|  | //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the AArch64TargetLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64ISelLowering.h" | 
|  | #include "AArch64CallingConvention.h" | 
|  | #include "AArch64MachineFunctionInfo.h" | 
|  | #include "AArch64PerfectShuffle.h" | 
|  | #include "AArch64Subtarget.h" | 
|  | #include "AArch64TargetMachine.h" | 
|  | #include "AArch64TargetObjectFile.h" | 
|  | #include "MCTargetDesc/AArch64AddressingModes.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-lower" | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  | STATISTIC(NumShiftInserts, "Number of vector shift inserts"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, | 
|  | cl::desc("Allow AArch64 SLI/SRI formation"), | 
|  | cl::init(false)); | 
|  |  | 
|  | // FIXME: The necessary dtprel relocations don't seem to be supported | 
|  | // well in the GNU bfd and gold linkers at the moment. Therefore, by | 
|  | // default, for now, fall back to GeneralDynamic code generation. | 
|  | cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( | 
|  | "aarch64-elf-ldtls-generation", cl::Hidden, | 
|  | cl::desc("Allow AArch64 Local Dynamic TLS code generation"), | 
|  | cl::init(false)); | 
|  |  | 
|  | /// Value type used for condition codes. | 
|  | static const MVT MVT_CC = MVT::i32; | 
|  |  | 
|  | AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, | 
|  | const AArch64Subtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(&STI) { | 
|  |  | 
|  | // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so | 
|  | // we have to make something up. Arbitrarily, choose ZeroOrOne. | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | // When comparing vectors the result sets the different elements in the | 
|  | // vector to all-one or all-zero. | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); | 
|  | addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); | 
|  |  | 
|  | if (Subtarget->hasFPARMv8()) { | 
|  | addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); | 
|  | addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); | 
|  | addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); | 
|  | addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasNEON()) { | 
|  | addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); | 
|  | addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); | 
|  | // Someone set us up the NEON. | 
|  | addDRTypeForNEON(MVT::v2f32); | 
|  | addDRTypeForNEON(MVT::v8i8); | 
|  | addDRTypeForNEON(MVT::v4i16); | 
|  | addDRTypeForNEON(MVT::v2i32); | 
|  | addDRTypeForNEON(MVT::v1i64); | 
|  | addDRTypeForNEON(MVT::v1f64); | 
|  | addDRTypeForNEON(MVT::v4f16); | 
|  |  | 
|  | addQRTypeForNEON(MVT::v4f32); | 
|  | addQRTypeForNEON(MVT::v2f64); | 
|  | addQRTypeForNEON(MVT::v16i8); | 
|  | addQRTypeForNEON(MVT::v8i16); | 
|  | addQRTypeForNEON(MVT::v4i32); | 
|  | addQRTypeForNEON(MVT::v2i64); | 
|  | addQRTypeForNEON(MVT::v8f16); | 
|  | } | 
|  |  | 
|  | // Compute derived properties from the register classes | 
|  | computeRegisterProperties(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | // Provide all sorts of operation actions | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::f64, Custom); | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::f64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
|  | setOperationAction(ISD::JumpTable, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FREM, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::f80, Expand); | 
|  |  | 
|  | // Custom lowering hooks are needed for XOR | 
|  | // to fold it into CSINC/CSINV. | 
|  | setOperationAction(ISD::XOR, MVT::i32, Custom); | 
|  | setOperationAction(ISD::XOR, MVT::i64, Custom); | 
|  |  | 
|  | // Virtually no operation on f128 is legal, but LLVM can't expand them when | 
|  | // there's a valid register class, so we need custom operations in most cases. | 
|  | setOperationAction(ISD::FABS, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FADD, MVT::f128, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FDIV, MVT::f128, Custom); | 
|  | setOperationAction(ISD::FMA, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FMUL, MVT::f128, Custom); | 
|  | setOperationAction(ISD::FNEG, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FRINT, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FSIN, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f128, Expand); | 
|  | setOperationAction(ISD::FSUB, MVT::f128, Custom); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f128, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::f128, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::f128, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f128, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); | 
|  |  | 
|  | // Lowering for many of the conversions is actually specified by the non-f128 | 
|  | // type. The LowerXXX function will be trivial when f128 isn't involved. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); | 
|  |  | 
|  | // Variable arguments. | 
|  | setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND, MVT::Other, Expand); | 
|  |  | 
|  | // Variable-sized objects. | 
|  | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); | 
|  |  | 
|  | // Constant pool entries | 
|  | setOperationAction(ISD::ConstantPool, MVT::i64, Custom); | 
|  |  | 
|  | // BlockAddress | 
|  | setOperationAction(ISD::BlockAddress, MVT::i64, Custom); | 
|  |  | 
|  | // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. | 
|  | setOperationAction(ISD::ADDC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ADDE, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SUBC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SUBE, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ADDC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ADDE, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SUBC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SUBE, MVT::i64, Custom); | 
|  |  | 
|  | // AArch64 lacks both left-rotate and popcount instructions. | 
|  | setOperationAction(ISD::ROTL, MVT::i32, Expand); | 
|  | setOperationAction(ISD::ROTL, MVT::i64, Expand); | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | setOperationAction(ISD::ROTL, VT, Expand); | 
|  | setOperationAction(ISD::ROTR, VT, Expand); | 
|  | } | 
|  |  | 
|  | // AArch64 doesn't have {U|S}MUL_LOHI. | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | 
|  |  | 
|  |  | 
|  | setOperationAction(ISD::CTPOP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | setOperationAction(ISD::SDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | } | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | // Custom lower Add/Sub/Mul with overflow. | 
|  | setOperationAction(ISD::SADDO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SADDO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UADDO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UADDO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SSUBO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SSUBO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::USUBO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::USUBO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SMULO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SMULO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UMULO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UMULO, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FSIN, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSIN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // f16 is a storage-only type, always promote it to f32. | 
|  | setOperationAction(ISD::SETCC,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::BR_CC,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote); | 
|  | setOperationAction(ISD::SELECT,      MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FADD,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FSUB,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMUL,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FDIV,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FREM,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMA,         MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FNEG,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FABS,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FCEIL,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FCOPYSIGN,   MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FCOS,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FPOW,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FPOWI,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FRINT,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FSIN,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FSINCOS,     MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FSQRT,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FEXP,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FEXP2,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FLOG,        MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FLOG2,       MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FLOG10,      MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FROUND,      MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote); | 
|  | setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote); | 
|  |  | 
|  | // v4f16 is also a storage-only type, so promote it to v4f32 when that is | 
|  | // known to be safe. | 
|  | setOperationAction(ISD::FADD, MVT::v4f16, Promote); | 
|  | setOperationAction(ISD::FSUB, MVT::v4f16, Promote); | 
|  | setOperationAction(ISD::FMUL, MVT::v4f16, Promote); | 
|  | setOperationAction(ISD::FDIV, MVT::v4f16, Promote); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote); | 
|  | AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); | 
|  | AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); | 
|  | AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); | 
|  | AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); | 
|  | AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32); | 
|  | AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32); | 
|  |  | 
|  | // Expand all other v4f16 operations. | 
|  | // FIXME: We could generate better code by promoting some operations to | 
|  | // a pair of v4f32s | 
|  | setOperationAction(ISD::FABS, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FNEG, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FROUND, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FRINT, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FSIN, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FLOG, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); | 
|  |  | 
|  |  | 
|  | // v8f16 is also a storage-only type, so expand it. | 
|  | setOperationAction(ISD::FABS, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FADD, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FDIV, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FMUL, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FNEG, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FROUND, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FRINT, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FSIN, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FSUB, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FLOG, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); | 
|  |  | 
|  | // AArch64 has implementations of a lot of rounding-like FP operations. | 
|  | for (MVT Ty : {MVT::f32, MVT::f64}) { | 
|  | setOperationAction(ISD::FFLOOR, Ty, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, Ty, Legal); | 
|  | setOperationAction(ISD::FCEIL, Ty, Legal); | 
|  | setOperationAction(ISD::FRINT, Ty, Legal); | 
|  | setOperationAction(ISD::FTRUNC, Ty, Legal); | 
|  | setOperationAction(ISD::FROUND, Ty, Legal); | 
|  | setOperationAction(ISD::FMINNUM, Ty, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, Ty, Legal); | 
|  | setOperationAction(ISD::FMINNAN, Ty, Legal); | 
|  | setOperationAction(ISD::FMAXNAN, Ty, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); | 
|  |  | 
|  | // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. | 
|  | // This requires the Performance Monitors extension. | 
|  | if (Subtarget->hasPerfMon()) | 
|  | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | 
|  |  | 
|  | if (Subtarget->isTargetMachO()) { | 
|  | // For iOS, we don't want to the normal expansion of a libcall to | 
|  | // sincos. We want to issue a libcall to __sincos_stret to avoid memory | 
|  | // traffic. | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | // Make floating-point constants legal for the large code model, so they don't | 
|  | // become loads from the constant pool. | 
|  | if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Legal); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | // AArch64 does not have floating-point extending loads, i1 sign-extending | 
|  | // load, floating-point truncating stores, or v2i32->v2i16 truncating store. | 
|  | for (MVT VT : MVT::fp_valuetypes()) { | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); | 
|  | } | 
|  | for (MVT VT : MVT::integer_valuetypes()) | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f80, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f64, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f32, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BITCAST, MVT::i16, Custom); | 
|  | setOperationAction(ISD::BITCAST, MVT::f16, Custom); | 
|  |  | 
|  | // Indexed loads and stores are supported. | 
|  | for (unsigned im = (unsigned)ISD::PRE_INC; | 
|  | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { | 
|  | setIndexedLoadAction(im, MVT::i8, Legal); | 
|  | setIndexedLoadAction(im, MVT::i16, Legal); | 
|  | setIndexedLoadAction(im, MVT::i32, Legal); | 
|  | setIndexedLoadAction(im, MVT::i64, Legal); | 
|  | setIndexedLoadAction(im, MVT::f64, Legal); | 
|  | setIndexedLoadAction(im, MVT::f32, Legal); | 
|  | setIndexedLoadAction(im, MVT::f16, Legal); | 
|  | setIndexedStoreAction(im, MVT::i8, Legal); | 
|  | setIndexedStoreAction(im, MVT::i16, Legal); | 
|  | setIndexedStoreAction(im, MVT::i32, Legal); | 
|  | setIndexedStoreAction(im, MVT::i64, Legal); | 
|  | setIndexedStoreAction(im, MVT::f64, Legal); | 
|  | setIndexedStoreAction(im, MVT::f32, Legal); | 
|  | setIndexedStoreAction(im, MVT::f16, Legal); | 
|  | } | 
|  |  | 
|  | // Trap. | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // We combine OR nodes for bitfield operations. | 
|  | setTargetDAGCombine(ISD::OR); | 
|  |  | 
|  | // Vector add and sub nodes may conceal a high-half opportunity. | 
|  | // Also, try to fold ADD into CSINC/CSINV.. | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::UINT_TO_FP); | 
|  |  | 
|  | setTargetDAGCombine(ISD::FP_TO_SINT); | 
|  | setTargetDAGCombine(ISD::FP_TO_UINT); | 
|  | setTargetDAGCombine(ISD::FDIV); | 
|  |  | 
|  | setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); | 
|  |  | 
|  | setTargetDAGCombine(ISD::ANY_EXTEND); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND); | 
|  | setTargetDAGCombine(ISD::BITCAST); | 
|  | setTargetDAGCombine(ISD::CONCAT_VECTORS); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | if (Subtarget->supportsAddressTopByteIgnored()) | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  |  | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  |  | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  |  | 
|  | setTargetDAGCombine(ISD::INTRINSIC_VOID); | 
|  | setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); | 
|  | setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  |  | 
|  | MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; | 
|  | MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; | 
|  | MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; | 
|  |  | 
|  | setStackPointerRegisterToSaveRestore(AArch64::SP); | 
|  |  | 
|  | setSchedulingPreference(Sched::Hybrid); | 
|  |  | 
|  | // Enable TBZ/TBNZ | 
|  | MaskAndBranchFoldingIsLegal = true; | 
|  | EnableExtLdPromotion = true; | 
|  |  | 
|  | // Set required alignment. | 
|  | setMinFunctionAlignment(2); | 
|  | // Set preferred alignments. | 
|  | setPrefFunctionAlignment(STI.getPrefFunctionAlignment()); | 
|  | setPrefLoopAlignment(STI.getPrefLoopAlignment()); | 
|  |  | 
|  | // Only change the limit for entries in a jump table if specified by | 
|  | // the subtarget, but not at the command line. | 
|  | unsigned MaxJT = STI.getMaximumJumpTableSize(); | 
|  | if (MaxJT && getMaximumJumpTableSize() == 0) | 
|  | setMaximumJumpTableSize(MaxJT); | 
|  |  | 
|  | setHasExtractBitsInsn(true); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | if (Subtarget->hasNEON()) { | 
|  | // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to | 
|  | // silliness like this: | 
|  | setOperationAction(ISD::FABS, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FADD, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FCOS, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FDIV, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FMUL, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FNEG, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FPOW, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FROUND, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FRINT, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FSIN, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FSUB, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v1i64, Expand); | 
|  |  | 
|  | // AArch64 doesn't have a direct vector ->f32 conversion instructions for | 
|  | // elements smaller than i32, so promote the input to i32 first. | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); | 
|  | // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16 | 
|  | // -> v8f16 conversions. | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote); | 
|  | // Similarly, there is no direct i32 -> f64 vector conversion instruction. | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); | 
|  | // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the | 
|  | // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand); | 
|  |  | 
|  | // AArch64 doesn't have MUL.2d: | 
|  | setOperationAction(ISD::MUL, MVT::v2i64, Expand); | 
|  | // Custom handling for some quad-vector types to detect MULL. | 
|  | setOperationAction(ISD::MUL, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); | 
|  | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); | 
|  | // Likewise, narrowing and extending vector loads/stores aren't handled | 
|  | // directly. | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  |  | 
|  | for (MVT InnerVT : MVT::vector_valuetypes()) { | 
|  | setTruncStoreAction(VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // AArch64 has implementations of a lot of rounding-like FP operations. | 
|  | for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { | 
|  | setOperationAction(ISD::FFLOOR, Ty, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, Ty, Legal); | 
|  | setOperationAction(ISD::FCEIL, Ty, Legal); | 
|  | setOperationAction(ISD::FRINT, Ty, Legal); | 
|  | setOperationAction(ISD::FTRUNC, Ty, Legal); | 
|  | setOperationAction(ISD::FROUND, Ty, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { | 
|  | if (VT == MVT::v2f32 || VT == MVT::v4f16) { | 
|  | setOperationAction(ISD::LOAD, VT, Promote); | 
|  | AddPromotedToType(ISD::LOAD, VT, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, VT, Promote); | 
|  | AddPromotedToType(ISD::STORE, VT, MVT::v2i32); | 
|  | } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) { | 
|  | setOperationAction(ISD::LOAD, VT, Promote); | 
|  | AddPromotedToType(ISD::LOAD, VT, MVT::v2i64); | 
|  |  | 
|  | setOperationAction(ISD::STORE, VT, Promote); | 
|  | AddPromotedToType(ISD::STORE, VT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | // Mark vector float intrinsics as expand. | 
|  | if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::FLOG, VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, VT, Expand); | 
|  | setOperationAction(ISD::FEXP, VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, VT, Expand); | 
|  |  | 
|  | // But we do support custom-lowering for FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | 
|  | setOperationAction(ISD::SRA, VT, Custom); | 
|  | setOperationAction(ISD::SRL, VT, Custom); | 
|  | setOperationAction(ISD::SHL, VT, Custom); | 
|  | setOperationAction(ISD::AND, VT, Custom); | 
|  | setOperationAction(ISD::OR, VT, Custom); | 
|  | setOperationAction(ISD::SETCC, VT, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SELECT, VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | for (MVT InnerVT : MVT::all_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); | 
|  |  | 
|  | // CNT supports only B element sizes. | 
|  | if (VT != MVT::v8i8 && VT != MVT::v16i8) | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT, VT, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, VT, Custom); | 
|  |  | 
|  | // [SU][MIN|MAX] are available for all NEON types apart from i64. | 
|  | if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) | 
|  | for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) | 
|  | setOperationAction(Opcode, VT, Legal); | 
|  |  | 
|  | // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!). | 
|  | if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16) | 
|  | for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN, | 
|  | ISD::FMINNUM, ISD::FMAXNUM}) | 
|  | setOperationAction(Opcode, VT, Legal); | 
|  |  | 
|  | if (Subtarget->isLittleEndian()) { | 
|  | for (unsigned im = (unsigned)ISD::PRE_INC; | 
|  | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { | 
|  | setIndexedLoadAction(im, VT, Legal); | 
|  | setIndexedStoreAction(im, VT, Legal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { | 
|  | addRegisterClass(VT, &AArch64::FPR64RegClass); | 
|  | addTypeForNEON(VT, MVT::v2i32); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { | 
|  | addRegisterClass(VT, &AArch64::FPR128RegClass); | 
|  | addTypeForNEON(VT, MVT::v4i32); | 
|  | } | 
|  |  | 
|  | EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return MVT::i32; | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | /// computeKnownBitsForTargetNode - Determine which of the bits specified in | 
|  | /// Mask are known to be either zero or one and return them in the | 
|  | /// KnownZero/KnownOne bitsets. | 
|  | void AArch64TargetLowering::computeKnownBitsForTargetNode( | 
|  | const SDValue Op, APInt &KnownZero, APInt &KnownOne, | 
|  | const SelectionDAG &DAG, unsigned Depth) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case AArch64ISD::CSEL: { | 
|  | APInt KnownZero2, KnownOne2; | 
|  | DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); | 
|  | DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); | 
|  | KnownZero &= KnownZero2; | 
|  | KnownOne &= KnownOne2; | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); | 
|  | Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); | 
|  | switch (IntID) { | 
|  | default: return; | 
|  | case Intrinsic::aarch64_ldaxr: | 
|  | case Intrinsic::aarch64_ldxr: { | 
|  | unsigned BitWidth = KnownOne.getBitWidth(); | 
|  | EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); | 
|  | unsigned MemBits = VT.getScalarSizeInBits(); | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_umaxv: | 
|  | case Intrinsic::aarch64_neon_uminv: { | 
|  | // Figure out the datatype of the vector operand. The UMINV instruction | 
|  | // will zero extend the result, so we can mark as known zero all the | 
|  | // bits larger than the element datatype. 32-bit or larget doesn't need | 
|  | // this as those are legal types and will be handled by isel directly. | 
|  | MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); | 
|  | unsigned BitWidth = KnownZero.getBitWidth(); | 
|  | if (VT == MVT::v8i8 || VT == MVT::v16i8) { | 
|  | assert(BitWidth >= 8 && "Unexpected width!"); | 
|  | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); | 
|  | KnownZero |= Mask; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { | 
|  | assert(BitWidth >= 16 && "Unexpected width!"); | 
|  | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); | 
|  | KnownZero |= Mask; | 
|  | } | 
|  | break; | 
|  | } break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, | 
|  | EVT) const { | 
|  | return MVT::i64; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned AddrSpace, | 
|  | unsigned Align, | 
|  | bool *Fast) const { | 
|  | if (Subtarget->requiresStrictAlign()) | 
|  | return false; | 
|  |  | 
|  | if (Fast) { | 
|  | // Some CPUs are fine with unaligned stores except for 128-bit ones. | 
|  | *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || | 
|  | // See comments in performSTORECombine() for more details about | 
|  | // these conditions. | 
|  |  | 
|  | // Code that uses clang vector extensions can mark that it | 
|  | // wants unaligned accesses to be treated as fast by | 
|  | // underspecifying alignment to be 1 or 2. | 
|  | Align <= 2 || | 
|  |  | 
|  | // Disregard v2i64. Memcpy lowering produces those and splitting | 
|  | // them regresses performance on micro-benchmarks and olden/bh. | 
|  | VT == MVT::v2i64; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FastISel * | 
|  | AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) const { | 
|  | return AArch64::createFastISel(funcInfo, libInfo); | 
|  | } | 
|  |  | 
|  | const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch ((AArch64ISD::NodeType)Opcode) { | 
|  | case AArch64ISD::FIRST_NUMBER:      break; | 
|  | case AArch64ISD::CALL:              return "AArch64ISD::CALL"; | 
|  | case AArch64ISD::ADRP:              return "AArch64ISD::ADRP"; | 
|  | case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow"; | 
|  | case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot"; | 
|  | case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG"; | 
|  | case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND"; | 
|  | case AArch64ISD::CSEL:              return "AArch64ISD::CSEL"; | 
|  | case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL"; | 
|  | case AArch64ISD::CSINV:             return "AArch64ISD::CSINV"; | 
|  | case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG"; | 
|  | case AArch64ISD::CSINC:             return "AArch64ISD::CSINC"; | 
|  | case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER"; | 
|  | case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ"; | 
|  | case AArch64ISD::ADC:               return "AArch64ISD::ADC"; | 
|  | case AArch64ISD::SBC:               return "AArch64ISD::SBC"; | 
|  | case AArch64ISD::ADDS:              return "AArch64ISD::ADDS"; | 
|  | case AArch64ISD::SUBS:              return "AArch64ISD::SUBS"; | 
|  | case AArch64ISD::ADCS:              return "AArch64ISD::ADCS"; | 
|  | case AArch64ISD::SBCS:              return "AArch64ISD::SBCS"; | 
|  | case AArch64ISD::ANDS:              return "AArch64ISD::ANDS"; | 
|  | case AArch64ISD::CCMP:              return "AArch64ISD::CCMP"; | 
|  | case AArch64ISD::CCMN:              return "AArch64ISD::CCMN"; | 
|  | case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP"; | 
|  | case AArch64ISD::FCMP:              return "AArch64ISD::FCMP"; | 
|  | case AArch64ISD::DUP:               return "AArch64ISD::DUP"; | 
|  | case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8"; | 
|  | case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16"; | 
|  | case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32"; | 
|  | case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64"; | 
|  | case AArch64ISD::MOVI:              return "AArch64ISD::MOVI"; | 
|  | case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift"; | 
|  | case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit"; | 
|  | case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl"; | 
|  | case AArch64ISD::FMOV:              return "AArch64ISD::FMOV"; | 
|  | case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift"; | 
|  | case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl"; | 
|  | case AArch64ISD::BICi:              return "AArch64ISD::BICi"; | 
|  | case AArch64ISD::ORRi:              return "AArch64ISD::ORRi"; | 
|  | case AArch64ISD::BSL:               return "AArch64ISD::BSL"; | 
|  | case AArch64ISD::NEG:               return "AArch64ISD::NEG"; | 
|  | case AArch64ISD::EXTR:              return "AArch64ISD::EXTR"; | 
|  | case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1"; | 
|  | case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2"; | 
|  | case AArch64ISD::UZP1:              return "AArch64ISD::UZP1"; | 
|  | case AArch64ISD::UZP2:              return "AArch64ISD::UZP2"; | 
|  | case AArch64ISD::TRN1:              return "AArch64ISD::TRN1"; | 
|  | case AArch64ISD::TRN2:              return "AArch64ISD::TRN2"; | 
|  | case AArch64ISD::REV16:             return "AArch64ISD::REV16"; | 
|  | case AArch64ISD::REV32:             return "AArch64ISD::REV32"; | 
|  | case AArch64ISD::REV64:             return "AArch64ISD::REV64"; | 
|  | case AArch64ISD::EXT:               return "AArch64ISD::EXT"; | 
|  | case AArch64ISD::VSHL:              return "AArch64ISD::VSHL"; | 
|  | case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR"; | 
|  | case AArch64ISD::VASHR:             return "AArch64ISD::VASHR"; | 
|  | case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ"; | 
|  | case AArch64ISD::CMGE:              return "AArch64ISD::CMGE"; | 
|  | case AArch64ISD::CMGT:              return "AArch64ISD::CMGT"; | 
|  | case AArch64ISD::CMHI:              return "AArch64ISD::CMHI"; | 
|  | case AArch64ISD::CMHS:              return "AArch64ISD::CMHS"; | 
|  | case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ"; | 
|  | case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE"; | 
|  | case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT"; | 
|  | case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz"; | 
|  | case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz"; | 
|  | case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz"; | 
|  | case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz"; | 
|  | case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz"; | 
|  | case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz"; | 
|  | case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz"; | 
|  | case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz"; | 
|  | case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz"; | 
|  | case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz"; | 
|  | case AArch64ISD::SADDV:             return "AArch64ISD::SADDV"; | 
|  | case AArch64ISD::UADDV:             return "AArch64ISD::UADDV"; | 
|  | case AArch64ISD::SMINV:             return "AArch64ISD::SMINV"; | 
|  | case AArch64ISD::UMINV:             return "AArch64ISD::UMINV"; | 
|  | case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV"; | 
|  | case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV"; | 
|  | case AArch64ISD::NOT:               return "AArch64ISD::NOT"; | 
|  | case AArch64ISD::BIT:               return "AArch64ISD::BIT"; | 
|  | case AArch64ISD::CBZ:               return "AArch64ISD::CBZ"; | 
|  | case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ"; | 
|  | case AArch64ISD::TBZ:               return "AArch64ISD::TBZ"; | 
|  | case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ"; | 
|  | case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN"; | 
|  | case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH"; | 
|  | case AArch64ISD::SITOF:             return "AArch64ISD::SITOF"; | 
|  | case AArch64ISD::UITOF:             return "AArch64ISD::UITOF"; | 
|  | case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST"; | 
|  | case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I"; | 
|  | case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I"; | 
|  | case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I"; | 
|  | case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I"; | 
|  | case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I"; | 
|  | case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge"; | 
|  | case AArch64ISD::LD2post:           return "AArch64ISD::LD2post"; | 
|  | case AArch64ISD::LD3post:           return "AArch64ISD::LD3post"; | 
|  | case AArch64ISD::LD4post:           return "AArch64ISD::LD4post"; | 
|  | case AArch64ISD::ST2post:           return "AArch64ISD::ST2post"; | 
|  | case AArch64ISD::ST3post:           return "AArch64ISD::ST3post"; | 
|  | case AArch64ISD::ST4post:           return "AArch64ISD::ST4post"; | 
|  | case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post"; | 
|  | case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post"; | 
|  | case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post"; | 
|  | case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post"; | 
|  | case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post"; | 
|  | case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post"; | 
|  | case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost"; | 
|  | case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost"; | 
|  | case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost"; | 
|  | case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost"; | 
|  | case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost"; | 
|  | case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost"; | 
|  | case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost"; | 
|  | case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost"; | 
|  | case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost"; | 
|  | case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost"; | 
|  | case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost"; | 
|  | case AArch64ISD::SMULL:             return "AArch64ISD::SMULL"; | 
|  | case AArch64ISD::UMULL:             return "AArch64ISD::UMULL"; | 
|  | case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE"; | 
|  | case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS"; | 
|  | case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE"; | 
|  | case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // We materialise the F128CSEL pseudo-instruction as some control flow and a | 
|  | // phi node: | 
|  |  | 
|  | // OrigBB: | 
|  | //     [... previous instrs leading to comparison ...] | 
|  | //     b.ne TrueBB | 
|  | //     b EndBB | 
|  | // TrueBB: | 
|  | //     ; Fallthrough | 
|  | // EndBB: | 
|  | //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | MachineFunction::iterator It = ++MBB->getIterator(); | 
|  |  | 
|  | unsigned DestReg = MI.getOperand(0).getReg(); | 
|  | unsigned IfTrueReg = MI.getOperand(1).getReg(); | 
|  | unsigned IfFalseReg = MI.getOperand(2).getReg(); | 
|  | unsigned CondCode = MI.getOperand(3).getImm(); | 
|  | bool NZCVKilled = MI.getOperand(4).isKill(); | 
|  |  | 
|  | MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MF->insert(It, TrueBB); | 
|  | MF->insert(It, EndBB); | 
|  |  | 
|  | // Transfer rest of current basic-block to EndBB | 
|  | EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), | 
|  | MBB->end()); | 
|  | EndBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); | 
|  | BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); | 
|  | MBB->addSuccessor(TrueBB); | 
|  | MBB->addSuccessor(EndBB); | 
|  |  | 
|  | // TrueBB falls through to the end. | 
|  | TrueBB->addSuccessor(EndBB); | 
|  |  | 
|  | if (!NZCVKilled) { | 
|  | TrueBB->addLiveIn(AArch64::NZCV); | 
|  | EndBB->addLiveIn(AArch64::NZCV); | 
|  | } | 
|  |  | 
|  | BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) | 
|  | .addReg(IfTrueReg) | 
|  | .addMBB(TrueBB) | 
|  | .addReg(IfFalseReg) | 
|  | .addMBB(MBB); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return EndBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr &MI, MachineBasicBlock *BB) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | MI.dump(); | 
|  | #endif | 
|  | llvm_unreachable("Unexpected instruction for custom inserter!"); | 
|  |  | 
|  | case AArch64::F128CSEL: | 
|  | return EmitF128CSEL(MI, BB); | 
|  |  | 
|  | case TargetOpcode::STACKMAP: | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | return emitPatchPoint(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AArch64 Lowering private implementation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 | 
|  | /// CC | 
|  | static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unknown condition code!"); | 
|  | case ISD::SETNE: | 
|  | return AArch64CC::NE; | 
|  | case ISD::SETEQ: | 
|  | return AArch64CC::EQ; | 
|  | case ISD::SETGT: | 
|  | return AArch64CC::GT; | 
|  | case ISD::SETGE: | 
|  | return AArch64CC::GE; | 
|  | case ISD::SETLT: | 
|  | return AArch64CC::LT; | 
|  | case ISD::SETLE: | 
|  | return AArch64CC::LE; | 
|  | case ISD::SETUGT: | 
|  | return AArch64CC::HI; | 
|  | case ISD::SETUGE: | 
|  | return AArch64CC::HS; | 
|  | case ISD::SETULT: | 
|  | return AArch64CC::LO; | 
|  | case ISD::SETULE: | 
|  | return AArch64CC::LS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. | 
|  | static void changeFPCCToAArch64CC(ISD::CondCode CC, | 
|  | AArch64CC::CondCode &CondCode, | 
|  | AArch64CC::CondCode &CondCode2) { | 
|  | CondCode2 = AArch64CC::AL; | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unknown FP condition!"); | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | CondCode = AArch64CC::EQ; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | CondCode = AArch64CC::GT; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | CondCode = AArch64CC::GE; | 
