredicate(), A, B); | 
|  | } | 
|  |  | 
|  | // If we have an icmp le or icmp ge instruction, turn it into the | 
|  | // appropriate icmp lt or icmp gt instruction.  This allows us to rely on | 
|  | // them being folded in the code below. | 
|  | switch (I.getPredicate()) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Op0, | 
|  | AddOne(CI)); | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, | 
|  | AddOne(CI)); | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (CI->isMinValue(false))                 // A >=u MIN -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Op0, | 
|  | SubOne(CI)); | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (CI->isMinValue(true))                  // A >=s MIN -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, | 
|  | SubOne(CI)); | 
|  | } | 
|  |  | 
|  | // If this comparison is a normal comparison, it demands all | 
|  | // bits, if it is a sign bit comparison, it only demands the sign bit. | 
|  | bool UnusedBit; | 
|  | isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); | 
|  | } | 
|  |  | 
|  | // See if we can fold the comparison based on range information we can get | 
|  | // by checking whether bits are known to be zero or one in the input. | 
|  | if (BitWidth != 0) { | 
|  | APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); | 
|  | APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); | 
|  |  | 
|  | if (SimplifyDemandedBits(I.getOperandUse(0), | 
|  | isSignBit ? APInt::getSignBit(BitWidth) | 
|  | : APInt::getAllOnesValue(BitWidth), | 
|  | Op0KnownZero, Op0KnownOne, 0)) | 
|  | return &I; | 
|  | if (SimplifyDemandedBits(I.getOperandUse(1), | 
|  | APInt::getAllOnesValue(BitWidth), | 
|  | Op1KnownZero, Op1KnownOne, 0)) | 
|  | return &I; | 
|  |  | 
|  | // Given the known and unknown bits, compute a range that the LHS could be | 
|  | // in.  Compute the Min, Max and RHS values based on the known bits. For the | 
|  | // EQ and NE we use unsigned values. | 
|  | APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); | 
|  | APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); | 
|  | if (ICmpInst::isSignedPredicate(I.getPredicate())) { | 
|  | ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, | 
|  | Op0Min, Op0Max); | 
|  | ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, | 
|  | Op1Min, Op1Max); | 
|  | } else { | 
|  | ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, | 
|  | Op0Min, Op0Max); | 
|  | ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, | 
|  | Op1Min, Op1Max); | 
|  | } | 
|  |  | 
|  | // If Min and Max are known to be the same, then SimplifyDemandedBits | 
|  | // figured out that the LHS is a constant.  Just constant fold this now so | 
|  | // that code below can assume that Min != Max. | 
|  | if (!isa<Constant>(Op0) && Op0Min == Op0Max) | 
|  | return new ICmpInst(I.getPredicate(), | 
|  | ConstantInt::get(*Context, Op0Min), Op1); | 
|  | if (!isa<Constant>(Op1) && Op1Min == Op1Max) | 
|  | return new ICmpInst(I.getPredicate(), Op0, | 
|  | ConstantInt::get(*Context, Op1Min)); | 
|  |  | 
|  | // Based on the range information we know about the LHS, see if we can | 
|  | // simplify this comparison.  For example, (x&4) < 8  is always true. | 
|  | switch (I.getPredicate()) { | 
|  | default: llvm_unreachable("Unknown icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | SubOne(CI)); | 
|  |  | 
|  | // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear | 
|  | if (CI->isMinValue(true)) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, | 
|  | Constant::getAllOnesValue(Op0->getType())); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  |  | 
|  | if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | AddOne(CI)); | 
|  |  | 
|  | // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set | 
|  | if (CI->isMaxValue(true)) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, | 
|  | Constant::getNullValue(Op0->getType())); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | SubOne(CI)); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  |  | 
|  | if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B) | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, | 
|  | AddOne(CI)); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); | 
|  | if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); | 
|  | if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); | 
|  | if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); | 
|  | if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context)); | 
|  | if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn a signed comparison into an unsigned one if both operands | 
|  | // are known to have the same sign. | 
|  | if (I.isSignedPredicate() && | 
|  | ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || | 
|  | (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) | 
|  | return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); | 
|  | } | 
|  |  | 
|  | // Test if the ICmpInst instruction is used exclusively by a select as | 
|  | // part of a minimum or maximum operation. If so, refrain from doing | 
|  | // any other folding. This helps out other analyses which understand | 
|  | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution | 
|  | // and CodeGen. And in this case, at least one of the comparison | 
|  | // operands has at least one user besides the compare (the select), | 
|  | // which would often largely negate the benefit of folding anyway. | 
|  | if (I.hasOneUse()) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) | 
|  | if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || | 
|  | (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) | 
|  | return 0; | 
|  |  | 
|  | // See if we are doing a comparison between a constant and an instruction that | 
|  | // can be folded into the comparison. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | // Since the RHS is a ConstantInt (CI), if the left hand side is an | 
|  | // instruction, see if that instruction also has constants so that the | 
|  | // instruction can be folded into the icmp | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Handle icmp with constant (but not simple integer constant) RHS | 
|  | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::GetElementPtr: | 
|  | if (RHSC->isNullValue()) { | 
|  | // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null | 
|  | bool isAllZeros = true; | 
|  | for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(LHSI->getOperand(i)) || | 
|  | !cast<Constant>(LHSI->getOperand(i))->isNullValue()) { | 
|  | isAllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (isAllZeros) | 
|  | return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), | 
|  | Constant::getNullValue(LHSI->getOperand(0)->getType())); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::PHI: | 
|  | // Only fold icmp into the PHI if the phi and icmp are in the same | 
|  | // block.  If in the same block, we're encouraging jump threading.  If | 
|  | // not, we are just pessimizing the code by making an i1 phi. | 
|  | if (LHSI->getParent() == I.getParent()) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I, true)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | // If either operand of the select is a constant, we can fold the | 
|  | // comparison into the select arms, which will cause one to be | 
|  | // constant folded and the select turned into a bitwise or. | 
|  | Value *Op1 = 0, *Op2 = 0; | 
|  | if (LHSI->hasOneUse()) { | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | // Insert a new ICmp of the other select operand. | 
|  | Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), | 
|  | RHSC, I.getName()); | 
|  | } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | // Insert a new ICmp of the other select operand. | 
|  | Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), | 
|  | RHSC, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1) | 
|  | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); | 
|  | break; | 
|  | } | 
|  | case Instruction::Malloc: | 
|  | // If we have (malloc != null), and if the malloc has a single use, we | 
|  | // can assume it is successful and remove the malloc. | 
|  | if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) { | 
|  | Worklist.Add(LHSI); | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | !I.isTrueWhenEqual())); | 
|  | } | 
|  | break; | 
|  | case Instruction::Call: | 
|  | // If we have (malloc != null), and if the malloc has a single use, we | 
|  | // can assume it is successful and remove the malloc. | 
|  | if (isMalloc(LHSI) && LHSI->hasOneUse() && | 
|  | isa<ConstantPointerNull>(RHSC)) { | 
|  | Worklist.Add(LHSI); | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | !I.isTrueWhenEqual())); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) | 
|  | if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) | 
|  | return NI; | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) | 
|  | if (Instruction *NI = FoldGEPICmp(GEP, Op0, | 
|  | ICmpInst::getSwappedPredicate(I.getPredicate()), I)) | 
|  | return NI; | 
|  |  | 
|  | // Test to see if the operands of the icmp are casted versions of other | 
|  | // values.  If the ptr->ptr cast can be stripped off both arguments, we do so | 
|  | // now. | 
|  | if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { | 
|  | if (isa<PointerType>(Op0->getType()) && | 
|  | (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { | 
|  | // We keep moving the cast from the left operand over to the right | 
|  | // operand, where it can often be eliminated completely. | 
|  | Op0 = CI->getOperand(0); | 
|  |  | 
|  | // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast | 
|  | // so eliminate it as well. | 
|  | if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) | 
|  | Op1 = CI2->getOperand(0); | 
|  |  | 
|  | // If Op1 is a constant, we can fold the cast into the constant. | 
|  | if (Op0->getType() != Op1->getType()) { | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); | 
|  | } else { | 
|  | // Otherwise, cast the RHS right before the icmp | 
|  | Op1 = Builder->CreateBitCast(Op1, Op0->getType()); | 
|  | } | 
|  | } | 
|  | return new ICmpInst(I.getPredicate(), Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<CastInst>(Op0)) { | 
|  | // Handle the special case of: icmp (cast bool to X), <cst> | 
|  | // This comes up when you have code like | 
|  | //   int X = A < B; | 
|  | //   if (X) ... | 
|  | // For generality, we handle any zero-extension of any operand comparison | 
|  | // with a constant or another cast from the same type. | 
|  | if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1)) | 
|  | if (Instruction *R = visitICmpInstWithCastAndCast(I)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // See if it's the same type of instruction on the left and right. | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() && | 
|  | Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) { | 
|  | switch (Op0I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Xor: | 
|  | if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b | 
|  | return new ICmpInst(I.getPredicate(), Op0I->getOperand(0), | 
|  | Op1I->getOperand(0)); | 
|  | // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { | 
|  | if (CI->getValue().isSignBit()) { | 
|  | ICmpInst::Predicate Pred = I.isSignedPredicate() | 
|  | ? I.getUnsignedPredicate() | 
|  | : I.getSignedPredicate(); | 
|  | return new ICmpInst(Pred, Op0I->getOperand(0), | 
|  | Op1I->getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (CI->getValue().isMaxSignedValue()) { | 
|  | ICmpInst::Predicate Pred = I.isSignedPredicate() | 
|  | ? I.getUnsignedPredicate() | 
|  | : I.getSignedPredicate(); | 
|  | Pred = I.getSwappedPredicate(Pred); | 
|  | return new ICmpInst(Pred, Op0I->getOperand(0), | 
|  | Op1I->getOperand(0)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (!I.isEquality()) | 
|  | break; | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { | 
|  | // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask | 
|  | // Mask = -1 >> count-trailing-zeros(Cst). | 
|  | if (!CI->isZero() && !CI->isOne()) { | 
|  | const APInt &AP = CI->getValue(); | 
|  | ConstantInt *Mask = ConstantInt::get(*Context, | 
|  | APInt::getLowBitsSet(AP.getBitWidth(), | 
|  | AP.getBitWidth() - | 
|  | AP.countTrailingZeros())); | 
|  | Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask); | 
|  | Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask); | 
|  | return new ICmpInst(I.getPredicate(), And1, And2); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ~x < ~y --> y < x | 
|  | { Value *A, *B; | 
|  | if (match(Op0, m_Not(m_Value(A))) && | 
|  | match(Op1, m_Not(m_Value(B)))) | 
|  | return new ICmpInst(I.getPredicate(), B, A); | 
|  | } | 
|  |  | 
|  | if (I.isEquality()) { | 
|  | Value *A, *B, *C, *D; | 
|  |  | 
|  | // -x == -y --> x == y | 
|  | if (match(Op0, m_Neg(m_Value(A))) && | 
|  | match(Op1, m_Neg(m_Value(B)))) | 
|  | return new ICmpInst(I.getPredicate(), A, B); | 
|  |  | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0 | 
|  | Value *OtherVal = A == Op1 ? B : A; | 
|  | return new ICmpInst(I.getPredicate(), OtherVal, | 
|  | Constant::getNullValue(A->getType())); | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { | 
|  | // A^c1 == C^c2 --> A == C^(c1^c2) | 
|  | ConstantInt *C1, *C2; | 
|  | if (match(B, m_ConstantInt(C1)) && | 
|  | match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { | 
|  | Constant *NC = | 
|  | ConstantInt::get(*Context, C1->getValue() ^ C2->getValue()); | 
|  | Value *Xor = Builder->CreateXor(C, NC, "tmp"); | 
|  | return new ICmpInst(I.getPredicate(), A, Xor); | 
|  | } | 
|  |  | 
|  | // A^B == A^D -> B == D | 
|  | if (A == C) return new ICmpInst(I.getPredicate(), B, D); | 
|  | if (A == D) return new ICmpInst(I.getPredicate(), B, C); | 
|  | if (B == C) return new ICmpInst(I.getPredicate(), A, D); | 
|  | if (B == D) return new ICmpInst(I.getPredicate(), A, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (A == Op0 || B == Op0)) { | 
|  | // A == (A^B)  ->  B == 0 | 
|  | Value *OtherVal = A == Op0 ? B : A; | 
|  | return new ICmpInst(I.getPredicate(), OtherVal, | 
|  | Constant::getNullValue(A->getType())); | 
|  | } | 
|  |  | 
|  | // (A-B) == A  ->  B == 0 | 
|  | if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B)))) | 
|  | return new ICmpInst(I.getPredicate(), B, | 
|  | Constant::getNullValue(B->getType())); | 
|  |  | 
|  | // A == (A-B)  ->  B == 0 | 
|  | if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B)))) | 
|  | return new ICmpInst(I.getPredicate(), B, | 
|  | Constant::getNullValue(B->getType())); | 
|  |  | 
|  | // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 | 
|  | if (Op0->hasOneUse() && Op1->hasOneUse() && | 
|  | match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_And(m_Value(C), m_Value(D)))) { | 
|  | Value *X = 0, *Y = 0, *Z = 0; | 
|  |  | 
|  | if (A == C) { | 
|  | X = B; Y = D; Z = A; | 
|  | } else if (A == D) { | 
|  | X = B; Y = C; Z = A; | 
|  | } else if (B == C) { | 
|  | X = A; Y = D; Z = B; | 
|  | } else if (B == D) { | 
|  | X = A; Y = C; Z = B; | 
|  | } | 
|  |  | 
|  | if (X) {   // Build (X^Y) & Z | 
|  | Op1 = Builder->CreateXor(X, Y, "tmp"); | 
|  | Op1 = Builder->CreateAnd(Op1, Z, "tmp"); | 
|  | I.setOperand(0, Op1); | 
|  | I.setOperand(1, Constant::getNullValue(Op1->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS | 
|  | /// and CmpRHS are both known to be integer constants. | 
|  | Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, | 
|  | ConstantInt *DivRHS) { | 
|  | ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); | 
|  | const APInt &CmpRHSV = CmpRHS->getValue(); | 
|  |  | 
|  | // FIXME: If the operand types don't match the type of the divide | 
|  | // then don't attempt this transform. The code below doesn't have the | 
|  | // logic to deal with a signed divide and an unsigned compare (and | 
|  | // vice versa). This is because (x /s C1) <s C2  produces different | 
|  | // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even | 
|  | // (x /u C1) <u C2.  Simply casting the operands and result won't | 
|  | // work. :(  The if statement below tests that condition and bails | 
|  | // if it finds it. | 
|  | bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; | 
|  | if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate()) | 
|  | return 0; | 
|  | if (DivRHS->isZero()) | 
|  | return 0; // The ProdOV computation fails on divide by zero. | 
|  | if (DivIsSigned && DivRHS->isAllOnesValue()) | 
|  | return 0; // The overflow computation also screws up here | 
|  | if (DivRHS->isOne()) | 
|  | return 0; // Not worth bothering, and eliminates some funny cases | 
|  | // with INT_MIN. | 
|  |  | 
|  | // Compute Prod = CI * DivRHS. We are essentially solving an equation | 
|  | // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and | 
|  | // C2 (CI). By solving for X we can turn this into a range check | 
|  | // instead of computing a divide. | 
|  | Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); | 
|  |  | 
|  | // Determine if the product overflows by seeing if the product is | 
|  | // not equal to the divide. Make sure we do the same kind of divide | 
|  | // as in the LHS instruction that we're folding. | 
|  | bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : | 
|  | ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; | 
|  |  | 
|  | // Get the ICmp opcode | 
|  | ICmpInst::Predicate Pred = ICI.getPredicate(); | 
|  |  | 
|  | // Figure out the interval that is being checked.  For example, a comparison | 
|  | // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). | 
|  | // Compute this interval based on the constants involved and the signedness of | 
|  | // the compare/divide.  This computes a half-open interval, keeping track of | 
|  | // whether either value in the interval overflows.  After analysis each | 
|  | // overflow variable is set to 0 if it's corresponding bound variable is valid | 
|  | // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. | 
|  | int LoOverflow = 0, HiOverflow = 0; | 
|  | Constant *LoBound = 0, *HiBound = 0; | 
|  |  | 
|  | if (!DivIsSigned) {  // udiv | 
|  | // e.g. X/5 op 3  --> [15, 20) | 
|  | LoBound = Prod; | 
|  | HiOverflow = LoOverflow = ProdOV; | 
|  | if (!HiOverflow) | 
|  | HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, Context, false); | 
|  | } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. | 
|  | if (CmpRHSV == 0) {       // (X / pos) op 0 | 
|  | // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2) | 
|  | LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS))); | 
|  | HiBound = DivRHS; | 
|  | } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos | 
|  | LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20) | 
|  | HiOverflow = LoOverflow = ProdOV; | 
|  | if (!HiOverflow) | 
|  | HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true); | 
|  | } else {                       // (X / pos) op neg | 
|  | // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14) | 
|  | HiBound = AddOne(Prod); | 
|  | LoOverflow = HiOverflow = ProdOV ? -1 : 0; | 
|  | if (!LoOverflow) { | 
|  | ConstantInt* DivNeg = | 
|  | cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); | 
|  | LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context, | 
|  | true) ? -1 : 0; | 
|  | } | 
|  | } | 
|  | } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0. | 
|  | if (CmpRHSV == 0) {       // (X / neg) op 0 | 
|  | // e.g. X/-5 op 0  --> [-4, 5) | 
|  | LoBound = AddOne(DivRHS); | 
|  | HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); | 
|  | if (HiBound == DivRHS) {     // -INTMIN = INTMIN | 
|  | HiOverflow = 1;            // [INTMIN+1, overflow) | 
|  | HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN | 
|  | } | 
|  | } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos | 
|  | // e.g. X/-5 op 3  --> [-19, -14) | 
|  | HiBound = AddOne(Prod); | 
|  | HiOverflow = LoOverflow = ProdOV ? -1 : 0; | 
|  | if (!LoOverflow) | 
|  | LoOverflow = AddWithOverflow(LoBound, HiBound, | 
|  | DivRHS, Context, true) ? -1 : 0; | 
|  | } else {                       // (X / neg) op neg | 
|  | LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20) | 
|  | LoOverflow = HiOverflow = ProdOV; | 
|  | if (!HiOverflow) | 
|  | HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, Context, true); | 
|  | } | 
|  |  | 
|  | // Dividing by a negative swaps the condition.  LT <-> GT | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | Value *X = DivI->getOperand(0); | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unhandled icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context)); | 
|  | else if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, LoBound); | 
|  | else if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, HiBound); | 
|  | else | 
|  | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context)); | 
|  | else if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, LoBound); | 
|  | else if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, HiBound); | 
|  | else | 
|  | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LoOverflow == +1)   // Low bound is greater than input range. | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context)); | 
|  | if (LoOverflow == -1)   // Low bound is less than input range. | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context)); | 
|  | return new ICmpInst(Pred, X, LoBound); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (HiOverflow == +1)       // High bound greater than input range. | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context)); | 
|  | else if (HiOverflow == -1)  // High bound less than input range. | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context)); | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". | 
|  | /// | 
|  | Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, | 
|  | Instruction *LHSI, | 
|  | ConstantInt *RHS) { | 
|  | const APInt &RHSV = RHS->getValue(); | 
|  |  | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | if (ICI.isEquality() && LHSI->hasOneUse()) { | 
|  | // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all | 
|  | // of the high bits truncated out of x are known. | 
|  | unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), | 
|  | SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); | 
|  | APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); | 
|  | APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); | 
|  | ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); | 
|  |  | 
|  | // If all the high bits are known, we can do this xform. | 
|  | if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { | 
|  | // Pull in the high bits from known-ones set. | 
|  | APInt NewRHS(RHS->getValue()); | 
|  | NewRHS.zext(SrcBits); | 
|  | NewRHS |= KnownOne; | 
|  | return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, NewRHS)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI) | 
|  | if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { | 
|  | // If this is a comparison that tests the signbit (X < 0) or (x > -1), | 
|  | // fold the xor. | 
|  | if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || | 
|  | (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { | 
|  | Value *CompareVal = LHSI->getOperand(0); | 
|  |  | 
|  | // If the sign bit of the XorCST is not set, there is no change to | 
|  | // the operation, just stop using the Xor. | 
|  | if (!XorCST->getValue().isNegative()) { | 
|  | ICI.setOperand(0, CompareVal); | 
|  | Worklist.Add(LHSI); | 
|  | return &ICI; | 
|  | } | 
|  |  | 
|  | // Was the old condition true if the operand is positive? | 
|  | bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; | 
|  |  | 
|  | // If so, the new one isn't. | 
|  | isTrueIfPositive ^= true; | 
|  |  | 
|  | if (isTrueIfPositive) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, | 
|  | SubOne(RHS)); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, | 
|  | AddOne(RHS)); | 
|  | } | 
|  |  | 
|  | if (LHSI->hasOneUse()) { | 
|  | // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) | 
|  | if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { | 
|  | const APInt &SignBit = XorCST->getValue(); | 
|  | ICmpInst::Predicate Pred = ICI.isSignedPredicate() | 
|  | ? ICI.getUnsignedPredicate() | 
|  | : ICI.getSignedPredicate(); | 
|  | return new ICmpInst(Pred, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, RHSV ^ SignBit)); | 
|  | } | 
|  |  | 
|  | // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) | 
|  | if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) { | 
|  | const APInt &NotSignBit = XorCST->getValue(); | 
|  | ICmpInst::Predicate Pred = ICI.isSignedPredicate() | 
|  | ? ICI.getUnsignedPredicate() | 
|  | : ICI.getSignedPredicate(); | 
|  | Pred = ICI.getSwappedPredicate(Pred); | 
|  | return new ICmpInst(Pred, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, RHSV ^ NotSignBit)); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::And:         // (icmp pred (and X, AndCST), RHS) | 
|  | if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && | 
|  | LHSI->getOperand(0)->hasOneUse()) { | 
|  | ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); | 
|  |  | 
|  | // If the LHS is an AND of a truncating cast, we can widen the | 
|  | // and/compare to be the input width without changing the value | 
|  | // produced, eliminating a cast. | 
|  | if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { | 
|  | // We can do this transformation if either the AND constant does not | 
|  | // have its sign bit set or if it is an equality comparison. | 
|  | // Extending a relational comparison when we're checking the sign | 
|  | // bit would not work. | 
|  | if (Cast->hasOneUse() && | 
|  | (ICI.isEquality() || | 
|  | (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) { | 
|  | uint32_t BitWidth = | 
|  | cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth(); | 
|  | APInt NewCST = AndCST->getValue(); | 
|  | NewCST.zext(BitWidth); | 
|  | APInt NewCI = RHSV; | 
|  | NewCI.zext(BitWidth); | 
|  | Value *NewAnd = | 
|  | Builder->CreateAnd(Cast->getOperand(0), | 
|  | ConstantInt::get(*Context, NewCST), LHSI->getName()); | 
|  | return new ICmpInst(ICI.getPredicate(), NewAnd, | 
|  | ConstantInt::get(*Context, NewCI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is: (X >> C1) & C2 != C3 (where any shift and any compare | 
|  | // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This | 
|  | // happens a LOT in code produced by the C front-end, for bitfield | 
|  | // access. | 
|  | BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); | 
|  | if (Shift && !Shift->isShift()) | 
|  | Shift = 0; | 
|  |  | 
|  | ConstantInt *ShAmt; | 
|  | ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; | 
|  | const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift. | 
|  | const Type *AndTy = AndCST->getType();          // Type of the and. | 
|  |  | 
|  | // We can fold this as long as we can't shift unknown bits | 
|  | // into the mask.  This can only happen with signed shift | 
|  | // rights, as they sign-extend. | 
|  | if (ShAmt) { | 
|  | bool CanFold = Shift->isLogicalShift(); | 
|  | if (!CanFold) { | 
|  | // To test for the bad case of the signed shr, see if any | 
|  | // of the bits shifted in could be tested after the mask. | 
|  | uint32_t TyBits = Ty->getPrimitiveSizeInBits(); | 
|  | int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); | 
|  |  | 
|  | uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); | 
|  | if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & | 
|  | AndCST->getValue()) == 0) | 
|  | CanFold = true; | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | Constant *NewCst; | 
|  | if (Shift->getOpcode() == Instruction::Shl) | 
|  | NewCst = ConstantExpr::getLShr(RHS, ShAmt); | 
|  | else | 
|  | NewCst = ConstantExpr::getShl(RHS, ShAmt); | 
|  |  | 
|  | // Check to see if we are shifting out any of the bits being | 
|  | // compared. | 
|  | if (ConstantExpr::get(Shift->getOpcode(), | 
|  | NewCst, ShAmt) != RHS) { | 
|  | // If we shifted bits out, the fold is not going to work out. | 
|  | // As a special case, check to see if this means that the | 
|  | // result is always true or false now. | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context)); | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context)); | 
|  | } else { | 
|  | ICI.setOperand(1, NewCst); | 
|  | Constant *NewAndCST; | 
|  | if (Shift->getOpcode() == Instruction::Shl) | 
|  | NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); | 
|  | else | 
|  | NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); | 
|  | LHSI->setOperand(1, NewAndCST); | 
|  | LHSI->setOperand(0, Shift->getOperand(0)); | 
|  | Worklist.Add(Shift); // Shift is dead. | 
|  | return &ICI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is | 
|  | // preferable because it allows the C<<Y expression to be hoisted out | 
|  | // of a loop if Y is invariant and X is not. | 
|  | if (Shift && Shift->hasOneUse() && RHSV == 0 && | 
|  | ICI.isEquality() && !Shift->isArithmeticShift() && | 
|  | !isa<Constant>(Shift->getOperand(0))) { | 
|  | // Compute C << Y. | 
|  | Value *NS; | 
|  | if (Shift->getOpcode() == Instruction::LShr) { | 
|  | NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp"); | 
|  | } else { | 
|  | // Insert a logical shift. | 
|  | NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp"); | 
|  | } | 
|  |  | 
|  | // Compute X & (C << Y). | 
|  | Value *NewAnd = | 
|  | Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); | 
|  |  | 
|  | ICI.setOperand(0, NewAnd); | 
|  | return &ICI; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI) | 
|  | ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); | 
|  | if (!ShAmt) break; | 
|  |  | 
|  | uint32_t TypeBits = RHSV.getBitWidth(); | 
|  |  | 
|  | // Check that the shift amount is in range.  If not, don't perform | 
|  | // undefined shifts.  When the shift is visited it will be | 
|  | // simplified. | 
|  | if (ShAmt->uge(TypeBits)) | 
|  | break; | 
|  |  | 
|  | if (ICI.isEquality()) { | 
|  | // If we are comparing against bits always shifted out, the | 
|  | // comparison cannot succeed. | 
|  | Constant *Comp = | 
|  | ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), | 
|  | ShAmt); | 
|  | if (Comp != RHS) {// Comparing against a bit that we know is zero. | 
|  | bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; | 
|  | Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE); | 
|  | return ReplaceInstUsesWith(ICI, Cst); | 
|  | } | 
|  |  | 
|  | if (LHSI->hasOneUse()) { | 
|  | // Otherwise strength reduce the shift into an and. | 
|  | uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); | 
|  | Constant *Mask = | 
|  | ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits, | 
|  | TypeBits-ShAmtVal)); | 
|  |  | 
|  | Value *And = | 
|  | Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); | 
|  | return new ICmpInst(ICI.getPredicate(), And, | 
|  | ConstantInt::get(*Context, RHSV.lshr(ShAmtVal))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is a comparison of the sign bit, simplify to and/test. | 
|  | bool TrueIfSigned = false; | 
|  | if (LHSI->hasOneUse() && | 
|  | isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { | 
|  | // (X << 31) <s 0  --> (X&1) != 0 | 
|  | Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) << | 
|  | (TypeBits-ShAmt->getZExtValue()-1)); | 
|  | Value *And = | 
|  | Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); | 
|  | return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, | 
|  | And, Constant::getNullValue(And->getType())); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI) | 
|  | case Instruction::AShr: { | 
|  | // Only handle equality comparisons of shift-by-constant. | 