|  | break; | 
|  | case ISD::SETOLT: | 
|  | CondCode = AArch64CC::MI; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | CondCode = AArch64CC::LS; | 
|  | break; | 
|  | case ISD::SETONE: | 
|  | CondCode = AArch64CC::MI; | 
|  | CondCode2 = AArch64CC::GT; | 
|  | break; | 
|  | case ISD::SETO: | 
|  | CondCode = AArch64CC::VC; | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | CondCode = AArch64CC::VS; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | CondCode = AArch64CC::EQ; | 
|  | CondCode2 = AArch64CC::VS; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | CondCode = AArch64CC::HI; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | CondCode = AArch64CC::PL; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETULT: | 
|  | CondCode = AArch64CC::LT; | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETULE: | 
|  | CondCode = AArch64CC::LE; | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUNE: | 
|  | CondCode = AArch64CC::NE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Convert a DAG fp condition code to an AArch64 CC. | 
|  | /// This differs from changeFPCCToAArch64CC in that it returns cond codes that | 
|  | /// should be AND'ed instead of OR'ed. | 
|  | static void changeFPCCToANDAArch64CC(ISD::CondCode CC, | 
|  | AArch64CC::CondCode &CondCode, | 
|  | AArch64CC::CondCode &CondCode2) { | 
|  | CondCode2 = AArch64CC::AL; | 
|  | switch (CC) { | 
|  | default: | 
|  | changeFPCCToAArch64CC(CC, CondCode, CondCode2); | 
|  | assert(CondCode2 == AArch64CC::AL); | 
|  | break; | 
|  | case ISD::SETONE: | 
|  | // (a one b) | 
|  | // == ((a olt b) || (a ogt b)) | 
|  | // == ((a ord b) && (a une b)) | 
|  | CondCode = AArch64CC::VC; | 
|  | CondCode2 = AArch64CC::NE; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | // (a ueq b) | 
|  | // == ((a uno b) || (a oeq b)) | 
|  | // == ((a ule b) && (a uge b)) | 
|  | CondCode = AArch64CC::PL; | 
|  | CondCode2 = AArch64CC::LE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 | 
|  | /// CC usable with the vector instructions. Fewer operations are available | 
|  | /// without a real NZCV register, so we have to use less efficient combinations | 
|  | /// to get the same effect. | 
|  | static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, | 
|  | AArch64CC::CondCode &CondCode, | 
|  | AArch64CC::CondCode &CondCode2, | 
|  | bool &Invert) { | 
|  | Invert = false; | 
|  | switch (CC) { | 
|  | default: | 
|  | // Mostly the scalar mappings work fine. | 
|  | changeFPCCToAArch64CC(CC, CondCode, CondCode2); | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | Invert = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETO: | 
|  | CondCode = AArch64CC::MI; | 
|  | CondCode2 = AArch64CC::GE; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | // All of the compare-mask comparisons are ordered, but we can switch | 
|  | // between the two by a double inversion. E.g. ULE == !OGT. | 
|  | Invert = true; | 
|  | changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isLegalArithImmed(uint64_t C) { | 
|  | // Matches AArch64DAGToDAGISel::SelectArithImmed(). | 
|  | return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); | 
|  | } | 
|  |  | 
|  | static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | const SDLoc &dl, SelectionDAG &DAG) { | 
|  | EVT VT = LHS.getValueType(); | 
|  |  | 
|  | if (VT.isFloatingPoint()) { | 
|  | assert(VT != MVT::f128); | 
|  | if (VT == MVT::f16) { | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); | 
|  | RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); | 
|  | VT = MVT::f32; | 
|  | } | 
|  | return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | // The CMP instruction is just an alias for SUBS, and representing it as | 
|  | // SUBS means that it's possible to get CSE with subtract operations. | 
|  | // A later phase can perform the optimization of setting the destination | 
|  | // register to WZR/XZR if it ends up being unused. | 
|  | unsigned Opcode = AArch64ISD::SUBS; | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on | 
|  | // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags | 
|  | // can be set differently by this operation. It comes down to whether | 
|  | // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then | 
|  | // everything is fine. If not then the optimization is wrong. Thus general | 
|  | // comparisons are only valid if op2 != 0. | 
|  |  | 
|  | // So, finally, the only LLVM-native comparisons that don't mention C and V | 
|  | // are SETEQ and SETNE. They're the only ones we can safely use CMN for in | 
|  | // the absence of information about op2. | 
|  | Opcode = AArch64ISD::ADDS; | 
|  | RHS = RHS.getOperand(1); | 
|  | } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) && | 
|  | !isUnsignedIntSetCC(CC)) { | 
|  | // Similarly, (CMP (and X, Y), 0) can be implemented with a TST | 
|  | // (a.k.a. ANDS) except that the flags are only guaranteed to work for one | 
|  | // of the signed comparisons. | 
|  | Opcode = AArch64ISD::ANDS; | 
|  | RHS = LHS.getOperand(1); | 
|  | LHS = LHS.getOperand(0); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) | 
|  | .getValue(1); | 
|  | } | 
|  |  | 
|  | /// \defgroup AArch64CCMP CMP;CCMP matching | 
|  | /// | 
|  | /// These functions deal with the formation of CMP;CCMP;... sequences. | 
|  | /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of | 
|  | /// a comparison. They set the NZCV flags to a predefined value if their | 
|  | /// predicate is false. This allows to express arbitrary conjunctions, for | 
|  | /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))" | 
|  | /// expressed as: | 
|  | ///   cmp A | 
|  | ///   ccmp B, inv(CB), CA | 
|  | ///   check for CB flags | 
|  | /// | 
|  | /// In general we can create code for arbitrary "... (and (and A B) C)" | 
|  | /// sequences. We can also implement some "or" expressions, because "(or A B)" | 
|  | /// is equivalent to "not (and (not A) (not B))" and we can implement some | 
|  | /// negation operations: | 
|  | /// We can negate the results of a single comparison by inverting the flags | 
|  | /// used when the predicate fails and inverting the flags tested in the next | 
|  | /// instruction; We can also negate the results of the whole previous | 
|  | /// conditional compare sequence by inverting the flags tested in the next | 
|  | /// instruction. However there is no way to negate the result of a partial | 
|  | /// sequence. | 
|  | /// | 
|  | /// Therefore on encountering an "or" expression we can negate the subtree on | 
|  | /// one side and have to be able to push the negate to the leafs of the subtree | 
|  | /// on the other side (see also the comments in code). As complete example: | 
|  | /// "or (or (setCA (cmp A)) (setCB (cmp B))) | 
|  | ///     (and (setCC (cmp C)) (setCD (cmp D)))" | 
|  | /// is transformed to | 
|  | /// "not (and (not (and (setCC (cmp C)) (setCC (cmp D)))) | 
|  | ///           (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" | 
|  | /// and implemented as: | 
|  | ///   cmp C | 
|  | ///   ccmp D, inv(CD), CC | 
|  | ///   ccmp A, CA, inv(CD) | 
|  | ///   ccmp B, CB, inv(CA) | 
|  | ///   check for CB flags | 
|  | /// A counterexample is "or (and A B) (and C D)" which cannot be implemented | 
|  | /// by conditional compare sequences. | 
|  | /// @{ | 
|  |  | 
|  | /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. | 
|  | static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, SDValue CCOp, | 
|  | AArch64CC::CondCode Predicate, | 
|  | AArch64CC::CondCode OutCC, | 
|  | const SDLoc &DL, SelectionDAG &DAG) { | 
|  | unsigned Opcode = 0; | 
|  | if (LHS.getValueType().isFloatingPoint()) { | 
|  | assert(LHS.getValueType() != MVT::f128); | 
|  | if (LHS.getValueType() == MVT::f16) { | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); | 
|  | RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); | 
|  | } | 
|  | Opcode = AArch64ISD::FCCMP; | 
|  | } else if (RHS.getOpcode() == ISD::SUB) { | 
|  | SDValue SubOp0 = RHS.getOperand(0); | 
|  | if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | // See emitComparison() on why we can only do this for SETEQ and SETNE. | 
|  | Opcode = AArch64ISD::CCMN; | 
|  | RHS = RHS.getOperand(1); | 
|  | } | 
|  | } | 
|  | if (Opcode == 0) | 
|  | Opcode = AArch64ISD::CCMP; | 
|  |  | 
|  | SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); | 
|  | AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); | 
|  | unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); | 
|  | SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); | 
|  | return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); | 
|  | } | 
|  |  | 
|  | /// Returns true if @p Val is a tree of AND/OR/SETCC operations. | 
|  | /// CanPushNegate is set to true if we can push a negate operation through | 
|  | /// the tree in a was that we are left with AND operations and negate operations | 
|  | /// at the leafs only. i.e. "not (or (or x y) z)" can be changed to | 
|  | /// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be | 
|  | /// brought into such a form. | 
|  | static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate, | 
|  | unsigned Depth = 0) { | 
|  | if (!Val.hasOneUse()) | 
|  | return false; | 
|  | unsigned Opcode = Val->getOpcode(); | 
|  | if (Opcode == ISD::SETCC) { | 
|  | if (Val->getOperand(0).getValueType() == MVT::f128) | 
|  | return false; | 
|  | CanNegate = true; | 
|  | return true; | 
|  | } | 
|  | // Protect against exponential runtime and stack overflow. | 
|  | if (Depth > 6) | 
|  | return false; | 
|  | if (Opcode == ISD::AND || Opcode == ISD::OR) { | 
|  | SDValue O0 = Val->getOperand(0); | 
|  | SDValue O1 = Val->getOperand(1); | 
|  | bool CanNegateL; | 
|  | if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1)) | 
|  | return false; | 
|  | bool CanNegateR; | 
|  | if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::OR) { | 
|  | // For an OR expression we need to be able to negate at least one side or | 
|  | // we cannot do the transformation at all. | 
|  | if (!CanNegateL && !CanNegateR) | 
|  | return false; | 
|  | // We can however change a (not (or x y)) to (and (not x) (not y)) if we | 
|  | // can negate the x and y subtrees. | 
|  | CanNegate = CanNegateL && CanNegateR; | 
|  | } else { | 
|  | // If the operands are OR expressions then we finally need to negate their | 
|  | // outputs, we can only do that for the operand with emitted last by | 
|  | // negating OutCC, not for both operands. | 
|  | bool NeedsNegOutL = O0->getOpcode() == ISD::OR; | 
|  | bool NeedsNegOutR = O1->getOpcode() == ISD::OR; | 
|  | if (NeedsNegOutL && NeedsNegOutR) | 
|  | return false; | 
|  | // We cannot negate an AND operation (it would become an OR), | 
|  | CanNegate = false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain | 
|  | /// of CCMP/CFCMP ops. See @ref AArch64CCMP. | 
|  | /// Tries to transform the given i1 producing node @p Val to a series compare | 
|  | /// and conditional compare operations. @returns an NZCV flags producing node | 
|  | /// and sets @p OutCC to the flags that should be tested or returns SDValue() if | 
|  | /// transformation was not possible. | 
|  | /// On recursive invocations @p PushNegate may be set to true to have negation | 
|  | /// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate | 
|  | /// for the comparisons in the current subtree; @p Depth limits the search | 
|  | /// depth to avoid stack overflow. | 
|  | static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val, | 
|  | AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, | 
|  | AArch64CC::CondCode Predicate) { | 
|  | // We're at a tree leaf, produce a conditional comparison operation. | 
|  | unsigned Opcode = Val->getOpcode(); | 
|  | if (Opcode == ISD::SETCC) { | 
|  | SDValue LHS = Val->getOperand(0); | 
|  | SDValue RHS = Val->getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); | 
|  | bool isInteger = LHS.getValueType().isInteger(); | 
|  | if (Negate) | 
|  | CC = getSetCCInverse(CC, isInteger); | 
|  | SDLoc DL(Val); | 
|  | // Determine OutCC and handle FP special case. | 
|  | if (isInteger) { | 
|  | OutCC = changeIntCCToAArch64CC(CC); | 
|  | } else { | 
|  | assert(LHS.getValueType().isFloatingPoint()); | 
|  | AArch64CC::CondCode ExtraCC; | 
|  | changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); | 
|  | // Some floating point conditions can't be tested with a single condition | 
|  | // code. Construct an additional comparison in this case. | 
|  | if (ExtraCC != AArch64CC::AL) { | 
|  | SDValue ExtraCmp; | 
|  | if (!CCOp.getNode()) | 
|  | ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); | 
|  | else | 
|  | ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, | 
|  | ExtraCC, DL, DAG); | 
|  | CCOp = ExtraCmp; | 
|  | Predicate = ExtraCC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Produce a normal comparison if we are first in the chain | 
|  | if (!CCOp) | 
|  | return emitComparison(LHS, RHS, CC, DL, DAG); | 
|  | // Otherwise produce a ccmp. | 
|  | return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, | 
|  | DAG); | 
|  | } | 
|  | assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) && | 
|  | "Valid conjunction/disjunction tree"); | 
|  |  | 
|  | // Check if both sides can be transformed. | 
|  | SDValue LHS = Val->getOperand(0); | 
|  | SDValue RHS = Val->getOperand(1); | 
|  |  | 
|  | // In case of an OR we need to negate our operands and the result. | 
|  | // (A v B) <=> not(not(A) ^ not(B)) | 
|  | bool NegateOpsAndResult = Opcode == ISD::OR; | 
|  | // We can negate the results of all previous operations by inverting the | 
|  | // predicate flags giving us a free negation for one side. The other side | 
|  | // must be negatable by itself. | 
|  | if (NegateOpsAndResult) { | 
|  | // See which side we can negate. | 
|  | bool CanNegateL; | 
|  | bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL); | 
|  | assert(isValidL && "Valid conjunction/disjunction tree"); | 
|  | (void)isValidL; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | bool CanNegateR; | 
|  | bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR); | 
|  | assert(isValidR && "Valid conjunction/disjunction tree"); | 
|  | assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree"); | 
|  | #endif | 
|  |  | 
|  | // Order the side which we cannot negate to RHS so we can emit it first. | 
|  | if (!CanNegateL) | 
|  | std::swap(LHS, RHS); | 
|  | } else { | 
|  | bool NeedsNegOutL = LHS->getOpcode() == ISD::OR; | 
|  | assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) && | 
|  | "Valid conjunction/disjunction tree"); | 
|  | // Order the side where we need to negate the output flags to RHS so it | 
|  | // gets emitted first. | 
|  | if (NeedsNegOutL) | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Emit RHS. If we want to negate the tree we only need to push a negate | 
|  | // through if we are already in a PushNegate case, otherwise we can negate | 
|  | // the "flags to test" afterwards. | 
|  | AArch64CC::CondCode RHSCC; | 
|  | SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate, | 
|  | CCOp, Predicate); | 
|  | if (NegateOpsAndResult && !Negate) | 
|  | RHSCC = AArch64CC::getInvertedCondCode(RHSCC); | 
|  | // Emit LHS. We may need to negate it. | 
|  | SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC, | 
|  | NegateOpsAndResult, CmpR, | 
|  | RHSCC); | 
|  | // If we transformed an OR to and AND then we have to negate the result | 
|  | // (or absorb the Negate parameter). | 
|  | if (NegateOpsAndResult && !Negate) | 
|  | OutCC = AArch64CC::getInvertedCondCode(OutCC); | 
|  | return CmpL; | 
|  | } | 
|  |  | 
|  | /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain | 
|  | /// of CCMP/CFCMP ops. See @ref AArch64CCMP. | 
|  | /// \see emitConjunctionDisjunctionTreeRec(). | 
|  | static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val, | 
|  | AArch64CC::CondCode &OutCC) { | 
|  | bool CanNegate; | 
|  | if (!isConjunctionDisjunctionTree(Val, CanNegate)) | 
|  | return SDValue(); | 
|  |  | 
|  | return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(), | 
|  | AArch64CC::AL); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  |  | 
|  | static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | SDValue &AArch64cc, SelectionDAG &DAG, | 
|  | const SDLoc &dl) { | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { | 
|  | EVT VT = RHS.getValueType(); | 
|  | uint64_t C = RHSC->getZExtValue(); | 
|  | if (!isLegalArithImmed(C)) { | 
|  | // Constant does not fit, try adjusting it by one? | 
|  | switch (CC) { | 
|  | default: | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETGE: | 
|  | if ((VT == MVT::i32 && C != 0x80000000 && | 
|  | isLegalArithImmed((uint32_t)(C - 1))) || | 
|  | (VT == MVT::i64 && C != 0x80000000ULL && | 
|  | isLegalArithImmed(C - 1ULL))) { | 
|  | CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; | 
|  | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; | 
|  | RHS = DAG.getConstant(C, dl, VT); | 
|  | } | 
|  | break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETUGE: | 
|  | if ((VT == MVT::i32 && C != 0 && | 
|  | isLegalArithImmed((uint32_t)(C - 1))) || | 
|  | (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { | 
|  | CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; | 
|  | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; | 
|  | RHS = DAG.getConstant(C, dl, VT); | 
|  | } | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETGT: | 
|  | if ((VT == MVT::i32 && C != INT32_MAX && | 
|  | isLegalArithImmed((uint32_t)(C + 1))) || | 
|  | (VT == MVT::i64 && C != INT64_MAX && | 
|  | isLegalArithImmed(C + 1ULL))) { | 
|  | CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; | 
|  | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; | 
|  | RHS = DAG.getConstant(C, dl, VT); | 
|  | } | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETUGT: | 
|  | if ((VT == MVT::i32 && C != UINT32_MAX && | 
|  | isLegalArithImmed((uint32_t)(C + 1))) || | 
|  | (VT == MVT::i64 && C != UINT64_MAX && | 
|  | isLegalArithImmed(C + 1ULL))) { | 
|  | CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; | 
|  | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; | 
|  | RHS = DAG.getConstant(C, dl, VT); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | SDValue Cmp; | 
|  | AArch64CC::CondCode AArch64CC; | 
|  | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { | 
|  | const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); | 
|  |  | 
|  | // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. | 
|  | // For the i8 operand, the largest immediate is 255, so this can be easily | 
|  | // encoded in the compare instruction. For the i16 operand, however, the | 
|  | // largest immediate cannot be encoded in the compare. | 
|  | // Therefore, use a sign extending load and cmn to avoid materializing the | 
|  | // -1 constant. For example, | 
|  | // movz w1, #65535 | 
|  | // ldrh w0, [x0, #0] | 
|  | // cmp w0, w1 | 
|  | // > | 
|  | // ldrsh w0, [x0, #0] | 
|  | // cmn w0, #1 | 
|  | // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) | 
|  | // if and only if (sext LHS) == (sext RHS). The checks are in place to | 
|  | // ensure both the LHS and RHS are truly zero extended and to make sure the | 
|  | // transformation is profitable. | 
|  | if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && | 
|  | cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && | 
|  | cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && | 
|  | LHS.getNode()->hasNUsesOfValue(1, 0)) { | 
|  | int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); | 
|  | if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { | 
|  | SDValue SExt = | 
|  | DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, | 
|  | DAG.getValueType(MVT::i16)); | 
|  | Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, | 
|  | RHS.getValueType()), | 
|  | CC, dl, DAG); | 
|  | AArch64CC = changeIntCCToAArch64CC(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { | 
|  | if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) { | 
|  | if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) | 
|  | AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Cmp) { | 
|  | Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | 
|  | AArch64CC = changeIntCCToAArch64CC(CC); | 
|  | } | 
|  | AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | static std::pair<SDValue, SDValue> | 
|  | getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { | 
|  | assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && | 
|  | "Unsupported value type"); | 
|  | SDValue Value, Overflow; | 
|  | SDLoc DL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | unsigned Opc = 0; | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown overflow instruction!"); | 
|  | case ISD::SADDO: | 
|  | Opc = AArch64ISD::ADDS; | 
|  | CC = AArch64CC::VS; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | Opc = AArch64ISD::ADDS; | 
|  | CC = AArch64CC::HS; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | Opc = AArch64ISD::SUBS; | 
|  | CC = AArch64CC::VS; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | Opc = AArch64ISD::SUBS; | 
|  | CC = AArch64CC::LO; | 
|  | break; | 
|  | // Multiply needs a little bit extra work. | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: { | 
|  | CC = AArch64CC::NE; | 
|  | bool IsSigned = Op.getOpcode() == ISD::SMULO; | 
|  | if (Op.getValueType() == MVT::i32) { | 
|  | unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | // For a 32 bit multiply with overflow check we want the instruction | 
|  | // selector to generate a widening multiply (SMADDL/UMADDL). For that we | 
|  | // need to generate the following pattern: | 
|  | // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) | 
|  | LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); | 
|  | RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | // On AArch64 the upper 32 bits are always zero extended for a 32 bit | 
|  | // operation. We need to clear out the upper 32 bits, because we used a | 
|  | // widening multiply that wrote all 64 bits. In the end this should be a | 
|  | // noop. | 
|  | Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); | 
|  | if (IsSigned) { | 
|  | // The signed overflow check requires more than just a simple check for | 
|  | // any bit set in the upper 32 bits of the result. These bits could be | 
|  | // just the sign bits of a negative number. To perform the overflow | 
|  | // check we have to arithmetic shift right the 32nd bit of the result by | 
|  | // 31 bits. Then we compare the result to the upper 32 bits. | 
|  | SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); | 
|  | SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, | 
|  | DAG.getConstant(31, DL, MVT::i64)); | 
|  | // It is important that LowerBits is last, otherwise the arithmetic | 
|  | // shift will not be folded into the compare (SUBS). | 
|  | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); | 
|  | Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) | 
|  | .getValue(1); | 
|  | } else { | 
|  | // The overflow check for unsigned multiply is easy. We only need to | 
|  | // check if any of the upper 32 bits are set. This can be done with a | 
|  | // CMP (shifted register). For that we need to generate the following | 
|  | // pattern: | 
|  | // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) | 
|  | SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); | 
|  | Overflow = | 
|  | DAG.getNode(AArch64ISD::SUBS, DL, VTs, | 
|  | DAG.getConstant(0, DL, MVT::i64), | 
|  | UpperBits).getValue(1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); | 
|  | // For the 64 bit multiply | 
|  | Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); | 
|  | if (IsSigned) { | 
|  | SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); | 
|  | SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, | 
|  | DAG.getConstant(63, DL, MVT::i64)); | 
|  | // It is important that LowerBits is last, otherwise the arithmetic | 
|  | // shift will not be folded into the compare (SUBS). | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); | 
|  | Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) | 
|  | .getValue(1); | 
|  | } else { | 
|  | SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); | 
|  | Overflow = | 
|  | DAG.getNode(AArch64ISD::SUBS, DL, VTs, | 
|  | DAG.getConstant(0, DL, MVT::i64), | 
|  | UpperBits).getValue(1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } // switch (...) | 
|  |  | 
|  | if (Opc) { | 
|  | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); | 
|  |  | 
|  | // Emit the AArch64 operation with overflow check. | 
|  | Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); | 
|  | Overflow = Value.getValue(1); | 
|  | } | 
|  | return std::make_pair(Value, Overflow); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, | 
|  | RTLIB::Libcall Call) const { | 
|  | SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); | 
|  | return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first; | 
|  | } | 
|  |  | 
|  | static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue Sel = Op.getOperand(0); | 
|  | SDValue Other = Op.getOperand(1); | 
|  |  | 
|  | // If neither operand is a SELECT_CC, give up. | 
|  | if (Sel.getOpcode() != ISD::SELECT_CC) | 
|  | std::swap(Sel, Other); | 
|  | if (Sel.getOpcode() != ISD::SELECT_CC) | 
|  | return Op; | 
|  |  | 
|  | // The folding we want to perform is: | 
|  | // (xor x, (select_cc a, b, cc, 0, -1) ) | 
|  | //   --> | 
|  | // (csel x, (xor x, -1), cc ...) | 
|  | // | 
|  | // The latter will get matched to a CSINV instruction. | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); | 
|  | SDValue LHS = Sel.getOperand(0); | 
|  | SDValue RHS = Sel.getOperand(1); | 
|  | SDValue TVal = Sel.getOperand(2); | 
|  | SDValue FVal = Sel.getOperand(3); | 
|  | SDLoc dl(Sel); | 
|  |  | 
|  | // FIXME: This could be generalized to non-integer comparisons. | 
|  | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) | 
|  | return Op; | 
|  |  | 
|  | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); | 
|  | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); | 
|  |  | 
|  | // The values aren't constants, this isn't the pattern we're looking for. | 
|  | if (!CFVal || !CTVal) | 
|  | return Op; | 
|  |  | 
|  | // We can commute the SELECT_CC by inverting the condition.  This | 
|  | // might be needed to make this fit into a CSINV pattern. | 
|  | if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } | 
|  |  | 
|  | // If the constants line up, perform the transform! | 
|  | if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { | 
|  | SDValue CCVal; | 
|  | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | 
|  |  | 
|  | FVal = Other; | 
|  | TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, | 
|  | DAG.getConstant(-1ULL, dl, Other.getValueType())); | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, | 
|  | CCVal, Cmp); | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  |  | 
|  | unsigned Opc; | 
|  | bool ExtraOp = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid code"); | 
|  | case ISD::ADDC: | 
|  | Opc = AArch64ISD::ADDS; | 
|  | break; | 
|  | case ISD::SUBC: | 
|  | Opc = AArch64ISD::SUBS; | 
|  | break; | 
|  | case ISD::ADDE: | 
|  | Opc = AArch64ISD::ADCS; | 
|  | ExtraOp = true; | 
|  | break; | 
|  | case ISD::SUBE: | 
|  | Opc = AArch64ISD::SBCS; | 
|  | ExtraOp = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ExtraOp) | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), | 
|  | Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | AArch64CC::CondCode CC; | 
|  | // The actual operation that sets the overflow or carry flag. | 
|  | SDValue Value, Overflow; | 
|  | std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); | 
|  |  | 
|  | // We use 0 and 1 as false and true values. | 
|  | SDValue TVal = DAG.getConstant(1, dl, MVT::i32); | 
|  | SDValue FVal = DAG.getConstant(0, dl, MVT::i32); | 
|  |  | 
|  | // We use an inverted condition, because the conditional select is inverted | 
|  | // too. This will allow it to be selected to a single instruction: | 
|  | // CSINC Wd, WZR, WZR, invert(cond). | 
|  | SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); | 
|  | Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, | 
|  | CCVal, Overflow); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); | 
|  | } | 
|  |  | 
|  | // Prefetch operands are: | 
|  | // 1: Address to prefetch | 
|  | // 2: bool isWrite | 
|  | // 3: int locality (0 = no locality ... 3 = extreme locality) | 
|  | // 4: bool isDataCache | 
|  | static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
|  | unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | 
|  | unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); | 
|  |  | 
|  | bool IsStream = !Locality; | 
|  | // When the locality number is set | 
|  | if (Locality) { | 
|  | // The front-end should have filtered out the out-of-range values | 
|  | assert(Locality <= 3 && "Prefetch locality out-of-range"); | 
|  | // The locality degree is the opposite of the cache speed. | 
|  | // Put the number the other way around. | 
|  | // The encoding starts at 0 for level 1 | 
|  | Locality = 3 - Locality; | 
|  | } | 
|  |  | 
|  | // built the mask value encoding the expected behavior. | 
|  | unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit | 
|  | (!IsData << 3) |     // IsDataCache bit | 
|  | (Locality << 1) |    // Cache level bits | 
|  | (unsigned)IsStream;  // Stream bit | 
|  | return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), | 
|  | DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  |  | 
|  | return LowerF128Call(Op, DAG, LC); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getOperand(0).getValueType() != MVT::f128) { | 
|  | // It's legal except when f128 is involved | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  |  | 
|  | // FP_ROUND node has a second operand indicating whether it is known to be | 
|  | // precise. That doesn't take part in the LibCall so we can't directly use | 
|  | // LowerF128Call. | 
|  | SDValue SrcVal = Op.getOperand(0); | 
|  | return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, | 
|  | SDLoc(Op)).first; | 
|  | } | 
|  |  | 
|  | static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { | 
|  | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. | 
|  | // Any additional optimization in this function should be recorded | 
|  | // in the cost tables. | 
|  | EVT InVT = Op.getOperand(0).getValueType(); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElts = InVT.getVectorNumElements(); | 
|  |  | 
|  | // f16 vectors are promoted to f32 before a conversion. | 
|  | if (InVT.getVectorElementType() == MVT::f16) { | 
|  | MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode( | 
|  | Op.getOpcode(), dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() < InVT.getSizeInBits()) { | 
|  | SDLoc dl(Op); | 
|  | SDValue Cv = | 
|  | DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), | 
|  | Op.getOperand(0)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() > InVT.getSizeInBits()) { | 
|  | SDLoc dl(Op); | 
|  | MVT ExtVT = | 
|  | MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), | 
|  | VT.getVectorNumElements()); | 
|  | SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); | 
|  | return DAG.getNode(Op.getOpcode(), dl, VT, Ext); | 
|  | } | 
|  |  | 
|  | // Type changing conversions are illegal. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getOperand(0).getValueType().isVector()) | 
|  | return LowerVectorFP_TO_INT(Op, DAG); | 
|  |  | 
|  | // f16 conversions are promoted to f32. | 
|  | if (Op.getOperand(0).getValueType() == MVT::f16) { | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode( | 
|  | Op.getOpcode(), dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0))); | 
|  | } | 
|  |  | 
|  | if (Op.getOperand(0).getValueType() != MVT::f128) { | 
|  | // It's legal except when f128 is involved | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | if (Op.getOpcode() == ISD::FP_TO_SINT) | 
|  | LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  | else | 
|  | LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  |  | 
|  | SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); | 
|  | return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first; | 
|  | } | 
|  |  | 
|  | static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { | 
|  | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. | 
|  | // Any additional optimization in this function should be recorded | 
|  | // in the cost tables. | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue In = Op.getOperand(0); | 
|  | EVT InVT = In.getValueType(); | 
|  |  | 
|  | if (VT.getSizeInBits() < InVT.getSizeInBits()) { | 
|  | MVT CastVT = | 
|  | MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), | 
|  | InVT.getVectorNumElements()); | 
|  | In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() > InVT.getSizeInBits()) { | 
|  | unsigned CastOpc = | 
|  | Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | EVT CastVT = VT.changeVectorElementTypeToInteger(); | 
|  | In = DAG.getNode(CastOpc, dl, CastVT, In); | 
|  | return DAG.getNode(Op.getOpcode(), dl, VT, In); | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getValueType().isVector()) | 
|  | return LowerVectorINT_TO_FP(Op, DAG); | 
|  |  | 
|  | // f16 conversions are promoted to f32. | 
|  | if (Op.getValueType() == MVT::f16) { | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode( | 
|  | ISD::FP_ROUND, dl, MVT::f16, | 
|  | DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | // i128 conversions are libcalls. | 
|  | if (Op.getOperand(0).getValueType() == MVT::i128) | 
|  | return SDValue(); | 
|  |  | 
|  | // Other conversions are legal, unless it's to the completely software-based | 
|  | // fp128. | 
|  | if (Op.getValueType() != MVT::f128) | 
|  | return Op; | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | if (Op.getOpcode() == ISD::SINT_TO_FP) | 
|  | LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  | else | 
|  | LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); | 
|  |  | 
|  | return LowerF128Call(Op, DAG, LC); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // For iOS, we want to call an alternative entry point: __sincos_stret, | 
|  | // which returns the values in two S / D registers. | 
|  | SDLoc dl(Op); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | EVT ArgVT = Arg.getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | ArgListTy Args; | 
|  | ArgListEntry Entry; | 
|  |  | 
|  | Entry.Node = Arg; | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | const char *LibcallName = | 
|  | (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; | 
|  | SDValue Callee = | 
|  | DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) | 
|  | .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | 
|  | return CallResult.first; | 
|  | } | 
|  |  | 
|  | static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { | 
|  | if (Op.getValueType() != MVT::f16) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i16); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); | 
|  | return SDValue( | 
|  | DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, | 
|  | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static EVT getExtensionTo64Bits(const EVT &OrigVT) { | 
|  | if (OrigVT.getSizeInBits() >= 64) | 
|  | return OrigVT; | 
|  |  | 
|  | assert(OrigVT.isSimple() && "Expecting a simple value type"); | 
|  |  | 
|  | MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; | 
|  | switch (OrigSimpleTy) { | 
|  | default: llvm_unreachable("Unexpected Vector Type"); | 
|  | case MVT::v2i8: | 
|  | case MVT::v2i16: | 
|  | return MVT::v2i32; | 
|  | case MVT::v4i8: | 
|  | return  MVT::v4i16; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, | 
|  | const EVT &OrigTy, | 
|  | const EVT &ExtTy, | 
|  | unsigned ExtOpcode) { | 
|  | // The vector originally had a size of OrigTy. It was then extended to ExtTy. | 
|  | // We expect the ExtTy to be 128-bits total. If the OrigTy is less than | 
|  | // 64-bits we need to insert a new extension so that it will be 64-bits. | 
|  | assert(ExtTy.is128BitVector() && "Unexpected extension size"); | 
|  | if (OrigTy.getSizeInBits() >= 64) | 
|  | return N; | 
|  |  | 
|  | // Must extend size to at least 64 bits to be used as an operand for VMULL. | 
|  | EVT NewVT = getExtensionTo64Bits(OrigTy); | 
|  |  | 
|  | return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); | 
|  | } | 
|  |  | 
|  | static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, | 
|  | bool isSigned) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | for (const SDValue &Elt : N->op_values()) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { | 
|  | unsigned EltSize = VT.getScalarSizeInBits(); | 
|  | unsigned HalfSize = EltSize / 2; | 
|  | if (isSigned) { | 
|  | if (!isIntN(HalfSize, C->getSExtValue())) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUIntN(HalfSize, C->getZExtValue())) | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { | 
|  | if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, | 
|  | N->getOperand(0)->getValueType(0), | 
|  | N->getValueType(0), | 
|  | N->getOpcode()); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  | unsigned EltSize = VT.getScalarSizeInBits() / 2; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | MVT TruncVT = MVT::getIntegerVT(EltSize); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); | 
|  | const APInt &CInt = C->getAPIntValue(); | 
|  | // Element types smaller than 32 bits are not legal, so use i32 elements. | 
|  | // The values are implicitly truncated so sext vs. zext doesn't matter. | 
|  | Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); | 
|  | } | 
|  | return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); | 
|  | } | 
|  |  | 
|  | static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { | 
|  | if (N->getOpcode() == ISD::SIGN_EXTEND) | 
|  | return true; | 
|  | if (isExtendedBUILD_VECTOR(N, DAG, true)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { | 
|  | if (N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | return true; | 
|  | if (isExtendedBUILD_VECTOR(N, DAG, false)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (Opcode == ISD::ADD || Opcode == ISD::SUB) { | 
|  | SDNode *N0 = N->getOperand(0).getNode(); | 
|  | SDNode *N1 = N->getOperand(1).getNode(); | 
|  | return N0->hasOneUse() && N1->hasOneUse() && | 
|  | isSignExtended(N0, DAG) && isSignExtended(N1, DAG); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (Opcode == ISD::ADD || Opcode == ISD::SUB) { | 
|  | SDNode *N0 = N->getOperand(0).getNode(); | 
|  | SDNode *N1 = N->getOperand(1).getNode(); | 
|  | return N0->hasOneUse() && N1->hasOneUse() && | 
|  | isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { | 
|  | // Multiplications are only custom-lowered for 128-bit vectors so that | 
|  | // VMULL can be detected.  Otherwise v2i64 multiplications are not legal. | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT.is128BitVector() && VT.isInteger() && | 
|  | "unexpected type for custom-lowering ISD::MUL"); | 
|  | SDNode *N0 = Op.getOperand(0).getNode(); | 
|  | SDNode *N1 = Op.getOperand(1).getNode(); | 
|  | unsigned NewOpc = 0; | 
|  | bool isMLA = false; | 
|  | bool isN0SExt = isSignExtended(N0, DAG); | 
|  | bool isN1SExt = isSignExtended(N1, DAG); | 
|  | if (isN0SExt && isN1SExt) | 
|  | NewOpc = AArch64ISD::SMULL; | 
|  | else { | 
|  | bool isN0ZExt = isZeroExtended(N0, DAG); | 
|  | bool isN1ZExt = isZeroExtended(N1, DAG); | 
|  | if (isN0ZExt && isN1ZExt) | 
|  | NewOpc = AArch64ISD::UMULL; | 
|  | else if (isN1SExt || isN1ZExt) { | 
|  | // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these | 
|  | // into (s/zext A * s/zext C) + (s/zext B * s/zext C) | 
|  | if (isN1SExt && isAddSubSExt(N0, DAG)) { | 
|  | NewOpc = AArch64ISD::SMULL; | 
|  | isMLA = true; | 
|  | } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { | 
|  | NewOpc =  AArch64ISD::UMULL; | 
|  | isMLA = true; | 
|  | } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { | 
|  | std::swap(N0, N1); | 
|  | NewOpc =  AArch64ISD::UMULL; | 
|  | isMLA = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NewOpc) { | 
|  | if (VT == MVT::v2i64) | 
|  | // Fall through to expand this.  It is not legal. | 
|  | return SDValue(); | 
|  | else | 
|  | // Other vector multiplications are legal. | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Legalize to a S/UMULL instruction | 
|  | SDLoc DL(Op); | 
|  | SDValue Op0; | 
|  | SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); | 
|  | if (!isMLA) { | 
|  | Op0 = skipExtensionForVectorMULL(N0, DAG); | 
|  | assert(Op0.getValueType().is64BitVector() && | 
|  | Op1.getValueType().is64BitVector() && | 
|  | "unexpected types for extended operands to VMULL"); | 
|  | return DAG.getNode(NewOpc, DL, VT, Op0, Op1); | 
|  | } | 
|  | // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during | 
|  | // isel lowering to take advantage of no-stall back to back s/umul + s/umla. | 
|  | // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 | 
|  | SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); | 
|  | SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); | 
|  | EVT Op1VT = Op1.getValueType(); | 
|  | return DAG.getNode(N0->getOpcode(), DL, VT, | 
|  | DAG.getNode(NewOpc, DL, VT, | 
|  | DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), | 
|  | DAG.getNode(NewOpc, DL, VT, | 
|  | DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | SDLoc dl(Op); | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  | case Intrinsic::thread_pointer: { | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); | 
|  | } | 
|  | case Intrinsic::aarch64_neon_smax: | 
|  | return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_umax: | 
|  | return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_smin: | 
|  | return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_umin: | 
|  | return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerOperation(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("unimplemented operand"); | 
|  | return SDValue(); | 
|  | case ISD::BITCAST: | 
|  | return LowerBITCAST(Op, DAG); | 
|  | case ISD::GlobalAddress: | 
|  | return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress: | 
|  | return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::SETCC: | 
|  | return LowerSETCC(Op, DAG); | 
|  | case ISD::BR_CC: | 
|  | return LowerBR_CC(Op, DAG); | 
|  | case ISD::SELECT: | 
|  | return LowerSELECT(Op, DAG); | 
|  | case ISD::SELECT_CC: | 
|  | return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::JumpTable: | 
|  | return LowerJumpTable(Op, DAG); | 
|  | case ISD::ConstantPool: | 
|  | return LowerConstantPool(Op, DAG); | 
|  | case ISD::BlockAddress: | 
|  | return LowerBlockAddress(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG); | 
|  | case ISD::VACOPY: | 
|  | return LowerVACOPY(Op, DAG); | 
|  | case ISD::VAARG: | 
|  | return LowerVAARG(Op, DAG); | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: | 
|  | return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: | 
|  | return LowerXALUO(Op, DAG); | 
|  | case ISD::FADD: | 
|  | return LowerF128Call(Op, DAG, RTLIB::ADD_F128); | 
|  | case ISD::FSUB: | 
|  | return LowerF128Call(Op, DAG, RTLIB::SUB_F128); | 
|  | case ISD::FMUL: | 
|  | return LowerF128Call(Op, DAG, RTLIB::MUL_F128); | 
|  | case ISD::FDIV: | 
|  | return LowerF128Call(Op, DAG, RTLIB::DIV_F128); | 
|  | case ISD::FP_ROUND: | 
|  | return LowerFP_ROUND(Op, DAG); | 
|  | case ISD::FP_EXTEND: | 
|  | return LowerFP_EXTEND(Op, DAG); | 
|  | case ISD::FRAMEADDR: | 
|  | return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::RETURNADDR: | 
|  | return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::BUILD_VECTOR: | 
|  | return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | return LowerEXTRACT_SUBVECTOR(Op, DAG); | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::SHL: | 
|  | return LowerVectorSRA_SRL_SHL(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | return LowerShiftLeftParts(Op, DAG); | 
|  | case ISD::SRL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | return LowerShiftRightParts(Op, DAG); | 
|  | case ISD::CTPOP: | 
|  | return LowerCTPOP(Op, DAG); | 
|  | case ISD::FCOPYSIGN: | 
|  | return LowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::AND: | 
|  | return LowerVectorAND(Op, DAG); | 
|  | case ISD::OR: | 
|  | return LowerVectorOR(Op, DAG); | 
|  | case ISD::XOR: | 
|  | return LowerXOR(Op, DAG); | 
|  | case ISD::PREFETCH: | 
|  | return LowerPREFETCH(Op, DAG); | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | return LowerINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | return LowerFP_TO_INT(Op, DAG); | 
|  | case ISD::FSINCOS: | 
|  | return LowerFSINCOS(Op, DAG); | 
|  | case ISD::MUL: | 
|  | return LowerMUL(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64GenCallingConv.inc" | 
|  |  | 
|  | /// Selects the correct CCAssignFn for a given CallingConvention value. | 
|  | CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, | 
|  | bool IsVarArg) const { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention."); | 
|  | case CallingConv::WebKit_JS: | 
|  | return CC_AArch64_WebKit_JS; | 
|  | case CallingConv::GHC: | 
|  | return CC_AArch64_GHC; | 
|  | case CallingConv::C: | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::PreserveMost: | 
|  | case CallingConv::CXX_FAST_TLS: | 
|  | case CallingConv::Swift: | 
|  | if (!Subtarget->isTargetDarwin()) | 
|  | return CC_AArch64_AAPCS; | 
|  | return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; | 
|  | } | 
|  | } | 
|  |  | 
|  | CCAssignFn * | 
|  | AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { | 
|  | return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS | 
|  | : RetCC_AArch64_AAPCS; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // At this point, Ins[].VT may already be promoted to i32. To correctly | 
|  | // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and | 
|  | // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. | 
|  | // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here | 
|  | // we use a special version of AnalyzeFormalArguments to pass in ValVT and | 
|  | // LocVT. | 
|  | unsigned NumArgs = Ins.size(); | 
|  | Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); | 
|  | unsigned CurArgIdx = 0; | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | MVT ValVT = Ins[i].VT; | 
|  | if (Ins[i].isOrigArg()) { | 
|  | std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); | 
|  | CurArgIdx = Ins[i].getOrigArgIndex(); | 
|  |  | 
|  | // Get type of the original argument. | 
|  | EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), | 
|  | /*AllowUnknown*/ true); | 
|  | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; | 
|  | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. | 
|  | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) | 
|  | ValVT = MVT::i8; | 
|  | else if (ActualMVT == MVT::i16) | 
|  | ValVT = MVT::i16; | 
|  | } | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); | 
|  | bool Res = | 
|  | AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); | 
|  | assert(!Res && "Call operand has unhandled type"); | 
|  | (void)Res; | 
|  | } | 
|  | assert(ArgLocs.size() == Ins.size()); | 
|  | SmallVector<SDValue, 16> ArgValues; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  |  | 
|  | if (Ins[i].Flags.isByVal()) { | 
|  | // Byval is used for HFAs in the PCS, but the system should work in a | 
|  | // non-compliant manner for larger structs. | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | int Size = Ins[i].Flags.getByValSize(); | 
|  | unsigned NumRegs = (Size + 7) / 8; | 
|  |  | 
|  | // FIXME: This works on big-endian for composite byvals, which are the common | 
|  | // case. It should also work for fundamental types too. | 
|  | unsigned FrameIdx = | 
|  | MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); | 
|  | SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  | InVals.push_back(FrameIdxN); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | // Arguments stored in registers. | 
|  | EVT RegVT = VA.getLocVT(); | 
|  |  | 
|  | SDValue ArgValue; | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | if (RegVT == MVT::i32) | 
|  | RC = &AArch64::GPR32RegClass; | 
|  | else if (RegVT == MVT::i64) | 
|  | RC = &AArch64::GPR64RegClass; | 
|  | else if (RegVT == MVT::f16) | 
|  | RC = &AArch64::FPR16RegClass; | 
|  | else if (RegVT == MVT::f32) | 
|  | RC = &AArch64::FPR32RegClass; | 
|  | else if (RegVT == MVT::f64 || RegVT.is64BitVector()) | 
|  | RC = &AArch64::FPR64RegClass; | 
|  | else if (RegVT == MVT::f128 || RegVT.is128BitVector()) | 
|  | RC = &AArch64::FPR128RegClass; | 
|  | else | 
|  | llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); | 
|  |  | 
|  | // Transform the arguments in physical registers into virtual ones. | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); | 
|  |  | 
|  | // If this is an 8, 16 or 32-bit value, it is really passed promoted | 
|  | // to 64 bits.  Insert an assert[sz]ext to capture this, then | 
|  | // truncate to the right size. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | case CCValAssign::SExt: | 
|  | case CCValAssign::ZExt: | 
|  | // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt | 
|  | // nodes after our lowering. | 
|  | assert(RegVT == Ins[i].VT && "incorrect register location selected"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  |  | 
|  | } else { // VA.isRegLoc() | 
|  | assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); | 
|  | unsigned ArgOffset = VA.getLocMemOffset(); | 
|  | unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; | 
|  |  | 
|  | uint32_t BEAlign = 0; | 
|  | if (!Subtarget->isLittleEndian() && ArgSize < 8 && | 
|  | !Ins[i].Flags.isInConsecutiveRegs()) | 
|  | BEAlign = 8 - ArgSize; | 
|  |  | 
|  | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | SDValue ArgValue; | 
|  |  | 
|  | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | MVT MemVT = VA.getValVT(); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | MemVT = VA.getLocVT(); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | ExtType = ISD::EXTLOAD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ArgValue = DAG.getExtLoad( | 
|  | ExtType, DL, VA.getLocVT(), Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | 
|  | MemVT); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // varargs | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | if (isVarArg) { | 
|  | if (!Subtarget->isTargetDarwin()) { | 
|  | // The AAPCS variadic function ABI is identical to the non-variadic | 
|  | // one. As a result there may be more arguments in registers and we should | 
|  | // save them for future reference. | 
|  | saveVarArgRegisters(CCInfo, DAG, DL, Chain); | 
|  | } | 
|  |  | 
|  | // This will point to the next argument passed via stack. | 
|  | unsigned StackOffset = CCInfo.getNextStackOffset(); | 
|  | // We currently pass all varargs at 8-byte alignment. | 
|  | StackOffset = ((StackOffset + 7) & ~7); | 
|  | FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); | 
|  | } | 
|  |  | 
|  | unsigned StackArgSize = CCInfo.getNextStackOffset(); | 
|  | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | 
|  | if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { | 
|  | // This is a non-standard ABI so by fiat I say we're allowed to make full | 
|  | // use of the stack area to be popped, which must be aligned to 16 bytes in | 
|  | // any case: | 
|  | StackArgSize = alignTo(StackArgSize, 16); | 
|  |  | 
|  | // If we're expected to restore the stack (e.g. fastcc) then we'll be adding | 
|  | // a multiple of 16. | 
|  | FuncInfo->setArgumentStackToRestore(StackArgSize); | 
|  |  | 
|  | // This realignment carries over to the available bytes below. Our own | 
|  | // callers will guarantee the space is free by giving an aligned value to | 
|  | // CALLSEQ_START. | 
|  | } | 
|  | // Even if we're not expected to free up the space, it's useful to know how | 
|  | // much is there while considering tail calls (because we can reuse it). | 
|  | FuncInfo->setBytesInStackArgArea(StackArgSize); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, | 
|  | SelectionDAG &DAG, | 
|  | const SDLoc &DL, | 
|  | SDValue &Chain) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  |  | 
|  | static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, | 
|  | AArch64::X3, AArch64::X4, AArch64::X5, | 
|  | AArch64::X6, AArch64::X7 }; | 
|  | static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); | 
|  | unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); | 
|  |  | 
|  | unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); | 
|  | int GPRIdx = 0; | 
|  | if (GPRSaveSize != 0) { | 
|  | GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); | 
|  |  | 
|  | for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { | 
|  | unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); | 
|  | SDValue Store = DAG.getStore( | 
|  | Val.getValue(1), DL, Val, FIN, | 
|  | MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); | 
|  | MemOps.push_back(Store); | 
|  | FIN = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); | 
|  | } | 
|  | } | 
|  | FuncInfo->setVarArgsGPRIndex(GPRIdx); | 
|  | FuncInfo->setVarArgsGPRSize(GPRSaveSize); | 
|  |  | 
|  | if (Subtarget->hasFPARMv8()) { | 
|  | static const MCPhysReg FPRArgRegs[] = { | 
|  | AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, | 
|  | AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; | 
|  | static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); | 
|  | unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); | 
|  |  | 
|  | unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); | 
|  | int FPRIdx = 0; | 
|  | if (FPRSaveSize != 0) { | 
|  | FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); | 
|  |  | 
|  | for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { | 
|  | unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); | 
|  |  | 
|  | SDValue Store = DAG.getStore( | 
|  | Val.getValue(1), DL, Val, FIN, | 
|  | MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); | 
|  | MemOps.push_back(Store); | 
|  | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, | 
|  | DAG.getConstant(16, DL, PtrVT)); | 
|  | } | 
|  | } | 
|  | FuncInfo->setVarArgsFPRIndex(FPRIdx); | 
|  | FuncInfo->setVarArgsFPRSize(FPRSaveSize); | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) { | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | SDValue AArch64TargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, | 
|  | SDValue ThisVal) const { | 
|  | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS | 
|  | ? RetCC_AArch64_WebKit_JS | 
|  | : RetCC_AArch64_AAPCS; | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign VA = RVLocs[i]; | 
|  |  | 
|  | // Pass 'this' value directly from the argument to return value, to avoid | 
|  | // reg unit interference | 
|  | if (i == 0 && isThisReturn) { | 
|  | assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && | 
|  | "unexpected return calling convention register assignment"); | 
|  | InVals.push_back(ThisVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue Val = | 
|  | DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); | 
|  | Chain = Val.getValue(1); | 
|  | InFlag = Val.getValue(2); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// Return true if the calling convention is one that we can guarantee TCO for. | 
|  | static bool canGuaranteeTCO(CallingConv::ID CC) { | 
|  | return CC == CallingConv::Fast; | 
|  | } | 
|  |  | 
|  | /// Return true if we might ever do TCO for calls with this calling convention. | 
|  | static bool mayTailCallThisCC(CallingConv::ID CC) { | 
|  | switch (CC) { | 
|  | case CallingConv::C: | 
|  | case CallingConv::PreserveMost: | 
|  | case CallingConv::Swift: | 
|  | return true; | 
|  | default: | 
|  | return canGuaranteeTCO(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isEligibleForTailCallOptimization( | 
|  | SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { | 
|  | if (!mayTailCallThisCC(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *CallerF = MF.getFunction(); | 
|  | CallingConv::ID CallerCC = CallerF->getCallingConv(); | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  |  | 
|  | // Byval parameters hand the function a pointer directly into the stack area | 
|  | // we want to reuse during a tail call. Working around this *is* possible (see | 
|  | // X86) but less efficient and uglier in LowerCall. | 
|  | for (Function::const_arg_iterator i = CallerF->arg_begin(), | 
|  | e = CallerF->arg_end(); | 
|  | i != e; ++i) | 
|  | if (i->hasByValAttr()) | 
|  | return false; | 
|  |  | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt) | 
|  | return canGuaranteeTCO(CalleeCC) && CCMatch; | 
|  |  | 
|  | // Externally-defined functions with weak linkage should not be | 
|  | // tail-called on AArch64 when the OS does not support dynamic | 
|  | // pre-emption of symbols, as the AAELF spec requires normal calls | 
|  | // to undefined weak functions to be replaced with a NOP or jump to the | 
|  | // next instruction. The behaviour of branch instructions in this | 
|  | // situation (as used for tail calls) is implementation-defined, so we | 
|  | // cannot rely on the linker replacing the tail call with a return. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | const Triple &TT = getTargetMachine().getTargetTriple(); | 
|  | if (GV->hasExternalWeakLinkage() && | 
|  | (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now we search for cases where we can use a tail call without changing the | 
|  | // ABI. Sibcall is used in some places (particularly gcc) to refer to this | 
|  | // concept. | 
|  |  | 
|  | // I want anyone implementing a new calling convention to think long and hard | 
|  | // about this assert. | 
|  | assert((!isVarArg || CalleeCC == CallingConv::C) && | 
|  | "Unexpected variadic calling convention"); | 
|  |  | 
|  | LLVMContext &C = *DAG.getContext(); | 
|  | if (isVarArg && !Outs.empty()) { | 
|  | // At least two cases here: if caller is fastcc then we can't have any | 
|  | // memory arguments (we'd be expected to clean up the stack afterwards). If | 
|  | // caller is C then we could potentially use its argument area. | 
|  |  | 
|  | // FIXME: for now we take the most conservative of these in both cases: | 
|  | // disallow all variadic memory operands. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); | 
|  | for (const CCValAssign &ArgLoc : ArgLocs) | 
|  | if (!ArgLoc.isRegLoc()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that the call results are passed in the same way. | 
|  | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, | 
|  | CCAssignFnForCall(CalleeCC, isVarArg), | 
|  | CCAssignFnForCall(CallerCC, isVarArg))) | 
|  | return false; | 
|  | // The callee has to preserve all registers the caller needs to preserve. | 
|  | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | if (!CCMatch) { | 
|  | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing more to check if the callee is taking no arguments | 
|  | if (Outs.empty()) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); | 
|  |  | 
|  | const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  |  | 
|  | // If the stack arguments for this call do not fit into our own save area then | 
|  | // the call cannot be made tail. | 
|  | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) | 
|  | return false; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, | 
|  | SelectionDAG &DAG, | 
|  | MachineFrameInfo &MFI, | 
|  | int ClobberedFI) const { | 
|  | SmallVector<SDValue, 8> ArgChains; | 
|  | int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); | 
|  | int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; | 
|  |  | 
|  | // Include the original chain at the beginning of the list. When this is | 
|  | // used by target LowerCall hooks, this helps legalize find the | 
|  | // CALLSEQ_BEGIN node. | 
|  | ArgChains.push_back(Chain); | 
|  |  | 
|  | // Add a chain value for each stack argument corresponding | 
|  | for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), | 
|  | UE = DAG.getEntryNode().getNode()->use_end(); | 
|  | U != UE; ++U) | 
|  | if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) | 
|  | if (FI->getIndex() < 0) { | 
|  | int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); | 
|  | int64_t InLastByte = InFirstByte; | 
|  | InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; | 
|  |  | 
|  | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || | 
|  | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) | 
|  | ArgChains.push_back(SDValue(L, 1)); | 
|  | } | 
|  |  | 
|  | // Build a tokenfactor for all the chains. | 
|  | return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, | 
|  | bool TailCallOpt) const { | 
|  | return CallCC == CallingConv::Fast && TailCallOpt; | 
|  | } | 
|  |  | 
|  | /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, | 
|  | /// and add input and output parameter nodes. | 
|  | SDValue | 
|  | AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | SDLoc &DL = CLI.DL; | 
|  | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | 
|  | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | 
|  | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | bool &IsTailCall = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | bool IsVarArg = CLI.IsVarArg; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool IsThisReturn = false; | 
|  |  | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | 
|  | bool IsSibCall = false; | 
|  |  | 
|  | if (IsTailCall) { | 
|  | // Check if it's really possible to do a tail call. | 
|  | IsTailCall = isEligibleForTailCallOptimization( | 
|  | Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); | 
|  | if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) | 
|  | report_fatal_error("failed to perform tail call elimination on a call " | 
|  | "site marked musttail"); | 
|  |  | 
|  | // A sibling call is one where we're under the usual C ABI and not planning | 
|  | // to change that but can still do a tail call: | 
|  | if (!TailCallOpt && IsTailCall) | 
|  | IsSibCall = true; | 
|  |  | 
|  | if (IsTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | if (IsVarArg) { | 
|  | // Handle fixed and variable vector arguments differently. | 
|  | // Variable vector arguments always go into memory. | 
|  | unsigned NumArgs = Outs.size(); | 
|  |  | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | MVT ArgVT = Outs[i].VT; | 
|  | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, | 
|  | /*IsVarArg=*/ !Outs[i].IsFixed); | 
|  | bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); | 
|  | assert(!Res && "Call operand has unhandled type"); | 
|  | (void)Res; | 
|  | } | 
|  | } else { | 
|  | // At this point, Outs[].VT may already be promoted to i32. To correctly | 
|  | // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and | 
|  | // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. | 
|  | // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here | 
|  | // we use a special version of AnalyzeCallOperands to pass in ValVT and | 
|  | // LocVT. | 
|  | unsigned NumArgs = Outs.size(); | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | MVT ValVT = Outs[i].VT; | 
|  | // Get type of the original argument. | 
|  | EVT ActualVT = getValueType(DAG.getDataLayout(), | 
|  | CLI.getArgs()[Outs[i].OrigArgIndex].Ty, | 
|  | /*AllowUnknown*/ true); | 
|  | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; | 
|  | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | 
|  | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. | 
|  | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) | 
|  | ValVT = MVT::i8; | 
|  | else if (ActualMVT == MVT::i16) | 
|  | ValVT = MVT::i16; | 
|  |  | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); | 
|  | bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); | 
|  | assert(!Res && "Call operand has unhandled type"); | 
|  | (void)Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | if (IsSibCall) { | 
|  | // Since we're not changing the ABI to make this a tail call, the memory | 
|  | // operands are already available in the caller's incoming argument space. | 
|  | NumBytes = 0; | 
|  | } | 
|  |  | 
|  | // FPDiff is the byte offset of the call's argument area from the callee's. | 
|  | // Stores to callee stack arguments will be placed in FixedStackSlots offset | 
|  | // by this amount for a tail call. In a sibling call it must be 0 because the | 
|  | // caller will deallocate the entire stack and the callee still expects its | 
|  | // arguments to begin at SP+0. Completely unused for non-tail calls. | 
|  | int FPDiff = 0; | 
|  |  | 
|  | if (IsTailCall && !IsSibCall) { | 
|  | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); | 
|  |  | 
|  | // Since callee will pop argument stack as a tail call, we must keep the | 
|  | // popped size 16-byte aligned. | 
|  | NumBytes = alignTo(NumBytes, 16); | 
|  |  | 
|  | // FPDiff will be negative if this tail call requires more space than we | 
|  | // would automatically have in our incoming argument space. Positive if we | 
|  | // can actually shrink the stack. | 
|  | FPDiff = NumReusableBytes - NumBytes; | 
|  |  | 
|  | // The stack pointer must be 16-byte aligned at all times it's used for a | 
|  | // memory operation, which in practice means at *all* times and in | 
|  | // particular across call boundaries. Therefore our own arguments started at | 
|  | // a 16-byte aligned SP and the delta applied for the tail call should | 
|  | // satisfy the same constraint. | 
|  | assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); | 
|  | } | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | if (!IsSibCall) | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL, | 
|  | true), | 
|  | DL); | 
|  |  | 
|  | SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; | 
|  | ++i, ++realArgIdx) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[realArgIdx]; | 
|  | ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | if (Outs[realArgIdx].ArgVT == MVT::i1) { | 
|  | // AAPCS requires i1 to be zero-extended to 8-bits by the caller. | 
|  | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); | 
|  | } | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::FPExt: | 
|  | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { | 
|  | assert(VA.getLocVT() == MVT::i64 && | 
|  | "unexpected calling convention register assignment"); | 
|  | assert(!Ins.empty() && Ins[0].VT == MVT::i64 && | 
|  | "unexpected use of 'returned'"); | 
|  | IsThisReturn = true; | 
|  | } | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | SDValue DstAddr; | 
|  | MachinePointerInfo DstInfo; | 
|  |  | 
|  | // FIXME: This works on big-endian for composite byvals, which are the | 
|  | // common case. It should also work for fundamental types too. | 
|  | uint32_t BEAlign = 0; | 
|  | unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 | 
|  | : VA.getValVT().getSizeInBits(); | 
|  | OpSize = (OpSize + 7) / 8; | 
|  | if (!Subtarget->isLittleEndian() && !Flags.isByVal() && | 
|  | !Flags.isInConsecutiveRegs()) { | 
|  | if (OpSize < 8) | 
|  | BEAlign = 8 - OpSize; | 
|  | } | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | int32_t Offset = LocMemOffset + BEAlign; | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); | 
|  | PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | Offset = Offset + FPDiff; | 
|  | int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); | 
|  |  | 
|  | DstAddr = DAG.getFrameIndex(FI, PtrVT); | 
|  | DstInfo = | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); | 
|  |  | 
|  | // Make sure any stack arguments overlapping with where we're storing | 
|  | // are loaded before this eventual operation. Otherwise they'll be | 
|  | // clobbered. | 
|  | Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); | 
|  | } else { | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); | 
|  |  | 
|  | DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); | 
|  | DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), | 
|  | LocMemOffset); | 
|  | } | 
|  |  | 
|  | if (Outs[i].Flags.isByVal()) { | 
|  | SDValue SizeNode = | 
|  | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); | 
|  | SDValue Cpy = DAG.getMemcpy( | 
|  | Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), | 
|  | /*isVol = */ false, /*AlwaysInline = */ false, | 
|  | /*isTailCall = */ false, | 
|  | DstInfo, MachinePointerInfo()); | 
|  |  | 
|  | MemOpChains.push_back(Cpy); | 
|  | } else { | 
|  | // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already | 
|  | // promoted to a legal register type i32, we should truncate Arg back to | 
|  | // i1/i8/i16. | 
|  | if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || | 
|  | VA.getValVT() == MVT::i16) | 
|  | Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); | 
|  |  | 
|  | SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); | 
|  | MemOpChains.push_back(Store); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (auto &RegToPass : RegsToPass) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, | 
|  | RegToPass.second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large && | 
|  | Subtarget->isTargetMachO()) { | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | bool InternalLinkage = GV->hasInternalLinkage(); | 
|  | if (InternalLinkage) | 
|  | Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); | 
|  | else { | 
|  | Callee = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT); | 
|  | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = | 
|  | dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | const char *Sym = S->getSymbol(); | 
|  | Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); | 
|  | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); | 
|  | } | 
|  | } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | const char *Sym = S->getSymbol(); | 
|  | Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); | 
|  | } | 
|  |  | 
|  | // We don't usually want to end the call-sequence here because we would tidy | 
|  | // the frame up *after* the call, however in the ABI-changing tail-call case | 
|  | // we've carefully laid out the parameters so that when sp is reset they'll be | 
|  | // in the correct location. | 
|  | if (IsTailCall && !IsSibCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), | 
|  | DAG.getIntPtrConstant(0, DL, true), InFlag, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<SDValue> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | // Each tail call may have to adjust the stack by a different amount, so | 
|  | // this information must travel along with the operation for eventual | 
|  | // consumption by emitEpilogue. | 
|  | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (auto &RegToPass : RegsToPass) | 
|  | Ops.push_back(DAG.getRegister(RegToPass.first, | 
|  | RegToPass.second.getValueType())); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const uint32_t *Mask; | 
|  | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | if (IsThisReturn) { | 
|  | // For 'this' returns, use the X0-preserving mask if applicable | 
|  | Mask = TRI->getThisReturnPreservedMask(MF, CallConv); | 
|  | if (!Mask) { | 
|  | IsThisReturn = false; | 
|  | Mask = TRI->getCallPreservedMask(MF, CallConv); | 
|  | } | 
|  | } else | 
|  | Mask = TRI->getCallPreservedMask(MF, CallConv); | 
|  |  | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | // If we're doing a tall call, use a TC_RETURN here rather than an | 
|  | // actual call instruction. | 
|  | if (IsTailCall) { | 
|  | MF.getFrameInfo().setHasTailCall(); | 
|  | return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | // Returns a chain and a flag for retval copy to use. | 
|  | Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | uint64_t CalleePopBytes = | 
|  | DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), | 
|  | DAG.getIntPtrConstant(CalleePopBytes, DL, true), | 
|  | InFlag, DL); | 
|  | if (!Ins.empty()) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, | 
|  | InVals, IsThisReturn, | 
|  | IsThisReturn ? OutVals[0] : SDValue()); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::CanLowerReturn( | 
|  | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { | 
|  | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS | 
|  | ? RetCC_AArch64_WebKit_JS | 
|  | : RetCC_AArch64_AAPCS; | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS | 
|  | ? RetCC_AArch64_WebKit_JS | 
|  | : RetCC_AArch64_AAPCS; | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  | for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); | 
|  | ++i, ++realRVLocIdx) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | SDValue Arg = OutVals[realRVLocIdx]; | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | if (Outs[i].ArgVT == MVT::i1) { | 
|  | // AAPCS requires i1 to be zero-extended to i8 by the producer of the | 
|  | // value. This is strictly redundant on Darwin (which uses "zeroext | 
|  | // i1"), but will be optimised out before ISel. | 
|  | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | } | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const MCPhysReg *I = | 
|  | TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); | 
|  | if (I) { | 
|  | for (; *I; ++I) { | 
|  | if (AArch64::GPR64RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); | 
|  | else if (AArch64::FPR64RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain; // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Other Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  | const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GN->getGlobal(); | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); | 
|  |  | 
|  | assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && | 
|  | "unexpected offset in global node"); | 
|  |  | 
|  | // This also catched the large code model case for Darwin. | 
|  | if ((OpFlags & AArch64II::MO_GOT) != 0) { | 
|  | SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); | 
|  | // FIXME: Once remat is capable of dealing with instructions with register | 
|  | // operands, expand this into two nodes instead of using a wrapper node. | 
|  | return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); | 
|  | } | 
|  |  | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | 
|  | const unsigned char MO_NC = AArch64II::MO_NC; | 
|  | return DAG.getNode( | 
|  | AArch64ISD::WrapperLarge, DL, PtrVT, | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3), | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC), | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC), | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); | 