|  | ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); | 
|  | if (!ShAmt || !ICI.isEquality()) break; | 
|  |  | 
|  | // Check that the shift amount is in range.  If not, don't perform | 
|  | // undefined shifts.  When the shift is visited it will be | 
|  | // simplified. | 
|  | uint32_t TypeBits = RHSV.getBitWidth(); | 
|  | if (ShAmt->uge(TypeBits)) | 
|  | break; | 
|  |  | 
|  | uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); | 
|  |  | 
|  | // If we are comparing against bits always shifted out, the | 
|  | // comparison cannot succeed. | 
|  | APInt Comp = RHSV << ShAmtVal; | 
|  | if (LHSI->getOpcode() == Instruction::LShr) | 
|  | Comp = Comp.lshr(ShAmtVal); | 
|  | else | 
|  | Comp = Comp.ashr(ShAmtVal); | 
|  |  | 
|  | if (Comp != RHSV) { // Comparing against a bit that we know is zero. | 
|  | bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; | 
|  | Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE); | 
|  | return ReplaceInstUsesWith(ICI, Cst); | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if the bits shifted out are known to be zero. | 
|  | // If so, we can compare against the unshifted value: | 
|  | //  (X & 4) >> 1 == 2  --> (X & 4) == 4. | 
|  | if (LHSI->hasOneUse() && | 
|  | MaskedValueIsZero(LHSI->getOperand(0), | 
|  | APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) { | 
|  | return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), | 
|  | ConstantExpr::getShl(RHS, ShAmt)); | 
|  | } | 
|  |  | 
|  | if (LHSI->hasOneUse()) { | 
|  | // Otherwise strength reduce the shift into an and. | 
|  | APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); | 
|  | Constant *Mask = ConstantInt::get(*Context, Val); | 
|  |  | 
|  | Value *And = Builder->CreateAnd(LHSI->getOperand(0), | 
|  | Mask, LHSI->getName()+".mask"); | 
|  | return new ICmpInst(ICI.getPredicate(), And, | 
|  | ConstantExpr::getShl(RHS, ShAmt)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // Fold: icmp pred ([us]div X, C1), C2 -> range test | 
|  | // Fold this div into the comparison, producing a range check. | 
|  | // Determine, based on the divide type, what the range is being | 
|  | // checked.  If there is an overflow on the low or high side, remember | 
|  | // it, otherwise compute the range [low, hi) bounding the new value. | 
|  | // See: InsertRangeTest above for the kinds of replacements possible. | 
|  | if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) | 
|  | if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), | 
|  | DivRHS)) | 
|  | return R; | 
|  | break; | 
|  |  | 
|  | case Instruction::Add: | 
|  | // Fold: icmp pred (add, X, C1), C2 | 
|  |  | 
|  | if (!ICI.isEquality()) { | 
|  | ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); | 
|  | if (!LHSC) break; | 
|  | const APInt &LHSV = LHSC->getValue(); | 
|  |  | 
|  | ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) | 
|  | .subtract(LHSV); | 
|  |  | 
|  | if (ICI.isSignedPredicate()) { | 
|  | if (CR.getLower().isSignBit()) { | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, CR.getUpper())); | 
|  | } else if (CR.getUpper().isSignBit()) { | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, CR.getLower())); | 
|  | } | 
|  | } else { | 
|  | if (CR.getLower().isMinValue()) { | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, CR.getUpper())); | 
|  | } else if (CR.getUpper().isMinValue()) { | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), | 
|  | ConstantInt::get(*Context, CR.getLower())); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. | 
|  | if (ICI.isEquality()) { | 
|  | bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; | 
|  |  | 
|  | // If the first operand is (add|sub|and|or|xor|rem) with a constant, and | 
|  | // the second operand is a constant, simplify a bit. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::SRem: | 
|  | // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. | 
|  | if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ | 
|  | const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); | 
|  | if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) { | 
|  | Value *NewRem = | 
|  | Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), | 
|  | BO->getName()); | 
|  | return new ICmpInst(ICI.getPredicate(), NewRem, | 
|  | Constant::getNullValue(BO->getType())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. | 
|  | if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | if (BO->hasOneUse()) | 
|  | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), | 
|  | ConstantExpr::getSub(RHS, BOp1C)); | 
|  | } else if (RHSV == 0) { | 
|  | // Replace ((add A, B) != 0) with (A != -B) if A or B is | 
|  | // efficiently invertible, or if the add has just this one use. | 
|  | Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); | 
|  |  | 
|  | if (Value *NegVal = dyn_castNegVal(BOp1)) | 
|  | return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); | 
|  | else if (Value *NegVal = dyn_castNegVal(BOp0)) | 
|  | return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); | 
|  | else if (BO->hasOneUse()) { | 
|  | Value *Neg = Builder->CreateNeg(BOp1); | 
|  | Neg->takeName(BO); | 
|  | return new ICmpInst(ICI.getPredicate(), BOp0, Neg); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | // For the xor case, we can xor two constants together, eliminating | 
|  | // the explicit xor. | 
|  | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) | 
|  | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), | 
|  | ConstantExpr::getXor(RHS, BOC)); | 
|  |  | 
|  | // FALLTHROUGH | 
|  | case Instruction::Sub: | 
|  | // Replace (([sub|xor] A, B) != 0) with (A != B) | 
|  | if (RHSV == 0) | 
|  | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), | 
|  | BO->getOperand(1)); | 
|  | break; | 
|  |  | 
|  | case Instruction::Or: | 
|  | // If bits are being or'd in that are not present in the constant we | 
|  | // are comparing against, then the comparison could never succeed! | 
|  | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { | 
|  | Constant *NotCI = ConstantExpr::getNot(RHS); | 
|  | if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) | 
|  | return ReplaceInstUsesWith(ICI, | 
|  | ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | isICMP_NE)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::And: | 
|  | if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | // If bits are being compared against that are and'd out, then the | 
|  | // comparison can never succeed! | 
|  | if ((RHSV & ~BOC->getValue()) != 0) | 
|  | return ReplaceInstUsesWith(ICI, | 
|  | ConstantInt::get(Type::getInt1Ty(*Context), | 
|  | isICMP_NE)); | 
|  |  | 
|  | // If we have ((X & C) == C), turn it into ((X & C) != 0). | 
|  | if (RHS == BOC && RHSV.isPowerOf2()) | 
|  | return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : | 
|  | ICmpInst::ICMP_NE, LHSI, | 
|  | Constant::getNullValue(RHS->getType())); | 
|  |  | 
|  | // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 | 
|  | if (BOC->getValue().isSignBit()) { | 
|  | Value *X = BO->getOperand(0); | 
|  | Constant *Zero = Constant::getNullValue(X->getType()); | 
|  | ICmpInst::Predicate pred = isICMP_NE ? | 
|  | ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; | 
|  | return new ICmpInst(pred, X, Zero); | 
|  | } | 
|  |  | 
|  | // ((X & ~7) == 0) --> X < 8 | 
|  | if (RHSV == 0 && isHighOnes(BOC)) { | 
|  | Value *X = BO->getOperand(0); | 
|  | Constant *NegX = ConstantExpr::getNeg(BOC); | 
|  | ICmpInst::Predicate pred = isICMP_NE ? | 
|  | ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; | 
|  | return new ICmpInst(pred, X, NegX); | 
|  | } | 
|  | } | 
|  | default: break; | 
|  | } | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { | 
|  | // Handle icmp {eq|ne} <intrinsic>, intcst. | 
|  | if (II->getIntrinsicID() == Intrinsic::bswap) { | 
|  | Worklist.Add(II); | 
|  | ICI.setOperand(0, II->getOperand(1)); | 
|  | ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap())); | 
|  | return &ICI; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). | 
|  | /// We only handle extending casts so far. | 
|  | /// | 
|  | Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { | 
|  | const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); | 
|  | Value *LHSCIOp        = LHSCI->getOperand(0); | 
|  | const Type *SrcTy     = LHSCIOp->getType(); | 
|  | const Type *DestTy    = LHSCI->getType(); | 
|  | Value *RHSCIOp; | 
|  |  | 
|  | // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the | 
|  | // integer type is the same size as the pointer type. | 
|  | if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && | 
|  | TD->getPointerSizeInBits() == | 
|  | cast<IntegerType>(DestTy)->getBitWidth()) { | 
|  | Value *RHSOp = 0; | 
|  | if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { | 
|  | RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); | 
|  | } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { | 
|  | RHSOp = RHSC->getOperand(0); | 
|  | // If the pointer types don't match, insert a bitcast. | 
|  | if (LHSCIOp->getType() != RHSOp->getType()) | 
|  | RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); | 
|  | } | 
|  |  | 
|  | if (RHSOp) | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); | 
|  | } | 
|  |  | 
|  | // The code below only handles extension cast instructions, so far. | 
|  | // Enforce this. | 
|  | if (LHSCI->getOpcode() != Instruction::ZExt && | 
|  | LHSCI->getOpcode() != Instruction::SExt) | 
|  | return 0; | 
|  |  | 
|  | bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; | 
|  | bool isSignedCmp = ICI.isSignedPredicate(); | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { | 
|  | // Not an extension from the same type? | 
|  | RHSCIOp = CI->getOperand(0); | 
|  | if (RHSCIOp->getType() != LHSCIOp->getType()) | 
|  | return 0; | 
|  |  | 
|  | // If the signedness of the two casts doesn't agree (i.e. one is a sext | 
|  | // and the other is a zext), then we can't handle this. | 
|  | if (CI->getOpcode() != LHSCI->getOpcode()) | 
|  | return 0; | 
|  |  | 
|  | // Deal with equality cases early. | 
|  | if (ICI.isEquality()) | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); | 
|  |  | 
|  | // A signed comparison of sign extended values simplifies into a | 
|  | // signed comparison. | 
|  | if (isSignedCmp && isSignedExt) | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); | 
|  |  | 
|  | // The other three cases all fold into an unsigned comparison. | 
|  | return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); | 
|  | } | 
|  |  | 
|  | // If we aren't dealing with a constant on the RHS, exit early | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); | 
|  | if (!CI) | 
|  | return 0; | 
|  |  | 
|  | // Compute the constant that would happen if we truncated to SrcTy then | 
|  | // reextended to DestTy. | 
|  | Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); | 
|  | Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), | 
|  | Res1, DestTy); | 
|  |  | 
|  | // If the re-extended constant didn't change... | 
|  | if (Res2 == CI) { | 
|  | // Make sure that sign of the Cmp and the sign of the Cast are the same. | 
|  | // For example, we might have: | 
|  | //    %A = sext i16 %X to i32 | 
|  | //    %B = icmp ugt i32 %A, 1330 | 
|  | // It is incorrect to transform this into | 
|  | //    %B = icmp ugt i16 %X, 1330 | 
|  | // because %A may have negative value. | 
|  | // | 
|  | // However, we allow this when the compare is EQ/NE, because they are | 
|  | // signless. | 
|  | if (isSignedExt == isSignedCmp || ICI.isEquality()) | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The re-extended constant changed so the constant cannot be represented | 
|  | // in the shorter type. Consequently, we cannot emit a simple comparison. | 
|  |  | 
|  | // First, handle some easy cases. We know the result cannot be equal at this | 
|  | // point so handle the ICI.isEquality() cases | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context)); | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context)); | 
|  |  | 
|  | // Evaluate the comparison for LT (we invert for GT below). LE and GE cases | 
|  | // should have been folded away previously and not enter in here. | 
|  | Value *Result; | 
|  | if (isSignedCmp) { | 
|  | // We're performing a signed comparison. | 
|  | if (cast<ConstantInt>(CI)->getValue().isNegative()) | 
|  | Result = ConstantInt::getFalse(*Context);          // X < (small) --> false | 
|  | else | 
|  | Result = ConstantInt::getTrue(*Context);           // X < (large) --> true | 
|  | } else { | 
|  | // We're performing an unsigned comparison. | 
|  | if (isSignedExt) { | 
|  | // We're performing an unsigned comp with a sign extended value. | 
|  | // This is true if the input is >= 0. [aka >s -1] | 
|  | Constant *NegOne = Constant::getAllOnesValue(SrcTy); | 
|  | Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); | 
|  | } else { | 
|  | // Unsigned extend & unsigned compare -> always true. | 
|  | Result = ConstantInt::getTrue(*Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, return the value computed. | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_ULT || | 
|  | ICI.getPredicate() == ICmpInst::ICMP_SLT) | 
|  | return ReplaceInstUsesWith(ICI, Result); | 
|  |  | 
|  | assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || | 
|  | ICI.getPredicate()==ICmpInst::ICMP_SGT) && | 
|  | "ICmp should be folded!"); | 
|  | if (Constant *CI = dyn_cast<Constant>(Result)) | 
|  | return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); | 
|  | return BinaryOperator::CreateNot(Result); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitShl(BinaryOperator &I) { | 
|  | return commonShiftTransforms(I); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitLShr(BinaryOperator &I) { | 
|  | return commonShiftTransforms(I); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAShr(BinaryOperator &I) { | 
|  | if (Instruction *R = commonShiftTransforms(I)) | 
|  | return R; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0); | 
|  |  | 
|  | // ashr int -1, X = -1   (for any arithmetic shift rights of ~0) | 
|  | if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) | 
|  | if (CSI->isAllOnesValue()) | 
|  | return ReplaceInstUsesWith(I, CSI); | 
|  |  | 
|  | // See if we can turn a signed shr into an unsigned shr. | 
|  | if (MaskedValueIsZero(Op0, | 
|  | APInt::getSignBit(I.getType()->getScalarSizeInBits()))) | 
|  | return BinaryOperator::CreateLShr(Op0, I.getOperand(1)); | 
|  |  | 
|  | // Arithmetic shifting an all-sign-bit value is a no-op. | 
|  | unsigned NumSignBits = ComputeNumSignBits(Op0); | 
|  | if (NumSignBits == Op0->getType()->getScalarSizeInBits()) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { | 
|  | assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // shl X, 0 == X and shr X, 0 == X | 
|  | // shl 0, X == 0 and shr 0, X == 0 | 
|  | if (Op1 == Constant::getNullValue(Op1->getType()) || | 
|  | Op0 == Constant::getNullValue(Op0->getType())) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | if (isa<UndefValue>(Op0)) { | 
|  | if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | else                                    // undef << X -> 0, undef >>u X -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  | if (isa<UndefValue>(Op1)) { | 
|  | if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | else                                     // X << undef, X >>u undef -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  |  | 
|  | // See if we can fold away this shift. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (isa<Constant>(Op0)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) | 
|  | if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) | 
|  | return Res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, | 
|  | BinaryOperator &I) { | 
|  | bool isLeftShift = I.getOpcode() == Instruction::Shl; | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate | 
|  | // a signed shift. | 
|  | // | 
|  | if (Op1->uge(TypeBits)) { | 
|  | if (I.getOpcode() != Instruction::AShr) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); | 
|  | else { | 
|  | I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ((X*C1) << C2) == (X * (C1 << C2)) | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (BO->getOpcode() == Instruction::Mul && isLeftShift) | 
|  | if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) | 
|  | return BinaryOperator::CreateMul(BO->getOperand(0), | 
|  | ConstantExpr::getShl(BOOp, Op1)); | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { | 
|  | Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); | 
|  | // If 'shift2' is an ashr, we would have to get the sign bit into a funny | 
|  | // place.  Don't try to do this transformation in this case.  Also, we | 
|  | // require that the input operand is a shift-by-constant so that we have | 
|  | // confidence that the shifts will get folded together.  We could do this | 
|  | // xform in more cases, but it is unlikely to be profitable. | 
|  | if (TrOp && I.isLogicalShift() && TrOp->isShift() && | 
|  | isa<ConstantInt>(TrOp->getOperand(1))) { | 
|  | // Okay, we'll do this xform.  Make the shift of shift. | 
|  | Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); | 
|  | // (shift2 (shift1 & 0x00FF), c2) | 
|  | Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); | 
|  |  | 
|  | // For logical shifts, the truncation has the effect of making the high | 
|  | // part of the register be zeros.  Emulate this by inserting an AND to | 
|  | // clear the top bits as needed.  This 'and' will usually be zapped by | 
|  | // other xforms later if dead. | 
|  | unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); | 
|  | unsigned DstSize = TI->getType()->getScalarSizeInBits(); | 
|  | APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); | 
|  |  | 
|  | // The mask we constructed says what the trunc would do if occurring | 
|  | // between the shifts.  We want to know the effect *after* the second | 
|  | // shift.  We know that it is a logical shift by a constant, so adjust the | 
|  | // mask as appropriate. | 
|  | if (I.getOpcode() == Instruction::Shl) | 
|  | MaskV <<= Op1->getZExtValue(); | 
|  | else { | 
|  | assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); | 
|  | MaskV = MaskV.lshr(Op1->getZExtValue()); | 
|  | } | 
|  |  | 
|  | // shift1 & 0x00FF | 
|  | Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV), | 
|  | TI->getName()); | 
|  |  | 
|  | // Return the value truncated to the interesting size. | 
|  | return new TruncInst(And, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op0->hasOneUse()) { | 
|  | if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { | 
|  | // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | Value *V1, *V2; | 
|  | ConstantInt *CC; | 
|  | switch (Op0BO->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Add: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: { | 
|  | // These operators commute. | 
|  | // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && | 
|  | match(Op0BO->getOperand(1), m_Shr(m_Value(V1), | 
|  | m_Specific(Op1)))) { | 
|  | Value *YS =         // (Y << C) | 
|  | Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); | 
|  | // (X + (Y << C)) | 
|  | Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, | 
|  | Op0BO->getOperand(1)->getName()); | 
|  | uint32_t Op1Val = Op1->getLimitedValue(TypeBits); | 
|  | return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, | 
|  | APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); | 
|  | } | 
|  |  | 
|  | // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C)) | 
|  | Value *Op0BOOp1 = Op0BO->getOperand(1); | 
|  | if (isLeftShift && Op0BOOp1->hasOneUse() && | 
|  | match(Op0BOOp1, | 
|  | m_And(m_Shr(m_Value(V1), m_Specific(Op1)), | 
|  | m_ConstantInt(CC))) && | 
|  | cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { | 
|  | Value *YS =   // (Y << C) | 
|  | Builder->CreateShl(Op0BO->getOperand(0), Op1, | 
|  | Op0BO->getName()); | 
|  | // X & (CC << C) | 
|  | Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), | 
|  | V1->getName()+".mask"); | 
|  | return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FALL THROUGH. | 
|  | case Instruction::Sub: { | 
|  | // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && | 
|  | match(Op0BO->getOperand(0), m_Shr(m_Value(V1), | 
|  | m_Specific(Op1)))) { | 
|  | Value *YS =  // (Y << C) | 
|  | Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); | 
|  | // (X + (Y << C)) | 
|  | Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, | 
|  | Op0BO->getOperand(0)->getName()); | 
|  | uint32_t Op1Val = Op1->getLimitedValue(TypeBits); | 
|  | return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, | 
|  | APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); | 
|  | } | 
|  |  | 
|  | // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C) | 
|  | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && | 
|  | match(Op0BO->getOperand(0), | 
|  | m_And(m_Shr(m_Value(V1), m_Value(V2)), | 
|  | m_ConstantInt(CC))) && V2 == Op1 && | 
|  | cast<BinaryOperator>(Op0BO->getOperand(0)) | 
|  | ->getOperand(0)->hasOneUse()) { | 
|  | Value *YS = // (Y << C) | 
|  | Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); | 
|  | // X & (CC << C) | 
|  | Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), | 
|  | V1->getName()+".mask"); | 
|  |  | 
|  | return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If the operand is an bitwise operator with a constant RHS, and the | 
|  | // shift is the only use, we can pull it out of the shift. | 
|  | if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { | 
|  | bool isValid = true;     // Valid only for And, Or, Xor | 
|  | bool highBitSet = false; // Transform if high bit of constant set? | 
|  |  | 
|  | switch (Op0BO->getOpcode()) { | 
|  | default: isValid = false; break;   // Do not perform transform! | 
|  | case Instruction::Add: | 
|  | isValid = isLeftShift; | 
|  | break; | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | highBitSet = false; | 
|  | break; | 
|  | case Instruction::And: | 
|  | highBitSet = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a signed shift right, and the high bit is modified | 
|  | // by the logical operation, do not perform the transformation. | 
|  | // The highBitSet boolean indicates the value of the high bit of | 
|  | // the constant which would cause it to be modified for this | 
|  | // operation. | 
|  | // | 
|  | if (isValid && I.getOpcode() == Instruction::AShr) | 
|  | isValid = Op0C->getValue()[TypeBits-1] == highBitSet; | 
|  |  | 
|  | if (isValid) { | 
|  | Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); | 
|  |  | 
|  | Value *NewShift = | 
|  | Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); | 
|  | NewShift->takeName(Op0BO); | 
|  |  | 
|  | return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, | 
|  | NewRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find out if this is a shift of a shift by a constant. | 
|  | BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); | 
|  | if (ShiftOp && !ShiftOp->isShift()) | 
|  | ShiftOp = 0; | 
|  |  | 
|  | if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { | 
|  | ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); | 
|  | uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); | 
|  | uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); | 
|  | assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); | 
|  | if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future. | 
|  | Value *X = ShiftOp->getOperand(0); | 
|  |  | 
|  | uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift. | 
|  |  | 
|  | const IntegerType *Ty = cast<IntegerType>(I.getType()); | 
|  |  | 
|  | // Check for (X << c1) << c2  and  (X >> c1) >> c2 | 
|  | if (I.getOpcode() == ShiftOp->getOpcode()) { | 
|  | // If this is oversized composite shift, then unsigned shifts get 0, ashr | 
|  | // saturates. | 
|  | if (AmtSum >= TypeBits) { | 
|  | if (I.getOpcode() != Instruction::AShr) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr. | 
|  | } | 
|  |  | 
|  | return BinaryOperator::Create(I.getOpcode(), X, | 
|  | ConstantInt::get(Ty, AmtSum)); | 
|  | } | 
|  |  | 
|  | if (ShiftOp->getOpcode() == Instruction::LShr && | 
|  | I.getOpcode() == Instruction::AShr) { | 
|  | if (AmtSum >= TypeBits) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0. | 
|  | return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); | 
|  | } | 
|  |  | 
|  | if (ShiftOp->getOpcode() == Instruction::AShr && | 
|  | I.getOpcode() == Instruction::LShr) { | 
|  | // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. | 
|  | if (AmtSum >= TypeBits) | 
|  | AmtSum = TypeBits-1; | 
|  |  | 
|  | Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum)); | 
|  |  | 
|  | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); | 
|  | return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  |  | 
|  | // Okay, if we get here, one shift must be left, and the other shift must be | 
|  | // right.  See if the amounts are equal. | 
|  | if (ShiftAmt1 == ShiftAmt2) { | 
|  | // If we have ((X >>? C) << C), turn this into X & (-1 << C). | 
|  | if (I.getOpcode() == Instruction::Shl) { | 
|  | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); | 
|  | return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  | // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). | 
|  | if (I.getOpcode() == Instruction::LShr) { | 
|  | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); | 
|  | return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  | // We can simplify ((X << C) >>s C) into a trunc + sext. | 
|  | // NOTE: we could do this for any C, but that would make 'unusual' integer | 
|  | // types.  For now, just stick to ones well-supported by the code | 
|  | // generators. | 
|  | const Type *SExtType = 0; | 
|  | switch (Ty->getBitWidth() - ShiftAmt1) { | 
|  | case 1  : | 
|  | case 8  : | 
|  | case 16 : | 
|  | case 32 : | 
|  | case 64 : | 
|  | case 128: | 
|  | SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1); | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  | if (SExtType) | 
|  | return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty); | 
|  | // Otherwise, we can't handle it yet. | 
|  | } else if (ShiftAmt1 < ShiftAmt2) { | 
|  | uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; | 
|  |  | 
|  | // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) | 
|  | if (I.getOpcode() == Instruction::Shl) { | 
|  | assert(ShiftOp->getOpcode() == Instruction::LShr || | 
|  | ShiftOp->getOpcode() == Instruction::AShr); | 
|  | Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); | 
|  |  | 
|  | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); | 
|  | return BinaryOperator::CreateAnd(Shift, | 
|  | ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  |  | 
|  | // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2) | 
|  | if (I.getOpcode() == Instruction::LShr) { | 
|  | assert(ShiftOp->getOpcode() == Instruction::Shl); | 
|  | Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); | 
|  |  | 
|  | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); | 
|  | return BinaryOperator::CreateAnd(Shift, | 
|  | ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  |  | 
|  | // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. | 
|  | } else { | 
|  | assert(ShiftAmt2 < ShiftAmt1); | 
|  | uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; | 
|  |  | 
|  | // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) | 
|  | if (I.getOpcode() == Instruction::Shl) { | 
|  | assert(ShiftOp->getOpcode() == Instruction::LShr || | 
|  | ShiftOp->getOpcode() == Instruction::AShr); | 
|  | Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X, | 
|  | ConstantInt::get(Ty, ShiftDiff)); | 
|  |  | 
|  | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); | 
|  | return BinaryOperator::CreateAnd(Shift, | 
|  | ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  |  | 
|  | // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2) | 
|  | if (I.getOpcode() == Instruction::LShr) { | 
|  | assert(ShiftOp->getOpcode() == Instruction::Shl); | 
|  | Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); | 
|  |  | 
|  | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); | 
|  | return BinaryOperator::CreateAnd(Shift, | 
|  | ConstantInt::get(*Context, Mask)); | 
|  | } | 
|  |  | 
|  | // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear | 
|  | /// expression.  If so, decompose it, returning some value X, such that Val is | 
|  | /// X*Scale+Offset. | 
|  | /// | 
|  | static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, | 
|  | int &Offset, LLVMContext *Context) { | 
|  | assert(Val->getType() == Type::getInt32Ty(*Context) && | 
|  | "Unexpected allocation size type!"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | Offset = CI->getZExtValue(); | 
|  | Scale  = 0; | 
|  | return ConstantInt::get(Type::getInt32Ty(*Context), 0); | 
|  | } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // This is a value scaled by '1 << the shift amt'. | 
|  | Scale = 1U << RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } else if (I->getOpcode() == Instruction::Mul) { | 
|  | // This value is scaled by 'RHS'. | 
|  | Scale = RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } else if (I->getOpcode() == Instruction::Add) { | 
|  | // We have X+C.  Check to see if we really have (X*C2)+C1, | 
|  | // where C1 is divisible by C2. | 
|  | unsigned SubScale; | 
|  | Value *SubVal = | 
|  | DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, | 
|  | Offset, Context); | 
|  | Offset += RHS->getZExtValue(); | 
|  | Scale = SubScale; | 
|  | return SubVal; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't look past this. | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, | 
|  | /// try to eliminate the cast by moving the type information into the alloc. | 
|  | Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, | 
|  | AllocationInst &AI) { | 
|  | const PointerType *PTy = cast<PointerType>(CI.getType()); | 
|  |  | 
|  | BuilderTy AllocaBuilder(*Builder); | 
|  | AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); | 
|  |  | 
|  | // Remove any uses of AI that are dead. | 
|  | assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); | 
|  |  | 
|  | for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { | 
|  | Instruction *User = cast<Instruction>(*UI++); | 
|  | if (isInstructionTriviallyDead(User)) { | 
|  | while (UI != E && *UI == User) | 
|  | ++UI; // If this instruction uses AI more than once, don't break UI. | 
|  |  | 
|  | ++NumDeadInst; | 
|  | DEBUG(errs() << "IC: DCE: " << *User << '\n'); | 
|  | EraseInstFromFunction(*User); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This requires TargetData to get the alloca alignment and size information. | 
|  | if (!TD) return 0; | 
|  |  | 
|  | // Get the type really allocated and the type casted to. | 
|  | const Type *AllocElTy = AI.getAllocatedType(); | 
|  | const Type *CastElTy = PTy->getElementType(); | 
|  | if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; | 
|  |  | 
|  | unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); | 
|  | unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); | 
|  | if (CastElTyAlign < AllocElTyAlign) return 0; | 
|  |  | 
|  | // If the allocation has multiple uses, only promote it if we are strictly | 
|  | // increasing the alignment of the resultant allocation.  If we keep it the | 
|  | // same, we open the door to infinite loops of various kinds.  (A reference | 
|  | // from a dbg.declare doesn't count as a use for this purpose.) | 
|  | if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) && | 
|  | CastElTyAlign == AllocElTyAlign) return 0; | 
|  |  | 
|  | uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); | 