|  | } else { | 
|  | // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and | 
|  | // the only correct model on Darwin. | 
|  | SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | OpFlags | AArch64II::MO_PAGE); | 
|  | unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC; | 
|  | SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); | 
|  |  | 
|  | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); | 
|  | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Convert a TLS address reference into the correct sequence of loads | 
|  | /// and calls to compute the variable's address (for Darwin, currently) and | 
|  | /// return an SDValue containing the final node. | 
|  |  | 
|  | /// Darwin only has one TLS scheme which must be capable of dealing with the | 
|  | /// fully general situation, in the worst case. This means: | 
|  | ///     + "extern __thread" declaration. | 
|  | ///     + Defined in a possibly unknown dynamic library. | 
|  | /// | 
|  | /// The general system is that each __thread variable has a [3 x i64] descriptor | 
|  | /// which contains information used by the runtime to calculate the address. The | 
|  | /// only part of this the compiler needs to know about is the first xword, which | 
|  | /// contains a function pointer that must be called with the address of the | 
|  | /// entire descriptor in "x0". | 
|  | /// | 
|  | /// Since this descriptor may be in a different unit, in general even the | 
|  | /// descriptor must be accessed via an indirect load. The "ideal" code sequence | 
|  | /// is: | 
|  | ///     adrp x0, _var@TLVPPAGE | 
|  | ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor | 
|  | ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor, | 
|  | ///                                      ; the function pointer | 
|  | ///     blr x1                           ; Uses descriptor address in x0 | 
|  | ///     ; Address of _var is now in x0. | 
|  | /// | 
|  | /// If the address of _var's descriptor *is* known to the linker, then it can | 
|  | /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for | 
|  | /// a slight efficiency gain. | 
|  | SDValue | 
|  | AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | MVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  |  | 
|  | SDValue TLVPAddr = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | 
|  | SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); | 
|  |  | 
|  | // The first entry in the descriptor is a function pointer that we must call | 
|  | // to obtain the address of the variable. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue FuncTLVGet = DAG.getLoad( | 
|  | MVT::i64, DL, Chain, DescAddr, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction()), | 
|  | /* Alignment = */ 8, | 
|  | MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant | | 
|  | MachineMemOperand::MODereferenceable); | 
|  | Chain = FuncTLVGet.getValue(1); | 
|  |  | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setAdjustsStack(true); | 
|  |  | 
|  | // TLS calls preserve all registers except those that absolutely must be | 
|  | // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be | 
|  | // silly). | 
|  | const uint32_t *Mask = | 
|  | Subtarget->getRegisterInfo()->getTLSCallPreservedMask(); | 
|  |  | 
|  | // Finally, we can make the call. This is just a degenerate version of a | 
|  | // normal AArch64 call node: x0 takes the address of the descriptor, and | 
|  | // returns the address of the variable in this thread. | 
|  | Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); | 
|  | Chain = | 
|  | DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), | 
|  | Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), | 
|  | DAG.getRegisterMask(Mask), Chain.getValue(1)); | 
|  | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); | 
|  | } | 
|  |  | 
|  | /// When accessing thread-local variables under either the general-dynamic or | 
|  | /// local-dynamic system, we make a "TLS-descriptor" call. The variable will | 
|  | /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry | 
|  | /// is a function pointer to carry out the resolution. | 
|  | /// | 
|  | /// The sequence is: | 
|  | ///    adrp  x0, :tlsdesc:var | 
|  | ///    ldr   x1, [x0, #:tlsdesc_lo12:var] | 
|  | ///    add   x0, x0, #:tlsdesc_lo12:var | 
|  | ///    .tlsdesccall var | 
|  | ///    blr   x1 | 
|  | ///    (TPIDR_EL0 offset now in x0) | 
|  | /// | 
|  | ///  The above sequence must be produced unscheduled, to enable the linker to | 
|  | ///  optimize/relax this sequence. | 
|  | ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the | 
|  | ///  above sequence, and expanded really late in the compilation flow, to ensure | 
|  | ///  the sequence is produced as per above. | 
|  | SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, | 
|  | const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | Chain = | 
|  | DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); | 
|  | SDValue Glue = Chain.getValue(1); | 
|  |  | 
|  | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Subtarget->isTargetELF() && "This function expects an ELF target"); | 
|  | assert(getTargetMachine().getCodeModel() == CodeModel::Small && | 
|  | "ELF TLS only supported in small memory model"); | 
|  | // Different choices can be made for the maximum size of the TLS area for a | 
|  | // module. For the small address model, the default TLS size is 16MiB and the | 
|  | // maximum TLS size is 4GiB. | 
|  | // FIXME: add -mtls-size command line option and make it control the 16MiB | 
|  | // vs. 4GiB code sequence generation. | 
|  | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  |  | 
|  | TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); | 
|  |  | 
|  | if (DAG.getTarget().Options.EmulatedTLS) | 
|  | return LowerToTLSEmulatedModel(GA, DAG); | 
|  |  | 
|  | if (!EnableAArch64ELFLocalDynamicTLSGeneration) { | 
|  | if (Model == TLSModel::LocalDynamic) | 
|  | Model = TLSModel::GeneralDynamic; | 
|  | } | 
|  |  | 
|  | SDValue TPOff; | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); | 
|  |  | 
|  | if (Model == TLSModel::LocalExec) { | 
|  | SDValue HiVar = DAG.getTargetGlobalAddress( | 
|  | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); | 
|  | SDValue LoVar = DAG.getTargetGlobalAddress( | 
|  | GV, DL, PtrVT, 0, | 
|  | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  |  | 
|  | SDValue TPWithOff_lo = | 
|  | SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, | 
|  | HiVar, | 
|  | DAG.getTargetConstant(0, DL, MVT::i32)), | 
|  | 0); | 
|  | SDValue TPWithOff = | 
|  | SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo, | 
|  | LoVar, | 
|  | DAG.getTargetConstant(0, DL, MVT::i32)), | 
|  | 0); | 
|  | return TPWithOff; | 
|  | } else if (Model == TLSModel::InitialExec) { | 
|  | TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | 
|  | TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); | 
|  | } else if (Model == TLSModel::LocalDynamic) { | 
|  | // Local-dynamic accesses proceed in two phases. A general-dynamic TLS | 
|  | // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate | 
|  | // the beginning of the module's TLS region, followed by a DTPREL offset | 
|  | // calculation. | 
|  |  | 
|  | // These accesses will need deduplicating if there's more than one. | 
|  | AArch64FunctionInfo *MFI = | 
|  | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); | 
|  | MFI->incNumLocalDynamicTLSAccesses(); | 
|  |  | 
|  | // The call needs a relocation too for linker relaxation. It doesn't make | 
|  | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of | 
|  | // the address. | 
|  | SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, | 
|  | AArch64II::MO_TLS); | 
|  |  | 
|  | // Now we can calculate the offset from TPIDR_EL0 to this module's | 
|  | // thread-local area. | 
|  | TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); | 
|  |  | 
|  | // Now use :dtprel_whatever: operations to calculate this variable's offset | 
|  | // in its thread-storage area. | 
|  | SDValue HiVar = DAG.getTargetGlobalAddress( | 
|  | GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); | 
|  | SDValue LoVar = DAG.getTargetGlobalAddress( | 
|  | GV, DL, MVT::i64, 0, | 
|  | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  |  | 
|  | TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, | 
|  | DAG.getTargetConstant(0, DL, MVT::i32)), | 
|  | 0); | 
|  | TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, | 
|  | DAG.getTargetConstant(0, DL, MVT::i32)), | 
|  | 0); | 
|  | } else if (Model == TLSModel::GeneralDynamic) { | 
|  | // The call needs a relocation too for linker relaxation. It doesn't make | 
|  | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of | 
|  | // the address. | 
|  | SDValue SymAddr = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | 
|  |  | 
|  | // Finally we can make a call to calculate the offset from tpidr_el0. | 
|  | TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); | 
|  | } else | 
|  | llvm_unreachable("Unsupported ELF TLS access model"); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Subtarget->isTargetDarwin()) | 
|  | return LowerDarwinGlobalTLSAddress(Op, DAG); | 
|  | else if (Subtarget->isTargetELF()) | 
|  | return LowerELFGlobalTLSAddress(Op, DAG); | 
|  |  | 
|  | llvm_unreachable("Unexpected platform trying to use TLS"); | 
|  | } | 
|  | SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); | 
|  | SDValue LHS = Op.getOperand(2); | 
|  | SDValue RHS = Op.getOperand(3); | 
|  | SDValue Dest = Op.getOperand(4); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Handle f128 first, since lowering it will result in comparing the return | 
|  | // value of a libcall against zero, which is just what the rest of LowerBR_CC | 
|  | // is expecting to deal with. | 
|  | if (LHS.getValueType() == MVT::f128) { | 
|  | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); | 
|  |  | 
|  | // If softenSetCCOperands returned a scalar, we need to compare the result | 
|  | // against zero to select between true and false values. | 
|  | if (!RHS.getNode()) { | 
|  | RHS = DAG.getConstant(0, dl, LHS.getValueType()); | 
|  | CC = ISD::SETNE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch | 
|  | // instruction. | 
|  | unsigned Opc = LHS.getOpcode(); | 
|  | if (LHS.getResNo() == 1 && isOneConstant(RHS) && | 
|  | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || | 
|  | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { | 
|  | assert((CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | "Unexpected condition code."); | 
|  | // Only lower legal XALUO ops. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // The actual operation with overflow check. | 
|  | AArch64CC::CondCode OFCC; | 
|  | SDValue Value, Overflow; | 
|  | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); | 
|  |  | 
|  | if (CC == ISD::SETNE) | 
|  | OFCC = getInvertedCondCode(OFCC); | 
|  | SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, | 
|  | Overflow); | 
|  | } | 
|  |  | 
|  | if (LHS.getValueType().isInteger()) { | 
|  | assert((LHS.getValueType() == RHS.getValueType()) && | 
|  | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); | 
|  |  | 
|  | // If the RHS of the comparison is zero, we can potentially fold this | 
|  | // to a specialized branch. | 
|  | const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (RHSC && RHSC->getZExtValue() == 0) { | 
|  | if (CC == ISD::SETEQ) { | 
|  | // See if we can use a TBZ to fold in an AND as well. | 
|  | // TBZ has a smaller branch displacement than CBZ.  If the offset is | 
|  | // out of bounds, a late MI-layer pass rewrites branches. | 
|  | // 403.gcc is an example that hits this case. | 
|  | if (LHS.getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(LHS.getOperand(1)) && | 
|  | isPowerOf2_64(LHS.getConstantOperandVal(1))) { | 
|  | SDValue Test = LHS.getOperand(0); | 
|  | uint64_t Mask = LHS.getConstantOperandVal(1); | 
|  | return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, | 
|  | DAG.getConstant(Log2_64(Mask), dl, MVT::i64), | 
|  | Dest); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); | 
|  | } else if (CC == ISD::SETNE) { | 
|  | // See if we can use a TBZ to fold in an AND as well. | 
|  | // TBZ has a smaller branch displacement than CBZ.  If the offset is | 
|  | // out of bounds, a late MI-layer pass rewrites branches. | 
|  | // 403.gcc is an example that hits this case. | 
|  | if (LHS.getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(LHS.getOperand(1)) && | 
|  | isPowerOf2_64(LHS.getConstantOperandVal(1))) { | 
|  | SDValue Test = LHS.getOperand(0); | 
|  | uint64_t Mask = LHS.getConstantOperandVal(1); | 
|  | return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, | 
|  | DAG.getConstant(Log2_64(Mask), dl, MVT::i64), | 
|  | Dest); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); | 
|  | } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { | 
|  | // Don't combine AND since emitComparison converts the AND to an ANDS | 
|  | // (a.k.a. TST) and the test in the test bit and branch instruction | 
|  | // becomes redundant.  This would also increase register pressure. | 
|  | uint64_t Mask = LHS.getValueSizeInBits() - 1; | 
|  | return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, | 
|  | DAG.getConstant(Mask, dl, MVT::i64), Dest); | 
|  | } | 
|  | } | 
|  | if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && | 
|  | LHS.getOpcode() != ISD::AND) { | 
|  | // Don't combine AND since emitComparison converts the AND to an ANDS | 
|  | // (a.k.a. TST) and the test in the test bit and branch instruction | 
|  | // becomes redundant.  This would also increase register pressure. | 
|  | uint64_t Mask = LHS.getValueSizeInBits() - 1; | 
|  | return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, | 
|  | DAG.getConstant(Mask, dl, MVT::i64), Dest); | 
|  | } | 
|  |  | 
|  | SDValue CCVal; | 
|  | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | 
|  | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, | 
|  | Cmp); | 
|  | } | 
|  |  | 
|  | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); | 
|  |  | 
|  | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | 
|  | // clean.  Some of them require two branches to implement. | 
|  | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | 
|  | AArch64CC::CondCode CC1, CC2; | 
|  | changeFPCCToAArch64CC(CC, CC1, CC2); | 
|  | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | 
|  | SDValue BR1 = | 
|  | DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); | 
|  | if (CC2 != AArch64CC::AL) { | 
|  | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | 
|  | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, | 
|  | Cmp); | 
|  | } | 
|  |  | 
|  | return BR1; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue In1 = Op.getOperand(0); | 
|  | SDValue In2 = Op.getOperand(1); | 
|  | EVT SrcVT = In2.getValueType(); | 
|  |  | 
|  | if (SrcVT.bitsLT(VT)) | 
|  | In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); | 
|  | else if (SrcVT.bitsGT(VT)) | 
|  | In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); | 
|  |  | 
|  | EVT VecVT; | 
|  | EVT EltVT; | 
|  | uint64_t EltMask; | 
|  | SDValue VecVal1, VecVal2; | 
|  | if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { | 
|  | EltVT = MVT::i32; | 
|  | VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); | 
|  | EltMask = 0x80000000ULL; | 
|  |  | 
|  | if (!VT.isVector()) { | 
|  | VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, | 
|  | DAG.getUNDEF(VecVT), In1); | 
|  | VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, | 
|  | DAG.getUNDEF(VecVT), In2); | 
|  | } else { | 
|  | VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); | 
|  | VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); | 
|  | } | 
|  | } else if (VT == MVT::f64 || VT == MVT::v2f64) { | 
|  | EltVT = MVT::i64; | 
|  | VecVT = MVT::v2i64; | 
|  |  | 
|  | // We want to materialize a mask with the high bit set, but the AdvSIMD | 
|  | // immediate moves cannot materialize that in a single instruction for | 
|  | // 64-bit elements. Instead, materialize zero and then negate it. | 
|  | EltMask = 0; | 
|  |  | 
|  | if (!VT.isVector()) { | 
|  | VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, | 
|  | DAG.getUNDEF(VecVT), In1); | 
|  | VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, | 
|  | DAG.getUNDEF(VecVT), In2); | 
|  | } else { | 
|  | VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); | 
|  | VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Invalid type for copysign!"); | 
|  | } | 
|  |  | 
|  | SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); | 
|  |  | 
|  | // If we couldn't materialize the mask above, then the mask vector will be | 
|  | // the zero vector, and we need to negate it here. | 
|  | if (VT == MVT::f64 || VT == MVT::v2f64) { | 
|  | BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); | 
|  | BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); | 
|  | BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); | 
|  | } | 
|  |  | 
|  | SDValue Sel = | 
|  | DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); | 
|  |  | 
|  | if (VT == MVT::f32) | 
|  | return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); | 
|  | else if (VT == MVT::f64) | 
|  | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); | 
|  | else | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Sel); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (DAG.getMachineFunction().getFunction()->hasFnAttribute( | 
|  | Attribute::NoImplicitFloat)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Subtarget->hasNEON()) | 
|  | return SDValue(); | 
|  |  | 
|  | // While there is no integer popcount instruction, it can | 
|  | // be more efficiently lowered to the following sequence that uses | 
|  | // AdvSIMD registers/instructions as long as the copies to/from | 
|  | // the AdvSIMD registers are cheap. | 
|  | //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd | 
|  | //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts | 
|  | //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts | 
|  | //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg | 
|  | SDValue Val = Op.getOperand(0); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::i32) | 
|  | Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); | 
|  |  | 
|  | SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); | 
|  | SDValue UaddLV = DAG.getNode( | 
|  | ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, | 
|  | DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); | 
|  |  | 
|  | if (VT == MVT::i64) | 
|  | UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); | 
|  | return UaddLV; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | if (Op.getValueType().isVector()) | 
|  | return LowerVSETCC(Op, DAG); | 
|  |  | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // We chose ZeroOrOneBooleanContents, so use zero and one. | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue TVal = DAG.getConstant(1, dl, VT); | 
|  | SDValue FVal = DAG.getConstant(0, dl, VT); | 
|  |  | 
|  | // Handle f128 first, since one possible outcome is a normal integer | 
|  | // comparison which gets picked up by the next if statement. | 
|  | if (LHS.getValueType() == MVT::f128) { | 
|  | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); | 
|  |  | 
|  | // If softenSetCCOperands returned a scalar, use it. | 
|  | if (!RHS.getNode()) { | 
|  | assert(LHS.getValueType() == Op.getValueType() && | 
|  | "Unexpected setcc expansion!"); | 
|  | return LHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHS.getValueType().isInteger()) { | 
|  | SDValue CCVal; | 
|  | SDValue Cmp = | 
|  | getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); | 
|  |  | 
|  | // Note that we inverted the condition above, so we reverse the order of | 
|  | // the true and false operands here.  This will allow the setcc to be | 
|  | // matched to a single CSINC instruction. | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); | 
|  | } | 
|  |  | 
|  | // Now we know we're dealing with FP values. | 
|  | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); | 
|  |  | 
|  | // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead | 
|  | // and do the comparison. | 
|  | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | 
|  |  | 
|  | AArch64CC::CondCode CC1, CC2; | 
|  | changeFPCCToAArch64CC(CC, CC1, CC2); | 
|  | if (CC2 == AArch64CC::AL) { | 
|  | changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); | 
|  | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | 
|  |  | 
|  | // Note that we inverted the condition above, so we reverse the order of | 
|  | // the true and false operands here.  This will allow the setcc to be | 
|  | // matched to a single CSINC instruction. | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); | 
|  | } else { | 
|  | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't | 
|  | // totally clean.  Some of them require two CSELs to implement.  As is in | 
|  | // this case, we emit the first CSEL and then emit a second using the output | 
|  | // of the first as the RHS.  We're effectively OR'ing the two CC's together. | 
|  |  | 
|  | // FIXME: It would be nice if we could match the two CSELs to two CSINCs. | 
|  | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | 
|  | SDValue CS1 = | 
|  | DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); | 
|  |  | 
|  | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, | 
|  | SDValue RHS, SDValue TVal, | 
|  | SDValue FVal, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | // Handle f128 first, because it will result in a comparison of some RTLIB | 
|  | // call result against zero. | 
|  | if (LHS.getValueType() == MVT::f128) { | 
|  | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); | 
|  |  | 
|  | // If softenSetCCOperands returned a scalar, we need to compare the result | 
|  | // against zero to select between true and false values. | 
|  | if (!RHS.getNode()) { | 
|  | RHS = DAG.getConstant(0, dl, LHS.getValueType()); | 
|  | CC = ISD::SETNE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also handle f16, for which we need to do a f32 comparison. | 
|  | if (LHS.getValueType() == MVT::f16) { | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); | 
|  | RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); | 
|  | } | 
|  |  | 
|  | // Next, handle integers. | 
|  | if (LHS.getValueType().isInteger()) { | 
|  | assert((LHS.getValueType() == RHS.getValueType()) && | 
|  | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); | 
|  |  | 
|  | unsigned Opcode = AArch64ISD::CSEL; | 
|  |  | 
|  | // If both the TVal and the FVal are constants, see if we can swap them in | 
|  | // order to for a CSINV or CSINC out of them. | 
|  | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); | 
|  | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); | 
|  |  | 
|  | if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } else if (TVal.getOpcode() == ISD::XOR) { | 
|  | // If TVal is a NOT we want to swap TVal and FVal so that we can match | 
|  | // with a CSINV rather than a CSEL. | 
|  | if (isAllOnesConstant(TVal.getOperand(1))) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } | 
|  | } else if (TVal.getOpcode() == ISD::SUB) { | 
|  | // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so | 
|  | // that we can match with a CSNEG rather than a CSEL. | 
|  | if (isNullConstant(TVal.getOperand(0))) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } | 
|  | } else if (CTVal && CFVal) { | 
|  | const int64_t TrueVal = CTVal->getSExtValue(); | 
|  | const int64_t FalseVal = CFVal->getSExtValue(); | 
|  | bool Swap = false; | 
|  |  | 
|  | // If both TVal and FVal are constants, see if FVal is the | 
|  | // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC | 
|  | // instead of a CSEL in that case. | 
|  | if (TrueVal == ~FalseVal) { | 
|  | Opcode = AArch64ISD::CSINV; | 
|  | } else if (TrueVal == -FalseVal) { | 
|  | Opcode = AArch64ISD::CSNEG; | 
|  | } else if (TVal.getValueType() == MVT::i32) { | 
|  | // If our operands are only 32-bit wide, make sure we use 32-bit | 
|  | // arithmetic for the check whether we can use CSINC. This ensures that | 
|  | // the addition in the check will wrap around properly in case there is | 
|  | // an overflow (which would not be the case if we do the check with | 
|  | // 64-bit arithmetic). | 
|  | const uint32_t TrueVal32 = CTVal->getZExtValue(); | 
|  | const uint32_t FalseVal32 = CFVal->getZExtValue(); | 
|  |  | 
|  | if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { | 
|  | Opcode = AArch64ISD::CSINC; | 
|  |  | 
|  | if (TrueVal32 > FalseVal32) { | 
|  | Swap = true; | 
|  | } | 
|  | } | 
|  | // 64-bit check whether we can use CSINC. | 
|  | } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { | 
|  | Opcode = AArch64ISD::CSINC; | 
|  |  | 
|  | if (TrueVal > FalseVal) { | 
|  | Swap = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Swap TVal and FVal if necessary. | 
|  | if (Swap) { | 
|  | std::swap(TVal, FVal); | 
|  | std::swap(CTVal, CFVal); | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } | 
|  |  | 
|  | if (Opcode != AArch64ISD::CSEL) { | 
|  | // Drop FVal since we can get its value by simply inverting/negating | 
|  | // TVal. | 
|  | FVal = TVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Avoid materializing a constant when possible by reusing a known value in | 
|  | // a register.  However, don't perform this optimization if the known value | 
|  | // is one, zero or negative one in the case of a CSEL.  We can always | 
|  | // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the | 
|  | // FVal, respectively. | 
|  | ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && | 
|  | !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { | 
|  | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | 
|  | // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to | 
|  | // "a != C ? x : a" to avoid materializing C. | 
|  | if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) | 
|  | TVal = LHS; | 
|  | else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) | 
|  | FVal = LHS; | 
|  | } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { | 
|  | assert (CTVal && CFVal && "Expected constant operands for CSNEG."); | 
|  | // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to | 
|  | // avoid materializing C. | 
|  | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | 
|  | if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { | 
|  | Opcode = AArch64ISD::CSINV; | 
|  | TVal = LHS; | 
|  | FVal = DAG.getConstant(0, dl, FVal.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CCVal; | 
|  | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | 
|  |  | 
|  | EVT VT = TVal.getValueType(); | 
|  | return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); | 
|  | } | 
|  |  | 
|  | // Now we know we're dealing with FP values. | 
|  | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); | 
|  | assert(LHS.getValueType() == RHS.getValueType()); | 
|  | EVT VT = TVal.getValueType(); | 
|  | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | 
|  |  | 
|  | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | 
|  | // clean.  Some of them require two CSELs to implement. | 
|  | AArch64CC::CondCode CC1, CC2; | 
|  | changeFPCCToAArch64CC(CC, CC1, CC2); | 
|  |  | 
|  | if (DAG.getTarget().Options.UnsafeFPMath) { | 
|  | // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and | 
|  | // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. | 
|  | ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); | 
|  | if (RHSVal && RHSVal->isZero()) { | 
|  | ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); | 
|  | ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); | 
|  |  | 
|  | if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && | 
|  | CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) | 
|  | TVal = LHS; | 
|  | else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && | 
|  | CFVal && CFVal->isZero() && | 
|  | FVal.getValueType() == LHS.getValueType()) | 
|  | FVal = LHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit first, and possibly only, CSEL. | 
|  | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | 
|  | SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); | 
|  |  | 
|  | // If we need a second CSEL, emit it, using the output of the first as the | 
|  | // RHS.  We're effectively OR'ing the two CC's together. | 
|  | if (CC2 != AArch64CC::AL) { | 
|  | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); | 
|  | } | 
|  |  | 
|  | // Otherwise, return the output of the first CSEL. | 
|  | return CS1; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue TVal = Op.getOperand(2); | 
|  | SDValue FVal = Op.getOperand(3); | 
|  | SDLoc DL(Op); | 
|  | return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue CCVal = Op->getOperand(0); | 
|  | SDValue TVal = Op->getOperand(1); | 
|  | SDValue FVal = Op->getOperand(2); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | unsigned Opc = CCVal.getOpcode(); | 
|  | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select | 
|  | // instruction. | 
|  | if (CCVal.getResNo() == 1 && | 
|  | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || | 
|  | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { | 
|  | // Only lower legal XALUO ops. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | AArch64CC::CondCode OFCC; | 
|  | SDValue Value, Overflow; | 
|  | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); | 
|  | SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, | 
|  | CCVal, Overflow); | 
|  | } | 
|  |  | 
|  | // Lower it the same way as we would lower a SELECT_CC node. | 
|  | ISD::CondCode CC; | 
|  | SDValue LHS, RHS; | 
|  | if (CCVal.getOpcode() == ISD::SETCC) { | 
|  | LHS = CCVal.getOperand(0); | 
|  | RHS = CCVal.getOperand(1); | 
|  | CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); | 
|  | } else { | 
|  | LHS = CCVal; | 
|  | RHS = DAG.getConstant(0, DL, CCVal.getValueType()); | 
|  | CC = ISD::SETNE; | 
|  | } | 
|  | return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Jump table entries as PC relative offsets. No additional tweaking | 
|  | // is necessary here. Just get the address of the jump table. | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large && | 
|  | !Subtarget->isTargetMachO()) { | 
|  | const unsigned char MO_NC = AArch64II::MO_NC; | 
|  | return DAG.getNode( | 
|  | AArch64ISD::WrapperLarge, DL, PtrVT, | 
|  | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3), | 
|  | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC), | 
|  | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC), | 
|  | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, | 
|  | AArch64II::MO_G0 | MO_NC)); | 
|  | } | 
|  |  | 
|  | SDValue Hi = | 
|  | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE); | 
|  | SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, | 
|  | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); | 
|  | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | 
|  | // Use the GOT for the large code model on iOS. | 
|  | if (Subtarget->isTargetMachO()) { | 
|  | SDValue GotAddr = DAG.getTargetConstantPool( | 
|  | CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), | 
|  | AArch64II::MO_GOT); | 
|  | return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); | 
|  | } | 
|  |  | 
|  | const unsigned char MO_NC = AArch64II::MO_NC; | 
|  | return DAG.getNode( | 
|  | AArch64ISD::WrapperLarge, DL, PtrVT, | 
|  | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), | 
|  | CP->getOffset(), AArch64II::MO_G3), | 
|  | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), | 
|  | CP->getOffset(), AArch64II::MO_G2 | MO_NC), | 
|  | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), | 
|  | CP->getOffset(), AArch64II::MO_G1 | MO_NC), | 
|  | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), | 
|  | CP->getOffset(), AArch64II::MO_G0 | MO_NC)); | 
|  | } else { | 
|  | // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on | 
|  | // ELF, the only valid one on Darwin. | 
|  | SDValue Hi = | 
|  | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), | 
|  | CP->getOffset(), AArch64II::MO_PAGE); | 
|  | SDValue Lo = DAG.getTargetConstantPool( | 
|  | CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), | 
|  | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  |  | 
|  | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); | 
|  | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large && | 
|  | !Subtarget->isTargetMachO()) { | 
|  | const unsigned char MO_NC = AArch64II::MO_NC; | 
|  | return DAG.getNode( | 
|  | AArch64ISD::WrapperLarge, DL, PtrVT, | 
|  | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3), | 
|  | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC), | 
|  | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC), | 
|  | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); | 
|  | } else { | 
|  | SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE); | 
|  | SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF | | 
|  | AArch64II::MO_NC); | 
|  | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); | 
|  | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | AArch64FunctionInfo *FuncInfo = | 
|  | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // The layout of the va_list struct is specified in the AArch64 Procedure Call | 
|  | // Standard, section B.3. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue VAList = Op.getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | SmallVector<SDValue, 4> MemOps; | 
|  |  | 
|  | // void *__stack at offset 0 | 
|  | SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); | 
|  | MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, | 
|  | MachinePointerInfo(SV), /* Alignment = */ 8)); | 
|  |  | 
|  | // void *__gr_top at offset 8 | 
|  | int GPRSize = FuncInfo->getVarArgsGPRSize(); | 
|  | if (GPRSize > 0) { | 
|  | SDValue GRTop, GRTopAddr; | 
|  |  | 
|  | GRTopAddr = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); | 
|  |  | 
|  | GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); | 
|  | GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, | 
|  | DAG.getConstant(GPRSize, DL, PtrVT)); | 
|  |  | 
|  | MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, | 
|  | MachinePointerInfo(SV, 8), | 
|  | /* Alignment = */ 8)); | 
|  | } | 
|  |  | 
|  | // void *__vr_top at offset 16 | 
|  | int FPRSize = FuncInfo->getVarArgsFPRSize(); | 
|  | if (FPRSize > 0) { | 
|  | SDValue VRTop, VRTopAddr; | 
|  | VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | 
|  | DAG.getConstant(16, DL, PtrVT)); | 
|  |  | 
|  | VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); | 
|  | VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, | 
|  | DAG.getConstant(FPRSize, DL, PtrVT)); | 
|  |  | 
|  | MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, | 
|  | MachinePointerInfo(SV, 16), | 
|  | /* Alignment = */ 8)); | 
|  | } | 
|  |  | 
|  | // int __gr_offs at offset 24 | 
|  | SDValue GROffsAddr = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); | 
|  | MemOps.push_back(DAG.getStore( | 
|  | Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, | 
|  | MachinePointerInfo(SV, 24), /* Alignment = */ 4)); | 
|  |  | 
|  | // int __vr_offs at offset 28 | 
|  | SDValue VROffsAddr = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); | 
|  | MemOps.push_back(DAG.getStore( | 
|  | Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, | 
|  | MachinePointerInfo(SV, 28), /* Alignment = */ 4)); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) | 
|  | : LowerAAPCS_VASTART(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single | 
|  | // pointer. | 
|  | SDLoc DL(Op); | 
|  | unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; | 
|  | const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  |  | 
|  | return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), | 
|  | Op.getOperand(2), | 
|  | DAG.getConstant(VaListSize, DL, MVT::i32), | 
|  | 8, false, false, false, MachinePointerInfo(DestSV), | 
|  | MachinePointerInfo(SrcSV)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Subtarget->isTargetDarwin() && | 
|  | "automatic va_arg instruction only works on Darwin"); | 
|  |  | 
|  | const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Addr = Op.getOperand(1); | 
|  | unsigned Align = Op.getConstantOperandVal(3); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V)); | 
|  | Chain = VAList.getValue(1); | 
|  |  | 
|  | if (Align > 8) { | 
|  | assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); | 
|  | VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | 
|  | DAG.getConstant(Align - 1, DL, PtrVT)); | 
|  | VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, | 
|  | DAG.getConstant(-(int64_t)Align, DL, PtrVT)); | 
|  | } | 
|  |  | 
|  | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | 
|  | uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); | 
|  |  | 
|  | // Scalar integer and FP values smaller than 64 bits are implicitly extended | 
|  | // up to 64 bits.  At the very least, we have to increase the striding of the | 
|  | // vaargs list to match this, and for FP values we need to introduce | 
|  | // FP_ROUND nodes as well. | 
|  | if (VT.isInteger() && !VT.isVector()) | 
|  | ArgSize = 8; | 
|  | bool NeedFPTrunc = false; | 
|  | if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { | 
|  | ArgSize = 8; | 