|  | uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); | 
|  | if (CastElTySize == 0 || AllocElTySize == 0) return 0; | 
|  |  | 
|  | // See if we can satisfy the modulus by pulling a scale out of the array | 
|  | // size argument. | 
|  | unsigned ArraySizeScale; | 
|  | int ArrayOffset; | 
|  | Value *NumElements = // See if the array size is a decomposable linear expr. | 
|  | DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, | 
|  | ArrayOffset, Context); | 
|  |  | 
|  | // If we can now satisfy the modulus, by using a non-1 scale, we really can | 
|  | // do the xform. | 
|  | if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || | 
|  | (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0; | 
|  |  | 
|  | unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; | 
|  | Value *Amt = 0; | 
|  | if (Scale == 1) { | 
|  | Amt = NumElements; | 
|  | } else { | 
|  | Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale); | 
|  | // Insert before the alloca, not before the cast. | 
|  | Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp"); | 
|  | } | 
|  |  | 
|  | if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { | 
|  | Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true); | 
|  | Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp"); | 
|  | } | 
|  |  | 
|  | AllocationInst *New; | 
|  | if (isa<MallocInst>(AI)) | 
|  | New = AllocaBuilder.CreateMalloc(CastElTy, Amt); | 
|  | else | 
|  | New = AllocaBuilder.CreateAlloca(CastElTy, Amt); | 
|  | New->setAlignment(AI.getAlignment()); | 
|  | New->takeName(&AI); | 
|  |  | 
|  | // If the allocation has one real use plus a dbg.declare, just remove the | 
|  | // declare. | 
|  | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) { | 
|  | EraseInstFromFunction(*DI); | 
|  | } | 
|  | // If the allocation has multiple real uses, insert a cast and change all | 
|  | // things that used it to use the new cast.  This will also hack on CI, but it | 
|  | // will die soon. | 
|  | else if (!AI.hasOneUse()) { | 
|  | // New is the allocation instruction, pointer typed. AI is the original | 
|  | // allocation instruction, also pointer typed. Thus, cast to use is BitCast. | 
|  | Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); | 
|  | AI.replaceAllUsesWith(NewCast); | 
|  | } | 
|  | return ReplaceInstUsesWith(CI, New); | 
|  | } | 
|  |  | 
|  | /// CanEvaluateInDifferentType - Return true if we can take the specified value | 
|  | /// and return it as type Ty without inserting any new casts and without | 
|  | /// changing the computed value.  This is used by code that tries to decide | 
|  | /// whether promoting or shrinking integer operations to wider or smaller types | 
|  | /// will allow us to eliminate a truncate or extend. | 
|  | /// | 
|  | /// This is a truncation operation if Ty is smaller than V->getType(), or an | 
|  | /// extension operation if Ty is larger. | 
|  | /// | 
|  | /// If CastOpc is a truncation, then Ty will be a type smaller than V.  We | 
|  | /// should return true if trunc(V) can be computed by computing V in the smaller | 
|  | /// type.  If V is an instruction, then trunc(inst(x,y)) can be computed as | 
|  | /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be | 
|  | /// efficiently truncated. | 
|  | /// | 
|  | /// If CastOpc is a sext or zext, we are asking if the low bits of the value can | 
|  | /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get | 
|  | /// the final result. | 
|  | bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | unsigned CastOpc, | 
|  | int &NumCastsRemoved){ | 
|  | // We can always evaluate constants in another type. | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | const Type *OrigTy = V->getType(); | 
|  |  | 
|  | // If this is an extension or truncate, we can often eliminate it. | 
|  | if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) { | 
|  | // If this is a cast from the destination type, we can trivially eliminate | 
|  | // it, and this will remove a cast overall. | 
|  | if (I->getOperand(0)->getType() == Ty) { | 
|  | // If the first operand is itself a cast, and is eliminable, do not count | 
|  | // this as an eliminable cast.  We would prefer to eliminate those two | 
|  | // casts first. | 
|  | if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse()) | 
|  | ++NumCastsRemoved; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't extend or shrink something that has multiple uses: doing so would | 
|  | // require duplicating the instruction in general, which isn't profitable. | 
|  | if (!I->hasOneUse()) return false; | 
|  |  | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // These operators can all arbitrarily be extended or truncated. | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, | 
|  | NumCastsRemoved) && | 
|  | CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, | 
|  | NumCastsRemoved); | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | // UDiv and URem can be truncated if all the truncated bits are zero. | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (BitWidth < OrigBitWidth) { | 
|  | APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); | 
|  | if (MaskedValueIsZero(I->getOperand(0), Mask) && | 
|  | MaskedValueIsZero(I->getOperand(1), Mask)) { | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, | 
|  | NumCastsRemoved) && | 
|  | CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, | 
|  | NumCastsRemoved); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Shl: | 
|  | // If we are truncating the result of this SHL, and if it's a shift of a | 
|  | // constant amount, we can always perform a SHL in a smaller type. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (BitWidth < OrigTy->getScalarSizeInBits() && | 
|  | CI->getLimitedValue(BitWidth) < BitWidth) | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, | 
|  | NumCastsRemoved); | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // If this is a truncate of a logical shr, we can truncate it to a smaller | 
|  | // lshr iff we know that the bits we would otherwise be shifting in are | 
|  | // already zeros. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (BitWidth < OrigBitWidth && | 
|  | MaskedValueIsZero(I->getOperand(0), | 
|  | APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && | 
|  | CI->getLimitedValue(BitWidth) < BitWidth) { | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, | 
|  | NumCastsRemoved); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::Trunc: | 
|  | // If this is the same kind of case as our original (e.g. zext+zext), we | 
|  | // can safely replace it.  Note that replacing it does not reduce the number | 
|  | // of casts in the input. | 
|  | if (Opc == CastOpc) | 
|  | return true; | 
|  |  | 
|  | // sext (zext ty1), ty2 -> zext ty2 | 
|  | if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt) | 
|  | return true; | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | SelectInst *SI = cast<SelectInst>(I); | 
|  | return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc, | 
|  | NumCastsRemoved) && | 
|  | CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc, | 
|  | NumCastsRemoved); | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc, | 
|  | NumCastsRemoved)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// EvaluateInDifferentType - Given an expression that | 
|  | /// CanEvaluateInDifferentType returns true for, actually insert the code to | 
|  | /// evaluate the expression. | 
|  | Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | bool isSigned) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getIntegerCast(C, Ty, | 
|  | isSigned /*Sext or ZExt*/); | 
|  |  | 
|  | // Otherwise, it must be an instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | Instruction *Res = 0; | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); | 
|  | Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // If the source type of the cast is the type we're trying for then we can | 
|  | // just return the source.  There's no need to insert it because it is not | 
|  | // new. | 
|  | if (I->getOperand(0)->getType() == Ty) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | // Otherwise, must be the same type of cast, so just reinsert a new one. | 
|  | Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0), | 
|  | Ty); | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); | 
|  | Res = SelectInst::Create(I->getOperand(0), True, False); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | PHINode *OPN = cast<PHINode>(I); | 
|  | PHINode *NPN = PHINode::Create(Ty); | 
|  | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); | 
|  | NPN->addIncoming(V, OPN->getIncomingBlock(i)); | 
|  | } | 
|  | Res = NPN; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | llvm_unreachable("Unreachable!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Res->takeName(I); | 
|  | return InsertNewInstBefore(Res, *I); | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms common to all CastInst visitors. | 
|  | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // Many cases of "cast of a cast" are eliminable. If it's eliminable we just | 
|  | // eliminate it now. | 
|  | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast | 
|  | if (Instruction::CastOps opc = | 
|  | isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { | 
|  | // The first cast (CSrc) is eliminable so we need to fix up or replace | 
|  | // the second cast (CI). CSrc will then have a good chance of being dead. | 
|  | return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are casting a select then fold the cast into the select | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) | 
|  | return NV; | 
|  |  | 
|  | // If we are casting a PHI then fold the cast into the PHI | 
|  | if (isa<PHINode>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(CI)) | 
|  | return NV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FindElementAtOffset - Given a type and a constant offset, determine whether | 
|  | /// or not there is a sequence of GEP indices into the type that will land us at | 
|  | /// the specified offset.  If so, fill them into NewIndices and return the | 
|  | /// resultant element type, otherwise return null. | 
|  | static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, | 
|  | SmallVectorImpl<Value*> &NewIndices, | 
|  | const TargetData *TD, | 
|  | LLVMContext *Context) { | 
|  | if (!TD) return 0; | 
|  | if (!Ty->isSized()) return 0; | 
|  |  | 
|  | // Start with the index over the outer type.  Note that the type size | 
|  | // might be zero (even if the offset isn't zero) if the indexed type | 
|  | // is something like [0 x {int, int}] | 
|  | const Type *IntPtrTy = TD->getIntPtrType(*Context); | 
|  | int64_t FirstIdx = 0; | 
|  | if (int64_t TySize = TD->getTypeAllocSize(Ty)) { | 
|  | FirstIdx = Offset/TySize; | 
|  | Offset -= FirstIdx*TySize; | 
|  |  | 
|  | // Handle hosts where % returns negative instead of values [0..TySize). | 
|  | if (Offset < 0) { | 
|  | --FirstIdx; | 
|  | Offset += TySize; | 
|  | assert(Offset >= 0); | 
|  | } | 
|  | assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); | 
|  | } | 
|  |  | 
|  | NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); | 
|  |  | 
|  | // Index into the types.  If we fail, set OrigBase to null. | 
|  | while (Offset) { | 
|  | // Indexing into tail padding between struct/array elements. | 
|  | if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) | 
|  | return 0; | 
|  |  | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | const StructLayout *SL = TD->getStructLayout(STy); | 
|  | assert(Offset < (int64_t)SL->getSizeInBytes() && | 
|  | "Offset must stay within the indexed type"); | 
|  |  | 
|  | unsigned Elt = SL->getElementContainingOffset(Offset); | 
|  | NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt)); | 
|  |  | 
|  | Offset -= SL->getElementOffset(Elt); | 
|  | Ty = STy->getElementType(Elt); | 
|  | } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { | 
|  | uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); | 
|  | assert(EltSize && "Cannot index into a zero-sized array"); | 
|  | NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); | 
|  | Offset %= EltSize; | 
|  | Ty = AT->getElementType(); | 
|  | } else { | 
|  | // Otherwise, we can't index into the middle of this atomic type, bail. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) | 
|  | Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { | 
|  | // If casting the result of a getelementptr instruction with no offset, turn | 
|  | // this into a cast of the original pointer! | 
|  | if (GEP->hasAllZeroIndices()) { | 
|  | // Changing the cast operand is usually not a good idea but it is safe | 
|  | // here because the pointer operand is being replaced with another | 
|  | // pointer operand so the opcode doesn't need to change. | 
|  | Worklist.Add(GEP); | 
|  | CI.setOperand(0, GEP->getOperand(0)); | 
|  | return &CI; | 
|  | } | 
|  |  | 
|  | // If the GEP has a single use, and the base pointer is a bitcast, and the | 
|  | // GEP computes a constant offset, see if we can convert these three | 
|  | // instructions into fewer.  This typically happens with unions and other | 
|  | // non-type-safe code. | 
|  | if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) { | 
|  | if (GEP->hasAllConstantIndices()) { | 
|  | // We are guaranteed to get a constant from EmitGEPOffset. | 
|  | ConstantInt *OffsetV = | 
|  | cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this)); | 
|  | int64_t Offset = OffsetV->getSExtValue(); | 
|  |  | 
|  | // Get the base pointer input of the bitcast, and the type it points to. | 
|  | Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); | 
|  | const Type *GEPIdxTy = | 
|  | cast<PointerType>(OrigBase->getType())->getElementType(); | 
|  | SmallVector<Value*, 8> NewIndices; | 
|  | if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD, Context)) { | 
|  | // If we were able to index down into an element, create the GEP | 
|  | // and bitcast the result.  This eliminates one bitcast, potentially | 
|  | // two. | 
|  | Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? | 
|  | Builder->CreateInBoundsGEP(OrigBase, | 
|  | NewIndices.begin(), NewIndices.end()) : | 
|  | Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end()); | 
|  | NGEP->takeName(GEP); | 
|  |  | 
|  | if (isa<BitCastInst>(CI)) | 
|  | return new BitCastInst(NGEP, CI.getType()); | 
|  | assert(isa<PtrToIntInst>(CI)); | 
|  | return new PtrToIntInst(NGEP, CI.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | /// isSafeIntegerType - Return true if this is a basic integer type, not a crazy | 
|  | /// type like i42.  We don't want to introduce operations on random non-legal | 
|  | /// integer types where they don't already exist in the code.  In the future, | 
|  | /// we should consider making this based off target-data, so that 32-bit targets | 
|  | /// won't get i64 operations etc. | 
|  | static bool isSafeIntegerType(const Type *Ty) { | 
|  | switch (Ty->getPrimitiveSizeInBits()) { | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// commonIntCastTransforms - This function implements the common transforms | 
|  | /// for trunc, zext, and sext. | 
|  | Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | const Type *DestTy = CI.getType(); | 
|  | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // See if we can simplify any instructions used by the LHS whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(CI)) | 
|  | return &CI; | 
|  |  | 
|  | // If the source isn't an instruction or has more than one use then we | 
|  | // can't do anything more. | 
|  | Instruction *SrcI = dyn_cast<Instruction>(Src); | 
|  | if (!SrcI || !Src->hasOneUse()) | 
|  | return 0; | 
|  |  | 
|  | // Attempt to propagate the cast into the instruction for int->int casts. | 
|  | int NumCastsRemoved = 0; | 
|  | // Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | if ((isSafeIntegerType(DestTy->getScalarType()) || | 
|  | !isSafeIntegerType(SrcI->getType()->getScalarType())) && | 
|  | CanEvaluateInDifferentType(SrcI, DestTy, | 
|  | CI.getOpcode(), NumCastsRemoved)) { | 
|  | // If this cast is a truncate, evaluting in a different type always | 
|  | // eliminates the cast, so it is always a win.  If this is a zero-extension, | 
|  | // we need to do an AND to maintain the clear top-part of the computation, | 
|  | // so we require that the input have eliminated at least one cast.  If this | 
|  | // is a sign extension, we insert two new casts (to do the extension) so we | 
|  | // require that two casts have been eliminated. | 
|  | bool DoXForm = false; | 
|  | bool JustReplace = false; | 
|  | switch (CI.getOpcode()) { | 
|  | default: | 
|  | // All the others use floating point so we shouldn't actually | 
|  | // get here because of the check above. | 
|  | llvm_unreachable("Unknown cast type"); | 
|  | case Instruction::Trunc: | 
|  | DoXForm = true; | 
|  | break; | 
|  | case Instruction::ZExt: { | 
|  | DoXForm = NumCastsRemoved >= 1; | 
|  | if (!DoXForm && 0) { | 
|  | // If it's unnecessary to issue an AND to clear the high bits, it's | 
|  | // always profitable to do this xform. | 
|  | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false); | 
|  | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); | 
|  | if (MaskedValueIsZero(TryRes, Mask)) | 
|  | return ReplaceInstUsesWith(CI, TryRes); | 
|  |  | 
|  | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) | 
|  | if (TryI->use_empty()) | 
|  | EraseInstFromFunction(*TryI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | DoXForm = NumCastsRemoved >= 2; | 
|  | if (!DoXForm && !isa<TruncInst>(SrcI) && 0) { | 
|  | // If we do not have to emit the truncate + sext pair, then it's always | 
|  | // profitable to do this xform. | 
|  | // | 
|  | // It's not safe to eliminate the trunc + sext pair if one of the | 
|  | // eliminated cast is a truncate. e.g. | 
|  | // t2 = trunc i32 t1 to i16 | 
|  | // t3 = sext i16 t2 to i32 | 
|  | // != | 
|  | // i32 t1 | 
|  | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true); | 
|  | unsigned NumSignBits = ComputeNumSignBits(TryRes); | 
|  | if (NumSignBits > (DestBitSize - SrcBitSize)) | 
|  | return ReplaceInstUsesWith(CI, TryRes); | 
|  |  | 
|  | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) | 
|  | if (TryI->use_empty()) | 
|  | EraseInstFromFunction(*TryI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DoXForm) { | 
|  | DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid cast: " << CI); | 
|  | Value *Res = EvaluateInDifferentType(SrcI, DestTy, | 
|  | CI.getOpcode() == Instruction::SExt); | 
|  | if (JustReplace) | 
|  | // Just replace this cast with the result. | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  |  | 
|  | assert(Res->getType() == DestTy); | 
|  | switch (CI.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown cast type!"); | 
|  | case Instruction::Trunc: | 
|  | // Just replace this cast with the result. | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | case Instruction::ZExt: { | 
|  | assert(SrcBitSize < DestBitSize && "Not a zext?"); | 
|  |  | 
|  | // If the high bits are already zero, just replace this cast with the | 
|  | // result. | 
|  | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); | 
|  | if (MaskedValueIsZero(Res, Mask)) | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit an AND to clear the high bits. | 
|  | Constant *C = ConstantInt::get(*Context, | 
|  | APInt::getLowBitsSet(DestBitSize, SrcBitSize)); | 
|  | return BinaryOperator::CreateAnd(Res, C); | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // If the high bits are already filled with sign bit, just replace this | 
|  | // cast with the result. | 
|  | unsigned NumSignBits = ComputeNumSignBits(Res); | 
|  | if (NumSignBits > (DestBitSize - SrcBitSize)) | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit a cast to truncate, then a cast to sext. | 
|  | return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; | 
|  | Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; | 
|  |  | 
|  | switch (SrcI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // If we are discarding information, rewrite. | 
|  | if (DestBitSize < SrcBitSize && DestBitSize != 1) { | 
|  | // Don't insert two casts unless at least one can be eliminated. | 
|  | if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || | 
|  | !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { | 
|  | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); | 
|  | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); | 
|  | return BinaryOperator::Create( | 
|  | cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); | 
|  | } | 
|  | } | 
|  |  | 
|  | // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1 | 
|  | if (isa<ZExtInst>(CI) && SrcBitSize == 1 && | 
|  | SrcI->getOpcode() == Instruction::Xor && | 
|  | Op1 == ConstantInt::getTrue(*Context) && | 
|  | (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) { | 
|  | Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName()); | 
|  | return BinaryOperator::CreateXor(New, | 
|  | ConstantInt::get(CI.getType(), 1)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | // Canonicalize trunc inside shl, if we can. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(Op1); | 
|  | if (CI && DestBitSize < SrcBitSize && | 
|  | CI->getLimitedValue(DestBitSize) < DestBitSize) { | 
|  | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); | 
|  | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); | 
|  | return BinaryOperator::CreateShl(Op0c, Op1c); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitTrunc(TruncInst &CI) { | 
|  | if (Instruction *Result = commonIntCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *Ty = CI.getType(); | 
|  | uint32_t DestBitWidth = Ty->getScalarSizeInBits(); | 
|  | uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0) | 
|  | if (DestBitWidth == 1) { | 
|  | Constant *One = ConstantInt::get(Src->getType(), 1); | 
|  | Src = Builder->CreateAnd(Src, One, "tmp"); | 
|  | Value *Zero = Constant::getNullValue(Src->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); | 
|  | } | 
|  |  | 
|  | // Optimize trunc(lshr(), c) to pull the shift through the truncate. | 
|  | ConstantInt *ShAmtV = 0; | 
|  | Value *ShiftOp = 0; | 
|  | if (Src->hasOneUse() && | 
|  | match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) { | 
|  | uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); | 
|  |  | 
|  | // Get a mask for the bits shifting in. | 
|  | APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); | 
|  | if (MaskedValueIsZero(ShiftOp, Mask)) { | 
|  | if (ShAmt >= DestBitWidth)        // All zeros. | 
|  | return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); | 
|  |  | 
|  | // Okay, we can shrink this.  Truncate the input, then return a new | 
|  | // shift. | 
|  | Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName()); | 
|  | Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty); | 
|  | return BinaryOperator::CreateLShr(V1, V2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations | 
|  | /// in order to eliminate the icmp. | 
|  | Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, | 
|  | bool DoXform) { | 
|  | // If we are just checking for a icmp eq of a single bit and zext'ing it | 
|  | // to an integer, then shift the bit to the appropriate place and then | 
|  | // cast to integer to avoid the comparison. | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | 
|  | const APInt &Op1CV = Op1C->getValue(); | 
|  |  | 
|  | // zext (x <s  0) to i32 --> x>>u31      true if signbit set. | 
|  | // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear. | 
|  | if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || | 
|  | (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { | 
|  | if (!DoXform) return ICI; | 
|  |  | 
|  | Value *In = ICI->getOperand(0); | 
|  | Value *Sh = ConstantInt::get(In->getType(), | 
|  | In->getType()->getScalarSizeInBits()-1); | 
|  | In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); | 
|  | if (In->getType() != CI.getType()) | 
|  | In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp"); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder->CreateXor(In, One, In->getName()+".not"); | 
|  | } | 
|  |  | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // zext (X == 0) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | // zext (X == 1) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 0) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 1) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | if ((Op1CV == 0 || Op1CV.isPowerOf2()) && | 
|  | // This only works for EQ and NE | 
|  | ICI->isEquality()) { | 
|  | // If Op1C some other power of two, convert: | 
|  | uint32_t BitWidth = Op1C->getType()->getBitWidth(); | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); | 
|  | ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); | 
|  |  | 
|  | APInt KnownZeroMask(~KnownZero); | 
|  | if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? | 
|  | if (!DoXform) return ICI; | 
|  |  | 
|  | bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; | 
|  | if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { | 
|  | // (X&4) == 2 --> false | 
|  | // (X&4) != 2 --> true | 
|  | Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE); | 
|  | Res = ConstantExpr::getZExt(Res, CI.getType()); | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | uint32_t ShiftAmt = KnownZeroMask.logBase2(); | 
|  | Value *In = ICI->getOperand(0); | 
|  | if (ShiftAmt) { | 
|  | // Perform a logical shr by shiftamt. | 
|  | // Insert the shift to put the result in the low bit. | 
|  | In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), | 
|  | In->getName()+".lobit"); | 
|  | } | 
|  |  | 
|  | if ((Op1CV != 0) == isNE) { // Toggle the low bit. | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder->CreateXor(In, One, "tmp"); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | else | 
|  | return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitZExt(ZExtInst &CI) { | 
|  | // If one of the common conversion will work .. | 
|  | if (Instruction *Result = commonIntCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // If this is a TRUNC followed by a ZEXT then we are dealing with integral | 
|  | // types and if the sizes are just right we can convert this into a logical | 
|  | // 'and' which will be much cheaper than the pair of casts. | 
|  | if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast | 
|  | // Get the sizes of the types involved.  We know that the intermediate type | 
|  | // will be smaller than A or C, but don't know the relation between A and C. | 
|  | Value *A = CSrc->getOperand(0); | 
|  | unsigned SrcSize = A->getType()->getScalarSizeInBits(); | 
|  | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); | 
|  | unsigned DstSize = CI.getType()->getScalarSizeInBits(); | 
|  | // If we're actually extending zero bits, then if | 
|  | // SrcSize <  DstSize: zext(a & mask) | 
|  | // SrcSize == DstSize: a & mask | 
|  | // SrcSize  > DstSize: trunc(a) & mask | 
|  | if (SrcSize < DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); | 
|  | Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); | 
|  | return new ZExtInst(And, CI.getType()); | 
|  | } | 
|  |  | 
|  | if (SrcSize == DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | if (SrcSize > DstSize) { | 
|  | Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp"); | 
|  | APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(Trunc, | 
|  | ConstantInt::get(Trunc->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) | 
|  | return transformZExtICmp(ICI, CI); | 
|  |  | 
|  | BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::Or) { | 
|  | // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one | 
|  | // of the (zext icmp) will be transformed. | 
|  | ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); | 
|  | ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); | 
|  | if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && | 
|  | (transformZExtICmp(LHS, CI, false) || | 
|  | transformZExtICmp(RHS, CI, false))) { | 
|  | Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); | 
|  | Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); | 
|  | return BinaryOperator::Create(Instruction::Or, LCast, RCast); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zext(trunc(t) & C) -> (t & zext(C)). | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { | 
|  | Value *TI0 = TI->getOperand(0); | 
|  | if (TI0->getType() == CI.getType()) | 
|  | return | 
|  | BinaryOperator::CreateAnd(TI0, | 
|  | ConstantExpr::getZExt(C, CI.getType())); | 
|  | } | 
|  |  | 
|  | // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) | 
|  | if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) | 
|  | if (And->getOpcode() == Instruction::And && And->hasOneUse() && | 
|  | And->getOperand(1) == C) | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { | 
|  | Value *TI0 = TI->getOperand(0); | 
|  | if (TI0->getType() == CI.getType()) { | 
|  | Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); | 
|  | Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp"); | 
|  | return BinaryOperator::CreateXor(NewAnd, ZC); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSExt(SExtInst &CI) { | 
|  | if (Instruction *I = commonIntCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // Canonicalize sign-extend from i1 to a select. | 
|  | if (Src->getType() == Type::getInt1Ty(*Context)) | 
|  | return SelectInst::Create(Src, | 
|  | Constant::getAllOnesValue(CI.getType()), | 
|  | Constant::getNullValue(CI.getType())); | 
|  |  | 
|  | // See if the value being truncated is already sign extended.  If so, just | 
|  | // eliminate the trunc/sext pair. | 
|  | if (Operator::getOpcode(Src) == Instruction::Trunc) { | 
|  | Value *Op = cast<User>(Src)->getOperand(0); | 
|  | unsigned OpBits   = Op->getType()->getScalarSizeInBits(); | 
|  | unsigned MidBits  = Src->getType()->getScalarSizeInBits(); | 
|  | unsigned DestBits = CI.getType()->getScalarSizeInBits(); | 
|  | unsigned NumSignBits = ComputeNumSignBits(Op); | 
|  |  | 
|  | if (OpBits == DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
|  | // bits, it is already ready. | 
|  | if (NumSignBits > DestBits-MidBits) | 
|  | return ReplaceInstUsesWith(CI, Op); | 
|  | } else if (OpBits < DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
|  | // bits, just sext from i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return new SExtInst(Op, CI.getType(), "tmp"); | 
|  | } else { | 
|  | // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
|  | // bits, just truncate to i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return new TruncInst(Op, CI.getType(), "tmp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the input is a shl/ashr pair of a same constant, then this is a sign | 
|  | // extension from a smaller value.  If we could trust arbitrary bitwidth | 
|  | // integers, we could turn this into a truncate to the smaller bit and then | 
|  | // use a sext for the whole extension.  Since we don't, look deeper and check | 
|  | // for a truncate.  If the source and dest are the same type, eliminate the | 
|  | // trunc and extend and just do shifts.  For example, turn: | 
|  | //   %a = trunc i32 %i to i8 | 
|  | //   %b = shl i8 %a, 6 | 
|  | //   %c = ashr i8 %b, 6 | 
|  | //   %d = sext i8 %c to i32 | 
|  | // into: | 
|  | //   %a = shl i32 %i, 30 | 
|  | //   %d = ashr i32 %a, 30 | 
|  | Value *A = 0; | 
|  | ConstantInt *BA = 0, *CA = 0; | 
|  | if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)), | 
|  | m_ConstantInt(CA))) && | 
|  | BA == CA && isa<TruncInst>(A)) { | 
|  | Value *I = cast<TruncInst>(A)->getOperand(0); | 
|  | if (I->getType() == CI.getType()) { | 
|  | unsigned MidSize = Src->getType()->getScalarSizeInBits(); | 
|  | unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); | 
|  | unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; | 
|  | Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); | 
|  | I = Builder->CreateShl(I, ShAmtV, CI.getName()); | 
|  | return BinaryOperator::CreateAShr(I, ShAmtV); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FitsInFPType - Return a Constant* for the specified FP constant if it fits | 
|  | /// in the specified FP type without changing its value. | 
|  | static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem, | 
|  | LLVMContext *Context) { | 
|  | bool losesInfo; | 
|  | APFloat F = CFP->getValueAPF(); | 
|  | (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | if (!losesInfo) | 
|  | return ConstantFP::get(*Context, F); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// LookThroughFPExtensions - If this is an fp extension instruction, look | 
|  | /// through it until we get the source value. | 
|  | static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (I->getOpcode() == Instruction::FPExt) | 
|  | return LookThroughFPExtensions(I->getOperand(0), Context); | 
|  |  | 
|  | // If this value is a constant, return the constant in the smallest FP type | 
|  | // that can accurately represent it.  This allows us to turn | 
|  | // (float)((double)X+2.0) into x+2.0f. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | if (CFP->getType() == Type::getPPC_FP128Ty(*Context)) | 
|  | return V;  // No constant folding of this. | 
|  | // See if the value can be truncated to float and then reextended. | 
|  | if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context)) | 
|  | return V; | 
|  | if (CFP->getType() == Type::getDoubleTy(*Context)) | 
|  | return V;  // Won't shrink. | 
|  | if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context)) | 
|  | return V; | 
|  | // Don't try to shrink to various long double types. | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are | 
|  | // smaller than the destination type, we can eliminate the truncate by doing | 
|  | // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well as | 
|  | // many builtins (sqrt, etc). | 
|  | BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); | 
|  | if (OpI && OpI->hasOneUse()) { | 
|  | switch (OpI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | const Type *SrcTy = OpI->getType(); | 
|  | Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0), Context); | 
|  | Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1), Context); | 
|  | if (LHSTrunc->getType() != SrcTy && | 
|  | RHSTrunc->getType() != SrcTy) { | 
|  | unsigned DstSize = CI.getType()->getScalarSizeInBits(); | 
|  | // If the source types were both smaller than the destination type of | 
|  | // the cast, do this xform. | 
|  | if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && | 
|  | RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { | 
|  | LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); | 
|  | RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); | 
|  | return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPExt(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (OpI == 0) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | // fptoui(uitofp(X)) --> X | 
|  | // fptoui(sitofp(X)) --> X | 
|  | // This is safe if the intermediate type has enough bits in its mantissa to | 
|  | // accurately represent all values of X.  For example, do not do this with | 
|  | // i64->float->i64.  This is also safe for sitofp case, because any negative | 
|  | // 'X' value would cause an undefined result for the fptoui. | 
|  | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && | 
|  | OpI->getOperand(0)->getType() == FI.getType() && | 
|  | (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ | 
|  | OpI->getType()->getFPMantissaWidth()) | 
|  | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (OpI == 0) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | // fptosi(sitofp(X)) --> X | 
|  | // fptosi(uitofp(X)) --> X | 
|  | // This is safe if the intermediate type has enough bits in its mantissa to | 
|  | // accurately represent all values of X.  For example, do not do this with | 
|  | // i64->float->i64.  This is also safe for sitofp case, because any negative | 
|  | // 'X' value would cause an undefined result for the fptoui. | 
|  | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && | 
|  | OpI->getOperand(0)->getType() == FI.getType() && | 
|  | (int)FI.getType()->getScalarSizeInBits() <= | 
|  | OpI->getType()->getFPMantissaWidth()) | 
|  | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { | 
|  | // If the destination integer type is smaller than the intptr_t type for | 
|  | // this target, do a ptrtoint to intptr_t then do a trunc.  This allows the | 
|  | // trunc to be exposed to other transforms.  Don't do this for extending | 
|  | // ptrtoint's, because we don't know if the target sign or zero extends its | 
|  | // pointers. | 
|  | if (TD && | 
|  | CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreatePtrToInt(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), | 
|  | "tmp"); | 
|  | return new TruncInst(P, CI.getType()); | 
|  | } | 
|  |  | 
|  | return commonPointerCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { | 
|  | // If the source integer type is larger than the intptr_t type for | 
|  | // this target, do a trunc to the intptr_t type, then inttoptr of it.  This | 
|  | // allows the trunc to be exposed to other transforms.  Don't do this for | 
|  | // extending inttoptr's, because we don't know if the target sign or zero | 
|  | // extends to pointers. | 
|  | if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() > | 
|  | TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreateTrunc(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), "tmp"); | 
|  | return new IntToPtrInst(P, CI.getType()); | 
|  | } | 
|  |  | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { | 
|  | // If the operands are integer typed then apply the integer transforms, | 
|  | // otherwise just apply the common ones. | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | const Type *DestTy = CI.getType(); | 
|  |  | 
|  | if (isa<PointerType>(SrcTy)) { | 
|  | if (Instruction *I = commonPointerCastTransforms(CI)) | 
|  | return I; | 
|  | } else { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get rid of casts from one type to the same type. These are useless and can | 
|  | // be replaced by the operand. | 
|  | if (DestTy == Src->getType()) | 
|  | return ReplaceInstUsesWith(CI, Src); | 
|  |  | 
|  | if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { | 
|  | const PointerType *SrcPTy = cast<PointerType>(SrcTy); | 
|  | const Type *DstElTy = DstPTy->getElementType(); | 
|  | const Type *SrcElTy = SrcPTy->getElementType(); | 
|  |  | 
|  | // If the address spaces don't match, don't eliminate the bitcast, which is | 
|  | // required for changing types. | 
|  | if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) | 
|  | return 0; | 
|  |  | 
|  | // If we are casting a alloca to a pointer to a type of the same | 
|  | // size, rewrite the allocation instruction to allocate the "right" type. | 
|  | // There is no need to modify malloc calls because it is their bitcast that | 
|  | // needs to be cleaned up. | 
|  | if (AllocationInst *AI = dyn_cast<AllocationInst>(Src)) | 
|  | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) | 
|  | return V; | 
|  |  | 
|  | // If the source and destination are pointers, and this cast is equivalent | 
|  | // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep. | 
|  | // This can enhance SROA and other transforms that want type-safe pointers. | 
|  | Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context)); | 
|  | unsigned NumZeros = 0; | 
|  | while (SrcElTy != DstElTy && | 
|  | isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) && | 
|  | SrcElTy->getNumContainedTypes() /* not "{}" */) { | 
|  | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); | 
|  | ++NumZeros; | 
|  | } | 
|  |  | 
|  | // If we found a path from the src to dest, create the getelementptr now. | 
|  | if (SrcElTy == DstElTy) { | 
|  | SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); | 
|  | return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "", | 
|  | ((Instruction*) NULL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (DestVTy->getNumElements() == 1) { | 
|  | if (!isa<VectorType>(SrcTy)) { | 
|  | Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); | 
|  | return InsertElementInst::Create(UndefValue::get(DestTy), Elem, | 
|  | Constant::getNullValue(Type::getInt32Ty(*Context))); | 
|  | } | 
|  | // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (SrcVTy->getNumElements() == 1) { | 
|  | if (!isa<VectorType>(DestTy)) { | 
|  | Value *Elem = | 
|  | Builder->CreateExtractElement(Src, | 
|  | Constant::getNullValue(Type::getInt32Ty(*Context))); | 
|  | return CastInst::Create(Instruction::BitCast, Elem, DestTy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { | 
|  | if (SVI->hasOneUse()) { | 
|  | // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is | 
|  | // a bitconvert to a vector with the same # elts. | 
|  | if (isa<VectorType>(DestTy) && | 
|  | cast<VectorType>(DestTy)->getNumElements() == | 
|  | SVI->getType()->getNumElements() && | 
|  | SVI->getType()->getNumElements() == | 
|  | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { | 
|  | CastInst *Tmp; | 
|  | // If either of the operands is a cast from CI.getType(), then | 
|  | // evaluating the shuffle in the casted destination's type will allow | 
|  | // us to eliminate at least one cast. | 
|  | if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy) || | 
|  | ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy)) { | 
|  | Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); | 
|  | Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); | 
|  | // Return a new shuffle vector.  Use the same element ID's, as we | 
|  | // know the vector types match #elts. | 
|  | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GetSelectFoldableOperands - We want to turn code that looks like this: | 
|  | ///   %C = or %A, %B | 
|  | ///   %D = select %cond, %C, %A | 
|  | /// into: | 
|  | ///   %C = select %cond, %B, 0 | 
|  | ///   %D = or %A, %C | 
|  | /// | 
|  | /// Assuming that the specified instruction is an operand to the select, return | 
|  | /// a bitmask indicating which operands of this instruction are foldable if they | 
|  | /// equal the other incoming value of the select. | 
|  | /// | 
|  | static unsigned GetSelectFoldableOperands(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return 3;              // Can fold through either operand. | 
|  | case Instruction::Sub:   // Can only fold on the amount subtracted. | 
|  | case Instruction::Shl:   // Can only fold on the shift amount. | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return 1; | 
|  | default: | 
|  | return 0;              // Cannot fold | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSelectFoldableConstant - For the same transformation as the previous | 
|  | /// function, return the identity constant that goes into the select. | 
|  | static Constant *GetSelectFoldableConstant(Instruction *I, | 
|  | LLVMContext *Context) { | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("This cannot happen!"); | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return Constant::getNullValue(I->getType()); | 
|  | case Instruction::And: | 
|  | return Constant::getAllOnesValue(I->getType()); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(I->getType(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI | 
|  | /// have the same opcode and only one use each.  Try to simplify this. | 
|  | Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI) { | 
|  | if (TI->getNumOperands() == 1) { | 
|  | // If this is a non-volatile load or a cast from the same type, | 
|  | // merge. | 
|  | if (TI->isCast()) { | 
|  | if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) | 
|  | return 0; | 
|  | } else { | 
|  | return 0;  // unknown unary op. | 
|  | } | 
|  |  | 
|  | // Fold this by inserting a select from the input values. | 
|  | SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0), | 
|  | FI->getOperand(0), SI.getName()+".v"); | 
|  | InsertNewInstBefore(NewSI, SI); | 
|  | return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, | 
|  | TI->getType()); | 
|  | } | 
|  |  | 
|  | // Only handle binary operators here. | 
|  | if (!isa<BinaryOperator>(TI)) | 
|  | return 0; | 
|  |  | 
|  | // Figure out if the operations have any operands in common. | 
|  | Value *MatchOp, *OtherOpT, *OtherOpF; | 
|  | bool MatchIsOpZero; | 
|  | if (TI->getOperand(0) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = false; | 
|  | } else if (!TI->isCommutative()) { | 
|  | return 0; | 
|  | } else if (TI->getOperand(0) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If we reach here, they do have operations in common. | 
|  | SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT, | 
|  | OtherOpF, SI.getName()+".v"); | 
|  | InsertNewInstBefore(NewSI, SI); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { | 
|  | if (MatchIsOpZero) | 
|  | return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); | 
|  | else | 
|  | return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); | 
|  | } | 
|  | llvm_unreachable("Shouldn't get here"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool isSelect01(Constant *C1, Constant *C2) { | 
|  | ConstantInt *C1I = dyn_cast<ConstantInt>(C1); | 
|  | if (!C1I) | 
|  | return false; | 
|  | ConstantInt *C2I = dyn_cast<ConstantInt>(C2); | 
|  | if (!C2I) | 
|  | return false; | 
|  | return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne()); | 
|  | } | 
|  |  | 
|  | /// FoldSelectIntoOp - Try fold the select into one of the operands to | 
|  | /// facilitate further optimization. | 
|  | Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, | 
|  | Value *FalseVal) { | 
|  | // See the comment above GetSelectFoldableOperands for a description of the | 
|  | // transformation we are doing here. | 
|  | if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { | 
|  | if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(FalseVal)) { | 
|  | if (unsigned SFO = GetSelectFoldableOperands(TVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(TVI, Context); | 
|  | Value *OOp = TVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0 and 1. | 
|  | if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { | 
|  | Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C); | 
|  | InsertNewInstBefore(NewSel, SI); | 
|  | NewSel->takeName(TVI); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI)) | 
|  | return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel); | 
|  | llvm_unreachable("Unknown instruction!!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { | 
|  | if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(TrueVal)) { | 
|  | if (unsigned SFO = GetSelectFoldableOperands(FVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(FVI, Context); | 
|  | Value *OOp = FVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0 and 1. | 
|  | if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { | 
|  | Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp); | 
|  | InsertNewInstBefore(NewSel, SI); | 
|  | NewSel->takeName(FVI); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI)) | 
|  | return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel); | 
|  | llvm_unreachable("Unknown instruction!!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// visitSelectInstWithICmp - Visit a SelectInst that has an | 
|  | /// ICmpInst as its first operand. | 
|  | /// | 
|  | Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, | 
|  | ICmpInst *ICI) { | 
|  | bool Changed = false; | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *CmpLHS = ICI->getOperand(0); | 
|  | Value *CmpRHS = ICI->getOperand(1); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | // Check cases where the comparison is with a constant that | 
|  | // can be adjusted to fit the min/max idiom. We may edit ICI in | 
|  | // place here, so make sure the select is the only user. | 
|  | if (ICI->hasOneUse()) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: { | 
|  | // X < MIN ? T : F  -->  F | 
|  | if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // X < C ? X : C-1  -->  X > C-1 ? C-1 : X | 
|  | Constant *AdjustedRHS = SubOne(CI); | 
|  | if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || | 
|  | (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | CmpRHS = AdjustedRHS; | 
|  | std::swap(FalseVal, TrueVal); | 
|  | ICI->setPredicate(Pred); | 
|  | ICI->setOperand(1, CmpRHS); | 
|  | SI.setOperand(1, TrueVal); | 
|  | SI.setOperand(2, FalseVal); | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: { | 
|  | // X > MAX ? T : F  -->  F | 
|  | if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // X > C ? X : C+1  -->  X < C+1 ? C+1 : X | 
|  | Constant *AdjustedRHS = AddOne(CI); | 
|  | if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || | 
|  | (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | CmpRHS = AdjustedRHS; | 
|  | std::swap(FalseVal, TrueVal); | 
|  | ICI->setPredicate(Pred); | 
|  | ICI->setOperand(1, CmpRHS); | 
|  | SI.setOperand(1, TrueVal); | 
|  | SI.setOperand(2, FalseVal); | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed | 
|  | // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed | 
|  | CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; | 
|  | if (match(TrueVal, m_ConstantInt<-1>()) && | 
|  | match(FalseVal, m_ConstantInt<0>())) | 
|  | Pred = ICI->getPredicate(); | 
|  | else if (match(TrueVal, m_ConstantInt<0>()) && | 
|  | match(FalseVal, m_ConstantInt<-1>())) | 
|  | Pred = CmpInst::getInversePredicate(ICI->getPredicate()); | 
|  |  | 
|  | if (Pred != CmpInst::BAD_ICMP_PREDICATE) { | 
|  | // If we are just checking for a icmp eq of a single bit and zext'ing it | 
|  | // to an integer, then shift the bit to the appropriate place and then | 
|  | // cast to integer to avoid the comparison. | 
|  | const APInt &Op1CV = CI->getValue(); | 
|  |  | 
|  | // sext (x <s  0) to i32 --> x>>s31      true if signbit set. | 
|  | // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear. | 
|  | if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) || | 
|  | (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { | 
|  | Value *In = ICI->getOperand(0); | 
|  | Value *Sh = ConstantInt::get(In->getType(), | 
|  | In->getType()->getScalarSizeInBits()-1); | 
|  | In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, | 
|  | In->getName()+".lobit"), | 
|  | *ICI); | 
|  | if (In->getType() != SI.getType()) | 
|  | In = CastInst::CreateIntegerCast(In, SI.getType(), | 
|  | true/*SExt*/, "tmp", ICI); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SGT) | 
|  | In = InsertNewInstBefore(BinaryOperator::CreateNot(In, | 
|  | In->getName()+".not"), *ICI); | 
|  |  | 
|  | return ReplaceInstUsesWith(SI, In); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CmpLHS == TrueVal && CmpRHS == FalseVal) { | 
|  | // Transform (X == Y) ? X : Y  -> Y | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? X : Y  -> X | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | /// NOTE: if we wanted to, this is where to detect integer MIN/MAX | 
|  |  | 
|  | } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) { | 
|  | // Transform (X == Y) ? Y : X  -> X | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? Y : X  -> Y | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | /// NOTE: if we wanted to, this is where to detect integer MIN/MAX | 
|  | } | 
|  |  | 
|  | /// NOTE: if we wanted to, this is where to detect integer ABS | 
|  |  | 
|  | return Changed ? &SI : 0; | 
|  | } | 
|  |  | 
|  | /// isDefinedInBB - Return true if the value is an instruction defined in the | 
|  | /// specified basicblock. | 
|  | static bool isDefinedInBB(const Value *V, const BasicBlock *BB) { | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | return I != 0 && I->getParent() == BB; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | // select true, X, Y  -> X | 
|  | // select false, X, Y -> Y | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal)) | 
|  | return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); | 
|  |  | 
|  | // select C, X, X -> X | 
|  | if (TrueVal == FalseVal) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  |  | 
|  | if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y | 
|  | if (isa<Constant>(TrueVal)) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | else | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  |  | 
|  | if (SI.getType() == Type::getInt1Ty(*Context)) { | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { | 
|  | if (C->getZExtValue()) { | 
|  | // Change: A = select B, true, C --> A = or B, C | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | } else { | 
|  | // Change: A = select B, false, C --> A = and !B, C | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return BinaryOperator::CreateAnd(NotCond, FalseVal); | 
|  | } | 
|  | } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | if (C->getZExtValue() == false) { | 
|  | // Change: A = select B, C, false --> A = and B, C | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  | } else { | 
|  | // Change: A = select B, C, true --> A = or !B, C | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return BinaryOperator::CreateOr(NotCond, TrueVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // select a, b, a  -> a&b | 
|  | // select a, a, b  -> a|b | 
|  | if (CondVal == TrueVal) | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | else if (CondVal == FalseVal) | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  | } | 
|  |  | 
|  | // Selecting between two integer constants? | 
|  | if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) | 
|  | if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | // select C, 1, 0 -> zext C to int | 
|  | if (FalseValC->isZero() && TrueValC->getValue() == 1) { | 
|  | return CastInst::Create(Instruction::ZExt, CondVal, SI.getType()); | 
|  | } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { | 
|  | // select C, 0, 1 -> zext !C to int | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return CastInst::Create(Instruction::ZExt, NotCond, SI.getType()); | 
|  | } | 
|  |  | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) { | 
|  | // If one of the constants is zero (we know they can't both be) and we | 
|  | // have an icmp instruction with zero, and we have an 'and' with the | 
|  | // non-constant value, eliminate this whole mess.  This corresponds to | 
|  | // cases like this: ((X & 27) ? 27 : 0) | 
|  | if (TrueValC->isZero() || FalseValC->isZero()) | 
|  | if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) && | 
|  | cast<Constant>(IC->getOperand(1))->isNullValue()) | 
|  | if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0))) | 
|  | if (ICA->getOpcode() == Instruction::And && | 
|  | isa<ConstantInt>(ICA->getOperand(1)) && | 
|  | (ICA->getOperand(1) == TrueValC || | 
|  | ICA->getOperand(1) == FalseValC) && | 
|  | isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) { | 
|  | // Okay, now we know that everything is set up, we just don't | 
|  | // know whether we have a icmp_ne or icmp_eq and whether the | 
|  | // true or false val is the zero. | 
|  | bool ShouldNotVal = !TrueValC->isZero(); | 
|  | ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; | 
|  | Value *V = ICA; | 
|  | if (ShouldNotVal) | 
|  | V = InsertNewInstBefore(BinaryOperator::Create( | 
|  | Instruction::Xor, V, ICA->getOperand(1)), SI); | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { | 
|  | if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { | 
|  | // Transform (X == Y) ? X : Y  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  | // Transform (X != Y) ? X : Y  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_ONE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  |  | 
|  | } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ | 
|  | // Transform (X == Y) ? Y : X  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  | // Transform (X != Y) ? Y : X  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_ONE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  | } | 
|  | // NOTE: if we wanted to, this is where to detect ABS | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) | 
|  | if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) | 
|  | return Result; | 
|  |  | 
|  | if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) | 
|  | if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) | 
|  | if (TI->hasOneUse() && FI->hasOneUse()) { | 
|  | Instruction *AddOp = 0, *SubOp = 0; | 
|  |  | 
|  | // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) | 
|  | if (TI->getOpcode() == FI->getOpcode()) | 
|  | if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) | 
|  | return IV; | 
|  |  | 
|  | // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is | 
|  | // even legal for FP. | 
|  | if ((TI->getOpcode() == Instruction::Sub && | 
|  | FI->getOpcode() == Instruction::Add) || | 
|  | (TI->getOpcode() == Instruction::FSub && | 
|  | FI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = FI; SubOp = TI; | 
|  | } else if ((FI->getOpcode() == Instruction::Sub && | 
|  | TI->getOpcode() == Instruction::Add) || | 
|  | (FI->getOpcode() == Instruction::FSub && | 
|  | TI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = TI; SubOp = FI; | 
|  | } | 
|  |  | 
|  | if (AddOp) { | 
|  | Value *OtherAddOp = 0; | 
|  | if (SubOp->getOperand(0) == AddOp->getOperand(0)) { | 
|  | OtherAddOp = AddOp->getOperand(1); | 
|  | } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { | 
|  | OtherAddOp = AddOp->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (OtherAddOp) { | 
|  | // So at this point we know we have (Y -> OtherAddOp): | 
|  | //        select C, (add X, Y), (sub X, Z) | 
|  | Value *NegVal;  // Compute -Z | 
|  | if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) { | 
|  | NegVal = ConstantExpr::getNeg(C); | 
|  | } else { | 
|  | NegVal = InsertNewInstBefore( | 
|  | BinaryOperator::CreateNeg(SubOp->getOperand(1), | 
|  | "tmp"), SI); | 
|  | } | 
|  |  | 
|  | Value *NewTrueOp = OtherAddOp; | 
|  | Value *NewFalseOp = NegVal; | 
|  | if (AddOp != TI) | 
|  | std::swap(NewTrueOp, NewFalseOp); | 
|  | Instruction *NewSel = | 
|  | SelectInst::Create(CondVal, NewTrueOp, | 
|  | NewFalseOp, SI.getName() + ".p"); | 
|  |  | 
|  | NewSel = InsertNewInstBefore(NewSel, SI); | 
|  | return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into one of our operands. | 
|  | if (SI.getType()->isInteger()) { | 
|  | Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal); | 
|  | if (FoldI) | 
|  | return FoldI; | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into a phi node.  The true/false values have | 
|  | // to be live in the predecessor blocks.  If they are instructions in SI's | 
|  | // block, we can't map to the predecessor. | 
|  | if (isa<PHINode>(SI.getCondition()) && | 
|  | (!isDefinedInBB(SI.getTrueValue(), SI.getParent()) || | 
|  | isa<PHINode>(SI.getTrueValue())) && | 
|  | (!isDefinedInBB(SI.getFalseValue(), SI.getParent()) || | 
|  | isa<PHINode>(SI.getFalseValue()))) | 
|  | if (Instruction *NV = FoldOpIntoPhi(SI)) | 
|  | return NV; | 
|  |  | 
|  | if (BinaryOperator::isNot(CondVal)) { | 
|  | SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); | 
|  | SI.setOperand(1, FalseVal); | 
|  | SI.setOperand(2, TrueVal); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// EnforceKnownAlignment - If the specified pointer points to an object that | 
|  | /// we control, modify the object's alignment to PrefAlign. This isn't | 
|  | /// often possible though. If alignment is important, a more reliable approach | 
|  | /// is to simply align all global variables and allocation instructions to | 
|  | /// their preferred alignment from the beginning. | 
|  | /// | 
|  | static unsigned EnforceKnownAlignment(Value *V, | 
|  | unsigned Align, unsigned PrefAlign) { | 
|  |  | 
|  | User *U = dyn_cast<User>(V); | 
|  | if (!U) return Align; | 
|  |  | 
|  | switch (Operator::getOpcode(U)) { | 
|  | default: break; | 
|  | case Instruction::BitCast: | 
|  | return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); | 
|  | case Instruction::GetElementPtr: { | 
|  | // If all indexes are zero, it is just the alignment of the base pointer. | 
|  | bool AllZeroOperands = true; | 
|  | for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) | 
|  | if (!isa<Constant>(*i) || | 
|  | !cast<Constant>(*i)->isNullValue()) { | 
|  | AllZeroOperands = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AllZeroOperands) { | 
|  | // Treat this like a bitcast. | 
|  | return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | // If there is a large requested alignment and we can, bump up the alignment | 
|  | // of the global. | 
|  | if (!GV->isDeclaration()) { | 
|  | if (GV->getAlignment() >= PrefAlign) | 
|  | Align = GV->getAlignment(); | 
|  | else { | 
|  | GV->setAlignment(PrefAlign); | 
|  | Align = PrefAlign; | 
|  | } | 
|  | } | 
|  | } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | // If there is a requested alignment and if this is an alloca, round up. | 
|  | if (AI->getAlignment() >= PrefAlign) | 
|  | Align = AI->getAlignment(); | 
|  | else { | 
|  | AI->setAlignment(PrefAlign); | 
|  | Align = PrefAlign; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that | 
|  | /// we can determine, return it, otherwise return 0.  If PrefAlign is specified, | 
|  | /// and it is more than the alignment of the ultimate object, see if we can | 
|  | /// increase the alignment of the ultimate object, making this check succeed. | 
|  | unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, | 
|  | unsigned PrefAlign) { | 
|  | unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : | 
|  | sizeof(PrefAlign) * CHAR_BIT; | 
|  | APInt Mask = APInt::getAllOnesValue(BitWidth); | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(V, Mask, KnownZero, KnownOne); | 
|  | unsigned TrailZ = KnownZero.countTrailingOnes(); | 
|  | unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); | 
|  |  | 
|  | if (PrefAlign > Align) | 
|  | Align = EnforceKnownAlignment(V, Align, PrefAlign); | 
|  |  | 
|  | // We don't need to make any adjustment. | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { | 
|  | unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); | 
|  | unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); | 
|  | unsigned MinAlign = std::min(DstAlign, SrcAlign); | 
|  | unsigned CopyAlign = MI->getAlignment(); | 
|  |  | 
|  | if (CopyAlign < MinAlign) { | 
|  | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), | 
|  | MinAlign, false)); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with | 
|  | // load/store. | 
|  | ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); | 
|  | if (MemOpLength == 0) return 0; | 
|  |  | 
|  | // Source and destination pointer types are always "i8*" for intrinsic.  See | 
|  | // if the size is something we can handle with a single primitive load/store. | 
|  | // A single load+store correctly handles overlapping memory in the memmove | 
|  | // case. | 
|  | unsigned Size = MemOpLength->getZExtValue(); | 
|  | if (Size == 0) return MI;  // Delete this mem transfer. | 
|  |  | 
|  | if (Size > 8 || (Size&(Size-1))) | 
|  | return 0;  // If not 1/2/4/8 bytes, exit. | 
|  |  | 
|  | // Use an integer load+store unless we can find something better. | 
|  | Type *NewPtrTy = | 
|  | PointerType::getUnqual(IntegerType::get(*Context, Size<<3)); | 
|  |  | 
|  | // Memcpy forces the use of i8* for the source and destination.  That means | 