|  | NeedFPTrunc = true; | 
|  | } | 
|  |  | 
|  | // Increment the pointer, VAList, to the next vaarg | 
|  | SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | 
|  | DAG.getConstant(ArgSize, DL, PtrVT)); | 
|  | // Store the incremented VAList to the legalized pointer | 
|  | SDValue APStore = | 
|  | DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); | 
|  |  | 
|  | // Load the actual argument out of the pointer VAList | 
|  | if (NeedFPTrunc) { | 
|  | // Load the value as an f64. | 
|  | SDValue WideFP = | 
|  | DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); | 
|  | // Round the value down to an f32. | 
|  | SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; | 
|  | // Merge the rounded value with the chain output of the load. | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setFrameAddressIsTaken(true); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | SDValue FrameAddr = | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, | 
|  | MachinePointerInfo()); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | // FIXME? Maybe this could be a TableGen attribute on some registers and | 
|  | // this table could be generated automatically from RegInfo. | 
|  | unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("sp", AArch64::SP) | 
|  | .Default(0); | 
|  | if (Reg) | 
|  | return Reg; | 
|  | report_fatal_error(Twine("Invalid register name \"" | 
|  | + StringRef(RegName)  + "\".")); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MFI.setReturnAddressIsTaken(true); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | if (Depth) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); | 
|  | return DAG.getLoad(VT, DL, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), | 
|  | MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | // Return LR, which contains the return address. Mark it an implicit live-in. | 
|  | unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); | 
|  | } | 
|  |  | 
|  | /// LowerShiftRightParts - Lower SRA_PARTS, which returns two | 
|  | /// i64 values and take a 2 x i64 value to shift plus a shift amount. | 
|  | SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt = Op.getOperand(2); | 
|  | unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; | 
|  |  | 
|  | assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); | 
|  |  | 
|  | SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, | 
|  | DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); | 
|  | SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); | 
|  |  | 
|  | // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which | 
|  | // is "undef". We wanted 0, so CSEL it directly. | 
|  | SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), | 
|  | ISD::SETEQ, dl, DAG); | 
|  | SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); | 
|  | HiBitsForLo = | 
|  | DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), | 
|  | HiBitsForLo, CCVal, Cmp); | 
|  |  | 
|  | SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, | 
|  | DAG.getConstant(VTBits, dl, MVT::i64)); | 
|  |  | 
|  | SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); | 
|  | SDValue LoForNormalShift = | 
|  | DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); | 
|  |  | 
|  | Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, | 
|  | dl, DAG); | 
|  | CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); | 
|  | SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); | 
|  | SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, | 
|  | LoForNormalShift, CCVal, Cmp); | 
|  |  | 
|  | // AArch64 shifts larger than the register width are wrapped rather than | 
|  | // clamped, so we can't just emit "hi >> x". | 
|  | SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); | 
|  | SDValue HiForBigShift = | 
|  | Opc == ISD::SRA | 
|  | ? DAG.getNode(Opc, dl, VT, ShOpHi, | 
|  | DAG.getConstant(VTBits - 1, dl, MVT::i64)) | 
|  | : DAG.getConstant(0, dl, VT); | 
|  | SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, | 
|  | HiForNormalShift, CCVal, Cmp); | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two | 
|  | /// i64 values and take a 2 x i64 value to shift plus a shift amount. | 
|  | SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt = Op.getOperand(2); | 
|  |  | 
|  | assert(Op.getOpcode() == ISD::SHL_PARTS); | 
|  | SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, | 
|  | DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); | 
|  | SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); | 
|  |  | 
|  | // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which | 
|  | // is "undef". We wanted 0, so CSEL it directly. | 
|  | SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), | 
|  | ISD::SETEQ, dl, DAG); | 
|  | SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); | 
|  | LoBitsForHi = | 
|  | DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), | 
|  | LoBitsForHi, CCVal, Cmp); | 
|  |  | 
|  | SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, | 
|  | DAG.getConstant(VTBits, dl, MVT::i64)); | 
|  | SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); | 
|  | SDValue HiForNormalShift = | 
|  | DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); | 
|  |  | 
|  | SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); | 
|  |  | 
|  | Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, | 
|  | dl, DAG); | 
|  | CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); | 
|  | SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, | 
|  | HiForNormalShift, CCVal, Cmp); | 
|  |  | 
|  | // AArch64 shifts of larger than register sizes are wrapped rather than | 
|  | // clamped, so we can't just emit "lo << a" if a is too big. | 
|  | SDValue LoForBigShift = DAG.getConstant(0, dl, VT); | 
|  | SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); | 
|  | SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, | 
|  | LoForNormalShift, CCVal, Cmp); | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isOffsetFoldingLegal( | 
|  | const GlobalAddressSDNode *GA) const { | 
|  | // The AArch64 target doesn't support folding offsets into global addresses. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
|  | // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. | 
|  | // FIXME: We should be able to handle f128 as well with a clever lowering. | 
|  | if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) | 
|  | return true; | 
|  |  | 
|  | if (VT == MVT::f64) | 
|  | return AArch64_AM::getFP64Imm(Imm) != -1; | 
|  | else if (VT == MVT::f32) | 
|  | return AArch64_AM::getFP32Imm(Imm) != -1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          AArch64 Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, | 
|  | SDValue Operand, SelectionDAG &DAG, | 
|  | int &ExtraSteps) { | 
|  | EVT VT = Operand.getValueType(); | 
|  | if (ST->hasNEON() && | 
|  | (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || | 
|  | VT == MVT::f32 || VT == MVT::v1f32 || | 
|  | VT == MVT::v2f32 || VT == MVT::v4f32)) { | 
|  | if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) | 
|  | // For the reciprocal estimates, convergence is quadratic, so the number | 
|  | // of digits is doubled after each iteration.  In ARMv8, the accuracy of | 
|  | // the initial estimate is 2^-8.  Thus the number of extra steps to refine | 
|  | // the result for float (23 mantissa bits) is 2 and for double (52 | 
|  | // mantissa bits) is 3. | 
|  | ExtraSteps = VT == MVT::f64 ? 3 : 2; | 
|  |  | 
|  | return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, | 
|  | SelectionDAG &DAG, int Enabled, | 
|  | int &ExtraSteps, | 
|  | bool &UseOneConst, | 
|  | bool Reciprocal) const { | 
|  | if (Enabled == ReciprocalEstimate::Enabled || | 
|  | (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) | 
|  | if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, | 
|  | DAG, ExtraSteps)) { | 
|  | SDLoc DL(Operand); | 
|  | EVT VT = Operand.getValueType(); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setUnsafeAlgebra(true); | 
|  |  | 
|  | // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) | 
|  | // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) | 
|  | for (int i = ExtraSteps; i > 0; --i) { | 
|  | SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, | 
|  | &Flags); | 
|  | Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, &Flags); | 
|  | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, &Flags); | 
|  | } | 
|  |  | 
|  | if (!Reciprocal) { | 
|  | EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | VT); | 
|  | SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); | 
|  | SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); | 
|  |  | 
|  | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, &Flags); | 
|  | // Correct the result if the operand is 0.0. | 
|  | Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, | 
|  | VT, Eq, Operand, Estimate); | 
|  | } | 
|  |  | 
|  | ExtraSteps = 0; | 
|  | return Estimate; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, | 
|  | SelectionDAG &DAG, int Enabled, | 
|  | int &ExtraSteps) const { | 
|  | if (Enabled == ReciprocalEstimate::Enabled) | 
|  | if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, | 
|  | DAG, ExtraSteps)) { | 
|  | SDLoc DL(Operand); | 
|  | EVT VT = Operand.getValueType(); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setUnsafeAlgebra(true); | 
|  |  | 
|  | // Newton reciprocal iteration: E * (2 - X * E) | 
|  | // AArch64 reciprocal iteration instruction: (2 - M * N) | 
|  | for (int i = ExtraSteps; i > 0; --i) { | 
|  | SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, | 
|  | Estimate, &Flags); | 
|  | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, &Flags); | 
|  | } | 
|  |  | 
|  | ExtraSteps = 0; | 
|  | return Estimate; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          AArch64 Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Table of Constraints | 
|  | // TODO: This is the current set of constraints supported by ARM for the | 
|  | // compiler, not all of them may make sense, e.g. S may be difficult to support. | 
|  | // | 
|  | // r - A general register | 
|  | // w - An FP/SIMD register of some size in the range v0-v31 | 
|  | // x - An FP/SIMD register of some size in the range v0-v15 | 
|  | // I - Constant that can be used with an ADD instruction | 
|  | // J - Constant that can be used with a SUB instruction | 
|  | // K - Constant that can be used with a 32-bit logical instruction | 
|  | // L - Constant that can be used with a 64-bit logical instruction | 
|  | // M - Constant that can be used as a 32-bit MOV immediate | 
|  | // N - Constant that can be used as a 64-bit MOV immediate | 
|  | // Q - A memory reference with base register and no offset | 
|  | // S - A symbolic address | 
|  | // Y - Floating point constant zero | 
|  | // Z - Integer constant zero | 
|  | // | 
|  | //   Note that general register operands will be output using their 64-bit x | 
|  | // register name, whatever the size of the variable, unless the asm operand | 
|  | // is prefixed by the %w modifier. Floating-point and SIMD register operands | 
|  | // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or | 
|  | // %q modifier. | 
|  | const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { | 
|  | // At this point, we have to lower this constraint to something else, so we | 
|  | // lower it to an "r" or "w". However, by doing this we will force the result | 
|  | // to be in register, while the X constraint is much more permissive. | 
|  | // | 
|  | // Although we are correct (we are free to emit anything, without | 
|  | // constraints), we might break use cases that would expect us to be more | 
|  | // efficient and emit something else. | 
|  | if (!Subtarget->hasFPARMv8()) | 
|  | return "r"; | 
|  |  | 
|  | if (ConstraintVT.isFloatingPoint()) | 
|  | return "w"; | 
|  |  | 
|  | if (ConstraintVT.isVector() && | 
|  | (ConstraintVT.getSizeInBits() == 64 || | 
|  | ConstraintVT.getSizeInBits() == 128)) | 
|  | return "w"; | 
|  |  | 
|  | return "r"; | 
|  | } | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | AArch64TargetLowering::ConstraintType | 
|  | AArch64TargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: | 
|  | break; | 
|  | case 'z': | 
|  | return C_Other; | 
|  | case 'x': | 
|  | case 'w': | 
|  | return C_RegisterClass; | 
|  | // An address with a single base register. Due to the way we | 
|  | // currently handle addresses it is the same as 'r'. | 
|  | case 'Q': | 
|  | return C_Memory; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | AArch64TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | break; | 
|  | case 'x': | 
|  | case 'w': | 
|  | if (type->isFloatingPointTy() || type->isVectorTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'z': | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | AArch64TargetLowering::getRegForInlineAsmConstraint( | 
|  | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'r': | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return std::make_pair(0U, &AArch64::GPR64commonRegClass); | 
|  | return std::make_pair(0U, &AArch64::GPR32commonRegClass); | 
|  | case 'w': | 
|  | if (VT.getSizeInBits() == 16) | 
|  | return std::make_pair(0U, &AArch64::FPR16RegClass); | 
|  | if (VT.getSizeInBits() == 32) | 
|  | return std::make_pair(0U, &AArch64::FPR32RegClass); | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return std::make_pair(0U, &AArch64::FPR64RegClass); | 
|  | if (VT.getSizeInBits() == 128) | 
|  | return std::make_pair(0U, &AArch64::FPR128RegClass); | 
|  | break; | 
|  | // The instructions that this constraint is designed for can | 
|  | // only take 128-bit registers so just use that regclass. | 
|  | case 'x': | 
|  | if (VT.getSizeInBits() == 128) | 
|  | return std::make_pair(0U, &AArch64::FPR128_loRegClass); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (StringRef("{cc}").equals_lower(Constraint)) | 
|  | return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); | 
|  |  | 
|  | // Use the default implementation in TargetLowering to convert the register | 
|  | // constraint into a member of a register class. | 
|  | std::pair<unsigned, const TargetRegisterClass *> Res; | 
|  | Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  |  | 
|  | // Not found as a standard register? | 
|  | if (!Res.second) { | 
|  | unsigned Size = Constraint.size(); | 
|  | if ((Size == 4 || Size == 5) && Constraint[0] == '{' && | 
|  | tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { | 
|  | int RegNo; | 
|  | bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); | 
|  | if (!Failed && RegNo >= 0 && RegNo <= 31) { | 
|  | // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. | 
|  | // By default we'll emit v0-v31 for this unless there's a modifier where | 
|  | // we'll emit the correct register as well. | 
|  | if (VT != MVT::Other && VT.getSizeInBits() == 64) { | 
|  | Res.first = AArch64::FPR64RegClass.getRegister(RegNo); | 
|  | Res.second = &AArch64::FPR64RegClass; | 
|  | } else { | 
|  | Res.first = AArch64::FPR128RegClass.getRegister(RegNo); | 
|  | Res.second = &AArch64::FPR128RegClass; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void AArch64TargetLowering::LowerAsmOperandForConstraint( | 
|  | SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result; | 
|  |  | 
|  | // Currently only support length 1 constraints. | 
|  | if (Constraint.length() != 1) | 
|  | return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | // This set of constraints deal with valid constants for various instructions. | 
|  | // Validate and return a target constant for them if we can. | 
|  | case 'z': { | 
|  | // 'z' maps to xzr or wzr so it needs an input of 0. | 
|  | if (!isNullConstant(Op)) | 
|  | return; | 
|  |  | 
|  | if (Op.getValueType() == MVT::i64) | 
|  | Result = DAG.getRegister(AArch64::XZR, MVT::i64); | 
|  | else | 
|  | Result = DAG.getRegister(AArch64::WZR, MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!C) | 
|  | return; | 
|  |  | 
|  | // Grab the value and do some validation. | 
|  | uint64_t CVal = C->getZExtValue(); | 
|  | switch (ConstraintLetter) { | 
|  | // The I constraint applies only to simple ADD or SUB immediate operands: | 
|  | // i.e. 0 to 4095 with optional shift by 12 | 
|  | // The J constraint applies only to ADD or SUB immediates that would be | 
|  | // valid when negated, i.e. if [an add pattern] were to be output as a SUB | 
|  | // instruction [or vice versa], in other words -1 to -4095 with optional | 
|  | // left shift by 12. | 
|  | case 'I': | 
|  | if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) | 
|  | break; | 
|  | return; | 
|  | case 'J': { | 
|  | uint64_t NVal = -C->getSExtValue(); | 
|  | if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { | 
|  | CVal = C->getSExtValue(); | 
|  | break; | 
|  | } | 
|  | return; | 
|  | } | 
|  | // The K and L constraints apply *only* to logical immediates, including | 
|  | // what used to be the MOVI alias for ORR (though the MOVI alias has now | 
|  | // been removed and MOV should be used). So these constraints have to | 
|  | // distinguish between bit patterns that are valid 32-bit or 64-bit | 
|  | // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but | 
|  | // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice | 
|  | // versa. | 
|  | case 'K': | 
|  | if (AArch64_AM::isLogicalImmediate(CVal, 32)) | 
|  | break; | 
|  | return; | 
|  | case 'L': | 
|  | if (AArch64_AM::isLogicalImmediate(CVal, 64)) | 
|  | break; | 
|  | return; | 
|  | // The M and N constraints are a superset of K and L respectively, for use | 
|  | // with the MOV (immediate) alias. As well as the logical immediates they | 
|  | // also match 32 or 64-bit immediates that can be loaded either using a | 
|  | // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca | 
|  | // (M) or 64-bit 0x1234000000000000 (N) etc. | 
|  | // As a note some of this code is liberally stolen from the asm parser. | 
|  | case 'M': { | 
|  | if (!isUInt<32>(CVal)) | 
|  | return; | 
|  | if (AArch64_AM::isLogicalImmediate(CVal, 32)) | 
|  | break; | 
|  | if ((CVal & 0xFFFF) == CVal) | 
|  | break; | 
|  | if ((CVal & 0xFFFF0000ULL) == CVal) | 
|  | break; | 
|  | uint64_t NCVal = ~(uint32_t)CVal; | 
|  | if ((NCVal & 0xFFFFULL) == NCVal) | 
|  | break; | 
|  | if ((NCVal & 0xFFFF0000ULL) == NCVal) | 
|  | break; | 
|  | return; | 
|  | } | 
|  | case 'N': { | 
|  | if (AArch64_AM::isLogicalImmediate(CVal, 64)) | 
|  | break; | 
|  | if ((CVal & 0xFFFFULL) == CVal) | 
|  | break; | 
|  | if ((CVal & 0xFFFF0000ULL) == CVal) | 
|  | break; | 
|  | if ((CVal & 0xFFFF00000000ULL) == CVal) | 
|  | break; | 
|  | if ((CVal & 0xFFFF000000000000ULL) == CVal) | 
|  | break; | 
|  | uint64_t NCVal = ~CVal; | 
|  | if ((NCVal & 0xFFFFULL) == NCVal) | 
|  | break; | 
|  | if ((NCVal & 0xFFFF0000ULL) == NCVal) | 
|  | break; | 
|  | if ((NCVal & 0xFFFF00000000ULL) == NCVal) | 
|  | break; | 
|  | if ((NCVal & 0xFFFF000000000000ULL) == NCVal) | 
|  | break; | 
|  | return; | 
|  | } | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | // All assembler immediates are 64-bit integers. | 
|  | Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     AArch64 Advanced SIMD Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// WidenVector - Given a value in the V64 register class, produce the | 
|  | /// equivalent value in the V128 register class. | 
|  | static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { | 
|  | EVT VT = V64Reg.getValueType(); | 
|  | unsigned NarrowSize = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | 
|  | MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); | 
|  | SDLoc DL(V64Reg); | 
|  |  | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), | 
|  | V64Reg, DAG.getConstant(0, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | /// getExtFactor - Determine the adjustment factor for the position when | 
|  | /// generating an "extract from vector registers" instruction. | 
|  | static unsigned getExtFactor(SDValue &V) { | 
|  | EVT EltType = V.getValueType().getVectorElementType(); | 
|  | return EltType.getSizeInBits() / 8; | 
|  | } | 
|  |  | 
|  | /// NarrowVector - Given a value in the V128 register class, produce the | 
|  | /// equivalent value in the V64 register class. | 
|  | static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { | 
|  | EVT VT = V128Reg.getValueType(); | 
|  | unsigned WideSize = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | 
|  | MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); | 
|  | SDLoc DL(V128Reg); | 
|  |  | 
|  | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); | 
|  | } | 
|  |  | 
|  | // Gather data to see if the operation can be modelled as a | 
|  | // shuffle in combination with VEXTs. | 
|  | SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | struct ShuffleSourceInfo { | 
|  | SDValue Vec; | 
|  | unsigned MinElt; | 
|  | unsigned MaxElt; | 
|  |  | 
|  | // We may insert some combination of BITCASTs and VEXT nodes to force Vec to | 
|  | // be compatible with the shuffle we intend to construct. As a result | 
|  | // ShuffleVec will be some sliding window into the original Vec. | 
|  | SDValue ShuffleVec; | 
|  |  | 
|  | // Code should guarantee that element i in Vec starts at element "WindowBase | 
|  | // + i * WindowScale in ShuffleVec". | 
|  | int WindowBase; | 
|  | int WindowScale; | 
|  |  | 
|  | bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } | 
|  | ShuffleSourceInfo(SDValue Vec) | 
|  | : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0), | 
|  | WindowScale(1) {} | 
|  | }; | 
|  |  | 
|  | // First gather all vectors used as an immediate source for this BUILD_VECTOR | 
|  | // node. | 
|  | SmallVector<ShuffleSourceInfo, 2> Sources; | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | SDValue V = Op.getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  | else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | // A shuffle can only come from building a vector from various | 
|  | // elements of other vectors, provided their indices are constant. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Add this element source to the list if it's not already there. | 
|  | SDValue SourceVec = V.getOperand(0); | 
|  | auto Source = find(Sources, SourceVec); | 
|  | if (Source == Sources.end()) | 
|  | Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); | 
|  |  | 
|  | // Update the minimum and maximum lane number seen. | 
|  | unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); | 
|  | Source->MinElt = std::min(Source->MinElt, EltNo); | 
|  | Source->MaxElt = std::max(Source->MaxElt, EltNo); | 
|  | } | 
|  |  | 
|  | // Currently only do something sane when at most two source vectors | 
|  | // are involved. | 
|  | if (Sources.size() > 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find out the smallest element size among result and two sources, and use | 
|  | // it as element size to build the shuffle_vector. | 
|  | EVT SmallestEltTy = VT.getVectorElementType(); | 
|  | for (auto &Source : Sources) { | 
|  | EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); | 
|  | if (SrcEltTy.bitsLT(SmallestEltTy)) { | 
|  | SmallestEltTy = SrcEltTy; | 
|  | } | 
|  | } | 
|  | unsigned ResMultiplier = | 
|  | VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); | 
|  | NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); | 
|  | EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); | 
|  |  | 
|  | // If the source vector is too wide or too narrow, we may nevertheless be able | 
|  | // to construct a compatible shuffle either by concatenating it with UNDEF or | 
|  | // extracting a suitable range of elements. | 
|  | for (auto &Src : Sources) { | 
|  | EVT SrcVT = Src.ShuffleVec.getValueType(); | 
|  |  | 
|  | if (SrcVT.getSizeInBits() == VT.getSizeInBits()) | 
|  | continue; | 
|  |  | 
|  | // This stage of the search produces a source with the same element type as | 
|  | // the original, but with a total width matching the BUILD_VECTOR output. | 
|  | EVT EltVT = SrcVT.getVectorElementType(); | 
|  | unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); | 
|  | EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); | 
|  |  | 
|  | if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { | 
|  | assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); | 
|  | // We can pad out the smaller vector for free, so if it's part of a | 
|  | // shuffle... | 
|  | Src.ShuffleVec = | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, | 
|  | DAG.getUNDEF(Src.ShuffleVec.getValueType())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); | 
|  |  | 
|  | if (Src.MaxElt - Src.MinElt >= NumSrcElts) { | 
|  | // Span too large for a VEXT to cope | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (Src.MinElt >= NumSrcElts) { | 
|  | // The extraction can just take the second half | 
|  | Src.ShuffleVec = | 
|  | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | 
|  | DAG.getConstant(NumSrcElts, dl, MVT::i64)); | 
|  | Src.WindowBase = -NumSrcElts; | 
|  | } else if (Src.MaxElt < NumSrcElts) { | 
|  | // The extraction can just take the first half | 
|  | Src.ShuffleVec = | 
|  | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | 
|  | DAG.getConstant(0, dl, MVT::i64)); | 
|  | } else { | 
|  | // An actual VEXT is needed | 
|  | SDValue VEXTSrc1 = | 
|  | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | 
|  | DAG.getConstant(0, dl, MVT::i64)); | 
|  | SDValue VEXTSrc2 = | 
|  | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | 
|  | DAG.getConstant(NumSrcElts, dl, MVT::i64)); | 
|  | unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); | 
|  |  | 
|  | Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, | 
|  | VEXTSrc2, | 
|  | DAG.getConstant(Imm, dl, MVT::i32)); | 
|  | Src.WindowBase = -Src.MinElt; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Another possible incompatibility occurs from the vector element types. We | 
|  | // can fix this by bitcasting the source vectors to the same type we intend | 
|  | // for the shuffle. | 
|  | for (auto &Src : Sources) { | 
|  | EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); | 
|  | if (SrcEltTy == SmallestEltTy) | 
|  | continue; | 
|  | assert(ShuffleVT.getVectorElementType() == SmallestEltTy); | 
|  | Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); | 
|  | Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); | 
|  | Src.WindowBase *= Src.WindowScale; | 
|  | } | 
|  |  | 
|  | // Final sanity check before we try to actually produce a shuffle. | 
|  | DEBUG( | 
|  | for (auto Src : Sources) | 
|  | assert(Src.ShuffleVec.getValueType() == ShuffleVT); | 
|  | ); | 
|  |  | 
|  | // The stars all align, our next step is to produce the mask for the shuffle. | 
|  | SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); | 
|  | int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); | 
|  | for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { | 
|  | SDValue Entry = Op.getOperand(i); | 
|  | if (Entry.isUndef()) | 
|  | continue; | 
|  |  | 
|  | auto Src = find(Sources, Entry.getOperand(0)); | 
|  | int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); | 
|  |  | 
|  | // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit | 
|  | // trunc. So only std::min(SrcBits, DestBits) actually get defined in this | 
|  | // segment. | 
|  | EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); | 
|  | int BitsDefined = | 
|  | std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits()); | 
|  | int LanesDefined = BitsDefined / BitsPerShuffleLane; | 
|  |  | 
|  | // This source is expected to fill ResMultiplier lanes of the final shuffle, | 
|  | // starting at the appropriate offset. | 
|  | int *LaneMask = &Mask[i * ResMultiplier]; | 
|  |  | 
|  | int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; | 
|  | ExtractBase += NumElts * (Src - Sources.begin()); | 
|  | for (int j = 0; j < LanesDefined; ++j) | 
|  | LaneMask[j] = ExtractBase + j; | 
|  | } | 
|  |  | 
|  | // Final check before we try to produce nonsense... | 
|  | if (!isShuffleMaskLegal(Mask, ShuffleVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; | 
|  | for (unsigned i = 0; i < Sources.size(); ++i) | 
|  | ShuffleOps[i] = Sources[i].ShuffleVec; | 
|  |  | 
|  | SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], | 
|  | ShuffleOps[1], Mask); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); | 
|  | } | 
|  |  | 
|  | // check if an EXT instruction can handle the shuffle mask when the | 
|  | // vector sources of the shuffle are the same. | 
|  | static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // Assume that the first shuffle index is not UNDEF.  Fail if it is. | 
|  | if (M[0] < 0) | 
|  | return false; | 
|  |  | 
|  | Imm = M[0]; | 
|  |  | 
|  | // If this is a VEXT shuffle, the immediate value is the index of the first | 
|  | // element.  The other shuffle indices must be the successive elements after | 
|  | // the first one. | 
|  | unsigned ExpectedElt = Imm; | 
|  | for (unsigned i = 1; i < NumElts; ++i) { | 
|  | // Increment the expected index.  If it wraps around, just follow it | 
|  | // back to index zero and keep going. | 
|  | ++ExpectedElt; | 
|  | if (ExpectedElt == NumElts) | 
|  | ExpectedElt = 0; | 
|  |  | 
|  | if (M[i] < 0) | 
|  | continue; // ignore UNDEF indices | 
|  | if (ExpectedElt != static_cast<unsigned>(M[i])) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // check if an EXT instruction can handle the shuffle mask when the | 
|  | // vector sources of the shuffle are different. | 
|  | static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, | 
|  | unsigned &Imm) { | 
|  | // Look for the first non-undef element. | 
|  | const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); | 
|  |  | 
|  | // Benefit form APInt to handle overflow when calculating expected element. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); | 
|  | APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); | 
|  | // The following shuffle indices must be the successive elements after the | 
|  | // first real element. | 
|  | const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), | 
|  | [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); | 
|  | if (FirstWrongElt != M.end()) | 
|  | return false; | 
|  |  | 
|  | // The index of an EXT is the first element if it is not UNDEF. | 
|  | // Watch out for the beginning UNDEFs. The EXT index should be the expected | 
|  | // value of the first element.  E.g. | 
|  | // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. | 
|  | // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. | 
|  | // ExpectedElt is the last mask index plus 1. | 
|  | Imm = ExpectedElt.getZExtValue(); | 
|  |  | 
|  | // There are two difference cases requiring to reverse input vectors. | 
|  | // For example, for vector <4 x i32> we have the following cases, | 
|  | // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) | 
|  | // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) | 
|  | // For both cases, we finally use mask <5, 6, 7, 0>, which requires | 
|  | // to reverse two input vectors. | 
|  | if (Imm < NumElts) | 
|  | ReverseEXT = true; | 
|  | else | 
|  | Imm -= NumElts; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isREVMask - Check if a vector shuffle corresponds to a REV | 
|  | /// instruction with the specified blocksize.  (The order of the elements | 
|  | /// within each block of the vector is reversed.) | 
|  | static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { | 
|  | assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && | 
|  | "Only possible block sizes for REV are: 16, 32, 64"); | 
|  |  | 
|  | unsigned EltSz = VT.getScalarSizeInBits(); | 
|  | if (EltSz == 64) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned BlockElts = M[0] + 1; | 
|  | // If the first shuffle index is UNDEF, be optimistic. | 
|  | if (M[0] < 0) | 
|  | BlockElts = BlockSize / EltSz; | 
|  |  | 
|  | if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | if (M[i] < 0) | 
|  | continue; // ignore UNDEF indices | 
|  | if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | unsigned Idx = WhichResult * NumElts / 2; | 
|  | for (unsigned i = 0; i != NumElts; i += 2) { | 
|  | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || | 
|  | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) | 
|  | return false; | 
|  | Idx += 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (M[i] < 0) | 
|  | continue; // ignore UNDEF indices | 
|  | if ((unsigned)M[i] != 2 * i + WhichResult) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | for (unsigned i = 0; i < NumElts; i += 2) { | 
|  | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || | 
|  | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of | 
|  | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
|  | /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. | 
|  | static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | unsigned Idx = WhichResult * NumElts / 2; | 
|  | for (unsigned i = 0; i != NumElts; i += 2) { | 
|  | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || | 
|  | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) | 
|  | return false; | 
|  | Idx += 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of | 
|  | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
|  | /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, | 
|  | static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned Half = VT.getVectorNumElements() / 2; | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | unsigned Idx = WhichResult; | 
|  | for (unsigned i = 0; i != Half; ++i) { | 
|  | int MIdx = M[i + j * Half]; | 
|  | if (MIdx >= 0 && (unsigned)MIdx != Idx) | 
|  | return false; | 
|  | Idx += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of | 
|  | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
|  | /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. | 
|  | static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | WhichResult = (M[0] == 0 ? 0 : 1); | 
|  | for (unsigned i = 0; i < NumElts; i += 2) { | 
|  | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || | 
|  | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isINSMask(ArrayRef<int> M, int NumInputElements, | 
|  | bool &DstIsLeft, int &Anomaly) { | 
|  | if (M.size() != static_cast<size_t>(NumInputElements)) | 
|  | return false; | 
|  |  | 
|  | int NumLHSMatch = 0, NumRHSMatch = 0; | 
|  | int LastLHSMismatch = -1, LastRHSMismatch = -1; | 
|  |  | 
|  | for (int i = 0; i < NumInputElements; ++i) { | 
|  | if (M[i] == -1) { | 
|  | ++NumLHSMatch; | 
|  | ++NumRHSMatch; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (M[i] == i) | 
|  | ++NumLHSMatch; | 
|  | else | 
|  | LastLHSMismatch = i; | 
|  |  | 
|  | if (M[i] == i + NumInputElements) | 
|  | ++NumRHSMatch; | 
|  | else | 
|  | LastRHSMismatch = i; | 
|  | } | 
|  |  | 
|  | if (NumLHSMatch == NumInputElements - 1) { | 
|  | DstIsLeft = true; | 
|  | Anomaly = LastLHSMismatch; | 
|  | return true; | 
|  | } else if (NumRHSMatch == NumInputElements - 1) { | 
|  | DstIsLeft = false; | 
|  | Anomaly = LastRHSMismatch; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { | 
|  | if (VT.getSizeInBits() != 128) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | for (int I = 0, E = NumElts / 2; I != E; I++) { | 
|  | if (Mask[I] != I) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int Offset = NumElts / 2; | 
|  | for (int I = NumElts / 2, E = NumElts; I != E; I++) { | 
|  | if (Mask[I] != I + SplitLHS * Offset) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue V0 = Op.getOperand(0); | 
|  | SDValue V1 = Op.getOperand(1); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); | 
|  |  | 
|  | if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || | 
|  | VT.getVectorElementType() != V1.getValueType().getVectorElementType()) | 
|  | return SDValue(); | 
|  |  | 
|  | bool SplitV0 = V0.getValueSizeInBits() == 128; | 
|  |  | 
|  | if (!isConcatMask(Mask, VT, SplitV0)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), | 
|  | VT.getVectorNumElements() / 2); | 
|  | if (SplitV0) { | 
|  | V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | } | 
|  | if (V1.getValueSizeInBits() == 128) { | 
|  | V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | } | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); | 
|  | } | 
|  |  | 
|  | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
|  | /// the specified operations to build the shuffle. | 
|  | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, | 
|  | SDValue RHS, SelectionDAG &DAG, | 
|  | const SDLoc &dl) { | 
|  | unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
|  | unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); | 
|  | unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); | 
|  |  | 
|  | enum { | 
|  | OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VREV, | 
|  | OP_VDUP0, | 
|  | OP_VDUP1, | 
|  | OP_VDUP2, | 
|  | OP_VDUP3, | 
|  | OP_VEXT1, | 
|  | OP_VEXT2, | 
|  | OP_VEXT3, | 
|  | OP_VUZPL, // VUZP, left result | 
|  | OP_VUZPR, // VUZP, right result | 
|  | OP_VZIPL, // VZIP, left result | 
|  | OP_VZIPR, // VZIP, right result | 
|  | OP_VTRNL, // VTRN, left result | 
|  | OP_VTRNR  // VTRN, right result | 
|  | }; | 
|  |  | 
|  | if (OpNum == OP_COPY) { | 
|  | if (LHSID == (1 * 9 + 2) * 9 + 3) | 
|  | return LHS; | 
|  | assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | SDValue OpLHS, OpRHS; | 
|  | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | 