|  | // that if you're using memcpy to move one double around, you'll get a cast | 
|  | // from double* to i8*.  We'd much rather use a double load+store rather than | 
|  | // an i64 load+store, here because this improves the odds that the source or | 
|  | // dest address will be promotable.  See if we can find a better type than the | 
|  | // integer datatype. | 
|  | if (Value *Op = getBitCastOperand(MI->getOperand(1))) { | 
|  | const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType(); | 
|  | if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { | 
|  | // The SrcETy might be something like {{{double}}} or [1 x double].  Rip | 
|  | // down through these levels if so. | 
|  | while (!SrcETy->isSingleValueType()) { | 
|  | if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { | 
|  | if (STy->getNumElements() == 1) | 
|  | SrcETy = STy->getElementType(0); | 
|  | else | 
|  | break; | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { | 
|  | if (ATy->getNumElements() == 1) | 
|  | SrcETy = ATy->getElementType(); | 
|  | else | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SrcETy->isSingleValueType()) | 
|  | NewPtrTy = PointerType::getUnqual(SrcETy); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If the memcpy/memmove provides better alignment info than we can | 
|  | // infer, use it. | 
|  | SrcAlign = std::max(SrcAlign, CopyAlign); | 
|  | DstAlign = std::max(DstAlign, CopyAlign); | 
|  |  | 
|  | Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy); | 
|  | Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy); | 
|  | Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); | 
|  | InsertNewInstBefore(L, *MI); | 
|  | InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); | 
|  |  | 
|  | // Set the size of the copy to 0, it will be deleted on the next iteration. | 
|  | MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { | 
|  | unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); | 
|  | if (MI->getAlignment() < Alignment) { | 
|  | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), | 
|  | Alignment, false)); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // Extract the length and alignment and fill if they are constant. | 
|  | ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); | 
|  | if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context)) | 
|  | return 0; | 
|  | uint64_t Len = LenC->getZExtValue(); | 
|  | Alignment = MI->getAlignment(); | 
|  |  | 
|  | // If the length is zero, this is a no-op | 
|  | if (Len == 0) return MI; // memset(d,c,0,a) -> noop | 
|  |  | 
|  | // memset(s,c,n) -> store s, c (for n=1,2,4,8) | 
|  | if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { | 
|  | const Type *ITy = IntegerType::get(*Context, Len*8);  // n=1 -> i8. | 
|  |  | 
|  | Value *Dest = MI->getDest(); | 
|  | Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy)); | 
|  |  | 
|  | // Alignment 0 is identity for alignment 1 for memset, but not store. | 
|  | if (Alignment == 0) Alignment = 1; | 
|  |  | 
|  | // Extract the fill value and store. | 
|  | uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; | 
|  | InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), | 
|  | Dest, false, Alignment), *MI); | 
|  |  | 
|  | // Set the size of the copy to 0, it will be deleted on the next iteration. | 
|  | MI->setLength(Constant::getNullValue(LenC->getType())); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCallInst - CallInst simplification.  This mostly only handles folding | 
|  | /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do | 
|  | /// the heavy lifting. | 
|  | /// | 
|  | Instruction *InstCombiner::visitCallInst(CallInst &CI) { | 
|  | // If the caller function is nounwind, mark the call as nounwind, even if the | 
|  | // callee isn't. | 
|  | if (CI.getParent()->getParent()->doesNotThrow() && | 
|  | !CI.doesNotThrow()) { | 
|  | CI.setDoesNotThrow(); | 
|  | return &CI; | 
|  | } | 
|  |  | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); | 
|  | if (!II) return visitCallSite(&CI); | 
|  |  | 
|  | // Intrinsics cannot occur in an invoke, so handle them here instead of in | 
|  | // visitCallSite. | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // memmove/cpy/set of zero bytes is a noop. | 
|  | if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { | 
|  | if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) | 
|  | if (CI->getZExtValue() == 1) { | 
|  | // Replace the instruction with just byte operations.  We would | 
|  | // transform other cases to loads/stores, but we don't know if | 
|  | // alignment is sufficient. | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a memmove and the source operation is a constant global, | 
|  | // then the source and dest pointers can't alias, so we can change this | 
|  | // into a call to memcpy. | 
|  | if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { | 
|  | if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) | 
|  | if (GVSrc->isConstant()) { | 
|  | Module *M = CI.getParent()->getParent()->getParent(); | 
|  | Intrinsic::ID MemCpyID = Intrinsic::memcpy; | 
|  | const Type *Tys[1]; | 
|  | Tys[0] = CI.getOperand(3)->getType(); | 
|  | CI.setOperand(0, | 
|  | Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // memmove(x,x,size) -> noop. | 
|  | if (MMI->getSource() == MMI->getDest()) | 
|  | return EraseInstFromFunction(CI); | 
|  | } | 
|  |  | 
|  | // If we can determine a pointer alignment that is bigger than currently | 
|  | // set, update the alignment. | 
|  | if (isa<MemTransferInst>(MI)) { | 
|  | if (Instruction *I = SimplifyMemTransfer(MI)) | 
|  | return I; | 
|  | } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { | 
|  | if (Instruction *I = SimplifyMemSet(MSI)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (Changed) return II; | 
|  | } | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bswap: | 
|  | // bswap(bswap(x)) -> x | 
|  | if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) | 
|  | if (Operand->getIntrinsicID() == Intrinsic::bswap) | 
|  | return ReplaceInstUsesWith(CI, Operand->getOperand(1)); | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | case Intrinsic::x86_sse_loadu_ps: | 
|  | case Intrinsic::x86_sse2_loadu_pd: | 
|  | case Intrinsic::x86_sse2_loadu_dq: | 
|  | // Turn PPC lvx     -> load if the pointer is known aligned. | 
|  | // Turn X86 loadups -> load if the pointer is known aligned. | 
|  | if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { | 
|  | Value *Ptr = Builder->CreateBitCast(II->getOperand(1), | 
|  | PointerType::getUnqual(II->getType())); | 
|  | return new LoadInst(Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | // Turn stvx -> store if the pointer is known aligned. | 
|  | if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { | 
|  | const Type *OpPtrTy = | 
|  | PointerType::getUnqual(II->getOperand(1)->getType()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy); | 
|  | return new StoreInst(II->getOperand(1), Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::x86_sse_storeu_ps: | 
|  | case Intrinsic::x86_sse2_storeu_pd: | 
|  | case Intrinsic::x86_sse2_storeu_dq: | 
|  | // Turn X86 storeu -> store if the pointer is known aligned. | 
|  | if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { | 
|  | const Type *OpPtrTy = | 
|  | PointerType::getUnqual(II->getOperand(2)->getType()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy); | 
|  | return new StoreInst(II->getOperand(2), Ptr); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse_cvttss2si: { | 
|  | // These intrinsics only demands the 0th element of its input vector.  If | 
|  | // we can simplify the input based on that, do so now. | 
|  | unsigned VWidth = | 
|  | cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); | 
|  | APInt DemandedElts(VWidth, 1); | 
|  | APInt UndefElts(VWidth, 0); | 
|  | if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, | 
|  | UndefElts)) { | 
|  | II->setOperand(1, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::ppc_altivec_vperm: | 
|  | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. | 
|  | if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { | 
|  | assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); | 
|  |  | 
|  | // Check that all of the elements are integer constants or undefs. | 
|  | bool AllEltsOk = true; | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (!isa<ConstantInt>(Mask->getOperand(i)) && | 
|  | !isa<UndefValue>(Mask->getOperand(i))) { | 
|  | AllEltsOk = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllEltsOk) { | 
|  | // Cast the input vectors to byte vectors. | 
|  | Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType()); | 
|  | Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType()); | 
|  | Value *Result = UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // Only extract each element once. | 
|  | Value *ExtractedElts[32]; | 
|  | memset(ExtractedElts, 0, sizeof(ExtractedElts)); | 
|  |  | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (isa<UndefValue>(Mask->getOperand(i))) | 
|  | continue; | 
|  | unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); | 
|  | Idx &= 31;  // Match the hardware behavior. | 
|  |  | 
|  | if (ExtractedElts[Idx] == 0) { | 
|  | ExtractedElts[Idx] = | 
|  | Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false), | 
|  | "tmp"); | 
|  | } | 
|  |  | 
|  | // Insert this value into the result vector. | 
|  | Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), i, false), | 
|  | "tmp"); | 
|  | } | 
|  | return CastInst::Create(Instruction::BitCast, Result, CI.getType()); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::stackrestore: { | 
|  | // If the save is right next to the restore, remove the restore.  This can | 
|  | // happen when variable allocas are DCE'd. | 
|  | if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { | 
|  | if (SS->getIntrinsicID() == Intrinsic::stacksave) { | 
|  | BasicBlock::iterator BI = SS; | 
|  | if (&*++BI == II) | 
|  | return EraseInstFromFunction(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan down this block to see if there is another stack restore in the | 
|  | // same block without an intervening call/alloca. | 
|  | BasicBlock::iterator BI = II; | 
|  | TerminatorInst *TI = II->getParent()->getTerminator(); | 
|  | bool CannotRemove = false; | 
|  | for (++BI; &*BI != TI; ++BI) { | 
|  | if (isa<AllocaInst>(BI) || isMalloc(BI)) { | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | if (CallInst *BCI = dyn_cast<CallInst>(BI)) { | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { | 
|  | // If there is a stackrestore below this one, remove this one. | 
|  | if (II->getIntrinsicID() == Intrinsic::stackrestore) | 
|  | return EraseInstFromFunction(CI); | 
|  | // Otherwise, ignore the intrinsic. | 
|  | } else { | 
|  | // If we found a non-intrinsic call, we can't remove the stack | 
|  | // restore. | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the stack restore is in a return/unwind block and if there are no | 
|  | // allocas or calls between the restore and the return, nuke the restore. | 
|  | if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) | 
|  | return EraseInstFromFunction(CI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return visitCallSite(II); | 
|  | } | 
|  |  | 
|  | // InvokeInst simplification | 
|  | // | 
|  | Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { | 
|  | return visitCallSite(&II); | 
|  | } | 
|  |  | 
|  | /// isSafeToEliminateVarargsCast - If this cast does not affect the value | 
|  | /// passed through the varargs area, we can eliminate the use of the cast. | 
|  | static bool isSafeToEliminateVarargsCast(const CallSite CS, | 
|  | const CastInst * const CI, | 
|  | const TargetData * const TD, | 
|  | const int ix) { | 
|  | if (!CI->isLosslessCast()) | 
|  | return false; | 
|  |  | 
|  | // The size of ByVal arguments is derived from the type, so we | 
|  | // can't change to a type with a different size.  If the size were | 
|  | // passed explicitly we could avoid this check. | 
|  | if (!CS.paramHasAttr(ix, Attribute::ByVal)) | 
|  | return true; | 
|  |  | 
|  | const Type* SrcTy = | 
|  | cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); | 
|  | const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); | 
|  | if (!SrcTy->isSized() || !DstTy->isSized()) | 
|  | return false; | 
|  | if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // visitCallSite - Improvements for call and invoke instructions. | 
|  | // | 
|  | Instruction *InstCombiner::visitCallSite(CallSite CS) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // If the callee is a constexpr cast of a function, attempt to move the cast | 
|  | // to the arguments of the call/invoke. | 
|  | if (transformConstExprCastCall(CS)) return 0; | 
|  |  | 
|  | Value *Callee = CS.getCalledValue(); | 
|  |  | 
|  | if (Function *CalleeF = dyn_cast<Function>(Callee)) | 
|  | if (CalleeF->getCallingConv() != CS.getCallingConv()) { | 
|  | Instruction *OldCall = CS.getInstruction(); | 
|  | // If the call and callee calling conventions don't match, this call must | 
|  | // be unreachable, as the call is undefined. | 
|  | new StoreInst(ConstantInt::getTrue(*Context), | 
|  | UndefValue::get(Type::getInt1PtrTy(*Context)), | 
|  | OldCall); | 
|  | if (!OldCall->use_empty()) | 
|  | OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); | 
|  | if (isa<CallInst>(OldCall))   // Not worth removing an invoke here. | 
|  | return EraseInstFromFunction(*OldCall); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { | 
|  | // This instruction is not reachable, just remove it.  We insert a store to | 
|  | // undef so that we know that this code is not reachable, despite the fact | 
|  | // that we can't modify the CFG here. | 
|  | new StoreInst(ConstantInt::getTrue(*Context), | 
|  | UndefValue::get(Type::getInt1PtrTy(*Context)), | 
|  | CS.getInstruction()); | 
|  |  | 
|  | if (!CS.getInstruction()->use_empty()) | 
|  | CS.getInstruction()-> | 
|  | replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); | 
|  |  | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { | 
|  | // Don't break the CFG, insert a dummy cond branch. | 
|  | BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), | 
|  | ConstantInt::getTrue(*Context), II); | 
|  | } | 
|  | return EraseInstFromFunction(*CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) | 
|  | if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) | 
|  | if (In->getIntrinsicID() == Intrinsic::init_trampoline) | 
|  | return transformCallThroughTrampoline(CS); | 
|  |  | 
|  | const PointerType *PTy = cast<PointerType>(Callee->getType()); | 
|  | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); | 
|  | if (FTy->isVarArg()) { | 
|  | int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); | 
|  | // See if we can optimize any arguments passed through the varargs area of | 
|  | // the call. | 
|  | for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), | 
|  | E = CS.arg_end(); I != E; ++I, ++ix) { | 
|  | CastInst *CI = dyn_cast<CastInst>(*I); | 
|  | if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { | 
|  | *I = CI->getOperand(0); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { | 
|  | // Inline asm calls cannot throw - mark them 'nounwind'. | 
|  | CS.setDoesNotThrow(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed ? CS.getInstruction() : 0; | 
|  | } | 
|  |  | 
|  | // transformConstExprCastCall - If the callee is a constexpr cast of a function, | 
|  | // attempt to move the cast to the arguments of the call/invoke. | 
|  | // | 
|  | bool InstCombiner::transformConstExprCastCall(CallSite CS) { | 
|  | if (!isa<ConstantExpr>(CS.getCalledValue())) return false; | 
|  | ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); | 
|  | if (CE->getOpcode() != Instruction::BitCast || | 
|  | !isa<Function>(CE->getOperand(0))) | 
|  | return false; | 
|  | Function *Callee = cast<Function>(CE->getOperand(0)); | 
|  | Instruction *Caller = CS.getInstruction(); | 
|  | const AttrListPtr &CallerPAL = CS.getAttributes(); | 
|  |  | 
|  | // Okay, this is a cast from a function to a different type.  Unless doing so | 
|  | // would cause a type conversion of one of our arguments, change this call to | 
|  | // be a direct call with arguments casted to the appropriate types. | 
|  | // | 
|  | const FunctionType *FT = Callee->getFunctionType(); | 
|  | const Type *OldRetTy = Caller->getType(); | 
|  | const Type *NewRetTy = FT->getReturnType(); | 
|  |  | 
|  | if (isa<StructType>(NewRetTy)) | 
|  | return false; // TODO: Handle multiple return values. | 
|  |  | 
|  | // Check to see if we are changing the return type... | 
|  | if (OldRetTy != NewRetTy) { | 
|  | if (Callee->isDeclaration() && | 
|  | // Conversion is ok if changing from one pointer type to another or from | 
|  | // a pointer to an integer of the same size. | 
|  | !((isa<PointerType>(OldRetTy) || !TD || | 
|  | OldRetTy == TD->getIntPtrType(Caller->getContext())) && | 
|  | (isa<PointerType>(NewRetTy) || !TD || | 
|  | NewRetTy == TD->getIntPtrType(Caller->getContext())))) | 
|  | return false;   // Cannot transform this return value. | 
|  |  | 
|  | if (!Caller->use_empty() && | 
|  | // void -> non-void is handled specially | 
|  | NewRetTy != Type::getVoidTy(*Context) && !CastInst::isCastable(NewRetTy, OldRetTy)) | 
|  | return false;   // Cannot transform this return value. | 
|  |  | 
|  | if (!CallerPAL.isEmpty() && !Caller->use_empty()) { | 
|  | Attributes RAttrs = CallerPAL.getRetAttributes(); | 
|  | if (RAttrs & Attribute::typeIncompatible(NewRetTy)) | 
|  | return false;   // Attribute not compatible with transformed value. | 
|  | } | 
|  |  | 
|  | // If the callsite is an invoke instruction, and the return value is used by | 
|  | // a PHI node in a successor, we cannot change the return type of the call | 
|  | // because there is no place to put the cast instruction (without breaking | 
|  | // the critical edge).  Bail out in this case. | 
|  | if (!Caller->use_empty()) | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) | 
|  | for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (PHINode *PN = dyn_cast<PHINode>(*UI)) | 
|  | if (PN->getParent() == II->getNormalDest() || | 
|  | PN->getParent() == II->getUnwindDest()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); | 
|  | unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); | 
|  |  | 
|  | CallSite::arg_iterator AI = CS.arg_begin(); | 
|  | for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { | 
|  | const Type *ParamTy = FT->getParamType(i); | 
|  | const Type *ActTy = (*AI)->getType(); | 
|  |  | 
|  | if (!CastInst::isCastable(ActTy, ParamTy)) | 
|  | return false;   // Cannot transform this parameter value. | 
|  |  | 
|  | if (CallerPAL.getParamAttributes(i + 1) | 
|  | & Attribute::typeIncompatible(ParamTy)) | 
|  | return false;   // Attribute not compatible with transformed value. | 
|  |  | 
|  | // Converting from one pointer type to another or between a pointer and an | 
|  | // integer of the same size is safe even if we do not have a body. | 
|  | bool isConvertible = ActTy == ParamTy || | 
|  | (TD && ((isa<PointerType>(ParamTy) || | 
|  | ParamTy == TD->getIntPtrType(Caller->getContext())) && | 
|  | (isa<PointerType>(ActTy) || | 
|  | ActTy == TD->getIntPtrType(Caller->getContext())))); | 
|  | if (Callee->isDeclaration() && !isConvertible) return false; | 
|  | } | 
|  |  | 
|  | if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && | 
|  | Callee->isDeclaration()) | 
|  | return false;   // Do not delete arguments unless we have a function body. | 
|  |  | 
|  | if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && | 
|  | !CallerPAL.isEmpty()) | 
|  | // In this case we have more arguments than the new function type, but we | 
|  | // won't be dropping them.  Check that these extra arguments have attributes | 
|  | // that are compatible with being a vararg call argument. | 
|  | for (unsigned i = CallerPAL.getNumSlots(); i; --i) { | 
|  | if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) | 
|  | break; | 
|  | Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; | 
|  | if (PAttrs & Attribute::VarArgsIncompatible) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, we decided that this is a safe thing to do: go ahead and start | 
|  | // inserting cast instructions as necessary... | 
|  | std::vector<Value*> Args; | 
|  | Args.reserve(NumActualArgs); | 
|  | SmallVector<AttributeWithIndex, 8> attrVec; | 
|  | attrVec.reserve(NumCommonArgs); | 
|  |  | 
|  | // Get any return attributes. | 
|  | Attributes RAttrs = CallerPAL.getRetAttributes(); | 
|  |  | 
|  | // If the return value is not being used, the type may not be compatible | 
|  | // with the existing attributes.  Wipe out any problematic attributes. | 
|  | RAttrs &= ~Attribute::typeIncompatible(NewRetTy); | 
|  |  | 
|  | // Add the new return attributes. | 
|  | if (RAttrs) | 
|  | attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); | 
|  |  | 
|  | AI = CS.arg_begin(); | 
|  | for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { | 
|  | const Type *ParamTy = FT->getParamType(i); | 
|  | if ((*AI)->getType() == ParamTy) { | 
|  | Args.push_back(*AI); | 
|  | } else { | 
|  | Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, | 
|  | false, ParamTy, false); | 
|  | Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); | 
|  | } | 
|  |  | 
|  | // Add any parameter attributes. | 
|  | if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) | 
|  | attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); | 
|  | } | 
|  |  | 
|  | // If the function takes more arguments than the call was taking, add them | 
|  | // now. | 
|  | for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) | 
|  | Args.push_back(Constant::getNullValue(FT->getParamType(i))); | 
|  |  | 
|  | // If we are removing arguments to the function, emit an obnoxious warning. | 
|  | if (FT->getNumParams() < NumActualArgs) { | 
|  | if (!FT->isVarArg()) { | 
|  | errs() << "WARNING: While resolving call to function '" | 
|  | << Callee->getName() << "' arguments were dropped!\n"; | 
|  | } else { | 
|  | // Add all of the arguments in their promoted form to the arg list. | 
|  | for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { | 
|  | const Type *PTy = getPromotedType((*AI)->getType()); | 
|  | if (PTy != (*AI)->getType()) { | 
|  | // Must promote to pass through va_arg area! | 
|  | Instruction::CastOps opcode = | 
|  | CastInst::getCastOpcode(*AI, false, PTy, false); | 
|  | Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); | 
|  | } else { | 
|  | Args.push_back(*AI); | 
|  | } | 
|  |  | 
|  | // Add any parameter attributes. | 
|  | if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) | 
|  | attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Attributes FnAttrs =  CallerPAL.getFnAttributes()) | 
|  | attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  |  | 
|  | if (NewRetTy == Type::getVoidTy(*Context)) | 
|  | Caller->setName("");   // Void type should not have a name. | 
|  |  | 
|  | const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), | 
|  | attrVec.end()); | 
|  |  | 
|  | Instruction *NC; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args.begin(), Args.end(), | 
|  | Caller->getName(), Caller); | 
|  | cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); | 
|  | cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); | 
|  | } else { | 
|  | NC = CallInst::Create(Callee, Args.begin(), Args.end(), | 
|  | Caller->getName(), Caller); | 
|  | CallInst *CI = cast<CallInst>(Caller); | 
|  | if (CI->isTailCall()) | 
|  | cast<CallInst>(NC)->setTailCall(); | 
|  | cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); | 
|  | cast<CallInst>(NC)->setAttributes(NewCallerPAL); | 
|  | } | 
|  |  | 
|  | // Insert a cast of the return type as necessary. | 
|  | Value *NV = NC; | 
|  | if (OldRetTy != NV->getType() && !Caller->use_empty()) { | 
|  | if (NV->getType() != Type::getVoidTy(*Context)) { | 
|  | Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, | 
|  | OldRetTy, false); | 
|  | NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); | 
|  |  | 
|  | // If this is an invoke instruction, we should insert it after the first | 
|  | // non-phi, instruction in the normal successor block. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); | 
|  | InsertNewInstBefore(NC, *I); | 
|  | } else { | 
|  | // Otherwise, it's a call, just insert cast right after the call instr | 
|  | InsertNewInstBefore(NC, *Caller); | 
|  | } | 
|  | Worklist.AddUsersToWorkList(*Caller); | 
|  | } else { | 
|  | NV = UndefValue::get(Caller->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!Caller->use_empty()) | 
|  | Caller->replaceAllUsesWith(NV); | 
|  |  | 
|  | EraseInstFromFunction(*Caller); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // transformCallThroughTrampoline - Turn a call to a function created by the | 
|  | // init_trampoline intrinsic into a direct call to the underlying function. | 
|  | // | 
|  | Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { | 
|  | Value *Callee = CS.getCalledValue(); | 
|  | const PointerType *PTy = cast<PointerType>(Callee->getType()); | 
|  | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); | 
|  | const AttrListPtr &Attrs = CS.getAttributes(); | 
|  |  | 
|  | // If the call already has the 'nest' attribute somewhere then give up - | 
|  | // otherwise 'nest' would occur twice after splicing in the chain. | 
|  | if (Attrs.hasAttrSomewhere(Attribute::Nest)) | 
|  | return 0; | 
|  |  | 
|  | IntrinsicInst *Tramp = | 
|  | cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); | 
|  |  | 
|  | Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); | 
|  | const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); | 
|  | const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); | 
|  |  | 
|  | const AttrListPtr &NestAttrs = NestF->getAttributes(); | 
|  | if (!NestAttrs.isEmpty()) { | 
|  | unsigned NestIdx = 1; | 
|  | const Type *NestTy = 0; | 
|  | Attributes NestAttr = Attribute::None; | 
|  |  | 
|  | // Look for a parameter marked with the 'nest' attribute. | 
|  | for (FunctionType::param_iterator I = NestFTy->param_begin(), | 
|  | E = NestFTy->param_end(); I != E; ++NestIdx, ++I) | 
|  | if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { | 
|  | // Record the parameter type and any other attributes. | 
|  | NestTy = *I; | 
|  | NestAttr = NestAttrs.getParamAttributes(NestIdx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NestTy) { | 
|  | Instruction *Caller = CS.getInstruction(); | 
|  | std::vector<Value*> NewArgs; | 
|  | NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); | 
|  |  | 
|  | SmallVector<AttributeWithIndex, 8> NewAttrs; | 
|  | NewAttrs.reserve(Attrs.getNumSlots() + 1); | 
|  |  | 
|  | // Insert the nest argument into the call argument list, which may | 
|  | // mean appending it.  Likewise for attributes. | 
|  |  | 
|  | // Add any result attributes. | 
|  | if (Attributes Attr = Attrs.getRetAttributes()) | 
|  | NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); | 
|  |  | 
|  | { | 
|  | unsigned Idx = 1; | 
|  | CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | 
|  | do { | 
|  | if (Idx == NestIdx) { | 
|  | // Add the chain argument and attributes. | 
|  | Value *NestVal = Tramp->getOperand(3); | 
|  | if (NestVal->getType() != NestTy) | 
|  | NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); | 
|  | NewArgs.push_back(NestVal); | 
|  | NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); | 
|  | } | 
|  |  | 
|  | if (I == E) | 
|  | break; | 
|  |  | 
|  | // Add the original argument and attributes. | 
|  | NewArgs.push_back(*I); | 
|  | if (Attributes Attr = Attrs.getParamAttributes(Idx)) | 
|  | NewAttrs.push_back | 
|  | (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); | 
|  |  | 
|  | ++Idx, ++I; | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | // Add any function attributes. | 
|  | if (Attributes Attr = Attrs.getFnAttributes()) | 
|  | NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); | 
|  |  | 
|  | // The trampoline may have been bitcast to a bogus type (FTy). | 
|  | // Handle this by synthesizing a new function type, equal to FTy | 
|  | // with the chain parameter inserted. | 
|  |  | 
|  | std::vector<const Type*> NewTypes; | 
|  | NewTypes.reserve(FTy->getNumParams()+1); | 
|  |  | 
|  | // Insert the chain's type into the list of parameter types, which may | 
|  | // mean appending it. | 
|  | { | 
|  | unsigned Idx = 1; | 
|  | FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); | 
|  |  | 
|  | do { | 
|  | if (Idx == NestIdx) | 
|  | // Add the chain's type. | 
|  | NewTypes.push_back(NestTy); | 
|  |  | 
|  | if (I == E) | 
|  | break; | 
|  |  | 
|  | // Add the original type. | 
|  | NewTypes.push_back(*I); | 
|  |  | 
|  | ++Idx, ++I; | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | // Replace the trampoline call with a direct call.  Let the generic | 
|  | // code sort out any function type mismatches. | 
|  | FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, | 
|  | FTy->isVarArg()); | 
|  | Constant *NewCallee = | 
|  | NestF->getType() == PointerType::getUnqual(NewFTy) ? | 
|  | NestF : ConstantExpr::getBitCast(NestF, | 
|  | PointerType::getUnqual(NewFTy)); | 
|  | const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), | 
|  | NewAttrs.end()); | 
|  |  | 
|  | Instruction *NewCaller; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | NewCaller = InvokeInst::Create(NewCallee, | 
|  | II->getNormalDest(), II->getUnwindDest(), | 
|  | NewArgs.begin(), NewArgs.end(), | 
|  | Caller->getName(), Caller); | 
|  | cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); | 
|  | cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); | 
|  | } else { | 
|  | NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), | 
|  | Caller->getName(), Caller); | 
|  | if (cast<CallInst>(Caller)->isTailCall()) | 
|  | cast<CallInst>(NewCaller)->setTailCall(); | 
|  | cast<CallInst>(NewCaller)-> | 
|  | setCallingConv(cast<CallInst>(Caller)->getCallingConv()); | 
|  | cast<CallInst>(NewCaller)->setAttributes(NewPAL); | 
|  | } | 
|  | if (Caller->getType() != Type::getVoidTy(*Context) && !Caller->use_empty()) | 
|  | Caller->replaceAllUsesWith(NewCaller); | 
|  | Caller->eraseFromParent(); | 
|  | Worklist.Remove(Caller); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the trampoline call with a direct call.  Since there is no 'nest' | 
|  | // parameter, there is no need to adjust the argument list.  Let the generic | 
|  | // code sort out any function type mismatches. | 
|  | Constant *NewCallee = | 
|  | NestF->getType() == PTy ? NestF : | 
|  | ConstantExpr::getBitCast(NestF, PTy); | 
|  | CS.setCalledFunction(NewCallee); | 
|  | return CS.getInstruction(); | 
|  | } | 
|  |  | 
|  | /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] | 
|  | /// and if a/b/c and the add's all have a single use, turn this into a phi | 
|  | /// and a single binop. | 
|  | Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { | 
|  | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  | assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); | 
|  | unsigned Opc = FirstInst->getOpcode(); | 
|  | Value *LHSVal = FirstInst->getOperand(0); | 
|  | Value *RHSVal = FirstInst->getOperand(1); | 
|  |  | 
|  | const Type *LHSType = LHSVal->getType(); | 
|  | const Type *RHSType = RHSVal->getType(); | 
|  |  | 
|  | // Scan to see if all operands are the same opcode, and all have one use. | 
|  | for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
|  | Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
|  | if (!I || I->getOpcode() != Opc || !I->hasOneUse() || | 
|  | // Verify type of the LHS matches so we don't fold cmp's of different | 
|  | // types or GEP's with different index types. | 
|  | I->getOperand(0)->getType() != LHSType || | 
|  | I->getOperand(1)->getType() != RHSType) | 
|  | return 0; | 
|  |  | 
|  | // If they are CmpInst instructions, check their predicates | 
|  | if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) | 
|  | if (cast<CmpInst>(I)->getPredicate() != | 
|  | cast<CmpInst>(FirstInst)->getPredicate()) | 
|  | return 0; | 
|  |  | 
|  | // Keep track of which operand needs a phi node. | 
|  | if (I->getOperand(0) != LHSVal) LHSVal = 0; | 
|  | if (I->getOperand(1) != RHSVal) RHSVal = 0; | 
|  | } | 
|  |  | 
|  | // If both LHS and RHS would need a PHI, don't do this transformation, | 
|  | // because it would increase the number of PHIs entering the block, | 
|  | // which leads to higher register pressure. This is especially | 
|  | // bad when the PHIs are in the header of a loop. | 
|  | if (!LHSVal && !RHSVal) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise, this is safe to transform! | 
|  |  | 
|  | Value *InLHS = FirstInst->getOperand(0); | 
|  | Value *InRHS = FirstInst->getOperand(1); | 
|  | PHINode *NewLHS = 0, *NewRHS = 0; | 
|  | if (LHSVal == 0) { | 
|  | NewLHS = PHINode::Create(LHSType, | 
|  | FirstInst->getOperand(0)->getName() + ".pn"); | 
|  | NewLHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); | 
|  | InsertNewInstBefore(NewLHS, PN); | 
|  | LHSVal = NewLHS; | 
|  | } | 
|  |  | 
|  | if (RHSVal == 0) { | 
|  | NewRHS = PHINode::Create(RHSType, | 
|  | FirstInst->getOperand(1)->getName() + ".pn"); | 
|  | NewRHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); | 
|  | InsertNewInstBefore(NewRHS, PN); | 
|  | RHSVal = NewRHS; | 
|  | } | 
|  |  | 
|  | // Add all operands to the new PHIs. | 
|  | if (NewLHS || NewRHS) { | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); | 
|  | if (NewLHS) { | 
|  | Value *NewInLHS = InInst->getOperand(0); | 
|  | NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); | 
|  | } | 
|  | if (NewRHS) { | 
|  | Value *NewInRHS = InInst->getOperand(1); | 
|  | NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); | 
|  | CmpInst *CIOp = cast<CmpInst>(FirstInst); | 
|  | return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
|  | LHSVal, RHSVal); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { | 
|  | GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); | 
|  |  | 
|  | SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), | 
|  | FirstInst->op_end()); | 
|  | // This is true if all GEP bases are allocas and if all indices into them are | 
|  | // constants. | 
|  | bool AllBasePointersAreAllocas = true; | 
|  |  | 
|  | // We don't want to replace this phi if the replacement would require | 
|  | // more than one phi, which leads to higher register pressure. This is | 
|  | // especially bad when the PHIs are in the header of a loop. | 
|  | bool NeededPhi = false; | 
|  |  | 
|  | // Scan to see if all operands are the same opcode, and all have one use. | 
|  | for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
|  | GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
|  | if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || | 
|  | GEP->getNumOperands() != FirstInst->getNumOperands()) | 
|  | return 0; | 
|  |  | 
|  | // Keep track of whether or not all GEPs are of alloca pointers. | 
|  | if (AllBasePointersAreAllocas && | 
|  | (!isa<AllocaInst>(GEP->getOperand(0)) || | 
|  | !GEP->hasAllConstantIndices())) | 
|  | AllBasePointersAreAllocas = false; | 
|  |  | 
|  | // Compare the operand lists. | 
|  | for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { | 
|  | if (FirstInst->getOperand(op) == GEP->getOperand(op)) | 
|  | continue; | 
|  |  | 
|  | // Don't merge two GEPs when two operands differ (introducing phi nodes) | 
|  | // if one of the PHIs has a constant for the index.  The index may be | 
|  | // substantially cheaper to compute for the constants, so making it a | 
|  | // variable index could pessimize the path.  This also handles the case | 
|  | // for struct indices, which must always be constant. | 
|  | if (isa<ConstantInt>(FirstInst->getOperand(op)) || | 
|  | isa<ConstantInt>(GEP->getOperand(op))) | 
|  | return 0; | 
|  |  | 
|  | if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) | 
|  | return 0; | 
|  |  | 
|  | // If we already needed a PHI for an earlier operand, and another operand | 
|  | // also requires a PHI, we'd be introducing more PHIs than we're | 
|  | // eliminating, which increases register pressure on entry to the PHI's | 
|  | // block. | 
|  | if (NeededPhi) | 
|  | return 0; | 
|  |  | 
|  | FixedOperands[op] = 0;  // Needs a PHI. | 
|  | NeededPhi = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all of the base pointers of the PHI'd GEPs are from allocas, don't | 
|  | // bother doing this transformation.  At best, this will just save a bit of | 
|  | // offset calculation, but all the predecessors will have to materialize the | 
|  | // stack address into a register anyway.  We'd actually rather *clone* the | 
|  | // load up into the predecessors so that we have a load of a gep of an alloca, | 
|  | // which can usually all be folded into the load. | 
|  | if (AllBasePointersAreAllocas) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise, this is safe to transform.  Insert PHI nodes for each operand | 
|  | // that is variable. | 
|  | SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); | 
|  |  | 
|  | bool HasAnyPHIs = false; | 
|  | for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { | 
|  | if (FixedOperands[i]) continue;  // operand doesn't need a phi. | 
|  | Value *FirstOp = FirstInst->getOperand(i); | 
|  | PHINode *NewPN = PHINode::Create(FirstOp->getType(), | 
|  | FirstOp->getName()+".pn"); | 
|  | InsertNewInstBefore(NewPN, PN); | 
|  |  | 
|  | NewPN->reserveOperandSpace(e); | 
|  | NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); | 
|  | OperandPhis[i] = NewPN; | 
|  | FixedOperands[i] = NewPN; | 
|  | HasAnyPHIs = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Add all operands to the new PHIs. | 
|  | if (HasAnyPHIs) { | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
|  | BasicBlock *InBB = PN.getIncomingBlock(i); | 
|  |  | 
|  | for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) | 
|  | if (PHINode *OpPhi = OperandPhis[op]) | 
|  | OpPhi->addIncoming(InGEP->getOperand(op), InBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Base = FixedOperands[0]; | 
|  | return cast<GEPOperator>(FirstInst)->isInBounds() ? | 
|  | GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1, | 
|  | FixedOperands.end()) : | 
|  | GetElementPtrInst::Create(Base, FixedOperands.begin()+1, | 
|  | FixedOperands.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to | 
|  | /// sink the load out of the block that defines it.  This means that it must be | 
|  | /// obvious the value of the load is not changed from the point of the load to | 
|  | /// the end of the block it is in. | 
|  | /// | 
|  | /// Finally, it is safe, but not profitable, to sink a load targetting a | 
|  | /// non-address-taken alloca.  Doing so will cause us to not promote the alloca | 
|  | /// to a register. | 
|  | static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { | 
|  | BasicBlock::iterator BBI = L, E = L->getParent()->end(); | 
|  |  | 
|  | for (++BBI; BBI != E; ++BBI) | 
|  | if (BBI->mayWriteToMemory()) | 
|  | return false; | 
|  |  | 
|  | // Check for non-address taken alloca.  If not address-taken already, it isn't | 
|  | // profitable to do this xform. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { | 
|  | bool isAddressTaken = false; | 
|  | for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); | 
|  | UI != E; ++UI) { | 
|  | if (isa<LoadInst>(UI)) continue; | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { | 
|  | // If storing TO the alloca, then the address isn't taken. | 
|  | if (SI->getOperand(1) == AI) continue; | 
|  | } | 
|  | isAddressTaken = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!isAddressTaken && AI->isStaticAlloca()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this load is a load from a GEP with a constant offset from an alloca, | 
|  | // then we don't want to sink it.  In its present form, it will be | 
|  | // load [constant stack offset].  Sinking it will cause us to have to | 
|  | // materialize the stack addresses in each predecessor in a register only to | 
|  | // do a shared load from register in the successor. | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) | 
|  | if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
|  | // operator and they all are only used by the PHI, PHI together their | 
|  | // inputs, and do the operation once, to the result of the PHI. | 
|  | Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { | 
|  | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  |  | 
|  | // Scan the instruction, looking for input operations that can be folded away. | 
|  | // If all input operands to the phi are the same instruction (e.g. a cast from | 
|  | // the same type or "+42") we can pull the operation through the PHI, reducing | 
|  | // code size and simplifying code. | 
|  | Constant *ConstantOp = 0; | 
|  | const Type *CastSrcTy = 0; | 
|  | bool isVolatile = false; | 
|  | if (isa<CastInst>(FirstInst)) { | 
|  | CastSrcTy = FirstInst->getOperand(0)->getType(); | 
|  | } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { | 
|  | // Can fold binop, compare or shift here if the RHS is a constant, | 
|  | // otherwise call FoldPHIArgBinOpIntoPHI. | 
|  | ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); | 
|  | if (ConstantOp == 0) | 
|  | return FoldPHIArgBinOpIntoPHI(PN); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) { | 
|  | isVolatile = LI->isVolatile(); | 
|  | // We can't sink the load if the loaded value could be modified between the | 
|  | // load and the PHI. | 
|  | if (LI->getParent() != PN.getIncomingBlock(0) || | 
|  | !isSafeAndProfitableToSinkLoad(LI)) | 
|  | return 0; | 
|  |  | 
|  | // If the PHI is of volatile loads and the load block has multiple | 
|  | // successors, sinking it would remove a load of the volatile value from | 
|  | // the path through the other successor. | 
|  | if (isVolatile && | 
|  | LI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
|  | return 0; | 
|  |  | 
|  | } else if (isa<GetElementPtrInst>(FirstInst)) { | 
|  | return FoldPHIArgGEPIntoPHI(PN); | 
|  | } else { | 
|  | return 0;  // Cannot fold this operation. | 
|  | } | 
|  |  | 
|  | // Check to see if all arguments are the same operation. | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | if (!isa<Instruction>(PN.getIncomingValue(i))) return 0; | 
|  | Instruction *I = cast<Instruction>(PN.getIncomingValue(i)); | 
|  | if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst)) | 
|  | return 0; | 
|  | if (CastSrcTy) { | 
|  | if (I->getOperand(0)->getType() != CastSrcTy) | 
|  | return 0;  // Cast operation must match. | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | // We can't sink the load if the loaded value could be modified between | 
|  | // the load and the PHI. | 
|  | if (LI->isVolatile() != isVolatile || | 
|  | LI->getParent() != PN.getIncomingBlock(i) || | 
|  | !isSafeAndProfitableToSinkLoad(LI)) | 
|  | return 0; | 
|  |  | 
|  | // If the PHI is of volatile loads and the load block has multiple | 
|  | // successors, sinking it would remove a load of the volatile value from | 
|  | // the path through the other successor. | 
|  | if (isVolatile && | 
|  | LI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
|  | return 0; | 
|  |  | 
|  | } else if (I->getOperand(1) != ConstantOp) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, they are all the same operation.  Create a new PHI node of the | 
|  | // correct type, and PHI together all of the LHS's of the instructions. | 
|  | PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), | 
|  | PN.getName()+".in"); | 
|  | NewPN->reserveOperandSpace(PN.getNumOperands()/2); | 
|  |  | 
|  | Value *InVal = FirstInst->getOperand(0); | 
|  | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
|  |  | 
|  | // Add all operands to the new PHI. | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); | 
|  | if (NewInVal != InVal) | 
|  | InVal = 0; | 
|  | NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
|  | } | 
|  |  | 
|  | Value *PhiVal; | 
|  | if (InVal) { | 
|  | // The new PHI unions all of the same values together.  This is really | 
|  | // common, so we handle it intelligently here for compile-time speed. | 
|  | PhiVal = InVal; | 
|  | delete NewPN; | 
|  | } else { | 
|  | InsertNewInstBefore(NewPN, PN); | 
|  | PhiVal = NewPN; | 
|  | } | 
|  |  | 
|  | // Insert and return the new operation. | 
|  | if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst)) | 
|  | return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); | 
|  | if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) | 
|  | return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
|  | PhiVal, ConstantOp); | 
|  | assert(isa<LoadInst>(FirstInst) && "Unknown operation"); | 
|  |  | 
|  | // If this was a volatile load that we are merging, make sure to loop through | 
|  | // and mark all the input loads as non-volatile.  If we don't do this, we will | 
|  | // insert a new volatile load and the old ones will not be deletable. | 
|  | if (isVolatile) | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); | 
|  |  | 
|  | return new LoadInst(PhiVal, "", isVolatile); | 
|  | } | 
|  |  | 
|  | /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle | 
|  | /// that is dead. | 
|  | static bool DeadPHICycle(PHINode *PN, | 
|  | SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { | 
|  | if (PN->use_empty()) return true; | 
|  | if (!PN->hasOneUse()) return false; | 
|  |  | 
|  | // Remember this node, and if we find the cycle, return. | 
|  | if (!PotentiallyDeadPHIs.insert(PN)) | 
|  | return true; | 
|  |  | 
|  | // Don't scan crazily complex things. | 
|  | if (PotentiallyDeadPHIs.size() == 16) | 
|  | return false; | 
|  |  | 
|  | if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) | 
|  | return DeadPHICycle(PU, PotentiallyDeadPHIs); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// PHIsEqualValue - Return true if this phi node is always equal to | 
|  | /// NonPhiInVal.  This happens with mutually cyclic phi nodes like: | 
|  | ///   z = some value; x = phi (y, z); y = phi (x, z) | 
|  | static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, | 
|  | SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { | 
|  | // See if we already saw this PHI node. | 
|  | if (!ValueEqualPHIs.insert(PN)) | 
|  | return true; | 
|  |  | 
|  | // Don't scan crazily complex things. | 
|  | if (ValueEqualPHIs.size() == 16) | 
|  | return false; | 
|  |  | 
|  | // Scan the operands to see if they are either phi nodes or are equal to | 
|  | // the value. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *Op = PN->getIncomingValue(i); | 
|  | if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { | 
|  | if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) | 
|  | return false; | 
|  | } else if (Op != NonPhiInVal) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // PHINode simplification | 
|  | // | 
|  | Instruction *InstCombiner::visitPHINode(PHINode &PN) { | 
|  | // If LCSSA is around, don't mess with Phi nodes | 
|  | if (MustPreserveLCSSA) return 0; | 
|  |  | 
|  | if (Value *V = PN.hasConstantValue()) | 
|  | return ReplaceInstUsesWith(PN, V); | 
|  |  | 
|  | // If all PHI operands are the same operation, pull them through the PHI, | 
|  | // reducing code size. | 
|  | if (isa<Instruction>(PN.getIncomingValue(0)) && | 
|  | isa<Instruction>(PN.getIncomingValue(1)) && | 
|  | cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == | 
|  | cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && | 
|  | // FIXME: The hasOneUse check will fail for PHIs that use the value more | 
|  | // than themselves more than once. | 
|  | PN.getIncomingValue(0)->hasOneUse()) | 
|  | if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) | 
|  | return Result; | 
|  |  | 
|  | // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if | 
|  | // this PHI only has a single use (a PHI), and if that PHI only has one use (a | 
|  | // PHI)... break the cycle. | 
|  | if (PN.hasOneUse()) { | 
|  | Instruction *PHIUser = cast<Instruction>(PN.use_back()); | 
|  | if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { | 
|  | SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; | 
|  | PotentiallyDeadPHIs.insert(&PN); | 
|  | if (DeadPHICycle(PU, PotentiallyDeadPHIs)) | 
|  | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | } | 
|  |  | 
|  | // If this phi has a single use, and if that use just computes a value for | 
|  | // the next iteration of a loop, delete the phi.  This occurs with unused | 
|  | // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this | 
|  | // common case here is good because the only other things that catch this | 
|  | // are induction variable analysis (sometimes) and ADCE, which is only run | 
|  | // late. | 
|  | if (PHIUser->hasOneUse() && | 
|  | (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && | 
|  | PHIUser->use_back() == &PN) { | 
|  | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We sometimes end up with phi cycles that non-obviously end up being the | 
|  | // same value, for example: | 
|  | //   z = some value; x = phi (y, z); y = phi (x, z) | 
|  | // where the phi nodes don't necessarily need to be in the same block.  Do a | 
|  | // quick check to see if the PHI node only contains a single non-phi value, if | 
|  | // so, scan to see if the phi cycle is actually equal to that value. | 
|  | { | 
|  | unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); | 
|  | // Scan for the first non-phi operand. | 
|  | while (InValNo != NumOperandVals && | 
|  | isa<PHINode>(PN.getIncomingValue(InValNo))) | 
|  | ++InValNo; | 
|  |  | 
|  | if (InValNo != NumOperandVals) { | 
|  | Value *NonPhiInVal = PN.getOperand(InValNo); | 
|  |  | 
|  | // Scan the rest of the operands to see if there are any conflicts, if so | 
|  | // there is no need to recursively scan other phis. | 
|  | for (++InValNo; InValNo != NumOperandVals; ++InValNo) { | 
|  | Value *OpVal = PN.getIncomingValue(InValNo); | 
|  | if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we scanned over all operands, then we have one unique value plus | 
|  | // phi values.  Scan PHI nodes to see if they all merge in each other or | 
|  | // the value. | 
|  | if (InValNo == NumOperandVals) { | 
|  | SmallPtrSet<PHINode*, 16> ValueEqualPHIs; | 
|  | if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) | 
|  | return ReplaceInstUsesWith(PN, NonPhiInVal); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { | 
|  | Value *PtrOp = GEP.getOperand(0); | 
|  | // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops. | 
|  | if (GEP.getNumOperands() == 1) | 
|  | return ReplaceInstUsesWith(GEP, PtrOp); | 
|  |  | 
|  | if (isa<UndefValue>(GEP.getOperand(0))) | 
|  | return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); | 
|  |  | 
|  | bool HasZeroPointerIndex = false; | 
|  | if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1))) | 
|  | HasZeroPointerIndex = C->isNullValue(); | 
|  |  | 
|  | if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) | 
|  | return ReplaceInstUsesWith(GEP, PtrOp); | 
|  |  | 
|  | // Eliminate unneeded casts for indices. | 
|  | if (TD) { | 
|  | bool MadeChange = false; | 
|  | unsigned PtrSize = TD->getPointerSizeInBits(); | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); | 
|  | I != E; ++I, ++GTI) { | 
|  | if (!isa<SequentialType>(*GTI)) continue; | 
|  |  | 
|  | // If we are using a wider index than needed for this platform, shrink it | 
|  | // to what we need.  If narrower, sign-extend it to what we need.  This | 
|  | // explicit cast can make subsequent optimizations more obvious. | 
|  | unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth(); | 
|  | if (OpBits == PtrSize) | 
|  | continue; | 
|  |  | 
|  | *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (MadeChange) return &GEP; | 
|  | } | 
|  |  | 
|  | // Combine Indices - If the source pointer to this getelementptr instruction | 
|  | // is a getelementptr instruction, combine the indices of the two | 
|  | // getelementptr instructions into a single instruction. | 
|  | // | 
|  | if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { | 
|  | // Note that if our source is a gep chain itself that we wait for that | 
|  | // chain to be resolved before we perform this transformation.  This | 
|  | // avoids us creating a TON of code in some cases. | 
|  | // | 
|  | if (GetElementPtrInst *SrcGEP = | 
|  | dyn_cast<GetElementPtrInst>(Src->getOperand(0))) | 
|  | if (SrcGEP->getNumOperands() == 2) | 
|  | return 0;   // Wait until our source is folded to completion. | 
|  |  | 
|  | SmallVector<Value*, 8> Indices; | 
|  |  | 
|  | // Find out whether the last index in the source GEP is a sequential idx. | 
|  | bool EndsWithSequential = false; | 
|  | for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); | 
|  | I != E; ++I) | 
|  | EndsWithSequential = !isa<StructType>(*I); | 
|  |  | 
|  | // Can we combine the two pointer arithmetics offsets? | 
|  | if (EndsWithSequential) { | 
|  | // Replace: gep (gep %P, long B), long A, ... | 
|  | // With:    T = long A+B; gep %P, T, ... | 
|  | // | 
|  | Value *Sum; | 
|  | Value *SO1 = Src->getOperand(Src->getNumOperands()-1); | 
|  | Value *GO1 = GEP.getOperand(1); | 
|  | if (SO1 == Constant::getNullValue(SO1->getType())) { | 
|  | Sum = GO1; | 
|  | } else if (GO1 == Constant::getNullValue(GO1->getType())) { | 
|  | Sum = SO1; | 
|  | } else { | 
|  | // If they aren't the same type, then the input hasn't been processed | 
|  | // by the loop above yet (which canonicalizes sequential index types to | 
|  | // intptr_t).  Just avoid transforming this until the input has been | 
|  | // normalized. | 
|  | if (SO1->getType() != GO1->getType()) | 
|  | return 0; | 
|  | Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); | 
|  | } | 
|  |  | 
|  | // Update the GEP in place if possible. | 
|  | if (Src->getNumOperands() == 2) { | 
|  | GEP.setOperand(0, Src->getOperand(0)); | 
|  | GEP.setOperand(1, Sum); | 
|  | return &GEP; | 
|  | } | 
|  | Indices.append(Src->op_begin()+1, Src->op_end()-1); | 
|  | Indices.push_back(Sum); | 
|  | Indices.append(GEP.op_begin()+2, GEP.op_end()); | 
|  | } else if (isa<Constant>(*GEP.idx_begin()) && | 
|  | cast<Constant>(*GEP.idx_begin())->isNullValue() && | 
|  | Src->getNumOperands() != 1) { | 
|  | // Otherwise we can do the fold if the first index of the GEP is a zero | 
|  | Indices.append(Src->op_begin()+1, Src->op_end()); | 
|  | Indices.append(GEP.idx_begin()+1, GEP.idx_end()); | 
|  | } | 
|  |  | 
|  | if (!Indices.empty()) | 
|  | return (cast<GEPOperator>(&GEP)->isInBounds() && | 
|  | Src->isInBounds()) ? | 
|  | GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(), | 
|  | Indices.end(), GEP.getName()) : | 
|  | GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(), | 
|  | Indices.end(), GEP.getName()); | 
|  | } | 
|  |  | 
|  | // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). | 
|  | if (Value *X = getBitCastOperand(PtrOp)) { | 
|  | assert(isa<PointerType>(X->getType()) && "Must be cast from pointer"); | 
|  |  | 
|  | // If the input bitcast is actually "bitcast(bitcast(x))", then we don't | 
|  | // want to change the gep until the bitcasts are eliminated. | 
|  | if (getBitCastOperand(X)) { | 
|  | Worklist.AddValue(PtrOp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... | 
|  | // into     : GEP [10 x i8]* X, i32 0, ... | 
|  | // | 
|  | // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... | 
|  | //           into     : GEP i8* X, ... | 
|  | // | 
|  | // This occurs when the program declares an array extern like "int X[];" | 
|  | if (HasZeroPointerIndex) { | 
|  | const PointerType *CPTy = cast<PointerType>(PtrOp->getType()); | 
|  | const PointerType *XTy = cast<PointerType>(X->getType()); | 
|  | if (const ArrayType *CATy = | 
|  | dyn_cast<ArrayType>(CPTy->getElementType())) { | 
|  | // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? | 
|  | if (CATy->getElementType() == XTy->getElementType()) { | 
|  | // -> GEP i8* X, ... | 
|  | SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end()); | 
|  | return cast<GEPOperator>(&GEP)->isInBounds() ? | 
|  | GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(), | 
|  | GEP.getName()) : | 
|  | GetElementPtrInst::Create(X, Indices.begin(), Indices.end(), | 
|  | GEP.getName()); | 
|  | } | 
|  |  | 
|  | if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){ | 
|  | // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? | 
|  | if (CATy->getElementType() == XATy->getElementType()) { | 
|  | // -> GEP [10 x i8]* X, i32 0, ... | 
|  | // At this point, we know that the cast source type is a pointer | 
|  | // to an array of the same type as the destination pointer | 
|  | // array.  Because the array type is never stepped over (there | 
|  | // is a leading zero) we can fold the cast into this GEP. | 
|  | GEP.setOperand(0, X); | 
|  | return &GEP; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (GEP.getNumOperands() == 2) { | 
|  | // Transform things like: | 
|  | // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V | 
|  | // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast | 
|  | const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType(); | 
|  | const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); | 
|  | if (TD && isa<ArrayType>(SrcElTy) && | 
|  | TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == | 
|  | TD->getTypeAllocSize(ResElTy)) { | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context)); | 
|  | Idx[1] = GEP.getOperand(1); | 
|  | Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ? | 
|  | Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) : | 
|  | Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName()); | 
|  | // V and GEP are both pointer types --> BitCast | 
|  | return new BitCastInst(NewGEP, GEP.getType()); | 
|  | } | 
|  |  | 
|  | // Transform things like: | 
|  | // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp | 
|  | //   (where tmp = 8*tmp2) into: | 
|  | // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast | 
|  |  | 
|  | if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) { | 
|  | uint64_t ArrayEltSize = | 
|  | TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); | 
|  |  | 
|  | // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We | 
|  | // allow either a mul, shift, or constant here. | 
|  | Value *NewIdx = 0; | 
|  | ConstantInt *Scale = 0; | 
|  | if (ArrayEltSize == 1) { | 
|  | NewIdx = GEP.getOperand(1); | 
|  | Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); | 
|  | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { | 
|  | NewIdx = ConstantInt::get(CI->getType(), 1); | 
|  | Scale = CI; | 
|  | } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ | 
|  | if (Inst->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); | 
|  | uint32_t ShAmtVal = ShAmt->getLimitedValue(64); | 
|  | Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), | 
|  | 1ULL << ShAmtVal); | 
|  | NewIdx = Inst->getOperand(0); | 
|  | } else if (Inst->getOpcode() == Instruction::Mul && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | Scale = cast<ConstantInt>(Inst->getOperand(1)); | 
|  | NewIdx = Inst->getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the index will be to exactly the right offset with the scale taken | 
|  | // out, perform the transformation. Note, we don't know whether Scale is | 
|  | // signed or not. We'll use unsigned version of division/modulo | 
|  | // operation after making sure Scale doesn't have the sign bit set. | 
|  | if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && | 
|  | Scale->getZExtValue() % ArrayEltSize == 0) { | 
|  | Scale = ConstantInt::get(Scale->getType(), | 
|  | Scale->getZExtValue() / ArrayEltSize); | 
|  | if (Scale->getZExtValue() != 1) { | 
|  | Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), | 
|  | false /*ZExt*/); | 
|  | NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); | 
|  | } | 
|  |  | 
|  | // Insert the new GEP instruction. | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context)); | 
|  | Idx[1] = NewIdx; | 
|  | Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ? | 
|  | Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) : | 
|  | Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName()); | 
|  | // The NewGEP must be pointer typed, so must the old one -> BitCast | 
|  | return new BitCastInst(NewGEP, GEP.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See if we can simplify: | 
|  | ///   X = bitcast A* to B* | 
|  | ///   Y = gep X, <...constant indices...> | 
|  | /// into a gep of the original struct.  This is important for SROA and alias | 
|  | /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { | 
|  | if (TD && | 
|  | !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) { | 
|  | // Determine how much the GEP moves the pointer.  We are guaranteed to get | 
|  | // a constant back from EmitGEPOffset. | 
|  | ConstantInt *OffsetV = | 
|  | cast<ConstantInt>(EmitGEPOffset(&GEP, GEP, *this)); | 
|  | int64_t Offset = OffsetV->getSExtValue(); | 
|  |  | 
|  | // If this GEP instruction doesn't move the pointer, just replace the GEP | 
|  | // with a bitcast of the real input to the dest type. | 
|  | if (Offset == 0) { | 
|  | // If the bitcast is of an allocation, and the allocation will be | 
|  | // converted to match the type of the cast, don't touch this. | 
|  | if (isa<AllocationInst>(BCI->getOperand(0)) || | 
|  | isMalloc(BCI->getOperand(0))) { | 
|  | // See if the bitcast simplifies, if so, don't nuke this GEP yet. | 
|  | if (Instruction *I = visitBitCast(*BCI)) { | 
|  | if (I != BCI) { | 
|  | I->takeName(BCI); | 
|  | BCI->getParent()->getInstList().insert(BCI, I); | 
|  | ReplaceInstUsesWith(*BCI, I); | 
|  | } | 
|  | return &GEP; | 
|  | } | 
|  | } | 
|  | return new BitCastInst(BCI->getOperand(0), GEP.getType()); | 
|  | } | 
|  |  | 
|  | // Otherwise, if the offset is non-zero, we need to find out if there is a | 
|  | // field at Offset in 'A's type.  If so, we can pull the cast through the | 
|  | // GEP. | 
|  | SmallVector<Value*, 8> NewIndices; | 
|  | const Type *InTy = | 
|  | cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); | 
|  | if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) { | 
|  | Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ? | 
|  | Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(), | 
|  | NewIndices.end()) : | 
|  | Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(), | 
|  | NewIndices.end()); | 
|  |  | 
|  | if (NGEP->getType() == GEP.getType()) | 
|  | return ReplaceInstUsesWith(GEP, NGEP); | 
|  | NGEP->takeName(&GEP); | 
|  | return new BitCastInst(NGEP, GEP.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { | 
|  | // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 | 
|  | if (AI.isArrayAllocation()) {  // Check C != 1 | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { | 
|  | const Type *NewTy = | 
|  | ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); | 
|  | AllocationInst *New = 0; | 
|  |  | 
|  | // Create and insert the replacement instruction... | 
|  | if (isa<MallocInst>(AI)) | 
|  | New = Builder->CreateMalloc(NewTy, 0, AI.getName()); | 
|  | else { | 
|  | assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); | 
|  | New = Builder->CreateAlloca(NewTy, 0, AI.getName()); | 
|  | } | 
|  | New->setAlignment(AI.getAlignment()); | 
|  |  | 