|  | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); | 
|  | EVT VT = OpLHS.getValueType(); | 
|  |  | 
|  | switch (OpNum) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shuffle opcode!"); | 
|  | case OP_VREV: | 
|  | // VREV divides the vector in half and swaps within the half. | 
|  | if (VT.getVectorElementType() == MVT::i32 || | 
|  | VT.getVectorElementType() == MVT::f32) | 
|  | return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); | 
|  | // vrev <4 x i16> -> REV32 | 
|  | if (VT.getVectorElementType() == MVT::i16 || | 
|  | VT.getVectorElementType() == MVT::f16) | 
|  | return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); | 
|  | // vrev <4 x i8> -> REV16 | 
|  | assert(VT.getVectorElementType() == MVT::i8); | 
|  | return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); | 
|  | case OP_VDUP0: | 
|  | case OP_VDUP1: | 
|  | case OP_VDUP2: | 
|  | case OP_VDUP3: { | 
|  | EVT EltTy = VT.getVectorElementType(); | 
|  | unsigned Opcode; | 
|  | if (EltTy == MVT::i8) | 
|  | Opcode = AArch64ISD::DUPLANE8; | 
|  | else if (EltTy == MVT::i16 || EltTy == MVT::f16) | 
|  | Opcode = AArch64ISD::DUPLANE16; | 
|  | else if (EltTy == MVT::i32 || EltTy == MVT::f32) | 
|  | Opcode = AArch64ISD::DUPLANE32; | 
|  | else if (EltTy == MVT::i64 || EltTy == MVT::f64) | 
|  | Opcode = AArch64ISD::DUPLANE64; | 
|  | else | 
|  | llvm_unreachable("Invalid vector element type?"); | 
|  |  | 
|  | if (VT.getSizeInBits() == 64) | 
|  | OpLHS = WidenVector(OpLHS, DAG); | 
|  | SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); | 
|  | return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); | 
|  | } | 
|  | case OP_VEXT1: | 
|  | case OP_VEXT2: | 
|  | case OP_VEXT3: { | 
|  | unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); | 
|  | return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, | 
|  | DAG.getConstant(Imm, dl, MVT::i32)); | 
|  | } | 
|  | case OP_VUZPL: | 
|  | return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | case OP_VUZPR: | 
|  | return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | case OP_VZIPL: | 
|  | return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | case OP_VZIPR: | 
|  | return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | case OP_VTRNL: | 
|  | return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | case OP_VTRNR: | 
|  | return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, | 
|  | OpRHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, | 
|  | SelectionDAG &DAG) { | 
|  | // Check to see if we can use the TBL instruction. | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | EVT EltVT = Op.getValueType().getVectorElementType(); | 
|  | unsigned BytesPerElt = EltVT.getSizeInBits() / 8; | 
|  |  | 
|  | SmallVector<SDValue, 8> TBLMask; | 
|  | for (int Val : ShuffleMask) { | 
|  | for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { | 
|  | unsigned Offset = Byte + Val * BytesPerElt; | 
|  | TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT IndexVT = MVT::v8i8; | 
|  | unsigned IndexLen = 8; | 
|  | if (Op.getValueSizeInBits() == 128) { | 
|  | IndexVT = MVT::v16i8; | 
|  | IndexLen = 16; | 
|  | } | 
|  |  | 
|  | SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); | 
|  | SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); | 
|  |  | 
|  | SDValue Shuffle; | 
|  | if (V2.getNode()->isUndef()) { | 
|  | if (IndexLen == 8) | 
|  | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); | 
|  | Shuffle = DAG.getNode( | 
|  | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | 
|  | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, | 
|  | DAG.getBuildVector(IndexVT, DL, | 
|  | makeArrayRef(TBLMask.data(), IndexLen))); | 
|  | } else { | 
|  | if (IndexLen == 8) { | 
|  | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); | 
|  | Shuffle = DAG.getNode( | 
|  | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | 
|  | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, | 
|  | DAG.getBuildVector(IndexVT, DL, | 
|  | makeArrayRef(TBLMask.data(), IndexLen))); | 
|  | } else { | 
|  | // FIXME: We cannot, for the moment, emit a TBL2 instruction because we | 
|  | // cannot currently represent the register constraints on the input | 
|  | // table registers. | 
|  | //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, | 
|  | //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0], | 
|  | //                   IndexLen)); | 
|  | Shuffle = DAG.getNode( | 
|  | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | 
|  | DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, | 
|  | V2Cst, DAG.getBuildVector(IndexVT, DL, | 
|  | makeArrayRef(TBLMask.data(), IndexLen))); | 
|  | } | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); | 
|  | } | 
|  |  | 
|  | static unsigned getDUPLANEOp(EVT EltType) { | 
|  | if (EltType == MVT::i8) | 
|  | return AArch64ISD::DUPLANE8; | 
|  | if (EltType == MVT::i16 || EltType == MVT::f16) | 
|  | return AArch64ISD::DUPLANE16; | 
|  | if (EltType == MVT::i32 || EltType == MVT::f32) | 
|  | return AArch64ISD::DUPLANE32; | 
|  | if (EltType == MVT::i64 || EltType == MVT::f64) | 
|  | return AArch64ISD::DUPLANE64; | 
|  |  | 
|  | llvm_unreachable("Invalid vector element type?"); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); | 
|  |  | 
|  | // Convert shuffles that are directly supported on NEON to target-specific | 
|  | // DAG nodes, instead of keeping them as shuffles and matching them again | 
|  | // during code selection.  This is more efficient and avoids the possibility | 
|  | // of inconsistencies between legalization and selection. | 
|  | ArrayRef<int> ShuffleMask = SVN->getMask(); | 
|  |  | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  |  | 
|  | if (SVN->isSplat()) { | 
|  | int Lane = SVN->getSplatIndex(); | 
|  | // If this is undef splat, generate it via "just" vdup, if possible. | 
|  | if (Lane == -1) | 
|  | Lane = 0; | 
|  |  | 
|  | if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), | 
|  | V1.getOperand(0)); | 
|  | // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- | 
|  | // constant. If so, we can just reference the lane's definition directly. | 
|  | if (V1.getOpcode() == ISD::BUILD_VECTOR && | 
|  | !isa<ConstantSDNode>(V1.getOperand(Lane))) | 
|  | return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); | 
|  |  | 
|  | // Otherwise, duplicate from the lane of the input vector. | 
|  | unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); | 
|  |  | 
|  | // SelectionDAGBuilder may have "helpfully" already extracted or conatenated | 
|  | // to make a vector of the same size as this SHUFFLE. We can ignore the | 
|  | // extract entirely, and canonicalise the concat using WidenVector. | 
|  | if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { | 
|  | Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); | 
|  | V1 = V1.getOperand(0); | 
|  | } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { | 
|  | unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; | 
|  | Lane -= Idx * VT.getVectorNumElements() / 2; | 
|  | V1 = WidenVector(V1.getOperand(Idx), DAG); | 
|  | } else if (VT.getSizeInBits() == 64) | 
|  | V1 = WidenVector(V1, DAG); | 
|  |  | 
|  | return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); | 
|  | } | 
|  |  | 
|  | if (isREVMask(ShuffleMask, VT, 64)) | 
|  | return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); | 
|  | if (isREVMask(ShuffleMask, VT, 32)) | 
|  | return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); | 
|  | if (isREVMask(ShuffleMask, VT, 16)) | 
|  | return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); | 
|  |  | 
|  | bool ReverseEXT = false; | 
|  | unsigned Imm; | 
|  | if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { | 
|  | if (ReverseEXT) | 
|  | std::swap(V1, V2); | 
|  | Imm *= getExtFactor(V1); | 
|  | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, | 
|  | DAG.getConstant(Imm, dl, MVT::i32)); | 
|  | } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { | 
|  | Imm *= getExtFactor(V1); | 
|  | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, | 
|  | DAG.getConstant(Imm, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | unsigned WhichResult; | 
|  | if (isZIPMask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | 
|  | } | 
|  | if (isUZPMask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | 
|  | } | 
|  | if (isTRNMask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | 
|  | } | 
|  |  | 
|  | if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | 
|  | } | 
|  | if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | 
|  | } | 
|  | if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | 
|  | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | 
|  | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | 
|  | } | 
|  |  | 
|  | if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) | 
|  | return Concat; | 
|  |  | 
|  | bool DstIsLeft; | 
|  | int Anomaly; | 
|  | int NumInputElements = V1.getValueType().getVectorNumElements(); | 
|  | if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { | 
|  | SDValue DstVec = DstIsLeft ? V1 : V2; | 
|  | SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); | 
|  |  | 
|  | SDValue SrcVec = V1; | 
|  | int SrcLane = ShuffleMask[Anomaly]; | 
|  | if (SrcLane >= NumInputElements) { | 
|  | SrcVec = V2; | 
|  | SrcLane -= VT.getVectorNumElements(); | 
|  | } | 
|  | SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); | 
|  |  | 
|  | EVT ScalarVT = VT.getVectorElementType(); | 
|  |  | 
|  | if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) | 
|  | ScalarVT = MVT::i32; | 
|  |  | 
|  | return DAG.getNode( | 
|  | ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), | 
|  | DstLaneV); | 
|  | } | 
|  |  | 
|  | // If the shuffle is not directly supported and it has 4 elements, use | 
|  | // the PerfectShuffle-generated table to synthesize it from other shuffles. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts == 4) { | 
|  | unsigned PFIndexes[4]; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (ShuffleMask[i] < 0) | 
|  | PFIndexes[i] = 8; | 
|  | else | 
|  | PFIndexes[i] = ShuffleMask[i]; | 
|  | } | 
|  |  | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + | 
|  | PFIndexes[2] * 9 + PFIndexes[3]; | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost = (PFEntry >> 30); | 
|  |  | 
|  | if (Cost <= 4) | 
|  | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); | 
|  | } | 
|  |  | 
|  | return GenerateTBL(Op, ShuffleMask, DAG); | 
|  | } | 
|  |  | 
|  | static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, | 
|  | APInt &UndefBits) { | 
|  | EVT VT = BVN->getValueType(0); | 
|  | APInt SplatBits, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { | 
|  | unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; | 
|  |  | 
|  | for (unsigned i = 0; i < NumSplats; ++i) { | 
|  | CnstBits <<= SplatBitSize; | 
|  | UndefBits <<= SplatBitSize; | 
|  | CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); | 
|  | UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | BuildVectorSDNode *BVN = | 
|  | dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (!BVN) | 
|  | return Op; | 
|  |  | 
|  | APInt CnstBits(VT.getSizeInBits(), 0); | 
|  | APInt UndefBits(VT.getSizeInBits(), 0); | 
|  | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { | 
|  | // We only have BIC vector immediate instruction, which is and-not. | 
|  | CnstBits = ~CnstBits; | 
|  |  | 
|  | // We make use of a little bit of goto ickiness in order to avoid having to | 
|  | // duplicate the immediate matching logic for the undef toggled case. | 
|  | bool SecondTry = false; | 
|  | AttemptModImm: | 
|  |  | 
|  | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { | 
|  | CnstBits = CnstBits.zextOrTrunc(64); | 
|  | uint64_t CnstVal = CnstBits.getZExtValue(); | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(16, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(24, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SecondTry) | 
|  | goto FailedModImm; | 
|  | SecondTry = true; | 
|  | CnstBits = ~UndefBits; | 
|  | goto AttemptModImm; | 
|  | } | 
|  |  | 
|  | // We can always fall back to a non-immediate AND. | 
|  | FailedModImm: | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Specialized code to quickly find if PotentialBVec is a BuildVector that | 
|  | // consists of only the same constant int value, returned in reference arg | 
|  | // ConstVal | 
|  | static bool isAllConstantBuildVector(const SDValue &PotentialBVec, | 
|  | uint64_t &ConstVal) { | 
|  | BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); | 
|  | if (!Bvec) | 
|  | return false; | 
|  | ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); | 
|  | if (!FirstElt) | 
|  | return false; | 
|  | EVT VT = Bvec->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | for (unsigned i = 1; i < NumElts; ++i) | 
|  | if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) | 
|  | return false; | 
|  | ConstVal = FirstElt->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned getIntrinsicID(const SDNode *N) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return Intrinsic::not_intrinsic; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | if (IID < Intrinsic::num_intrinsics) | 
|  | return IID; | 
|  | return Intrinsic::not_intrinsic; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), | 
|  | // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a | 
|  | // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. | 
|  | // Also, logical shift right -> sri, with the same structure. | 
|  | static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Is the first op an AND? | 
|  | const SDValue And = N->getOperand(0); | 
|  | if (And.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | // Is the second op an shl or lshr? | 
|  | SDValue Shift = N->getOperand(1); | 
|  | // This will have been turned into: AArch64ISD::VSHL vector, #shift | 
|  | // or AArch64ISD::VLSHR vector, #shift | 
|  | unsigned ShiftOpc = Shift.getOpcode(); | 
|  | if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) | 
|  | return SDValue(); | 
|  | bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; | 
|  |  | 
|  | // Is the shift amount constant? | 
|  | ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); | 
|  | if (!C2node) | 
|  | return SDValue(); | 
|  |  | 
|  | // Is the and mask vector all constant? | 
|  | uint64_t C1; | 
|  | if (!isAllConstantBuildVector(And.getOperand(1), C1)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Is C1 == ~C2, taking into account how much one can shift elements of a | 
|  | // particular size? | 
|  | uint64_t C2 = C2node->getZExtValue(); | 
|  | unsigned ElemSizeInBits = VT.getScalarSizeInBits(); | 
|  | if (C2 > ElemSizeInBits) | 
|  | return SDValue(); | 
|  | unsigned ElemMask = (1 << ElemSizeInBits) - 1; | 
|  | if ((C1 & ElemMask) != (~C2 & ElemMask)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue X = And.getOperand(0); | 
|  | SDValue Y = Shift.getOperand(0); | 
|  |  | 
|  | unsigned Intrin = | 
|  | IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; | 
|  | SDValue ResultSLI = | 
|  | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrin, DL, MVT::i32), X, Y, | 
|  | Shift.getOperand(1)); | 
|  |  | 
|  | DEBUG(dbgs() << "aarch64-lower: transformed: \n"); | 
|  | DEBUG(N->dump(&DAG)); | 
|  | DEBUG(dbgs() << "into: \n"); | 
|  | DEBUG(ResultSLI->dump(&DAG)); | 
|  |  | 
|  | ++NumShiftInserts; | 
|  | return ResultSLI; | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) | 
|  | if (EnableAArch64SlrGeneration) { | 
|  | if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | BuildVectorSDNode *BVN = | 
|  | dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // OR commutes, so try swapping the operands. | 
|  | if (!BVN) { | 
|  | LHS = Op.getOperand(0); | 
|  | BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); | 
|  | } | 
|  | if (!BVN) | 
|  | return Op; | 
|  |  | 
|  | APInt CnstBits(VT.getSizeInBits(), 0); | 
|  | APInt UndefBits(VT.getSizeInBits(), 0); | 
|  | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { | 
|  | // We make use of a little bit of goto ickiness in order to avoid having to | 
|  | // duplicate the immediate matching logic for the undef toggled case. | 
|  | bool SecondTry = false; | 
|  | AttemptModImm: | 
|  |  | 
|  | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { | 
|  | CnstBits = CnstBits.zextOrTrunc(64); | 
|  | uint64_t CnstVal = CnstBits.getZExtValue(); | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(16, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(24, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SecondTry) | 
|  | goto FailedModImm; | 
|  | SecondTry = true; | 
|  | CnstBits = UndefBits; | 
|  | goto AttemptModImm; | 
|  | } | 
|  |  | 
|  | // We can always fall back to a non-immediate OR. | 
|  | FailedModImm: | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Normalize the operands of BUILD_VECTOR. The value of constant operands will | 
|  | // be truncated to fit element width. | 
|  | static SDValue NormalizeBuildVector(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltTy= VT.getVectorElementType(); | 
|  |  | 
|  | if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) | 
|  | return Op; | 
|  |  | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (SDValue Lane : Op->ops()) { | 
|  | if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { | 
|  | APInt LowBits(EltTy.getSizeInBits(), | 
|  | CstLane->getZExtValue()); | 
|  | Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); | 
|  | } | 
|  | Ops.push_back(Lane); | 
|  | } | 
|  | return DAG.getBuildVector(VT, dl, Ops); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | Op = NormalizeBuildVector(Op, DAG); | 
|  | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); | 
|  |  | 
|  | APInt CnstBits(VT.getSizeInBits(), 0); | 
|  | APInt UndefBits(VT.getSizeInBits(), 0); | 
|  | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { | 
|  | // We make use of a little bit of goto ickiness in order to avoid having to | 
|  | // duplicate the immediate matching logic for the undef toggled case. | 
|  | bool SecondTry = false; | 
|  | AttemptModImm: | 
|  |  | 
|  | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { | 
|  | CnstBits = CnstBits.zextOrTrunc(64); | 
|  | uint64_t CnstVal = CnstBits.getZExtValue(); | 
|  |  | 
|  | // Certain magic vector constants (used to express things like NOT | 
|  | // and NEG) are passed through unmodified.  This allows codegen patterns | 
|  | // for these operations to match.  Special-purpose patterns will lower | 
|  | // these immediates to MOVIs if it proves necessary. | 
|  | if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) | 
|  | return Op; | 
|  |  | 
|  | // The many faces of MOVI... | 
|  | if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal); | 
|  | if (VT.getSizeInBits() == 128) { | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | // Support the V64 version via subregister insertion. | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(16, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(24, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(264, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(272, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | // The few faces of FMOV... | 
|  | if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) && | 
|  | VT.getSizeInBits() == 128) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal); | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | // The many faces of MVNI... | 
|  | CnstVal = ~CnstVal; | 
|  | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(16, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(24, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(0, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(264, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  |  | 
|  | if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { | 
|  | CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); | 
|  | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | 
|  | SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, | 
|  | DAG.getConstant(CnstVal, dl, MVT::i32), | 
|  | DAG.getConstant(272, dl, MVT::i32)); | 
|  | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SecondTry) | 
|  | goto FailedModImm; | 
|  | SecondTry = true; | 
|  | CnstBits = UndefBits; | 
|  | goto AttemptModImm; | 
|  | } | 
|  | FailedModImm: | 
|  |  | 
|  | // Scan through the operands to find some interesting properties we can | 
|  | // exploit: | 
|  | //   1) If only one value is used, we can use a DUP, or | 
|  | //   2) if only the low element is not undef, we can just insert that, or | 
|  | //   3) if only one constant value is used (w/ some non-constant lanes), | 
|  | //      we can splat the constant value into the whole vector then fill | 
|  | //      in the non-constant lanes. | 
|  | //   4) FIXME: If different constant values are used, but we can intelligently | 
|  | //             select the values we'll be overwriting for the non-constant | 
|  | //             lanes such that we can directly materialize the vector | 
|  | //             some other way (MOVI, e.g.), we can be sneaky. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | bool isOnlyLowElement = true; | 
|  | bool usesOnlyOneValue = true; | 
|  | bool usesOnlyOneConstantValue = true; | 
|  | bool isConstant = true; | 
|  | unsigned NumConstantLanes = 0; | 
|  | SDValue Value; | 
|  | SDValue ConstantValue; | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | SDValue V = Op.getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  | if (i > 0) | 
|  | isOnlyLowElement = false; | 
|  | if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) | 
|  | isConstant = false; | 
|  |  | 
|  | if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { | 
|  | ++NumConstantLanes; | 
|  | if (!ConstantValue.getNode()) | 
|  | ConstantValue = V; | 
|  | else if (ConstantValue != V) | 
|  | usesOnlyOneConstantValue = false; | 
|  | } | 
|  |  | 
|  | if (!Value.getNode()) | 
|  | Value = V; | 
|  | else if (V != Value) | 
|  | usesOnlyOneValue = false; | 
|  | } | 
|  |  | 
|  | if (!Value.getNode()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (isOnlyLowElement) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); | 
|  |  | 
|  | // Use DUP for non-constant splats.  For f32 constant splats, reduce to | 
|  | // i32 and try again. | 
|  | if (usesOnlyOneValue) { | 
|  | if (!isConstant) { | 
|  | if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | Value.getValueType() != VT) | 
|  | return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); | 
|  |  | 
|  | // This is actually a DUPLANExx operation, which keeps everything vectory. | 
|  |  | 
|  | // DUPLANE works on 128-bit vectors, widen it if necessary. | 
|  | SDValue Lane = Value.getOperand(1); | 
|  | Value = Value.getOperand(0); | 
|  | if (Value.getValueSizeInBits() == 64) | 
|  | Value = WidenVector(Value, DAG); | 
|  |  | 
|  | unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); | 
|  | return DAG.getNode(Opcode, dl, VT, Value, Lane); | 
|  | } | 
|  |  | 
|  | if (VT.getVectorElementType().isFloatingPoint()) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | EVT EltTy = VT.getVectorElementType(); | 
|  | assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) && | 
|  | "Unsupported floating-point vector type"); | 
|  | MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); | 
|  | for (unsigned i = 0; i < NumElts; ++i) | 
|  | Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); | 
|  | SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); | 
|  | Val = LowerBUILD_VECTOR(Val, DAG); | 
|  | if (Val.getNode()) | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there was only one constant value used and for more than one lane, | 
|  | // start by splatting that value, then replace the non-constant lanes. This | 
|  | // is better than the default, which will perform a separate initialization | 
|  | // for each lane. | 
|  | if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { | 
|  | SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); | 
|  | // Now insert the non-constant lanes. | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | SDValue V = Op.getOperand(i); | 
|  | SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); | 
|  | if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { | 
|  | // Note that type legalization likely mucked about with the VT of the | 
|  | // source operand, so we may have to convert it here before inserting. | 
|  | Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); | 
|  | } | 
|  | } | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // If all elements are constants and the case above didn't get hit, fall back | 
|  | // to the default expansion, which will generate a load from the constant | 
|  | // pool. | 
|  | if (isConstant) | 
|  | return SDValue(); | 
|  |  | 
|  | // Empirical tests suggest this is rarely worth it for vectors of length <= 2. | 
|  | if (NumElts >= 4) { | 
|  | if (SDValue shuffle = ReconstructShuffle(Op, DAG)) | 
|  | return shuffle; | 
|  | } | 
|  |  | 
|  | // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we | 
|  | // know the default expansion would otherwise fall back on something even | 
|  | // worse. For a vector with one or two non-undef values, that's | 
|  | // scalar_to_vector for the elements followed by a shuffle (provided the | 
|  | // shuffle is valid for the target) and materialization element by element | 
|  | // on the stack followed by a load for everything else. | 
|  | if (!isConstant && !usesOnlyOneValue) { | 
|  | SDValue Vec = DAG.getUNDEF(VT); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | unsigned ElemSize = VT.getScalarSizeInBits(); | 
|  | unsigned i = 0; | 
|  | // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to | 
|  | // a) Avoid a RMW dependency on the full vector register, and | 
|  | // b) Allow the register coalescer to fold away the copy if the | 
|  | //    value is already in an S or D register. | 
|  | // Do not do this for UNDEF/LOAD nodes because we have better patterns | 
|  | // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR. | 
|  | if (!Op0.isUndef() && Op0.getOpcode() != ISD::LOAD && | 
|  | (ElemSize == 32 || ElemSize == 64)) { | 
|  | unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub; | 
|  | MachineSDNode *N = | 
|  | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, | 
|  | DAG.getTargetConstant(SubIdx, dl, MVT::i32)); | 
|  | Vec = SDValue(N, 0); | 
|  | ++i; | 
|  | } | 
|  | for (; i < NumElts; ++i) { | 
|  | SDValue V = Op.getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  | SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); | 
|  | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); | 
|  | } | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | // Just use the default expansion. We failed to find a better alternative. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); | 
|  |  | 
|  | // Check for non-constant or out of range lane. | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) | 
|  | return SDValue(); | 
|  |  | 
|  |  | 
|  | // Insertion/extraction are legal for V128 types. | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | 
|  | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || | 
|  | VT == MVT::v8f16) | 
|  | return Op; | 
|  |  | 
|  | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && | 
|  | VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) | 
|  | return SDValue(); | 
|  |  | 
|  | // For V64 types, we perform insertion by expanding the value | 
|  | // to a V128 type and perform the insertion on that. | 
|  | SDLoc DL(Op); | 
|  | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); | 
|  | EVT WideTy = WideVec.getValueType(); | 
|  |  | 
|  | SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | // Re-narrow the resultant vector. | 
|  | return NarrowVector(Node, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); | 
|  |  | 
|  | // Check for non-constant or out of range lane. | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) | 
|  | return SDValue(); | 
|  |  | 
|  |  | 
|  | // Insertion/extraction are legal for V128 types. | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | 
|  | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || | 
|  | VT == MVT::v8f16) | 
|  | return Op; | 
|  |  | 
|  | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && | 
|  | VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) | 
|  | return SDValue(); | 
|  |  | 
|  | // For V64 types, we perform extraction by expanding the value | 
|  | // to a V128 type and perform the extraction on that. | 
|  | SDLoc DL(Op); | 
|  | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); | 
|  | EVT WideTy = WideVec.getValueType(); | 
|  |  | 
|  | EVT ExtrTy = WideTy.getVectorElementType(); | 
|  | if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) | 
|  | ExtrTy = MVT::i32; | 
|  |  | 
|  | // For extractions, we just return the result directly. | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, | 
|  | Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDLoc dl(Op); | 
|  | // Just in case... | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (!Cst) | 
|  | return SDValue(); | 
|  | unsigned Val = Cst->getZExtValue(); | 
|  |  | 
|  | unsigned Size = Op.getValueSizeInBits(); | 
|  |  | 
|  | // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. | 
|  | if (Val == 0) | 
|  | return Op; | 
|  |  | 
|  | // If this is extracting the upper 64-bits of a 128-bit vector, we match | 
|  | // that directly. | 
|  | if (Size == 64 && Val * VT.getScalarSizeInBits() == 64) | 
|  | return Op; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
|  | EVT VT) const { | 
|  | if (VT.getVectorNumElements() == 4 && | 
|  | (VT.is128BitVector() || VT.is64BitVector())) { | 
|  | unsigned PFIndexes[4]; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (M[i] < 0) | 
|  | PFIndexes[i] = 8; | 
|  | else | 
|  | PFIndexes[i] = M[i]; | 
|  | } | 
|  |  | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + | 
|  | PFIndexes[2] * 9 + PFIndexes[3]; | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost = (PFEntry >> 30); | 
|  |  | 
|  | if (Cost <= 4) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DummyBool; | 
|  | int DummyInt; | 
|  | unsigned DummyUnsigned; | 
|  |  | 
|  | return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || | 
|  | isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || | 
|  | isEXTMask(M, VT, DummyBool, DummyUnsigned) || | 
|  | // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. | 
|  | isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || | 
|  | isZIPMask(M, VT, DummyUnsigned) || | 
|  | isTRN_v_undef_Mask(M, VT, DummyUnsigned) || | 
|  | isUZP_v_undef_Mask(M, VT, DummyUnsigned) || | 
|  | isZIP_v_undef_Mask(M, VT, DummyUnsigned) || | 
|  | isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || | 
|  | isConcatMask(M, VT, VT.getSizeInBits() == 128)); | 
|  | } | 
|  |  | 
|  | /// getVShiftImm - Check if this is a valid build_vector for the immediate | 
|  | /// operand of a vector shift operation, where all the elements of the | 
|  | /// build_vector must have the same constant integer value. | 
|  | static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { | 
|  | // Ignore bit_converts. | 
|  | while (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | 
|  | APInt SplatBits, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, ElementBits) || | 
|  | SplatBitSize > ElementBits) | 
|  | return false; | 
|  | Cnt = SplatBits.getSExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVShiftLImm - Check if this is a valid build_vector for the immediate | 
|  | /// operand of a vector shift left operation.  That value must be in the range: | 
|  | ///   0 <= Value < ElementBits for a left shift; or | 
|  | ///   0 <= Value <= ElementBits for a long left shift. | 
|  | static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { | 
|  | assert(VT.isVector() && "vector shift count is not a vector type"); | 
|  | int64_t ElementBits = VT.getScalarSizeInBits(); | 
|  | if (!getVShiftImm(Op, ElementBits, Cnt)) | 
|  | return false; | 
|  | return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); | 
|  | } | 
|  |  | 
|  | /// isVShiftRImm - Check if this is a valid build_vector for the immediate | 
|  | /// operand of a vector shift right operation. The value must be in the range: | 
|  | ///   1 <= Value <= ElementBits for a right shift; or | 
|  | static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { | 
|  | assert(VT.isVector() && "vector shift count is not a vector type"); | 
|  | int64_t ElementBits = VT.getScalarSizeInBits(); | 
|  | if (!getVShiftImm(Op, ElementBits, Cnt)) | 
|  | return false; | 
|  | return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | int64_t Cnt; | 
|  |  | 
|  | if (!Op.getOperand(1).getValueType().isVector()) | 
|  | return Op; | 
|  | unsigned EltSize = VT.getScalarSizeInBits(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("unexpected shift opcode"); | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) | 
|  | return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), | 
|  | DAG.getConstant(Cnt, DL, MVT::i32)); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, | 
|  | MVT::i32), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | // Right shift immediate | 
|  | if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { | 
|  | unsigned Opc = | 
|  | (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; | 
|  | return DAG.getNode(Opc, DL, VT, Op.getOperand(0), | 
|  | DAG.getConstant(Cnt, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // Right shift register.  Note, there is not a shift right register | 
|  | // instruction, but the shift left register instruction takes a signed | 
|  | // value, where negative numbers specify a right shift. | 
|  | unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl | 
|  | : Intrinsic::aarch64_neon_ushl; | 
|  | // negate the shift amount | 
|  | SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); | 
|  | SDValue NegShiftLeft = | 
|  | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), | 
|  | NegShift); | 
|  | return NegShiftLeft; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, | 
|  | AArch64CC::CondCode CC, bool NoNans, EVT VT, | 
|  | const SDLoc &dl, SelectionDAG &DAG) { | 
|  | EVT SrcVT = LHS.getValueType(); | 
|  | assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && | 
|  | "function only supposed to emit natural comparisons"); | 
|  |  | 
|  | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); | 
|  | APInt CnstBits(VT.getSizeInBits(), 0); | 
|  | APInt UndefBits(VT.getSizeInBits(), 0); | 
|  | bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); | 
|  | bool IsZero = IsCnst && (CnstBits == 0); | 
|  |  | 
|  | if (SrcVT.getVectorElementType().isFloatingPoint()) { | 
|  | switch (CC) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case AArch64CC::NE: { | 
|  | SDValue Fcmeq; | 
|  | if (IsZero) | 
|  | Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); | 
|  | else | 
|  | Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); | 
|  | return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); | 
|  | } | 
|  | case AArch64CC::EQ: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); | 
|  | case AArch64CC::GE: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); | 
|  | case AArch64CC::GT: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); | 
|  | case AArch64CC::LS: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); | 
|  | case AArch64CC::LT: | 
|  | if (!NoNans) | 
|  | return SDValue(); | 
|  | // If we ignore NaNs then we can use to the MI implementation. | 
|  | LLVM_FALLTHROUGH; | 
|  | case AArch64CC::MI: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case AArch64CC::NE: { | 
|  | SDValue Cmeq; | 
|  | if (IsZero) | 
|  | Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); | 
|  | else | 
|  | Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); | 
|  | return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); | 
|  | } | 
|  | case AArch64CC::EQ: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); | 
|  | case AArch64CC::GE: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); | 
|  | case AArch64CC::GT: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); | 
|  | case AArch64CC::LE: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); | 
|  | case AArch64CC::LS: | 
|  | return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); | 
|  | case AArch64CC::LO: | 
|  | return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); | 
|  | case AArch64CC::LT: | 
|  | if (IsZero) | 
|  | return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); | 
|  | return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); | 
|  | case AArch64CC::HI: | 
|  | return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); | 
|  | case AArch64CC::HS: | 
|  | return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (LHS.getValueType().getVectorElementType().isInteger()) { | 
|  | assert(LHS.getValueType() == RHS.getValueType()); | 
|  | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | 
|  | SDValue Cmp = | 
|  | EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); | 
|  | return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); | 
|  | } | 
|  |  | 
|  | if (LHS.getValueType().getVectorElementType() == MVT::f16) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(LHS.getValueType().getVectorElementType() == MVT::f32 || | 