|  | // Scan to the end of the allocation instructions, to skip over a block of | 
|  | // allocas if possible...also skip interleaved debug info | 
|  | // | 
|  | BasicBlock::iterator It = New; | 
|  | while (isa<AllocationInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; | 
|  |  | 
|  | // Now that I is pointing to the first non-allocation-inst in the block, | 
|  | // insert our getelementptr instruction... | 
|  | // | 
|  | Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context)); | 
|  | Value *Idx[2]; | 
|  | Idx[0] = NullIdx; | 
|  | Idx[1] = NullIdx; | 
|  | Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2, | 
|  | New->getName()+".sub", It); | 
|  |  | 
|  | // Now make everything use the getelementptr instead of the original | 
|  | // allocation. | 
|  | return ReplaceInstUsesWith(AI, V); | 
|  | } else if (isa<UndefValue>(AI.getArraySize())) { | 
|  | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) { | 
|  | // If alloca'ing a zero byte object, replace the alloca with a null pointer. | 
|  | // Note that we only do this for alloca's, because malloc should allocate | 
|  | // and return a unique pointer, even for a zero byte allocation. | 
|  | if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) | 
|  | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); | 
|  |  | 
|  | // If the alignment is 0 (unspecified), assign it the preferred alignment. | 
|  | if (AI.getAlignment() == 0) | 
|  | AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { | 
|  | Value *Op = FI.getOperand(0); | 
|  |  | 
|  | // free undef -> unreachable. | 
|  | if (isa<UndefValue>(Op)) { | 
|  | // Insert a new store to null because we cannot modify the CFG here. | 
|  | new StoreInst(ConstantInt::getTrue(*Context), | 
|  | UndefValue::get(Type::getInt1PtrTy(*Context)), &FI); | 
|  | return EraseInstFromFunction(FI); | 
|  | } | 
|  |  | 
|  | // If we have 'free null' delete the instruction.  This can happen in stl code | 
|  | // when lots of inlining happens. | 
|  | if (isa<ConstantPointerNull>(Op)) | 
|  | return EraseInstFromFunction(FI); | 
|  |  | 
|  | // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X | 
|  | if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) { | 
|  | FI.setOperand(0, CI->getOperand(0)); | 
|  | return &FI; | 
|  | } | 
|  |  | 
|  | // Change free (gep X, 0,0,0,0) into free(X) | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { | 
|  | if (GEPI->hasAllZeroIndices()) { | 
|  | Worklist.Add(GEPI); | 
|  | FI.setOperand(0, GEPI->getOperand(0)); | 
|  | return &FI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Change free(malloc) into nothing, if the malloc has a single use. | 
|  | if (MallocInst *MI = dyn_cast<MallocInst>(Op)) | 
|  | if (MI->hasOneUse()) { | 
|  | EraseInstFromFunction(FI); | 
|  | return EraseInstFromFunction(*MI); | 
|  | } | 
|  | if (isMalloc(Op)) { | 
|  | if (CallInst* CI = extractMallocCallFromBitCast(Op)) { | 
|  | if (Op->hasOneUse() && CI->hasOneUse()) { | 
|  | EraseInstFromFunction(FI); | 
|  | EraseInstFromFunction(*CI); | 
|  | return EraseInstFromFunction(*cast<Instruction>(Op)); | 
|  | } | 
|  | } else { | 
|  | // Op is a call to malloc | 
|  | if (Op->hasOneUse()) { | 
|  | EraseInstFromFunction(FI); | 
|  | return EraseInstFromFunction(*cast<Instruction>(Op)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. | 
|  | static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, | 
|  | const TargetData *TD) { | 
|  | User *CI = cast<User>(LI.getOperand(0)); | 
|  | Value *CastOp = CI->getOperand(0); | 
|  | LLVMContext *Context = IC.getContext(); | 
|  |  | 
|  | if (TD) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) { | 
|  | // Instead of loading constant c string, use corresponding integer value | 
|  | // directly if string length is small enough. | 
|  | std::string Str; | 
|  | if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) { | 
|  | unsigned len = Str.length(); | 
|  | const Type *Ty = cast<PointerType>(CE->getType())->getElementType(); | 
|  | unsigned numBits = Ty->getPrimitiveSizeInBits(); | 
|  | // Replace LI with immediate integer store. | 
|  | if ((numBits >> 3) == len + 1) { | 
|  | APInt StrVal(numBits, 0); | 
|  | APInt SingleChar(numBits, 0); | 
|  | if (TD->isLittleEndian()) { | 
|  | for (signed i = len-1; i >= 0; i--) { | 
|  | SingleChar = (uint64_t) Str[i] & UCHAR_MAX; | 
|  | StrVal = (StrVal << 8) | SingleChar; | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = 0; i < len; i++) { | 
|  | SingleChar = (uint64_t) Str[i] & UCHAR_MAX; | 
|  | StrVal = (StrVal << 8) | SingleChar; | 
|  | } | 
|  | // Append NULL at the end. | 
|  | SingleChar = 0; | 
|  | StrVal = (StrVal << 8) | SingleChar; | 
|  | } | 
|  | Value *NL = ConstantInt::get(*Context, StrVal); | 
|  | return IC.ReplaceInstUsesWith(LI, NL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const PointerType *DestTy = cast<PointerType>(CI->getType()); | 
|  | const Type *DestPTy = DestTy->getElementType(); | 
|  | if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { | 
|  |  | 
|  | // If the address spaces don't match, don't eliminate the cast. | 
|  | if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) | 
|  | return 0; | 
|  |  | 
|  | const Type *SrcPTy = SrcTy->getElementType(); | 
|  |  | 
|  | if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || | 
|  | isa<VectorType>(DestPTy)) { | 
|  | // If the source is an array, the code below will not succeed.  Check to | 
|  | // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for | 
|  | // constants. | 
|  | if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) | 
|  | if (Constant *CSrc = dyn_cast<Constant>(CastOp)) | 
|  | if (ASrcTy->getNumElements() != 0) { | 
|  | Value *Idxs[2]; | 
|  | Idxs[0] = Idxs[1] = Constant::getNullValue(Type::getInt32Ty(*Context)); | 
|  | CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); | 
|  | SrcTy = cast<PointerType>(CastOp->getType()); | 
|  | SrcPTy = SrcTy->getElementType(); | 
|  | } | 
|  |  | 
|  | if (IC.getTargetData() && | 
|  | (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || | 
|  | isa<VectorType>(SrcPTy)) && | 
|  | // Do not allow turning this into a load of an integer, which is then | 
|  | // casted to a pointer, this pessimizes pointer analysis a lot. | 
|  | (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) && | 
|  | IC.getTargetData()->getTypeSizeInBits(SrcPTy) == | 
|  | IC.getTargetData()->getTypeSizeInBits(DestPTy)) { | 
|  |  | 
|  | // Okay, we are casting from one integer or pointer type to another of | 
|  | // the same size.  Instead of casting the pointer before the load, cast | 
|  | // the result of the loaded value. | 
|  | Value *NewLoad = | 
|  | IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); | 
|  | // Now cast the result of the load. | 
|  | return new BitCastInst(NewLoad, LI.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { | 
|  | Value *Op = LI.getOperand(0); | 
|  |  | 
|  | // Attempt to improve the alignment. | 
|  | if (TD) { | 
|  | unsigned KnownAlign = | 
|  | GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); | 
|  | if (KnownAlign > | 
|  | (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : | 
|  | LI.getAlignment())) | 
|  | LI.setAlignment(KnownAlign); | 
|  | } | 
|  |  | 
|  | // load (cast X) --> cast (load X) iff safe. | 
|  | if (isa<CastInst>(Op)) | 
|  | if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) | 
|  | return Res; | 
|  |  | 
|  | // None of the following transforms are legal for volatile loads. | 
|  | if (LI.isVolatile()) return 0; | 
|  |  | 
|  | // Do really simple store-to-load forwarding and load CSE, to catch cases | 
|  | // where there are several consequtive memory accesses to the same location, | 
|  | // separated by a few arithmetic operations. | 
|  | BasicBlock::iterator BBI = &LI; | 
|  | if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) | 
|  | return ReplaceInstUsesWith(LI, AvailableVal); | 
|  |  | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { | 
|  | const Value *GEPI0 = GEPI->getOperand(0); | 
|  | // TODO: Consider a target hook for valid address spaces for this xform. | 
|  | if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ | 
|  | // Insert a new store to null instruction before the load to indicate | 
|  | // that this code is not reachable.  We do this instead of inserting | 
|  | // an unreachable instruction directly because we cannot modify the | 
|  | // CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Op)) { | 
|  | // load null/undef -> undef | 
|  | // TODO: Consider a target hook for valid address spaces for this xform. | 
|  | if (isa<UndefValue>(C) || | 
|  | (C->isNullValue() && LI.getPointerAddressSpace() == 0)) { | 
|  | // Insert a new store to null instruction before the load to indicate that | 
|  | // this code is not reachable.  We do this instead of inserting an | 
|  | // unreachable instruction directly because we cannot modify the CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | // Instcombine load (constant global) into the value loaded. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op)) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | 
|  | return ReplaceInstUsesWith(LI, GV->getInitializer()); | 
|  |  | 
|  | // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) { | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | 
|  | if (Constant *V = | 
|  | ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) | 
|  | return ReplaceInstUsesWith(LI, V); | 
|  | if (CE->getOperand(0)->isNullValue()) { | 
|  | // Insert a new store to null instruction before the load to indicate | 
|  | // that this code is not reachable.  We do this instead of inserting | 
|  | // an unreachable instruction directly because we cannot modify the | 
|  | // CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | } else if (CE->isCast()) { | 
|  | if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this load comes from anywhere in a constant global, and if the global | 
|  | // is all undef or zero, we know what it loads. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){ | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer()) { | 
|  | if (GV->getInitializer()->isNullValue()) | 
|  | return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType())); | 
|  | else if (isa<UndefValue>(GV->getInitializer())) | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op->hasOneUse()) { | 
|  | // Change select and PHI nodes to select values instead of addresses: this | 
|  | // helps alias analysis out a lot, allows many others simplifications, and | 
|  | // exposes redundancy in the code. | 
|  | // | 
|  | // Note that we cannot do the transformation unless we know that the | 
|  | // introduced loads cannot trap!  Something like this is valid as long as | 
|  | // the condition is always false: load (select bool %C, int* null, int* %G), | 
|  | // but it would not be valid if we transformed it to load from null | 
|  | // unconditionally. | 
|  | // | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { | 
|  | // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2). | 
|  | if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && | 
|  | isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { | 
|  | Value *V1 = Builder->CreateLoad(SI->getOperand(1), | 
|  | SI->getOperand(1)->getName()+".val"); | 
|  | Value *V2 = Builder->CreateLoad(SI->getOperand(2), | 
|  | SI->getOperand(2)->getName()+".val"); | 
|  | return SelectInst::Create(SI->getCondition(), V1, V2); | 
|  | } | 
|  |  | 
|  | // load (select (cond, null, P)) -> load P | 
|  | if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (C->isNullValue()) { | 
|  | LI.setOperand(0, SI->getOperand(2)); | 
|  | return &LI; | 
|  | } | 
|  |  | 
|  | // load (select (cond, P, null)) -> load P | 
|  | if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (C->isNullValue()) { | 
|  | LI.setOperand(0, SI->getOperand(1)); | 
|  | return &LI; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P | 
|  | /// when possible.  This makes it generally easy to do alias analysis and/or | 
|  | /// SROA/mem2reg of the memory object. | 
|  | static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { | 
|  | User *CI = cast<User>(SI.getOperand(1)); | 
|  | Value *CastOp = CI->getOperand(0); | 
|  |  | 
|  | const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); | 
|  | const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); | 
|  | if (SrcTy == 0) return 0; | 
|  |  | 
|  | const Type *SrcPTy = SrcTy->getElementType(); | 
|  |  | 
|  | if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy)) | 
|  | return 0; | 
|  |  | 
|  | /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" | 
|  | /// to its first element.  This allows us to handle things like: | 
|  | ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*) | 
|  | /// on 32-bit hosts. | 
|  | SmallVector<Value*, 4> NewGEPIndices; | 
|  |  | 
|  | // If the source is an array, the code below will not succeed.  Check to | 
|  | // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for | 
|  | // constants. | 
|  | if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) { | 
|  | // Index through pointer. | 
|  | Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext())); | 
|  | NewGEPIndices.push_back(Zero); | 
|  |  | 
|  | while (1) { | 
|  | if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) { | 
|  | if (!STy->getNumElements()) /* Struct can be empty {} */ | 
|  | break; | 
|  | NewGEPIndices.push_back(Zero); | 
|  | SrcPTy = STy->getElementType(0); | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { | 
|  | NewGEPIndices.push_back(Zero); | 
|  | SrcPTy = ATy->getElementType(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); | 
|  | } | 
|  |  | 
|  | if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy)) | 
|  | return 0; | 
|  |  | 
|  | // If the pointers point into different address spaces or if they point to | 
|  | // values with different sizes, we can't do the transformation. | 
|  | if (!IC.getTargetData() || | 
|  | SrcTy->getAddressSpace() != | 
|  | cast<PointerType>(CI->getType())->getAddressSpace() || | 
|  | IC.getTargetData()->getTypeSizeInBits(SrcPTy) != | 
|  | IC.getTargetData()->getTypeSizeInBits(DestPTy)) | 
|  | return 0; | 
|  |  | 
|  | // Okay, we are casting from one integer or pointer type to another of | 
|  | // the same size.  Instead of casting the pointer before | 
|  | // the store, cast the value to be stored. | 
|  | Value *NewCast; | 
|  | Value *SIOp0 = SI.getOperand(0); | 
|  | Instruction::CastOps opcode = Instruction::BitCast; | 
|  | const Type* CastSrcTy = SIOp0->getType(); | 
|  | const Type* CastDstTy = SrcPTy; | 
|  | if (isa<PointerType>(CastDstTy)) { | 
|  | if (CastSrcTy->isInteger()) | 
|  | opcode = Instruction::IntToPtr; | 
|  | } else if (isa<IntegerType>(CastDstTy)) { | 
|  | if (isa<PointerType>(SIOp0->getType())) | 
|  | opcode = Instruction::PtrToInt; | 
|  | } | 
|  |  | 
|  | // SIOp0 is a pointer to aggregate and this is a store to the first field, | 
|  | // emit a GEP to index into its first field. | 
|  | if (!NewGEPIndices.empty()) | 
|  | CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(), | 
|  | NewGEPIndices.end()); | 
|  |  | 
|  | NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, | 
|  | SIOp0->getName()+".c"); | 
|  | return new StoreInst(NewCast, CastOp); | 
|  | } | 
|  |  | 
|  | /// equivalentAddressValues - Test if A and B will obviously have the same | 
|  | /// value. This includes recognizing that %t0 and %t1 will have the same | 
|  | /// value in code like this: | 
|  | ///   %t0 = getelementptr \@a, 0, 3 | 
|  | ///   store i32 0, i32* %t0 | 
|  | ///   %t1 = getelementptr \@a, 0, 3 | 
|  | ///   %t2 = load i32* %t1 | 
|  | /// | 
|  | static bool equivalentAddressValues(Value *A, Value *B) { | 
|  | // Test if the values are trivially equivalent. | 
|  | if (A == B) return true; | 
|  |  | 
|  | // Test if the values come form identical arithmetic instructions. | 
|  | // This uses isIdenticalToWhenDefined instead of isIdenticalTo because | 
|  | // its only used to compare two uses within the same basic block, which | 
|  | // means that they'll always either have the same value or one of them | 
|  | // will have an undefined value. | 
|  | if (isa<BinaryOperator>(A) || | 
|  | isa<CastInst>(A) || | 
|  | isa<PHINode>(A) || | 
|  | isa<GetElementPtrInst>(A)) | 
|  | if (Instruction *BI = dyn_cast<Instruction>(B)) | 
|  | if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise they may not be equivalent. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this instruction has two uses, one of which is a llvm.dbg.declare, | 
|  | // return the llvm.dbg.declare. | 
|  | DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) { | 
|  | if (!V->hasNUses(2)) | 
|  | return 0; | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); | 
|  | UI != E; ++UI) { | 
|  | if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI)) | 
|  | return DI; | 
|  | if (isa<BitCastInst>(UI) && UI->hasOneUse()) { | 
|  | if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin())) | 
|  | return DI; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { | 
|  | Value *Val = SI.getOperand(0); | 
|  | Value *Ptr = SI.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile) | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the RHS is an alloca with a single use, zapify the store, making the | 
|  | // alloca dead. | 
|  | // If the RHS is an alloca with a two uses, the other one being a | 
|  | // llvm.dbg.declare, zapify the store and the declare, making the | 
|  | // alloca dead.  We must do this to prevent declare's from affecting | 
|  | // codegen. | 
|  | if (!SI.isVolatile()) { | 
|  | if (Ptr->hasOneUse()) { | 
|  | if (isa<AllocaInst>(Ptr)) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { | 
|  | if (isa<AllocaInst>(GEP->getOperand(0))) { | 
|  | if (GEP->getOperand(0)->hasOneUse()) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) { | 
|  | EraseInstFromFunction(*DI); | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) { | 
|  | EraseInstFromFunction(*DI); | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to improve the alignment. | 
|  | if (TD) { | 
|  | unsigned KnownAlign = | 
|  | GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); | 
|  | if (KnownAlign > | 
|  | (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : | 
|  | SI.getAlignment())) | 
|  | SI.setAlignment(KnownAlign); | 
|  | } | 
|  |  | 
|  | // Do really simple DSE, to catch cases where there are several consecutive | 
|  | // stores to the same location, separated by a few arithmetic operations. This | 
|  | // situation often occurs with bitfield accesses. | 
|  | BasicBlock::iterator BBI = &SI; | 
|  | for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; | 
|  | --ScanInsts) { | 
|  | --BBI; | 
|  | // Don't count debug info directives, lest they affect codegen, | 
|  | // and we skip pointer-to-pointer bitcasts, which are NOPs. | 
|  | // It is necessary for correctness to skip those that feed into a | 
|  | // llvm.dbg.declare, as these are not present when debugging is off. | 
|  | if (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { | 
|  | ScanInsts++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { | 
|  | // Prev store isn't volatile, and stores to the same location? | 
|  | if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), | 
|  | SI.getOperand(1))) { | 
|  | ++NumDeadStore; | 
|  | ++BBI; | 
|  | EraseInstFromFunction(*PrevSI); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a load, we have to stop.  However, if the loaded value is from | 
|  | // the pointer we're loading and is producing the pointer we're storing, | 
|  | // then *this* store is dead (X = load P; store X -> P). | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && | 
|  | !SI.isVolatile()) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | // Otherwise, this is a load from some other location.  Stores before it | 
|  | // may not be dead. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't skip over loads or things that can modify memory. | 
|  | if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (SI.isVolatile()) return 0;  // Don't hack volatile stores. | 
|  |  | 
|  | // store X, null    -> turns into 'unreachable' in SimplifyCFG | 
|  | if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { | 
|  | if (!isa<UndefValue>(Val)) { | 
|  | SI.setOperand(0, UndefValue::get(Val->getType())); | 
|  | if (Instruction *U = dyn_cast<Instruction>(Val)) | 
|  | Worklist.Add(U);  // Dropped a use. | 
|  | ++NumCombined; | 
|  | } | 
|  | return 0;  // Do not modify these! | 
|  | } | 
|  |  | 
|  | // store undef, Ptr -> noop | 
|  | if (isa<UndefValue>(Val)) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the pointer destination is a cast, see if we can fold the cast into the | 
|  | // source instead. | 
|  | if (isa<CastInst>(Ptr)) | 
|  | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) | 
|  | return Res; | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) | 
|  | if (CE->isCast()) | 
|  | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) | 
|  | return Res; | 
|  |  | 
|  |  | 
|  | // If this store is the last instruction in the basic block (possibly | 
|  | // excepting debug info instructions and the pointer bitcasts that feed | 
|  | // into them), and if the block ends with an unconditional branch, try | 
|  | // to move it to the successor block. | 
|  | BBI = &SI; | 
|  | do { | 
|  | ++BBI; | 
|  | } while (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) | 
|  | if (BI->isUnconditional()) | 
|  | if (SimplifyStoreAtEndOfBlock(SI)) | 
|  | return 0;  // xform done! | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyStoreAtEndOfBlock - Turn things like: | 
|  | ///   if () { *P = v1; } else { *P = v2 } | 
|  | /// into a phi node with a store in the successor. | 
|  | /// | 
|  | /// Simplify things like: | 
|  | ///   *P = v1; if () { *P = v2; } | 
|  | /// into a phi node with a store in the successor. | 
|  | /// | 
|  | bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { | 
|  | BasicBlock *StoreBB = SI.getParent(); | 
|  |  | 
|  | // Check to see if the successor block has exactly two incoming edges.  If | 
|  | // so, see if the other predecessor contains a store to the same location. | 
|  | // if so, insert a PHI node (if needed) and move the stores down. | 
|  | BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); | 
|  |  | 
|  | // Determine whether Dest has exactly two predecessors and, if so, compute | 
|  | // the other predecessor. | 
|  | pred_iterator PI = pred_begin(DestBB); | 
|  | BasicBlock *OtherBB = 0; | 
|  | if (*PI != StoreBB) | 
|  | OtherBB = *PI; | 
|  | ++PI; | 
|  | if (PI == pred_end(DestBB)) | 
|  | return false; | 
|  |  | 
|  | if (*PI != StoreBB) { | 
|  | if (OtherBB) | 
|  | return false; | 
|  | OtherBB = *PI; | 
|  | } | 
|  | if (++PI != pred_end(DestBB)) | 
|  | return false; | 
|  |  | 
|  | // Bail out if all the relevant blocks aren't distinct (this can happen, | 
|  | // for example, if SI is in an infinite loop) | 
|  | if (StoreBB == DestBB || OtherBB == DestBB) | 
|  | return false; | 
|  |  | 
|  | // Verify that the other block ends in a branch and is not otherwise empty. | 
|  | BasicBlock::iterator BBI = OtherBB->getTerminator(); | 
|  | BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); | 
|  | if (!OtherBr || BBI == OtherBB->begin()) | 
|  | return false; | 
|  |  | 
|  | // If the other block ends in an unconditional branch, check for the 'if then | 
|  | // else' case.  there is an instruction before the branch. | 
|  | StoreInst *OtherStore = 0; | 
|  | if (OtherBr->isUnconditional()) { | 
|  | --BBI; | 
|  | // Skip over debugging info. | 
|  | while (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { | 
|  | if (BBI==OtherBB->begin()) | 
|  | return false; | 
|  | --BBI; | 
|  | } | 
|  | // If this isn't a store, or isn't a store to the same location, bail out. | 
|  | OtherStore = dyn_cast<StoreInst>(BBI); | 
|  | if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1)) | 
|  | return false; | 
|  | } else { | 
|  | // Otherwise, the other block ended with a conditional branch. If one of the | 
|  | // destinations is StoreBB, then we have the if/then case. | 
|  | if (OtherBr->getSuccessor(0) != StoreBB && | 
|  | OtherBr->getSuccessor(1) != StoreBB) | 
|  | return false; | 
|  |  | 
|  | // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an | 
|  | // if/then triangle.  See if there is a store to the same ptr as SI that | 
|  | // lives in OtherBB. | 
|  | for (;; --BBI) { | 
|  | // Check to see if we find the matching store. | 
|  | if ((OtherStore = dyn_cast<StoreInst>(BBI))) { | 
|  | if (OtherStore->getOperand(1) != SI.getOperand(1)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | // If we find something that may be using or overwriting the stored | 
|  | // value, or if we run out of instructions, we can't do the xform. | 
|  | if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || | 
|  | BBI == OtherBB->begin()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // In order to eliminate the store in OtherBr, we have to | 
|  | // make sure nothing reads or overwrites the stored value in | 
|  | // StoreBB. | 
|  | for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { | 
|  | // FIXME: This should really be AA driven. | 
|  | if (I->mayReadFromMemory() || I->mayWriteToMemory()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert a PHI node now if we need it. | 
|  | Value *MergedVal = OtherStore->getOperand(0); | 
|  | if (MergedVal != SI.getOperand(0)) { | 
|  | PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); | 
|  | PN->reserveOperandSpace(2); | 
|  | PN->addIncoming(SI.getOperand(0), SI.getParent()); | 
|  | PN->addIncoming(OtherStore->getOperand(0), OtherBB); | 
|  | MergedVal = InsertNewInstBefore(PN, DestBB->front()); | 
|  | } | 
|  |  | 
|  | // Advance to a place where it is safe to insert the new store and | 
|  | // insert it. | 
|  | BBI = DestBB->getFirstNonPHI(); | 
|  | InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), | 
|  | OtherStore->isVolatile()), *BBI); | 
|  |  | 
|  | // Nuke the old stores. | 
|  | EraseInstFromFunction(SI); | 
|  | EraseInstFromFunction(*OtherStore); | 
|  | ++NumCombined; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { | 
|  | // Change br (not X), label True, label False to: br X, label False, True | 
|  | Value *X = 0; | 
|  | BasicBlock *TrueDest; | 
|  | BasicBlock *FalseDest; | 
|  | if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && | 
|  | !isa<Constant>(X)) { | 
|  | // Swap Destinations and condition... | 
|  | BI.setCondition(X); | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | // Cannonicalize fcmp_one -> fcmp_oeq | 
|  | FCmpInst::Predicate FPred; Value *Y; | 
|  | if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), | 
|  | TrueDest, FalseDest)) && | 
|  | BI.getCondition()->hasOneUse()) | 
|  | if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || | 
|  | FPred == FCmpInst::FCMP_OGE) { | 
|  | FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); | 
|  | Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); | 
|  |  | 
|  | // Swap Destinations and condition. | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | Worklist.Add(Cond); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | // Cannonicalize icmp_ne -> icmp_eq | 
|  | ICmpInst::Predicate IPred; | 
|  | if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), | 
|  | TrueDest, FalseDest)) && | 
|  | BI.getCondition()->hasOneUse()) | 
|  | if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE || | 
|  | IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || | 
|  | IPred == ICmpInst::ICMP_SGE) { | 
|  | ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); | 
|  | Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); | 
|  | // Swap Destinations and condition. | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | Worklist.Add(Cond); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { | 
|  | Value *Cond = SI.getCondition(); | 
|  | if (Instruction *I = dyn_cast<Instruction>(Cond)) { | 
|  | if (I->getOpcode() == Instruction::Add) | 
|  | if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // change 'switch (X+4) case 1:' into 'switch (X) case -3' | 
|  | for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) | 
|  | SI.setOperand(i, | 
|  | ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)), | 
|  | AddRHS)); | 
|  | SI.setOperand(0, I->getOperand(0)); | 
|  | Worklist.Add(I); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { | 
|  | Value *Agg = EV.getAggregateOperand(); | 
|  |  | 
|  | if (!EV.hasIndices()) | 
|  | return ReplaceInstUsesWith(EV, Agg); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Agg)) { | 
|  | if (isa<UndefValue>(C)) | 
|  | return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(C)) | 
|  | return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); | 
|  |  | 
|  | if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { | 
|  | // Extract the element indexed by the first index out of the constant | 
|  | Value *V = C->getOperand(*EV.idx_begin()); | 
|  | if (EV.getNumIndices() > 1) | 
|  | // Extract the remaining indices out of the constant indexed by the | 
|  | // first index | 
|  | return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end()); | 
|  | else | 
|  | return ReplaceInstUsesWith(EV, V); | 
|  | } | 
|  | return 0; // Can't handle other constants | 
|  | } | 
|  | if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { | 
|  | // We're extracting from an insertvalue instruction, compare the indices | 
|  | const unsigned *exti, *exte, *insi, *inse; | 
|  | for (exti = EV.idx_begin(), insi = IV->idx_begin(), | 
|  | exte = EV.idx_end(), inse = IV->idx_end(); | 
|  | exti != exte && insi != inse; | 
|  | ++exti, ++insi) { | 
|  | if (*insi != *exti) | 
|  | // The insert and extract both reference distinctly different elements. | 
|  | // This means the extract is not influenced by the insert, and we can | 
|  | // replace the aggregate operand of the extract with the aggregate | 
|  | // operand of the insert. i.e., replace | 
|  | // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 | 
|  | // %E = extractvalue { i32, { i32 } } %I, 0 | 
|  | // with | 
|  | // %E = extractvalue { i32, { i32 } } %A, 0 | 
|  | return ExtractValueInst::Create(IV->getAggregateOperand(), | 
|  | EV.idx_begin(), EV.idx_end()); | 
|  | } | 
|  | if (exti == exte && insi == inse) | 
|  | // Both iterators are at the end: Index lists are identical. Replace | 
|  | // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 | 
|  | // %C = extractvalue { i32, { i32 } } %B, 1, 0 | 
|  | // with "i32 42" | 
|  | return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); | 
|  | if (exti == exte) { | 
|  | // The extract list is a prefix of the insert list. i.e. replace | 
|  | // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 | 
|  | // %E = extractvalue { i32, { i32 } } %I, 1 | 
|  | // with | 
|  | // %X = extractvalue { i32, { i32 } } %A, 1 | 
|  | // %E = insertvalue { i32 } %X, i32 42, 0 | 
|  | // by switching the order of the insert and extract (though the | 
|  | // insertvalue should be left in, since it may have other uses). | 
|  | Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), | 
|  | EV.idx_begin(), EV.idx_end()); | 
|  | return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), | 
|  | insi, inse); | 
|  | } | 
|  | if (insi == inse) | 
|  | // The insert list is a prefix of the extract list | 
|  | // We can simply remove the common indices from the extract and make it | 
|  | // operate on the inserted value instead of the insertvalue result. | 
|  | // i.e., replace | 
|  | // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 | 
|  | // %E = extractvalue { i32, { i32 } } %I, 1, 0 | 
|  | // with | 
|  | // %E extractvalue { i32 } { i32 42 }, 0 | 
|  | return ExtractValueInst::Create(IV->getInsertedValueOperand(), | 
|  | exti, exte); | 
|  | } | 
|  | // Can't simplify extracts from other values. Note that nested extracts are | 
|  | // already simplified implicitely by the above (extract ( extract (insert) ) | 
|  | // will be translated into extract ( insert ( extract ) ) first and then just | 
|  | // the value inserted, if appropriate). | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CheapToScalarize - Return true if the value is cheaper to scalarize than it | 
|  | /// is to leave as a vector operation. | 
|  | static bool CheapToScalarize(Value *V, bool isConstant) { | 
|  | if (isa<ConstantAggregateZero>(V)) | 
|  | return true; | 
|  | if (ConstantVector *C = dyn_cast<ConstantVector>(V)) { | 
|  | if (isConstant) return true; | 
|  | // If all elts are the same, we can extract. | 
|  | Constant *Op0 = C->getOperand(0); | 
|  | for (unsigned i = 1; i < C->getNumOperands(); ++i) | 
|  | if (C->getOperand(i) != Op0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // Insert element gets simplified to the inserted element or is deleted if | 
|  | // this is constant idx extract element and its a constant idx insertelt. | 
|  | if (I->getOpcode() == Instruction::InsertElement && isConstant && | 
|  | isa<ConstantInt>(I->getOperand(2))) | 
|  | return true; | 
|  | if (I->getOpcode() == Instruction::Load && I->hasOneUse()) | 
|  | return true; | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) | 
|  | if (BO->hasOneUse() && | 
|  | (CheapToScalarize(BO->getOperand(0), isConstant) || | 
|  | CheapToScalarize(BO->getOperand(1), isConstant))) | 
|  | return true; | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | if (CI->hasOneUse() && | 
|  | (CheapToScalarize(CI->getOperand(0), isConstant) || | 
|  | CheapToScalarize(CI->getOperand(1), isConstant))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Read and decode a shufflevector mask. | 
|  | /// | 
|  | /// It turns undef elements into values that are larger than the number of | 
|  | /// elements in the input. | 
|  | static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) { | 
|  | unsigned NElts = SVI->getType()->getNumElements(); | 
|  | if (isa<ConstantAggregateZero>(SVI->getOperand(2))) | 
|  | return std::vector<unsigned>(NElts, 0); | 
|  | if (isa<UndefValue>(SVI->getOperand(2))) | 
|  | return std::vector<unsigned>(NElts, 2*NElts); | 
|  |  | 
|  | std::vector<unsigned> Result; | 
|  | const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2)); | 
|  | for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i) | 
|  | if (isa<UndefValue>(*i)) | 
|  | Result.push_back(NElts*2);  // undef -> 8 | 
|  | else | 
|  | Result.push_back(cast<ConstantInt>(*i)->getZExtValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// FindScalarElement - Given a vector and an element number, see if the scalar | 
|  | /// value is already around as a register, for example if it were inserted then | 
|  | /// extracted from the vector. | 
|  | static Value *FindScalarElement(Value *V, unsigned EltNo, | 
|  | LLVMContext *Context) { | 
|  | assert(isa<VectorType>(V->getType()) && "Not looking at a vector?"); | 
|  | const VectorType *PTy = cast<VectorType>(V->getType()); | 
|  | unsigned Width = PTy->getNumElements(); | 
|  | if (EltNo >= Width)  // Out of range access. | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  |  | 
|  | if (isa<UndefValue>(V)) | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  | else if (isa<ConstantAggregateZero>(V)) | 
|  | return Constant::getNullValue(PTy->getElementType()); | 
|  | else if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) | 
|  | return CP->getOperand(EltNo); | 
|  | else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert to a variable element, we don't know what it is. | 
|  | if (!isa<ConstantInt>(III->getOperand(2))) | 
|  | return 0; | 
|  | unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); | 
|  |  | 
|  | // If this is an insert to the element we are looking for, return the | 
|  | // inserted value. | 
|  | if (EltNo == IIElt) | 
|  | return III->getOperand(1); | 
|  |  | 
|  | // Otherwise, the insertelement doesn't modify the value, recurse on its | 
|  | // vector input. | 
|  | return FindScalarElement(III->getOperand(0), EltNo, Context); | 
|  | } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { | 
|  | unsigned LHSWidth = | 
|  | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); | 
|  | unsigned InEl = getShuffleMask(SVI)[EltNo]; | 
|  | if (InEl < LHSWidth) | 
|  | return FindScalarElement(SVI->getOperand(0), InEl, Context); | 
|  | else if (InEl < LHSWidth*2) | 
|  | return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context); | 
|  | else | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { | 
|  | // If vector val is undef, replace extract with scalar undef. | 
|  | if (isa<UndefValue>(EI.getOperand(0))) | 
|  | return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  |  | 
|  | // If vector val is constant 0, replace extract with scalar 0. | 
|  | if (isa<ConstantAggregateZero>(EI.getOperand(0))) | 
|  | return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); | 
|  |  | 
|  | if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) { | 
|  | // If vector val is constant with all elements the same, replace EI with | 
|  | // that element. When the elements are not identical, we cannot replace yet | 
|  | // (we do that below, but only when the index is constant). | 
|  | Constant *op0 = C->getOperand(0); | 
|  | for (unsigned i = 1; i != C->getNumOperands(); ++i) | 
|  | if (C->getOperand(i) != op0) { | 
|  | op0 = 0; | 
|  | break; | 
|  | } | 
|  | if (op0) | 
|  | return ReplaceInstUsesWith(EI, op0); | 
|  | } | 
|  |  | 
|  | // If extracting a specified index from the vector, see if we can recursively | 
|  | // find a previously computed scalar that was inserted into the vector. | 
|  | if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | unsigned IndexVal = IdxC->getZExtValue(); | 
|  | unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); | 
|  |  | 
|  | // If this is extracting an invalid index, turn this into undef, to avoid | 
|  | // crashing the code below. | 
|  | if (IndexVal >= VectorWidth) | 
|  | return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  |  | 
|  | // This instruction only demands the single element from the input vector. | 
|  | // If the input vector has a single use, simplify it based on this use | 
|  | // property. | 
|  | if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { | 
|  | APInt UndefElts(VectorWidth, 0); | 
|  | APInt DemandedMask(VectorWidth, 1 << IndexVal); | 
|  | if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), | 
|  | DemandedMask, UndefElts)) { | 
|  | EI.setOperand(0, V); | 
|  | return &EI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal, Context)) | 
|  | return ReplaceInstUsesWith(EI, Elt); | 
|  |  | 
|  | // If the this extractelement is directly using a bitcast from a vector of | 
|  | // the same number of elements, see if we can find the source element from | 
|  | // it.  In this case, we will end up needing to bitcast the scalars. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { | 
|  | if (const VectorType *VT = | 
|  | dyn_cast<VectorType>(BCI->getOperand(0)->getType())) | 
|  | if (VT->getNumElements() == VectorWidth) | 
|  | if (Value *Elt = FindScalarElement(BCI->getOperand(0), | 
|  | IndexVal, Context)) | 
|  | return new BitCastInst(Elt, EI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { | 
|  | // Push extractelement into predecessor operation if legal and | 
|  | // profitable to do so | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | if (I->hasOneUse() && | 
|  | CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { | 
|  | Value *newEI0 = | 
|  | Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), | 
|  | EI.getName()+".lhs"); | 
|  | Value *newEI1 = | 
|  | Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), | 
|  | EI.getName()+".rhs"); | 
|  | return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); | 
|  | } | 
|  | } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { | 
|  | // Extracting the inserted element? | 
|  | if (IE->getOperand(2) == EI.getOperand(1)) | 
|  | return ReplaceInstUsesWith(EI, IE->getOperand(1)); | 
|  | // If the inserted and extracted elements are constants, they must not | 
|  | // be the same value, extract from the pre-inserted value instead. | 
|  | if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { | 
|  | Worklist.AddValue(EI.getOperand(0)); | 
|  | EI.setOperand(0, IE->getOperand(0)); | 
|  | return &EI; | 
|  | } | 
|  | } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { | 
|  | // If this is extracting an element from a shufflevector, figure out where | 
|  | // it came from and extract from the appropriate input element instead. | 
|  | if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; | 
|  | Value *Src; | 
|  | unsigned LHSWidth = | 
|  | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); | 
|  |  | 
|  | if (SrcIdx < LHSWidth) | 
|  | Src = SVI->getOperand(0); | 
|  | else if (SrcIdx < LHSWidth*2) { | 
|  | SrcIdx -= LHSWidth; | 
|  | Src = SVI->getOperand(1); | 
|  | } else { | 
|  | return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  | } | 
|  | return ExtractElementInst::Create(Src, | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx, | 
|  | false)); | 
|  | } | 
|  | } | 
|  | // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement) | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns | 
|  | /// elements from either LHS or RHS, return the shuffle mask and true. | 
|  | /// Otherwise, return false. | 
|  | static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, | 
|  | std::vector<Constant*> &Mask, | 
|  | LLVMContext *Context) { | 
|  | assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && | 
|  | "Invalid CollectSingleShuffleElements"); | 
|  | unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | return true; | 
|  | } else if (V == LHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i)); | 
|  | return true; | 
|  | } else if (V == RHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts)); | 
|  | return true; | 
|  | } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantInt>(IdxOp)) | 
|  | return false; | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector. | 
|  | // Okay, we can handle this if the vector we are insertinting into is | 
|  | // transitively ok. | 
|  | if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) { | 
|  | // If so, update the mask to reflect the inserted undef. | 
|  | Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context)); | 
|  | return true; | 
|  | } | 
|  | } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && | 
|  | EI->getOperand(0)->getType() == V->getType()) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | // This must be extracting from either LHS or RHS. | 
|  | if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { | 
|  | // Okay, we can handle this if the vector we are insertinting into is | 
|  | // transitively ok. | 
|  | if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) { | 
|  | // If so, update the mask to reflect the inserted value. | 
|  | if (EI->getOperand(0) == LHS) { | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx); | 
|  | } else { | 
|  | assert(EI->getOperand(0) == RHS); | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts); | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO: Handle shufflevector here! | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CollectShuffleElements - We are building a shuffle of V, using RHS as the | 
|  | /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask | 
|  | /// that computes V and the LHS value of the shuffle. | 
|  | static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask, | 
|  | Value *&RHS, LLVMContext *Context) { | 
|  | assert(isa<VectorType>(V->getType()) && | 
|  | (RHS == 0 || V->getType() == RHS->getType()) && | 
|  | "Invalid shuffle!"); | 
|  | unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | return V; | 
|  | } else if (isa<ConstantAggregateZero>(V)) { | 
|  | Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0)); | 
|  | return V; | 
|  | } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && | 
|  | EI->getOperand(0)->getType() == V->getType()) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | // Either the extracted from or inserted into vector must be RHSVec, | 
|  | // otherwise we'd end up with a shuffle of three inputs. | 
|  | if (EI->getOperand(0) == RHS || RHS == 0) { | 
|  | RHS = EI->getOperand(0); | 
|  | Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context); | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (VecOp == RHS) { | 
|  | Value *V = CollectShuffleElements(EI->getOperand(0), Mask, | 
|  | RHS, Context); | 
|  | // Everything but the extracted element is replaced with the RHS. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (i != InsertedIdx) | 
|  | Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // If this insertelement is a chain that comes from exactly these two | 
|  | // vectors, return the vector and the effective shuffle. | 
|  | if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask, | 
|  | Context)) | 
|  | return EI->getOperand(0); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO: Handle shufflevector here! | 
|  |  | 
|  | // Otherwise, can't do anything fancy.  Return an identity vector. | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { | 
|  | Value *VecOp    = IE.getOperand(0); | 
|  | Value *ScalarOp = IE.getOperand(1); | 
|  | Value *IdxOp    = IE.getOperand(2); | 
|  |  | 
|  | // Inserting an undef or into an undefined place, remove this. | 
|  | if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) | 
|  | ReplaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | // If the inserted element was extracted from some other vector, and if the | 
|  | // indexes are constant, try to turn this into a shufflevector operation. | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && | 
|  | EI->getOperand(0)->getType() == IE.getType()) { | 
|  | unsigned NumVectorElts = IE.getType()->getNumElements(); | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (ExtractedIdx >= NumVectorElts) // Out of range extract. | 
|  | return ReplaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | if (InsertedIdx >= NumVectorElts)  // Out of range insert. | 
|  | return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); | 
|  |  | 
|  | // If we are extracting a value from a vector, then inserting it right | 
|  | // back into the same place, just use the input vector. | 
|  | if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) | 
|  | return ReplaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | // We could theoretically do this for ANY input.  However, doing so could | 
|  | // turn chains of insertelement instructions into a chain of shufflevector | 
|  | // instructions, and right now we do not merge shufflevectors.  As such, | 
|  | // only do this in a situation where it is clear that there is benefit. | 
|  | if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) { | 
|  | // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of | 
|  | // the values of VecOp, except then one read from EIOp0. | 
|  | // Build a new shuffle mask. | 
|  | std::vector<Constant*> Mask; | 
|  | if (isa<UndefValue>(VecOp)) | 
|  | Mask.assign(NumVectorElts, UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | else { | 
|  | assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing"); | 
|  | Mask.assign(NumVectorElts, ConstantInt::get(Type::getInt32Ty(*Context), | 
|  | NumVectorElts)); | 
|  | } | 
|  | Mask[InsertedIdx] = | 
|  | ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx); | 
|  | return new ShuffleVectorInst(EI->getOperand(0), VecOp, | 
|  | ConstantVector::get(Mask)); | 
|  | } | 
|  |  | 
|  | // If this insertelement isn't used by some other insertelement, turn it | 
|  | // (and any insertelements it points to), into one big shuffle. | 
|  | if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) { | 
|  | std::vector<Constant*> Mask; | 
|  | Value *RHS = 0; | 
|  | Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context); | 
|  | if (RHS == 0) RHS = UndefValue::get(LHS->getType()); | 
|  | // We now have a shuffle of LHS, RHS, Mask. | 
|  | return new ShuffleVectorInst(LHS, RHS, | 
|  | ConstantVector::get(Mask)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) | 
|  | return &IE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { | 
|  | Value *LHS = SVI.getOperand(0); | 
|  | Value *RHS = SVI.getOperand(1); | 
|  | std::vector<unsigned> Mask = getShuffleMask(&SVI); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Undefined shuffle mask -> undefined value. | 
|  | if (isa<UndefValue>(SVI.getOperand(2))) | 
|  | return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); | 
|  |  | 
|  | unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); | 
|  |  | 
|  | if (VWidth != cast<VectorType>(LHS->getType())->getNumElements()) | 
|  | return 0; | 
|  |  | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { | 
|  | LHS = SVI.getOperand(0); | 
|  | RHS = SVI.getOperand(1); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask') | 
|  | // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). | 
|  | if (LHS == RHS || isa<UndefValue>(LHS)) { | 
|  | if (isa<UndefValue>(LHS) && LHS == RHS) { | 
|  | // shuffle(undef,undef,mask) -> undef. | 
|  | return ReplaceInstUsesWith(SVI, LHS); | 
|  | } | 
|  |  | 
|  | // Remap any references to RHS to use LHS. | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] >= 2*e) | 
|  | Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | else { | 
|  | if ((Mask[i] >= e && isa<UndefValue>(RHS)) || | 
|  | (Mask[i] <  e && isa<UndefValue>(LHS))) { | 
|  | Mask[i] = 2*e;     // Turn into undef. | 
|  | Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | } else { | 
|  | Mask[i] = Mask[i] % e;  // Force to LHS. | 
|  | Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i])); | 
|  | } | 
|  | } | 
|  | } | 
|  | SVI.setOperand(0, SVI.getOperand(1)); | 
|  | SVI.setOperand(1, UndefValue::get(RHS->getType())); | 
|  | SVI.setOperand(2, ConstantVector::get(Elts)); | 
|  | LHS = SVI.getOperand(0); | 
|  | RHS = SVI.getOperand(1); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Analyze the shuffle, are the LHS or RHS and identity shuffles? | 
|  | bool isLHSID = true, isRHSID = true; | 
|  |  | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] >= e*2) continue;  // Ignore undef values. | 
|  | // Is this an identity shuffle of the LHS value? | 
|  | isLHSID &= (Mask[i] == i); | 
|  |  | 
|  | // Is this an identity shuffle of the RHS value? | 
|  | isRHSID &= (Mask[i]-e == i); | 
|  | } | 
|  |  | 
|  | // Eliminate identity shuffles. | 
|  | if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); | 
|  | if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); | 
|  |  | 
|  | // If the LHS is a shufflevector itself, see if we can combine it with this | 
|  | // one without producing an unusual shuffle.  Here we are really conservative: | 
|  | // we are absolutely afraid of producing a shuffle mask not in the input | 
|  | // program, because the code gen may not be smart enough to turn a merged | 
|  | // shuffle into two specific shuffles: it may produce worse code.  As such, | 
|  | // we only merge two shuffles if the result is one of the two input shuffle | 
|  | // masks.  In this case, merging the shuffles just removes one instruction, | 
|  | // which we know is safe.  This is good for things like turning: | 
|  | // (splat(splat)) -> splat. | 
|  | if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) { | 
|  | if (isa<UndefValue>(RHS)) { | 
|  | std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI); | 
|  |  | 
|  | std::vector<unsigned> NewMask; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) | 
|  | if (Mask[i] >= 2*e) | 
|  | NewMask.push_back(2*e); | 
|  | else | 
|  | NewMask.push_back(LHSMask[Mask[i]]); | 
|  |  | 
|  | // If the result mask is equal to the src shuffle or this shuffle mask, do | 
|  | // the replacement. | 
|  | if (NewMask == LHSMask || NewMask == Mask) { | 
|  | unsigned LHSInNElts = | 
|  | cast<VectorType>(LHSSVI->getOperand(0)->getType())->getNumElements(); | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0, e = NewMask.size(); i != e; ++i) { | 
|  | if (NewMask[i] >= LHSInNElts*2) { | 
|  | Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context))); | 
|  | } else { | 
|  | Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), NewMask[i])); | 
|  | } | 
|  | } | 
|  | return new ShuffleVectorInst(LHSSVI->getOperand(0), | 
|  | LHSSVI->getOperand(1), | 
|  | ConstantVector::get(Elts)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange ? &SVI : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /// TryToSinkInstruction - Try to move the specified instruction from its | 
|  | /// current block into the beginning of DestBlock, which can only happen if it's | 
|  | /// safe to move the instruction past all of the instructions between it and the | 
|  | /// end of its block. | 
|  | static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { | 
|  | assert(I->hasOneUse() && "Invariants didn't hold!"); | 
|  |  | 
|  | // Cannot move control-flow-involving, volatile loads, vaarg, etc. | 
|  | if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // Do not sink alloca instructions out of the entry block. | 
|  | if (isa<AllocaInst>(I) && I->getParent() == | 
|  | &DestBlock->getParent()->getEntryBlock()) | 
|  | return false; | 
|  |  | 
|  | // We can only sink load instructions if there is nothing between the load and | 
|  | // the end of block that could change the value. | 
|  | if (I->mayReadFromMemory()) { | 
|  | for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); | 
|  | Scan != E; ++Scan) | 
|  | if (Scan->mayWriteToMemory()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI(); | 
|  |  | 
|  | CopyPrecedingStopPoint(I, InsertPos); | 
|  | I->moveBefore(InsertPos); | 
|  | ++NumSunkInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding | 
|  | /// all reachable code to the worklist. | 
|  | /// | 
|  | /// This has a couple of tricks to make the code faster and more powerful.  In | 
|  | /// particular, we constant fold and DCE instructions as we go, to avoid adding | 
|  | /// them to the worklist (this significantly speeds up instcombine on code where | 
|  | /// many instructions are dead or constant).  Additionally, if we find a branch | 
|  | /// whose condition is a known constant, we only visit the reachable successors. | 
|  | /// | 
|  | static void AddReachableCodeToWorklist(BasicBlock *BB, | 
|  | SmallPtrSet<BasicBlock*, 64> &Visited, | 
|  | InstCombiner &IC, | 
|  | const TargetData *TD) { | 
|  | SmallVector<BasicBlock*, 256> Worklist; | 
|  | Worklist.push_back(BB); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | BB = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | // We have now visited this block!  If we've already been here, ignore it. | 
|  | if (!Visited.insert(BB)) continue; | 
|  |  | 
|  | DbgInfoIntrinsic *DBI_Prev = NULL; | 
|  | for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { | 
|  | Instruction *Inst = BBI++; | 
|  |  | 
|  | // DCE instruction if trivially dead. | 
|  | if (isInstructionTriviallyDead(Inst)) { | 
|  | ++NumDeadInst; | 
|  | DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // ConstantProp instruction if trivially constant. | 
|  | if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) { | 
|  | DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " | 
|  | << *Inst << '\n'); | 
|  | Inst->replaceAllUsesWith(C); | 
|  | ++NumConstProp; | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If there are two consecutive llvm.dbg.stoppoint calls then | 
|  | // it is likely that the optimizer deleted code in between these | 
|  | // two intrinsics. | 
|  | DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst); | 
|  | if (DBI_Next) { | 
|  | if (DBI_Prev | 
|  | && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint | 
|  | && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) { | 
|  | IC.Worklist.Remove(DBI_Prev); | 
|  | DBI_Prev->eraseFromParent(); | 
|  | } | 
|  | DBI_Prev = DBI_Next; | 
|  | } else { | 
|  | DBI_Prev = 0; | 
|  | } | 
|  |  | 
|  | IC.Worklist.Add(Inst); | 
|  | } | 
|  |  | 
|  | // Recursively visit successors.  If this is a branch or switch on a | 
|  | // constant, only visit the reachable successor. | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { | 
|  | bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); | 
|  | BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); | 
|  | Worklist.push_back(ReachableBB); | 
|  | continue; | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { | 
|  | // See if this is an explicit destination. | 
|  | for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) | 
|  | if (SI->getCaseValue(i) == Cond) { | 
|  | BasicBlock *ReachableBB = SI->getSuccessor(i); | 
|  | Worklist.push_back(ReachableBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise it is the default destination. | 
|  | Worklist.push_back(SI->getSuccessor(0)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | Worklist.push_back(TI->getSuccessor(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { | 
|  | MadeIRChange = false; | 
|  | TD = getAnalysisIfAvailable<TargetData>(); | 
|  |  | 
|  | DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " | 
|  | << F.getNameStr() << "\n"); | 
|  |  | 
|  | { | 
|  | // Do a depth-first traversal of the function, populate the worklist with | 
|  | // the reachable instructions.  Ignore blocks that are not reachable.  Keep | 
|  | // track of which blocks we visit. | 
|  | SmallPtrSet<BasicBlock*, 64> Visited; | 
|  | AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); | 
|  |  | 
|  | // Do a quick scan over the function.  If we find any blocks that are | 
|  | // unreachable, remove any instructions inside of them.  This prevents | 
|  | // the instcombine code from having to deal with some bad special cases. | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | if (!Visited.count(BB)) { | 
|  | Instruction *Term = BB->getTerminator(); | 
|  | while (Term != BB->begin()) {   // Remove instrs bottom-up | 
|  | BasicBlock::iterator I = Term; --I; | 
|  |  | 
|  | DEBUG(errs() << "IC: DCE: " << *I << '\n'); | 
|  | // A debug intrinsic shouldn't force another iteration if we weren't | 
|  | // going to do one without it. | 
|  | if (!isa<DbgInfoIntrinsic>(I)) { | 
|  | ++NumDeadInst; | 
|  | MadeIRChange = true; | 
|  | } | 
|  | if (!I->use_empty()) | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!Worklist.isEmpty()) { | 
|  | Instruction *I = Worklist.RemoveOne(); | 
|  | if (I == 0) continue;  // skip null values. | 
|  |  | 
|  | // Check to see if we can DCE the instruction. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | DEBUG(errs() << "IC: DCE: " << *I << '\n'); | 
|  | EraseInstFromFunction(*I); | 
|  | ++NumDeadInst; | 
|  | MadeIRChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instruction isn't dead, see if we can constant propagate it. | 
|  | if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) { | 
|  | DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); | 
|  |  | 
|  | // Add operands to the worklist. | 
|  | ReplaceInstUsesWith(*I, C); | 
|  | ++NumConstProp; | 
|  | EraseInstFromFunction(*I); | 
|  | MadeIRChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (TD) { | 
|  | // See if we can constant fold its operands. | 
|  | for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) | 
|  | if (Constant *NewC = ConstantFoldConstantExpression(CE, | 
|  | F.getContext(), TD)) | 
|  | if (NewC != CE) { | 
|  | *i = NewC; | 
|  | MadeIRChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can trivially sink this instruction to a successor basic block. | 
|  | if (I->hasOneUse()) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  | BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent(); | 
|  | if (UserParent != BB) { | 
|  | bool UserIsSuccessor = false; | 
|  | // See if the user is one of our successors. | 
|  | for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) | 
|  | if (*SI == UserParent) { | 
|  | UserIsSuccessor = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the user is one of our immediate successors, and if that successor | 
|  | // only has us as a predecessors (we'd have to split the critical edge | 
|  | // otherwise), we can keep going. | 
|  | if (UserIsSuccessor && !isa<PHINode>(I->use_back()) && | 
|  | next(pred_begin(UserParent)) == pred_end(UserParent)) | 
|  | // Okay, the CFG is simple enough, try to sink this instruction. | 
|  | MadeIRChange |= TryToSinkInstruction(I, UserParent); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have an instruction, try combining it to simplify it. | 
|  | Builder->SetInsertPoint(I->getParent(), I); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | std::string OrigI; | 
|  | #endif | 
|  | DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); | 
|  | DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); | 
|  |  | 
|  | if (Instruction *Result = visit(*I)) { | 
|  | ++NumCombined; | 
|  | // Should we replace the old instruction with a new one? | 
|  | if (Result != I) { | 
|  | DEBUG(errs() << "IC: Old = " << *I << '\n' | 
|  | << "    New = " << *Result << '\n'); | 
|  |  | 
|  | // Everything uses the new instruction now. | 
|  | I->replaceAllUsesWith(Result); | 
|  |  | 
|  | // Push the new instruction and any users onto the worklist. | 
|  | Worklist.Add(Result); | 
|  | Worklist.AddUsersToWorkList(*Result); | 
|  |  | 
|  | // Move the name to the new instruction first. | 
|  | Result->takeName(I); | 
|  |  | 
|  | // Insert the new instruction into the basic block... | 
|  | BasicBlock *InstParent = I->getParent(); | 
|  | BasicBlock::iterator InsertPos = I; | 
|  |  | 
|  | if (!isa<PHINode>(Result))        // If combining a PHI, don't insert | 
|  | while (isa<PHINode>(InsertPos)) // middle of a block of PHIs. | 
|  | ++InsertPos; | 
|  |  | 
|  | InstParent->getInstList().insert(InsertPos, Result); | 
|  |  | 
|  | EraseInstFromFunction(*I); | 
|  | } else { | 
|  | #ifndef NDEBUG | 
|  | DEBUG(errs() << "IC: Mod = " << OrigI << '\n' | 
|  | << "    New = " << *I << '\n'); | 
|  | #endif | 
|  |  | 
|  | // If the instruction was modified, it's possible that it is now dead. | 
|  | // if so, remove it. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | EraseInstFromFunction(*I); | 
|  | } else { | 
|  | Worklist.Add(I); | 
|  | Worklist.AddUsersToWorkList(*I); | 
|  | } | 
|  | } | 
|  | MadeIRChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Worklist.Zap(); | 
|  | return MadeIRChange; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool InstCombiner::runOnFunction(Function &F) { | 
|  | MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); | 
|  | Context = &F.getContext(); | 
|  |  | 
|  |  | 
|  | /// Builder - This is an IRBuilder that automatically inserts new | 
|  | /// instructions into the worklist when they are created. | 
|  | IRBuilder<true, ConstantFolder, InstCombineIRInserter> | 
|  | TheBuilder(F.getContext(), ConstantFolder(F.getContext()), | 
|  | InstCombineIRInserter(Worklist)); | 
|  | Builder = &TheBuilder; | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  |  | 
|  | // Iterate while there is work to do. | 
|  | unsigned Iteration = 0; | 
|  | while (DoOneIteration(F, Iteration++)) | 
|  | EverMadeChange = true; | 
|  |  | 
|  | Builder = 0; | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createInstructionCombiningPass() { | 
|  | return new InstCombiner(); | 
|  | } |