|  | LHS.getValueType().getVectorElementType() == MVT::f64); | 
|  |  | 
|  | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | 
|  | // clean.  Some of them require two branches to implement. | 
|  | AArch64CC::CondCode CC1, CC2; | 
|  | bool ShouldInvert; | 
|  | changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); | 
|  |  | 
|  | bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; | 
|  | SDValue Cmp = | 
|  | EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); | 
|  | if (!Cmp.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (CC2 != AArch64CC::AL) { | 
|  | SDValue Cmp2 = | 
|  | EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); | 
|  | if (!Cmp2.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); | 
|  | } | 
|  |  | 
|  | Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); | 
|  |  | 
|  | if (ShouldInvert) | 
|  | return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); | 
|  |  | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as | 
|  | /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment | 
|  | /// specified in the intrinsic calls. | 
|  | bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &I, | 
|  | unsigned Intrinsic) const { | 
|  | auto &DL = I.getModule()->getDataLayout(); | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::aarch64_neon_ld2: | 
|  | case Intrinsic::aarch64_neon_ld3: | 
|  | case Intrinsic::aarch64_neon_ld4: | 
|  | case Intrinsic::aarch64_neon_ld1x2: | 
|  | case Intrinsic::aarch64_neon_ld1x3: | 
|  | case Intrinsic::aarch64_neon_ld1x4: | 
|  | case Intrinsic::aarch64_neon_ld2lane: | 
|  | case Intrinsic::aarch64_neon_ld3lane: | 
|  | case Intrinsic::aarch64_neon_ld4lane: | 
|  | case Intrinsic::aarch64_neon_ld2r: | 
|  | case Intrinsic::aarch64_neon_ld3r: | 
|  | case Intrinsic::aarch64_neon_ld4r: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | // Conservatively set memVT to the entire set of vectors loaded. | 
|  | uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; | 
|  | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); | 
|  | Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); | 
|  | Info.offset = 0; | 
|  | Info.align = 0; | 
|  | Info.vol = false; // volatile loads with NEON intrinsics not supported | 
|  | Info.readMem = true; | 
|  | Info.writeMem = false; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st2: | 
|  | case Intrinsic::aarch64_neon_st3: | 
|  | case Intrinsic::aarch64_neon_st4: | 
|  | case Intrinsic::aarch64_neon_st1x2: | 
|  | case Intrinsic::aarch64_neon_st1x3: | 
|  | case Intrinsic::aarch64_neon_st1x4: | 
|  | case Intrinsic::aarch64_neon_st2lane: | 
|  | case Intrinsic::aarch64_neon_st3lane: | 
|  | case Intrinsic::aarch64_neon_st4lane: { | 
|  | Info.opc = ISD::INTRINSIC_VOID; | 
|  | // Conservatively set memVT to the entire set of vectors stored. | 
|  | unsigned NumElts = 0; | 
|  | for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { | 
|  | Type *ArgTy = I.getArgOperand(ArgI)->getType(); | 
|  | if (!ArgTy->isVectorTy()) | 
|  | break; | 
|  | NumElts += DL.getTypeSizeInBits(ArgTy) / 64; | 
|  | } | 
|  | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); | 
|  | Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); | 
|  | Info.offset = 0; | 
|  | Info.align = 0; | 
|  | Info.vol = false; // volatile stores with NEON intrinsics not supported | 
|  | Info.readMem = false; | 
|  | Info.writeMem = true; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_ldaxr: | 
|  | case Intrinsic::aarch64_ldxr: { | 
|  | PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(PtrTy->getElementType()); | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); | 
|  | Info.vol = true; | 
|  | Info.readMem = true; | 
|  | Info.writeMem = false; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_stlxr: | 
|  | case Intrinsic::aarch64_stxr: { | 
|  | PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(PtrTy->getElementType()); | 
|  | Info.ptrVal = I.getArgOperand(1); | 
|  | Info.offset = 0; | 
|  | Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); | 
|  | Info.vol = true; | 
|  | Info.readMem = false; | 
|  | Info.writeMem = true; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_ldaxp: | 
|  | case Intrinsic::aarch64_ldxp: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::i128; | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = 16; | 
|  | Info.vol = true; | 
|  | Info.readMem = true; | 
|  | Info.writeMem = false; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_stlxp: | 
|  | case Intrinsic::aarch64_stxp: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::i128; | 
|  | Info.ptrVal = I.getArgOperand(2); | 
|  | Info.offset = 0; | 
|  | Info.align = 16; | 
|  | Info.vol = true; | 
|  | Info.readMem = false; | 
|  | Info.writeMem = true; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Truncations from 64-bit GPR to 32-bit GPR is free. | 
|  | bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  | bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  |  | 
|  | /// Check if it is profitable to hoist instruction in then/else to if. | 
|  | /// Not profitable if I and it's user can form a FMA instruction | 
|  | /// because we prefer FMSUB/FMADD. | 
|  | bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { | 
|  | if (I->getOpcode() != Instruction::FMul) | 
|  | return true; | 
|  |  | 
|  | if (I->getNumUses() != 1) | 
|  | return true; | 
|  |  | 
|  | Instruction *User = I->user_back(); | 
|  |  | 
|  | if (User && | 
|  | !(User->getOpcode() == Instruction::FSub || | 
|  | User->getOpcode() == Instruction::FAdd)) | 
|  | return true; | 
|  |  | 
|  | const TargetOptions &Options = getTargetMachine().Options; | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | EVT VT = getValueType(DL, User->getOperand(0)->getType()); | 
|  |  | 
|  | return !(isFMAFasterThanFMulAndFAdd(VT) && | 
|  | isOperationLegalOrCustom(ISD::FMA, VT) && | 
|  | (Options.AllowFPOpFusion == FPOpFusion::Fast || | 
|  | Options.UnsafeFPMath)); | 
|  | } | 
|  |  | 
|  | // All 32-bit GPR operations implicitly zero the high-half of the corresponding | 
|  | // 64-bit GPR. | 
|  | bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | return NumBits1 == 32 && NumBits2 == 64; | 
|  | } | 
|  | bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { | 
|  | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | return NumBits1 == 32 && NumBits2 == 64; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | 
|  | EVT VT1 = Val.getValueType(); | 
|  | if (isZExtFree(VT1, VT2)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Val.getOpcode() != ISD::LOAD) | 
|  | return false; | 
|  |  | 
|  | // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. | 
|  | return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && | 
|  | VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && | 
|  | VT1.getSizeInBits() <= 32); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { | 
|  | if (isa<FPExtInst>(Ext)) | 
|  | return false; | 
|  |  | 
|  | // Vector types are next free. | 
|  | if (Ext->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | for (const Use &U : Ext->uses()) { | 
|  | // The extension is free if we can fold it with a left shift in an | 
|  | // addressing mode or an arithmetic operation: add, sub, and cmp. | 
|  |  | 
|  | // Is there a shift? | 
|  | const Instruction *Instr = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | // Is this a constant shift? | 
|  | switch (Instr->getOpcode()) { | 
|  | case Instruction::Shl: | 
|  | if (!isa<ConstantInt>(Instr->getOperand(1))) | 
|  | return false; | 
|  | break; | 
|  | case Instruction::GetElementPtr: { | 
|  | gep_type_iterator GTI = gep_type_begin(Instr); | 
|  | auto &DL = Ext->getModule()->getDataLayout(); | 
|  | std::advance(GTI, U.getOperandNo()-1); | 
|  | Type *IdxTy = GTI.getIndexedType(); | 
|  | // This extension will end up with a shift because of the scaling factor. | 
|  | // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. | 
|  | // Get the shift amount based on the scaling factor: | 
|  | // log2(sizeof(IdxTy)) - log2(8). | 
|  | uint64_t ShiftAmt = | 
|  | countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3; | 
|  | // Is the constant foldable in the shift of the addressing mode? | 
|  | // I.e., shift amount is between 1 and 4 inclusive. | 
|  | if (ShiftAmt == 0 || ShiftAmt > 4) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | // Check if this is a noop. | 
|  | // trunc(sext ty1 to ty2) to ty1. | 
|  | if (Instr->getType() == Ext->getOperand(0)->getType()) | 
|  | continue; | 
|  | LLVM_FALLTHROUGH; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // At this point we can use the bfm family, so this extension is free | 
|  | // for that use. | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, | 
|  | unsigned &RequiredAligment) const { | 
|  | if (!LoadedType.isSimple() || | 
|  | (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) | 
|  | return false; | 
|  | // Cyclone supports unaligned accesses. | 
|  | RequiredAligment = 0; | 
|  | unsigned NumBits = LoadedType.getSizeInBits(); | 
|  | return NumBits == 32 || NumBits == 64; | 
|  | } | 
|  |  | 
|  | /// \brief Lower an interleaved load into a ldN intrinsic. | 
|  | /// | 
|  | /// E.g. Lower an interleaved load (Factor = 2): | 
|  | ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr | 
|  | ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements | 
|  | ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements | 
|  | /// | 
|  | ///      Into: | 
|  | ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) | 
|  | ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 | 
|  | ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 | 
|  | bool AArch64TargetLowering::lowerInterleavedLoad( | 
|  | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, | 
|  | ArrayRef<unsigned> Indices, unsigned Factor) const { | 
|  | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && | 
|  | "Invalid interleave factor"); | 
|  | assert(!Shuffles.empty() && "Empty shufflevector input"); | 
|  | assert(Shuffles.size() == Indices.size() && | 
|  | "Unmatched number of shufflevectors and indices"); | 
|  |  | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  |  | 
|  | VectorType *VecTy = Shuffles[0]->getType(); | 
|  | unsigned VecSize = DL.getTypeSizeInBits(VecTy); | 
|  |  | 
|  | // Skip if we do not have NEON and skip illegal vector types. | 
|  | if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128)) | 
|  | return false; | 
|  |  | 
|  | // A pointer vector can not be the return type of the ldN intrinsics. Need to | 
|  | // load integer vectors first and then convert to pointer vectors. | 
|  | Type *EltTy = VecTy->getVectorElementType(); | 
|  | if (EltTy->isPointerTy()) | 
|  | VecTy = | 
|  | VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); | 
|  |  | 
|  | Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace()); | 
|  | Type *Tys[2] = {VecTy, PtrTy}; | 
|  | static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, | 
|  | Intrinsic::aarch64_neon_ld3, | 
|  | Intrinsic::aarch64_neon_ld4}; | 
|  | Function *LdNFunc = | 
|  | Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); | 
|  |  | 
|  | IRBuilder<> Builder(LI); | 
|  | Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy); | 
|  |  | 
|  | CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN"); | 
|  |  | 
|  | // Replace uses of each shufflevector with the corresponding vector loaded | 
|  | // by ldN. | 
|  | for (unsigned i = 0; i < Shuffles.size(); i++) { | 
|  | ShuffleVectorInst *SVI = Shuffles[i]; | 
|  | unsigned Index = Indices[i]; | 
|  |  | 
|  | Value *SubVec = Builder.CreateExtractValue(LdN, Index); | 
|  |  | 
|  | // Convert the integer vector to pointer vector if the element is pointer. | 
|  | if (EltTy->isPointerTy()) | 
|  | SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType()); | 
|  |  | 
|  | SVI->replaceAllUsesWith(SubVec); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Get a mask consisting of sequential integers starting from \p Start. | 
|  | /// | 
|  | /// I.e. <Start, Start + 1, ..., Start + NumElts - 1> | 
|  | static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start, | 
|  | unsigned NumElts) { | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | for (unsigned i = 0; i < NumElts; i++) | 
|  | Mask.push_back(Builder.getInt32(Start + i)); | 
|  |  | 
|  | return ConstantVector::get(Mask); | 
|  | } | 
|  |  | 
|  | /// \brief Lower an interleaved store into a stN intrinsic. | 
|  | /// | 
|  | /// E.g. Lower an interleaved store (Factor = 3): | 
|  | ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, | 
|  | ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> | 
|  | ///        store <12 x i32> %i.vec, <12 x i32>* %ptr | 
|  | /// | 
|  | ///      Into: | 
|  | ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> | 
|  | ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> | 
|  | ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> | 
|  | ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) | 
|  | /// | 
|  | /// Note that the new shufflevectors will be removed and we'll only generate one | 
|  | /// st3 instruction in CodeGen. | 
|  | bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, | 
|  | ShuffleVectorInst *SVI, | 
|  | unsigned Factor) const { | 
|  | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && | 
|  | "Invalid interleave factor"); | 
|  |  | 
|  | VectorType *VecTy = SVI->getType(); | 
|  | assert(VecTy->getVectorNumElements() % Factor == 0 && | 
|  | "Invalid interleaved store"); | 
|  |  | 
|  | unsigned NumSubElts = VecTy->getVectorNumElements() / Factor; | 
|  | Type *EltTy = VecTy->getVectorElementType(); | 
|  | VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts); | 
|  |  | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  | unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); | 
|  |  | 
|  | // Skip if we do not have NEON and skip illegal vector types. | 
|  | if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128)) | 
|  | return false; | 
|  |  | 
|  | Value *Op0 = SVI->getOperand(0); | 
|  | Value *Op1 = SVI->getOperand(1); | 
|  | IRBuilder<> Builder(SI); | 
|  |  | 
|  | // StN intrinsics don't support pointer vectors as arguments. Convert pointer | 
|  | // vectors to integer vectors. | 
|  | if (EltTy->isPointerTy()) { | 
|  | Type *IntTy = DL.getIntPtrType(EltTy); | 
|  | unsigned NumOpElts = | 
|  | dyn_cast<VectorType>(Op0->getType())->getVectorNumElements(); | 
|  |  | 
|  | // Convert to the corresponding integer vector. | 
|  | Type *IntVecTy = VectorType::get(IntTy, NumOpElts); | 
|  | Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); | 
|  | Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); | 
|  |  | 
|  | SubVecTy = VectorType::get(IntTy, NumSubElts); | 
|  | } | 
|  |  | 
|  | Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); | 
|  | Type *Tys[2] = {SubVecTy, PtrTy}; | 
|  | static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, | 
|  | Intrinsic::aarch64_neon_st3, | 
|  | Intrinsic::aarch64_neon_st4}; | 
|  | Function *StNFunc = | 
|  | Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); | 
|  |  | 
|  | SmallVector<Value *, 5> Ops; | 
|  |  | 
|  | // Split the shufflevector operands into sub vectors for the new stN call. | 
|  | for (unsigned i = 0; i < Factor; i++) | 
|  | Ops.push_back(Builder.CreateShuffleVector( | 
|  | Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts))); | 
|  |  | 
|  | Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy)); | 
|  | Builder.CreateCall(StNFunc, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, | 
|  | unsigned AlignCheck) { | 
|  | return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && | 
|  | (DstAlign == 0 || DstAlign % AlignCheck == 0)); | 
|  | } | 
|  |  | 
|  | EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, | 
|  | unsigned SrcAlign, bool IsMemset, | 
|  | bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | // Don't use AdvSIMD to implement 16-byte memset. It would have taken one | 
|  | // instruction to materialize the v2i64 zero and one store (with restrictive | 
|  | // addressing mode). Just do two i64 store of zero-registers. | 
|  | bool Fast; | 
|  | const Function *F = MF.getFunction(); | 
|  | if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && | 
|  | !F->hasFnAttribute(Attribute::NoImplicitFloat) && | 
|  | (memOpAlign(SrcAlign, DstAlign, 16) || | 
|  | (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast))) | 
|  | return MVT::f128; | 
|  |  | 
|  | if (Size >= 8 && | 
|  | (memOpAlign(SrcAlign, DstAlign, 8) || | 
|  | (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast))) | 
|  | return MVT::i64; | 
|  |  | 
|  | if (Size >= 4 && | 
|  | (memOpAlign(SrcAlign, DstAlign, 4) || | 
|  | (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast))) | 
|  | return MVT::i32; | 
|  |  | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  | // 12-bit optionally shifted immediates are legal for adds. | 
|  | bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { | 
|  | // Avoid UB for INT64_MIN. | 
|  | if (Immed == std::numeric_limits<int64_t>::min()) | 
|  | return false; | 
|  | // Same encoding for add/sub, just flip the sign. | 
|  | Immed = std::abs(Immed); | 
|  | return ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); | 
|  | } | 
|  |  | 
|  | // Integer comparisons are implemented with ADDS/SUBS, so the range of valid | 
|  | // immediates is the same as for an add or a sub. | 
|  | bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { | 
|  | return isLegalAddImmediate(Immed); | 
|  | } | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | // AArch64 has five basic addressing modes: | 
|  | //  reg | 
|  | //  reg + 9-bit signed offset | 
|  | //  reg + SIZE_IN_BYTES * 12-bit unsigned offset | 
|  | //  reg1 + reg2 | 
|  | //  reg + SIZE_IN_BYTES * reg | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // No reg+reg+imm addressing. | 
|  | if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) | 
|  | return false; | 
|  |  | 
|  | // check reg + imm case: | 
|  | // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 | 
|  | uint64_t NumBytes = 0; | 
|  | if (Ty->isSized()) { | 
|  | uint64_t NumBits = DL.getTypeSizeInBits(Ty); | 
|  | NumBytes = NumBits / 8; | 
|  | if (!isPowerOf2_64(NumBits)) | 
|  | NumBytes = 0; | 
|  | } | 
|  |  | 
|  | if (!AM.Scale) { | 
|  | int64_t Offset = AM.BaseOffs; | 
|  |  | 
|  | // 9-bit signed offset | 
|  | if (isInt<9>(Offset)) | 
|  | return true; | 
|  |  | 
|  | // 12-bit unsigned offset | 
|  | unsigned shift = Log2_64(NumBytes); | 
|  | if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && | 
|  | // Must be a multiple of NumBytes (NumBytes is a power of 2) | 
|  | (Offset >> shift) << shift == Offset) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 | 
|  |  | 
|  | return !AM.Scale || AM.Scale == 1 || | 
|  | (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); | 
|  | } | 
|  |  | 
|  | int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | // Scaling factors are not free at all. | 
|  | // Operands                     | Rt Latency | 
|  | // ------------------------------------------- | 
|  | // Rt, [Xn, Xm]                 | 4 | 
|  | // ------------------------------------------- | 
|  | // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5 | 
|  | // Rt, [Xn, Wm, <extend> #imm]  | | 
|  | if (isLegalAddressingMode(DL, AM, Ty, AS)) | 
|  | // Scale represents reg2 * scale, thus account for 1 if | 
|  | // it is not equal to 0 or 1. | 
|  | return AM.Scale != 0 && AM.Scale != 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MCPhysReg * | 
|  | AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { | 
|  | // LR is a callee-save register, but we must treat it as clobbered by any call | 
|  | // site. Hence we include LR in the scratch registers, which are in turn added | 
|  | // as implicit-defs for stackmaps and patchpoints. | 
|  | static const MCPhysReg ScratchRegs[] = { | 
|  | AArch64::X16, AArch64::X17, AArch64::LR, 0 | 
|  | }; | 
|  | return ScratchRegs; | 
|  | } | 
|  |  | 
|  | bool | 
|  | AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine | 
|  | // it with shift to let it be lowered to UBFX. | 
|  | if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && | 
|  | isa<ConstantSDNode>(N->getOperand(1))) { | 
|  | uint64_t TruncMask = N->getConstantOperandVal(1); | 
|  | if (isMask_64(TruncMask) && | 
|  | N->getOperand(0).getOpcode() == ISD::SRL && | 
|  | isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return false; | 
|  |  | 
|  | int64_t Val = Imm.getSExtValue(); | 
|  | if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) | 
|  | return true; | 
|  |  | 
|  | if ((int64_t)Val < 0) | 
|  | Val = ~Val; | 
|  | if (BitSize == 32) | 
|  | Val &= (1LL << 32) - 1; | 
|  |  | 
|  | unsigned LZ = countLeadingZeros((uint64_t)Val); | 
|  | unsigned Shift = (63 - LZ) / 16; | 
|  | // MOVZ is free so return true for one or fewer MOVK. | 
|  | return Shift < 3; | 
|  | } | 
|  |  | 
|  | /// Turn vector tests of the signbit in the form of: | 
|  | ///   xor (sra X, elt_size(X)-1), -1 | 
|  | /// into: | 
|  | ///   cmge X, X, #0 | 
|  | static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!Subtarget->hasNEON() || !VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // There must be a shift right algebraic before the xor, and the xor must be a | 
|  | // 'not' operation. | 
|  | SDValue Shift = N->getOperand(0); | 
|  | SDValue Ones = N->getOperand(1); | 
|  | if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || | 
|  | !ISD::isBuildVectorAllOnes(Ones.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // The shift should be smearing the sign bit across each vector element. | 
|  | auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); | 
|  | EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); | 
|  | if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Generate SUBS and CSEL for integer abs. | 
|  | static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) | 
|  | // and change it to SUB and CSEL. | 
|  | if (VT.isInteger() && N->getOpcode() == ISD::XOR && | 
|  | N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && | 
|  | N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) | 
|  | if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) | 
|  | if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { | 
|  | SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | 
|  | N0.getOperand(0)); | 
|  | // Generate SUBS & CSEL. | 
|  | SDValue Cmp = | 
|  | DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), | 
|  | N0.getOperand(0), DAG.getConstant(0, DL, VT)); | 
|  | return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, | 
|  | DAG.getConstant(AArch64CC::PL, DL, MVT::i32), | 
|  | SDValue(Cmp.getNode(), 1)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) | 
|  | return Cmp; | 
|  |  | 
|  | return performIntegerAbsCombine(N, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDNode *> *Created) const { | 
|  | AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | 
|  | if (isIntDivCheap(N->getValueType(0), Attr)) | 
|  | return SDValue(N,0); // Lower SDIV as SDIV | 
|  |  | 
|  | // fold (sdiv X, pow2) | 
|  | EVT VT = N->getValueType(0); | 
|  | if ((VT != MVT::i32 && VT != MVT::i64) || | 
|  | !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | unsigned Lg2 = Divisor.countTrailingZeros(); | 
|  | SDValue Zero = DAG.getConstant(0, DL, VT); | 
|  | SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); | 
|  |  | 
|  | // Add (N0 < 0) ? Pow2 - 1 : 0; | 
|  | SDValue CCVal; | 
|  | SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); | 
|  | SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); | 
|  |  | 
|  | if (Created) { | 
|  | Created->push_back(Cmp.getNode()); | 
|  | Created->push_back(Add.getNode()); | 
|  | Created->push_back(CSel.getNode()); | 
|  | } | 
|  |  | 
|  | // Divide by pow2. | 
|  | SDValue SRA = | 
|  | DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); | 
|  |  | 
|  | // If we're dividing by a positive value, we're done.  Otherwise, we must | 
|  | // negate the result. | 
|  | if (Divisor.isNonNegative()) | 
|  | return SRA; | 
|  |  | 
|  | if (Created) | 
|  | Created->push_back(SRA.getNode()); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); | 
|  | } | 
|  |  | 
|  | static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | // The below optimizations require a constant RHS. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); | 
|  | const APInt &ConstValue = C->getAPIntValue(); | 
|  |  | 
|  | // Multiplication of a power of two plus/minus one can be done more | 
|  | // cheaply as as shift+add/sub. For now, this is true unilaterally. If | 
|  | // future CPUs have a cheaper MADD instruction, this may need to be | 
|  | // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and | 
|  | // 64-bit is 5 cycles, so this is always a win. | 
|  | // More aggressively, some multiplications N0 * C can be lowered to | 
|  | // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, | 
|  | // e.g. 6=3*2=(2+1)*2. | 
|  | // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 | 
|  | // which equals to (1+2)*16-(1+2). | 
|  | SDValue N0 = N->getOperand(0); | 
|  | // TrailingZeroes is used to test if the mul can be lowered to | 
|  | // shift+add+shift. | 
|  | unsigned TrailingZeroes = ConstValue.countTrailingZeros(); | 
|  | if (TrailingZeroes) { | 
|  | // Conservatively do not lower to shift+add+shift if the mul might be | 
|  | // folded into smul or umul. | 
|  | if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || | 
|  | isZeroExtended(N0.getNode(), DAG))) | 
|  | return SDValue(); | 
|  | // Conservatively do not lower to shift+add+shift if the mul might be | 
|  | // folded into madd or msub. | 
|  | if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || | 
|  | N->use_begin()->getOpcode() == ISD::SUB)) | 
|  | return SDValue(); | 
|  | } | 
|  | // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub | 
|  | // and shift+add+shift. | 
|  | APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); | 
|  |  | 
|  | unsigned ShiftAmt, AddSubOpc; | 
|  | // Is the shifted value the LHS operand of the add/sub? | 
|  | bool ShiftValUseIsN0 = true; | 
|  | // Do we need to negate the result? | 
|  | bool NegateResult = false; | 
|  |  | 
|  | if (ConstValue.isNonNegative()) { | 
|  | // (mul x, 2^N + 1) => (add (shl x, N), x) | 
|  | // (mul x, 2^N - 1) => (sub (shl x, N), x) | 
|  | // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) | 
|  | APInt SCVMinus1 = ShiftedConstValue - 1; | 
|  | APInt CVPlus1 = ConstValue + 1; | 
|  | if (SCVMinus1.isPowerOf2()) { | 
|  | ShiftAmt = SCVMinus1.logBase2(); | 
|  | AddSubOpc = ISD::ADD; | 
|  | } else if (CVPlus1.isPowerOf2()) { | 
|  | ShiftAmt = CVPlus1.logBase2(); | 
|  | AddSubOpc = ISD::SUB; | 
|  | } else | 
|  | return SDValue(); | 
|  | } else { | 
|  | // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) | 
|  | // (mul x, -(2^N + 1)) => - (add (shl x, N), x) | 
|  | APInt CVNegPlus1 = -ConstValue + 1; | 
|  | APInt CVNegMinus1 = -ConstValue - 1; | 
|  | if (CVNegPlus1.isPowerOf2()) { | 
|  | ShiftAmt = CVNegPlus1.logBase2(); | 
|  | AddSubOpc = ISD::SUB; | 
|  | ShiftValUseIsN0 = false; | 
|  | } else if (CVNegMinus1.isPowerOf2()) { | 
|  | ShiftAmt = CVNegMinus1.logBase2(); | 
|  | AddSubOpc = ISD::ADD; | 
|  | NegateResult = true; | 
|  | } else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, | 
|  | DAG.getConstant(ShiftAmt, DL, MVT::i64)); | 
|  |  | 
|  | SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; | 
|  | SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; | 
|  | SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); | 
|  | assert(!(NegateResult && TrailingZeroes) && | 
|  | "NegateResult and TrailingZeroes cannot both be true for now."); | 
|  | // Negate the result. | 
|  | if (NegateResult) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); | 
|  | // Shift the result. | 
|  | if (TrailingZeroes) | 
|  | return DAG.getNode(ISD::SHL, DL, VT, Res, | 
|  | DAG.getConstant(TrailingZeroes, DL, MVT::i64)); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, | 
|  | SelectionDAG &DAG) { | 
|  | // Take advantage of vector comparisons producing 0 or -1 in each lane to | 
|  | // optimize away operation when it's from a constant. | 
|  | // | 
|  | // The general transformation is: | 
|  | //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> | 
|  | //       AND(VECTOR_CMP(x,y), constant2) | 
|  | //    constant2 = UNARYOP(constant) | 
|  |  | 
|  | // Early exit if this isn't a vector operation, the operand of the | 
|  | // unary operation isn't a bitwise AND, or if the sizes of the operations | 
|  | // aren't the same. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || | 
|  | N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || | 
|  | VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Now check that the other operand of the AND is a constant. We could | 
|  | // make the transformation for non-constant splats as well, but it's unclear | 
|  | // that would be a benefit as it would not eliminate any operations, just | 
|  | // perform one more step in scalar code before moving to the vector unit. | 
|  | if (BuildVectorSDNode *BV = | 
|  | dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { | 
|  | // Bail out if the vector isn't a constant. | 
|  | if (!BV->isConstant()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Everything checks out. Build up the new and improved node. | 
|  | SDLoc DL(N); | 
|  | EVT IntVT = BV->getValueType(0); | 
|  | // Create a new constant of the appropriate type for the transformed | 
|  | // DAG. | 
|  | SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); | 
|  | // The AND node needs bitcasts to/from an integer vector type around it. | 
|  | SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, | 
|  | N->getOperand(0)->getOperand(0), MaskConst); | 
|  | SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | // First try to optimize away the conversion when it's conditionally from | 
|  | // a constant. Vectors only. | 
|  | if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::f32 && VT != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only optimize when the source and destination types have the same width. | 
|  | if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the result of an integer load is only used by an integer-to-float | 
|  | // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. | 
|  | // This eliminates an "integer-to-vector-move" UOP and improves throughput. | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | // Do not change the width of a volatile load. | 
|  | !cast<LoadSDNode>(N0)->isVolatile()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), LN0->getAlignment(), | 
|  | LN0->getMemOperand()->getFlags()); | 
|  |  | 
|  | // Make sure successors of the original load stay after it by updating them | 
|  | // to use the new Chain. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); | 
|  |  | 
|  | unsigned Opcode = | 
|  | (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; | 
|  | return DAG.getNode(Opcode, SDLoc(N), VT, Load); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Fold a floating-point multiply by power of two into floating-point to | 
|  | /// fixed-point conversion. | 
|  | static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasNEON()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || | 
|  | Op.getOpcode() != ISD::FMUL) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ConstVec = Op->getOperand(1); | 
|  | if (!isa<BuildVectorSDNode>(ConstVec)) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); | 
|  | uint32_t FloatBits = FloatTy.getSizeInBits(); | 
|  | if (FloatBits != 32 && FloatBits != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); | 
|  | uint32_t IntBits = IntTy.getSizeInBits(); | 
|  | if (IntBits != 16 && IntBits != 32 && IntBits != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid conversions where iN is larger than the float (e.g., float -> i64). | 
|  | if (IntBits > FloatBits) | 
|  | return SDValue(); | 
|  |  | 
|  | BitVector UndefElements; | 
|  | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); | 
|  | int32_t Bits = IntBits == 64 ? 64 : 32; | 
|  | int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); | 
|  | if (C == -1 || C == 0 || C > Bits) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT ResTy; | 
|  | unsigned NumLanes = Op.getValueType().getVectorNumElements(); | 
|  | switch (NumLanes) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case 2: | 
|  | ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; | 
|  | break; | 
|  | case 4: | 
|  | ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && | 
|  | "Illegal vector type after legalization"); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
|  | unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs | 
|  | : Intrinsic::aarch64_neon_vcvtfp2fxu; | 
|  | SDValue FixConv = | 
|  | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, | 
|  | DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), | 
|  | Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); | 
|  | // We can handle smaller integers by generating an extra trunc. | 
|  | if (IntBits < FloatBits) | 
|  | FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); | 
|  |  | 
|  | return FixConv; | 
|  | } | 
|  |  | 
|  | /// Fold a floating-point divide by power of two into fixed-point to | 
|  | /// floating-point conversion. | 
|  | static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasNEON()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op = N->getOperand(0); | 
|  | unsigned Opc = Op->getOpcode(); | 
|  | if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || | 
|  | !Op.getOperand(0).getValueType().isSimple() || | 
|  | (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ConstVec = N->getOperand(1); | 
|  | if (!isa<BuildVectorSDNode>(ConstVec)) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); | 
|  | int32_t IntBits = IntTy.getSizeInBits(); | 
|  | if (IntBits != 16 && IntBits != 32 && IntBits != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); | 
|  | int32_t FloatBits = FloatTy.getSizeInBits(); | 
|  | if (FloatBits != 32 && FloatBits != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid conversions where iN is larger than the float (e.g., i64 -> float). | 
|  | if (IntBits > FloatBits) | 
|  | return SDValue(); | 
|  |  | 
|  | BitVector UndefElements; | 
|  | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); | 
|  | int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); | 
|  | if (C == -1 || C == 0 || C > FloatBits) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT ResTy; | 
|  | unsigned NumLanes = Op.getValueType().getVectorNumElements(); | 
|  | switch (NumLanes) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case 2: | 
|  | ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; | 
|  | break; | 
|  | case 4: | 
|  | ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue ConvInput = Op.getOperand(0); | 
|  | bool IsSigned = Opc == ISD::SINT_TO_FP; | 
|  | if (IntBits < FloatBits) | 
|  | ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, | 
|  | ResTy, ConvInput); | 
|  |  | 
|  | unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp | 
|  | : Intrinsic::aarch64_neon_vcvtfxu2fp; | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), | 
|  | DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, | 
|  | DAG.getConstant(C, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | /// An EXTR instruction is made up of two shifts, ORed together. This helper | 
|  | /// searches for and classifies those shifts. | 
|  | static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, | 
|  | bool &FromHi) { | 
|  | if (N.getOpcode() == ISD::SHL) | 
|  | FromHi = false; | 
|  | else if (N.getOpcode() == ISD::SRL) | 
|  | FromHi = true; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N.getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | ShiftAmount = N->getConstantOperandVal(1); | 
|  | Src = N->getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EXTR instruction extracts a contiguous chunk of bits from two existing | 
|  | /// registers viewed as a high/low pair. This function looks for the pattern: | 
|  | /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an | 
|  | /// EXTR. Can't quite be done in TableGen because the two immediates aren't | 
|  | /// independent. | 
|  | static SDValue tryCombineToEXTR(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::OR && "Unexpected root"); | 
|  |  | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS; | 
|  | uint32_t ShiftLHS = 0; | 
|  | bool LHSFromHi = 0; | 
|  | if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue RHS; | 
|  | uint32_t ShiftRHS = 0; | 
|  | bool RHSFromHi = 0; | 
|  | if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If they're both trying to come from the high part of the register, they're | 
|  | // not really an EXTR. | 
|  | if (LHSFromHi == RHSFromHi) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LHSFromHi) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(ShiftLHS, ShiftRHS); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, | 
|  | DAG.getConstant(ShiftRHS, DL, MVT::i64)); | 
|  | } | 
|  |  | 
|  | static SDValue tryCombineToBSL(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (N0.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if (N1.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | // We only have to look for constant vectors here since the general, variable | 
|  | // case can be handled in TableGen. | 
|  | unsigned Bits = VT.getScalarSizeInBits(); | 
|  | uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); | 
|  | for (int i = 1; i >= 0; --i) | 
|  | for (int j = 1; j >= 0; --j) { | 
|  | BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); | 
|  | BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); | 
|  | if (!BVN0 || !BVN1) | 
|  | continue; | 
|  |  | 
|  | bool FoundMatch = true; | 
|  | for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { | 
|  | ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); | 
|  | ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); | 
|  | if (!CN0 || !CN1 || | 
|  | CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { | 
|  | FoundMatch = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FoundMatch) | 
|  | return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), | 
|  | N0->getOperand(1 - i), N1->getOperand(1 - j)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue Res = tryCombineToEXTR(N, DCI)) | 
|  | return Res; | 
|  |  | 
|  | if (SDValue Res = tryCombineToBSL(N, DCI)) | 
|  | return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performSRLCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the | 
|  | // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) | 
|  | // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (N0.getOpcode() == ISD::BSWAP) { | 
|  | SDLoc DL(N); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { | 
|  | uint64_t ShiftAmt = C->getZExtValue(); | 
|  | if (VT == MVT::i32 && ShiftAmt == 16 && | 
|  | DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); | 
|  | if (VT == MVT::i64 && ShiftAmt == 32 && | 
|  | DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performBitcastCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | // Wait 'til after everything is legalized to try this. That way we have | 
|  | // legal vector types and such. | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Remove extraneous bitcasts around an extract_subvector. | 
|  | // For example, | 
|  | //    (v4i16 (bitconvert | 
|  | //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) | 
|  | //  becomes | 
|  | //    (extract_subvector ((v8i16 ...), (i64 4))) | 
|  |  | 
|  | // Only interested in 64-bit vectors as the ultimate result. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  | if (VT.getSimpleVT().getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  | // Is the operand an extract_subvector starting at the beginning or halfway | 
|  | // point of the vector? A low half may also come through as an | 
|  | // EXTRACT_SUBREG, so look for that, too. | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && | 
|  | !(Op0->isMachineOpcode() && | 
|  | Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) | 
|  | return SDValue(); | 
|  | uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); | 
|  | if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { | 
|  | if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) | 
|  | return SDValue(); | 
|  | } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { | 
|  | if (idx != AArch64::dsub) | 
|  | return SDValue(); | 
|  | // The dsub reference is equivalent to a lane zero subvector reference. | 
|  | idx = 0; | 
|  | } | 
|  | // Look through the bitcast of the input to the extract. | 
|  | if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) | 
|  | return SDValue(); | 
|  | SDValue Source = Op0->getOperand(0)->getOperand(0); | 
|  | // If the source type has twice the number of elements as our destination | 
|  | // type, we know this is an extract of the high or low half of the vector. | 
|  | EVT SVT = Source->getValueType(0); | 
|  | if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) | 
|  | return SDValue(); | 
|  |  | 
|  | DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); | 
|  |  | 
|  | // Create the simplified form to just extract the low or high half of the | 
|  | // vector directly rather than bothering with the bitcasts. | 
|  | SDLoc dl(N); | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  | if (idx) { | 
|  | SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); | 
|  | } else { | 
|  | SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32); | 
|  | return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, | 
|  | Source, SubReg), | 
|  | 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue performConcatVectorsCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  |  | 
|  | // Optimize concat_vectors of truncated vectors, where the intermediate | 
|  | // type is illegal, to avoid said illegality,  e.g., | 
|  | //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), | 
|  | //                          (v2i16 (truncate (v2i64))))) | 
|  | // -> | 
|  | //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), | 
|  | //                                    (v4i32 (bitcast (v2i64))), | 
|  | //                                    <0, 2, 4, 6>))) | 
|  | // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed | 
|  | // on both input and result type, so we might generate worse code. | 
|  | // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. | 
|  | if (N->getNumOperands() == 2 && | 
|  | N0->getOpcode() == ISD::TRUNCATE && | 
|  | N1->getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | SDValue N10 = N1->getOperand(0); | 
|  | EVT N00VT = N00.getValueType(); | 
|  |  | 
|  | if (N00VT == N10.getValueType() && | 
|  | (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && | 
|  | N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { | 
|  | MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); | 
|  | SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); | 
|  | for (size_t i = 0; i < Mask.size(); ++i) | 
|  | Mask[i] = i * 2; | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getVectorShuffle( | 
|  | MidVT, dl, | 
|  | DAG.getNode(ISD::BITCAST, dl, MidVT, N00), | 
|  | DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait 'til after everything is legalized to try this. That way we have | 
|  | // legal vector types and such. | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector | 
|  | // splat. The indexed instructions are going to be expecting a DUPLANE64, so | 
|  | // canonicalise to that. | 
|  | if (N0 == N1 && VT.getVectorNumElements() == 2) { | 
|  | assert(VT.getScalarSizeInBits() == 64); | 
|  | return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), | 
|  | DAG.getConstant(0, dl, MVT::i64)); | 
|  | } | 
|  |  | 
|  | // Canonicalise concat_vectors so that the right-hand vector has as few | 
|  | // bit-casts as possible before its real operation. The primary matching | 
|  | // destination for these operations will be the narrowing "2" instructions, | 
|  | // which depend on the operation being performed on this right-hand vector. | 
|  | // For example, | 
|  | //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS)))) | 
|  | // becomes | 
|  | //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) | 
|  |  | 
|  | if (N1->getOpcode() != ISD::BITCAST) | 
|  | return SDValue(); | 
|  | SDValue RHS = N1->getOperand(0); | 
|  | MVT RHSTy = RHS.getValueType().getSimpleVT(); | 
|  | // If the RHS is not a vector, this is not the pattern we're looking for. | 
|  | if (!RHSTy.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); | 
|  |  | 
|  | MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), | 
|  | RHSTy.getVectorNumElements() * 2); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, | 
|  | DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), | 
|  | RHS)); | 
|  | } | 
|  |  | 
|  | static SDValue tryCombineFixedPointConvert(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | // Wait 'til after everything is legalized to try this. That way we have | 
|  | // legal vector types and such. | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  | // Transform a scalar conversion of a value from a lane extract into a | 
|  | // lane extract of a vector conversion. E.g., from foo1 to foo2: | 
|  | // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } | 
|  | // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } | 
|  | // | 
|  | // The second form interacts better with instruction selection and the | 
|  | // register allocator to avoid cross-class register copies that aren't | 
|  | // coalescable due to a lane reference. | 
|  |  | 
|  | // Check the operand and see if it originates from a lane extract. | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | // Yep, no additional predication needed. Perform the transform. | 
|  | SDValue IID = N->getOperand(0); | 
|  | SDValue Shift = N->getOperand(2); | 
|  | SDValue Vec = Op1.getOperand(0); | 
|  | SDValue Lane = Op1.getOperand(1); | 
|  | EVT ResTy = N->getValueType(0); | 
|  | EVT VecResTy; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // The vector width should be 128 bits by the time we get here, even | 
|  | // if it started as 64 bits (the extract_vector handling will have | 
|  | // done so). | 
|  | assert(Vec.getValueSizeInBits() == 128 && | 
|  | "unexpected vector size on extract_vector_elt!"); | 
|  | if (Vec.getValueType() == MVT::v4i32) | 
|  | VecResTy = MVT::v4f32; | 
|  | else if (Vec.getValueType() == MVT::v2i64) | 
|  | VecResTy = MVT::v2f64; | 
|  | else | 
|  | llvm_unreachable("unexpected vector type!"); | 
|  |  | 
|  | SDValue Convert = | 
|  | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // AArch64 high-vector "long" operations are formed by performing the non-high | 
|  | // version on an extract_subvector of each operand which gets the high half: | 
|  | // | 
|  | //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) | 
|  | // | 
|  | // However, there are cases which don't have an extract_high explicitly, but | 
|  | // have another operation that can be made compatible with one for free. For | 
|  | // example: | 
|  | // | 
|  | //  (dupv64 scalar) --> (extract_high (dup128 scalar)) | 
|  | // | 
|  | // This routine does the actual conversion of such DUPs, once outer routines | 
|  | // have determined that everything else is in order. | 
|  | // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold | 
|  | // similarly here. | 
|  | static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { | 
|  | switch (N.getOpcode()) { | 
|  | case AArch64ISD::DUP: | 
|  | case AArch64ISD::DUPLANE8: | 
|  | case AArch64ISD::DUPLANE16: | 
|  | case AArch64ISD::DUPLANE32: | 
|  | case AArch64ISD::DUPLANE64: | 
|  | case AArch64ISD::MOVI: | 
|  | case AArch64ISD::MOVIshift: | 
|  | case AArch64ISD::MOVIedit: | 
|  | case AArch64ISD::MOVImsl: | 
|  | case AArch64ISD::MVNIshift: | 
|  | case AArch64ISD::MVNImsl: | 
|  | break; | 
|  | default: | 
|  | // FMOV could be supported, but isn't very useful, as it would only occur | 
|  | // if you passed a bitcast' floating point immediate to an eligible long | 
|  | // integer op (addl, smull, ...). | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | MVT NarrowTy = N.getSimpleValueType(); | 
|  | if (!NarrowTy.is64BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT ElementTy = NarrowTy.getVectorElementType(); | 
|  | unsigned NumElems = NarrowTy.getVectorNumElements(); | 
|  | MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); | 
|  |  | 
|  | SDLoc dl(N); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, | 
|  | DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), | 
|  | DAG.getConstant(NumElems, dl, MVT::i64)); | 
|  | } | 
|  |  | 
|  | static bool isEssentiallyExtractSubvector(SDValue N) { | 
|  | if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) | 
|  | return true; | 
|  |  | 
|  | return N.getOpcode() == ISD::BITCAST && | 
|  | N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; | 
|  | } | 
|  |  | 
|  | /// \brief Helper structure to keep track of ISD::SET_CC operands. | 
|  | struct GenericSetCCInfo { | 
|  | const SDValue *Opnd0; | 
|  | const SDValue *Opnd1; | 
|  | ISD::CondCode CC; | 
|  | }; | 
|  |  | 
|  | /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code. | 
|  | struct AArch64SetCCInfo { | 
|  | const SDValue *Cmp; | 
|  | AArch64CC::CondCode CC; | 
|  | }; | 
|  |  | 
|  | /// \brief Helper structure to keep track of SetCC information. | 
|  | union SetCCInfo { | 
|  | GenericSetCCInfo Generic; | 
|  | AArch64SetCCInfo AArch64; | 
|  | }; | 
|  |  | 
|  | /// \brief Helper structure to be able to read SetCC information.  If set to | 
|  | /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a | 
|  | /// GenericSetCCInfo. | 
|  | struct SetCCInfoAndKind { | 
|  | SetCCInfo Info; | 
|  | bool IsAArch64; | 
|  | }; | 
|  |  | 
|  | /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or | 
|  | /// an | 
|  | /// AArch64 lowered one. | 
|  | /// \p SetCCInfo is filled accordingly. | 
|  | /// \post SetCCInfo is meanginfull only when this function returns true. | 
|  | /// \return True when Op is a kind of SET_CC operation. | 
|  | static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { | 
|  | // If this is a setcc, this is straight forward. | 
|  | if (Op.getOpcode() == ISD::SETCC) { | 
|  | SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); | 
|  | SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); | 
|  | SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SetCCInfo.IsAArch64 = false; | 
|  | return true; | 
|  | } | 
|  | // Otherwise, check if this is a matching csel instruction. | 
|  | // In other words: | 
|  | // - csel 1, 0, cc | 
|  | // - csel 0, 1, !cc | 
|  | if (Op.getOpcode() != AArch64ISD::CSEL) | 
|  | return false; | 
|  | // Set the information about the operands. | 
|  | // TODO: we want the operands of the Cmp not the csel | 
|  | SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); | 
|  | SetCCInfo.IsAArch64 = true; | 
|  | SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( | 
|  | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); | 
|  |  | 
|  | // Check that the operands matches the constraints: | 
|  | // (1) Both operands must be constants. | 
|  | // (2) One must be 1 and the other must be 0. | 
|  | ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
|  | ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  |  | 
|  | // Check (1). | 
|  | if (!TValue || !FValue) | 
|  | return false; | 
|  |  | 
|  | // Check (2). | 
|  | if (!TValue->isOne()) { | 
|  | // Update the comparison when we are interested in !cc. | 
|  | std::swap(TValue, FValue); | 
|  | SetCCInfo.Info.AArch64.CC = | 
|  | AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); | 
|  | } | 
|  | return TValue->isOne() && FValue->isNullValue(); | 
|  | } | 
|  |  | 
|  | // Returns true if Op is setcc or zext of setcc. | 
|  | static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { | 
|  | if (isSetCC(Op, Info)) | 
|  | return true; | 
|  | return ((Op.getOpcode() == ISD::ZERO_EXTEND) && | 
|  | isSetCC(Op->getOperand(0), Info)); | 
|  | } | 
|  |  | 
|  | // The folding we want to perform is: | 
|  | // (add x, [zext] (setcc cc ...) ) | 
|  | //   --> | 
|  | // (csel x, (add x, 1), !cc ...) | 
|  | // | 
|  | // The latter will get matched to a CSINC instruction. | 
|  | static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { | 
|  | assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); | 
|  | SDValue LHS = Op->getOperand(0); | 
|  | SDValue RHS = Op->getOperand(1); | 
|  | SetCCInfoAndKind InfoAndKind; | 
|  |  | 
|  | // If neither operand is a SET_CC, give up. | 
|  | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { | 
|  | std::swap(LHS, RHS); | 
|  | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: This could be generatized to work for FP comparisons. | 
|  | EVT CmpVT = InfoAndKind.IsAArch64 | 
|  | ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() | 
|  | : InfoAndKind.Info.Generic.Opnd0->getValueType(); | 
|  | if (CmpVT != MVT::i32 && CmpVT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CCVal; | 
|  | SDValue Cmp; | 
|  | SDLoc dl(Op); | 
|  | if (InfoAndKind.IsAArch64) { | 
|  | CCVal = DAG.getConstant( | 
|  | AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, | 
|  | MVT::i32); | 
|  | Cmp = *InfoAndKind.Info.AArch64.Cmp; | 
|  | } else | 
|  | Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, | 
|  | *InfoAndKind.Info.Generic.Opnd1, | 
|  | ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), | 
|  | CCVal, DAG, dl); | 
|  |  | 
|  | EVT VT = Op->getValueType(0); | 
|  | LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); | 
|  | return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); | 
|  | } | 
|  |  | 
|  | // The basic add/sub long vector instructions have variants with "2" on the end | 
|  | // which act on the high-half of their inputs. They are normally matched by | 
|  | // patterns like: | 
|  | // | 
|  | // (add (zeroext (extract_high LHS)), | 
|  | //      (zeroext (extract_high RHS))) | 
|  | // -> uaddl2 vD, vN, vM | 
|  | // | 
|  | // However, if one of the extracts is something like a duplicate, this | 
|  | // instruction can still be used profitably. This function puts the DAG into a | 
|  | // more appropriate form for those patterns to trigger. | 
|  | static SDValue performAddSubLongCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | if (!VT.is128BitVector()) { | 
|  | if (N->getOpcode() == ISD::ADD) | 
|  | return performSetccAddFolding(N, DAG); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Make sure both branches are extended in the same way. | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if ((LHS.getOpcode() != ISD::ZERO_EXTEND && | 
|  | LHS.getOpcode() != ISD::SIGN_EXTEND) || | 
|  | LHS.getOpcode() != RHS.getOpcode()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ExtType = LHS.getOpcode(); | 
|  |  | 
|  | // It's not worth doing if at least one of the inputs isn't already an | 
|  | // extract, but we don't know which it'll be so we have to try both. | 
|  | if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { | 
|  | RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); | 
|  | if (!RHS.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); | 
|  | } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { | 
|  | LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); | 
|  | if (!LHS.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Massage DAGs which we can use the high-half "long" operations on into | 
|  | // something isel will recognize better. E.g. | 
|  | // | 
|  | // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> | 
|  | //   (aarch64_neon_umull (extract_high (v2i64 vec))) | 
|  | //                     (extract_high (v2i64 (dup128 scalar))))) | 
|  | // | 
|  | static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  | assert(LHS.getValueType().is64BitVector() && | 
|  | RHS.getValueType().is64BitVector() && | 
|  | "unexpected shape for long operation"); | 
|  |  | 
|  | // Either node could be a DUP, but it's not worth doing both of them (you'd | 
|  | // just as well use the non-high version) so look for a corresponding extract | 
|  | // operation on the other "wing". | 
|  | if (isEssentiallyExtractSubvector(LHS)) { | 
|  | RHS = tryExtendDUPToExtractHigh(RHS, DAG); | 
|  | if (!RHS.getNode()) | 
|  | return SDValue(); | 
|  | } else if (isEssentiallyExtractSubvector(RHS)) { | 
|  | LHS = tryExtendDUPToExtractHigh(LHS, DAG); | 
|  | if (!LHS.getNode()) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), LHS, RHS); | 
|  | } | 
|  |  | 
|  | static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { | 
|  | MVT ElemTy = N->getSimpleValueType(0).getScalarType(); | 
|  | unsigned ElemBits = ElemTy.getSizeInBits(); | 
|  |  | 
|  | int64_t ShiftAmount; | 
|  | if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, ElemBits) || | 
|  | SplatBitSize != ElemBits) | 
|  | return SDValue(); | 
|  |  | 
|  | ShiftAmount = SplatValue.getSExtValue(); | 
|  | } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { | 
|  | ShiftAmount = CVN->getSExtValue(); | 
|  | } else | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opcode; | 
|  | bool IsRightShift; | 
|  | switch (IID) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift intrinsic"); | 
|  | case Intrinsic::aarch64_neon_sqshl: | 
|  | Opcode = AArch64ISD::SQSHL_I; | 
|  | IsRightShift = false; | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_uqshl: | 
|  | Opcode = AArch64ISD::UQSHL_I; | 
|  | IsRightShift = false; | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_srshl: | 
|  | Opcode = AArch64ISD::SRSHR_I; | 
|  | IsRightShift = true; | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_urshl: | 
|  | Opcode = AArch64ISD::URSHR_I; | 
|  | IsRightShift = true; | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_sqshlu: | 
|  | Opcode = AArch64ISD::SQSHLU_I; | 
|  | IsRightShift = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { | 
|  | SDLoc dl(N); | 
|  | return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), | 
|  | DAG.getConstant(-ShiftAmount, dl, MVT::i32)); | 
|  | } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { | 
|  | SDLoc dl(N); | 
|  | return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), | 
|  | DAG.getConstant(ShiftAmount, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // The CRC32[BH] instructions ignore the high bits of their data operand. Since | 
|  | // the intrinsics must be legal and take an i32, this means there's almost | 
|  | // certainly going to be a zext in the DAG which we can eliminate. | 
|  | static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue AndN = N->getOperand(2); | 
|  | if (AndN.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); | 
|  | if (!CMask || CMask->getZExtValue() != Mask) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, | 
|  | N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); | 
|  | } | 
|  |  | 
|  | static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(N); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), | 
|  | DAG.getNode(Opc, dl, | 
|  | N->getOperand(1).getSimpleValueType(), | 
|  | N->getOperand(1)), | 
|  | DAG.getConstant(0, dl, MVT::i64)); | 
|  | } | 
|  |  | 
|  | static SDValue performIntrinsicCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | unsigned IID = getIntrinsicID(N); | 
|  | switch (IID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_vcvtfxs2fp: | 
|  | case Intrinsic::aarch64_neon_vcvtfxu2fp: | 
|  | return tryCombineFixedPointConvert(N, DCI, DAG); | 
|  | case Intrinsic::aarch64_neon_saddv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_uaddv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_sminv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_uminv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_smaxv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_umaxv: | 
|  | return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); | 
|  | case Intrinsic::aarch64_neon_fmax: | 
|  | return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(1), N->getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_fmin: | 
|  | return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(1), N->getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_fmaxnm: | 
|  | return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(1), N->getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_fminnm: | 
|  | return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(1), N->getOperand(2)); | 
|  | case Intrinsic::aarch64_neon_smull: | 
|  | case Intrinsic::aarch64_neon_umull: | 
|  | case Intrinsic::aarch64_neon_pmull: | 
|  | case Intrinsic::aarch64_neon_sqdmull: | 
|  | return tryCombineLongOpWithDup(IID, N, DCI, DAG); | 
|  | case Intrinsic::aarch64_neon_sqshl: | 
|  | case Intrinsic::aarch64_neon_uqshl: | 
|  | case Intrinsic::aarch64_neon_sqshlu: | 
|  | case Intrinsic::aarch64_neon_srshl: | 
|  | case Intrinsic::aarch64_neon_urshl: | 
|  | return tryCombineShiftImm(IID, N, DAG); | 
|  | case Intrinsic::aarch64_crc32b: | 
|  | case Intrinsic::aarch64_crc32cb: | 
|  | return tryCombineCRC32(0xff, N, DAG); | 
|  | case Intrinsic::aarch64_crc32h: | 
|  | case Intrinsic::aarch64_crc32ch: | 
|  | return tryCombineCRC32(0xffff, N, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performExtendCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then | 
|  | // we can convert that DUP into another extract_high (of a bigger DUP), which | 
|  | // helps the backend to decide that an sabdl2 would be useful, saving a real | 
|  | // extract_high operation. | 
|  | if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && | 
|  | N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { | 
|  | SDNode *ABDNode = N->getOperand(0).getNode(); | 
|  | unsigned IID = getIntrinsicID(ABDNode); | 
|  | if (IID == Intrinsic::aarch64_neon_sabd || | 
|  | IID == Intrinsic::aarch64_neon_uabd) { | 
|  | SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); | 
|  | if (!NewABD.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), | 
|  | NewABD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is effectively a custom type legalization for AArch64. | 
|  | // | 
|  | // Type legalization will split an extend of a small, legal, type to a larger | 
|  | // illegal type by first splitting the destination type, often creating | 
|  | // illegal source types, which then get legalized in isel-confusing ways, | 
|  | // leading to really terrible codegen. E.g., | 
|  | //   %result = v8i32 sext v8i8 %value | 
|  | // becomes | 
|  | //   %losrc = extract_subreg %value, ... | 
|  | //   %hisrc = extract_subreg %value, ... | 
|  | //   %lo = v4i32 sext v4i8 %losrc | 
|  | //   %hi = v4i32 sext v4i8 %hisrc | 
|  | // Things go rapidly downhill from there. | 
|  | // | 
|  | // For AArch64, the [sz]ext vector instructions can only go up one element | 
|  | // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 | 
|  | // take two instructions. | 
|  | // | 
|  | // This implies that the most efficient way to do the extend from v8i8 | 
|  | // to two v4i32 values is to first extend the v8i8 to v8i16, then do | 
|  | // the normal splitting to happen for the v8i16->v8i32. | 
|  |  | 
|  | // This is pre-legalization to catch some cases where the default | 
|  | // type legalization will create ill-tempered code. | 
|  | if (!DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We're only interested in cleaning things up for non-legal vector types | 
|  | // here. If both the source and destination are legal, things will just | 
|  | // work naturally without any fiddling. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT ResVT = N->getValueType(0); | 
|  | if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) | 
|  | return SDValue(); | 
|  | // If the vector type isn't a simple VT, it's beyond the scope of what | 
|  | // we're  worried about here. Let legalization do its thing and hope for | 
|  | // the best. | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT SrcVT = Src->getValueType(0); | 
|  | if (!ResVT.isSimple() || !SrcVT.isSimple()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the source VT is a 64-bit vector, we can play games and get the | 
|  | // better results we want. | 
|  | if (SrcVT.getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); | 
|  | unsigned ElementCount = SrcVT.getVectorNumElements(); | 
|  | SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); | 
|  | SDLoc DL(N); | 
|  | Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); | 
|  |  | 
|  | // Now split the rest of the operation into two halves, each with a 64 | 
|  | // bit source. | 
|  | EVT LoVT, HiVT; | 
|  | SDValue Lo, Hi; | 
|  | unsigned NumElements = ResVT.getVectorNumElements(); | 
|  | assert(!(NumElements & 1) && "Splitting vector, but not in half!"); | 
|  | LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ResVT.getVectorElementType(), NumElements / 2); | 
|  |  | 
|  | EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), | 
|  | LoVT.getVectorNumElements()); | 
|  | Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, | 
|  | DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64)); | 
|  | Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); | 
|  | Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); | 
|  |  | 
|  | // Now combine the parts back together so we still have a single result | 
|  | // like the combiner expects. | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); | 
|  | } | 
|  |  | 
|  | static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, | 
|  | SDValue SplatVal, unsigned NumVecElts) { | 
|  | unsigned OrigAlignment = St.getAlignment(); | 
|  | unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; | 
|  |  | 
|  | // Create scalar stores. This is at least as good as the code sequence for a | 
|  | // split unaligned store which is a dup.s, ext.b, and two stores. | 
|  | // Most of the time the three stores should be replaced by store pair | 
|  | // instructions (stp). | 
|  | SDLoc DL(&St); | 
|  | SDValue BasePtr = St.getBasePtr(); | 
|  | SDValue NewST1 = | 
|  | DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, St.getPointerInfo(), | 
|  | OrigAlignment, St.getMemOperand()->getFlags()); | 
|  |  | 
|  | unsigned Offset = EltOffset; | 
|  | while (--NumVecElts) { | 
|  | unsigned Alignment = MinAlign(OrigAlignment, Offset); | 
|  | SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, | 
|  | DAG.getConstant(Offset, DL, MVT::i64)); | 
|  | NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, | 
|  | St.getPointerInfo(), Alignment, | 
|  | St.getMemOperand()->getFlags()); | 
|  | Offset += EltOffset; | 
|  | } | 
|  | return NewST1; | 
|  | } | 
|  |  | 
|  | /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The | 
|  | /// load store optimizer pass will merge them to store pair stores.  This should | 
|  | /// be better than a movi to create the vector zero followed by a vector store | 
|  | /// if the zero constant is not re-used, since one instructions and one register | 
|  | /// live range will be removed. | 
|  | /// | 
|  | /// For example, the final generated code should be: | 
|  | /// | 
|  | ///   stp xzr, xzr, [x0] | 
|  | /// | 
|  | /// instead of: | 
|  | /// | 
|  | ///   movi v0.2d, #0 | 
|  | ///   str q0, [x0] | 
|  | /// | 
|  | static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { | 
|  | SDValue StVal = St.getValue(); | 
|  | EVT VT = StVal.getValueType(); | 
|  |  | 
|  | // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or | 
|  | // 2, 3 or 4 i32 elements. | 
|  | int NumVecElts = VT.getVectorNumElements(); | 
|  | if (!(((NumVecElts == 2 || NumVecElts == 3) && | 
|  | VT.getVectorElementType().getSizeInBits() == 64) || | 
|  | ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && | 
|  | VT.getVectorElementType().getSizeInBits() == 32))) | 
|  | return SDValue(); | 
|  |  | 
|  | if (StVal.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the zero constant has more than one use then the vector store could be | 
|  | // better since the constant mov will be amortized and stp q instructions | 
|  | // should be able to be formed. | 
|  | if (!StVal.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the immediate offset of the address operand is too large for the stp | 
|  | // instruction, then bail out. | 
|  | if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { | 
|  | int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); | 
|  | if (Offset < -512 || Offset > 504) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | for (int I = 0; I < NumVecElts; ++I) { | 
|  | SDValue EltVal = StVal.getOperand(I); | 
|  | if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Use WZR/XZR here to prevent DAGCombiner::MergeConsecutiveStores from | 
|  | // undoing this transformation. | 
|  | SDValue SplatVal = VT.getVectorElementType().getSizeInBits() == 32 | 
|  | ? DAG.getRegister(AArch64::WZR, MVT::i32) | 
|  | : DAG.getRegister(AArch64::XZR, MVT::i64); | 
|  | return splitStoreSplat(DAG, St, SplatVal, NumVecElts); | 
|  | } | 
|  |  | 
|  | /// Replace a splat of a scalar to a vector store by scalar stores of the scalar | 
|  | /// value. The load store optimizer pass will merge them to store pair stores. | 
|  | /// This has better performance than a splat of the scalar followed by a split | 
|  | /// vector store. Even if the stores are not merged it is four stores vs a dup, | 
|  | /// followed by an ext.b and two stores. | 
|  | static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { | 
|  | SDValue StVal = St.getValue(); | 
|  | EVT VT = StVal.getValueType(); | 
|  |  | 
|  | // Don't replace floating point stores, they possibly won't be transformed to | 
|  | // stp because of the store pair suppress pass. | 
|  | if (VT.isFloatingPoint()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can express a splat as store pair(s) for 2 or 4 elements. | 
|  | unsigned NumVecElts = VT.getVectorNumElements(); | 
|  | if (NumVecElts != 4 && NumVecElts != 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that this is a splat. | 
|  | // Make sure that each of the relevant vector element locations are inserted | 
|  | // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. | 
|  | std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); | 
|  | SDValue SplatVal; | 
|  | for (unsigned I = 0; I < NumVecElts; ++I) { | 
|  | // Check for insert vector elements. | 
|  | if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that same value is inserted at each vector element. | 
|  | if (I == 0) | 
|  | SplatVal = StVal.getOperand(1); | 
|  | else if (StVal.getOperand(1) != SplatVal) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check insert element index. | 
|  | ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); | 
|  | if (!CIndex) | 
|  | return SDValue(); | 
|  | uint64_t IndexVal = CIndex->getZExtValue(); | 
|  | if (IndexVal >= NumVecElts) | 
|  | return SDValue(); | 
|  | IndexNotInserted.reset(IndexVal); | 
|  |  | 
|  | StVal = StVal.getOperand(0); | 
|  | } | 
|  | // Check that all vector element locations were inserted to. | 
|  | if (IndexNotInserted.any()) | 
|  | return SDValue(); | 
|  |  | 
|  | return splitStoreSplat(DAG, St, SplatVal, NumVecElts); | 
|  | } | 
|  |  | 
|  | static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (!DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | StoreSDNode *S = cast<StoreSDNode>(N); | 
|  | if (S->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue StVal = S->getValue(); | 
|  | EVT VT = StVal.getValueType(); | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we get a splat of zeros, convert this vector store to a store of | 
|  | // scalars. They will be merged into store pairs of xzr thereby removing one | 
|  | // instruction and one register. | 
|  | if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) | 
|  | return ReplacedZeroSplat; | 
|  |  | 
|  | // FIXME: The logic for deciding if an unaligned store should be split should | 
|  | // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be | 
|  | // a call to that function here. | 
|  |  | 
|  | if (!Subtarget->isMisaligned128StoreSlow()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't split at -Oz. | 
|  | if (DAG.getMachineFunction().getFunction()->optForMinSize()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't split v2i64 vectors. Memcpy lowering produces those and splitting | 
|  | // those up regresses performance on micro-benchmarks and olden/bh. | 
|  | if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Split unaligned 16B stores. They are terrible for performance. | 
|  | // Don't split stores with alignment of 1 or 2. Code that uses clang vector | 
|  | // extensions can use this to mark that it does not want splitting to happen | 
|  | // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of | 
|  | // eliminating alignment hazards is only 1 in 8 for alignment of 2. | 
|  | if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || | 
|  | S->getAlignment() <= 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we get a splat of a scalar convert this vector store to a store of | 
|  | // scalars. They will be merged into store pairs thereby removing two | 
|  | // instructions. | 
|  | if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) | 
|  | return ReplacedSplat; | 
|  |  | 
|  | SDLoc DL(S); | 
|  | unsigned NumElts = VT.getVectorNumElements() / 2; | 
|  | // Split VT into two. | 
|  | EVT HalfVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); | 
|  | SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, | 
|  | DAG.getConstant(NumElts, DL, MVT::i64)); | 
|  | SDValue BasePtr = S->getBasePtr(); | 
|  | SDValue NewST1 = | 
|  | DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), | 
|  | S->getAlignment(), S->getMemOperand()->getFlags()); | 
|  | SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, | 
|  | DAG.getConstant(8, DL, MVT::i64)); | 
|  | return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, | 
|  | S->getPointerInfo(), S->getAlignment(), | 
|  | S->getMemOperand()->getFlags()); | 
|  | } | 
|  |  | 
|  | /// Target-specific DAG combine function for post-increment LD1 (lane) and | 
|  | /// post-increment LD1R. | 
|  | static SDValue performPostLD1Combine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | bool IsLaneOp) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned LoadIdx = IsLaneOp ? 1 : 0; | 
|  | SDNode *LD = N->getOperand(LoadIdx).getNode(); | 
|  | // If it is not LOAD, can not do such combine. | 
|  | if (LD->getOpcode() != ISD::LOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); | 
|  | EVT MemVT = LoadSDN->getMemoryVT(); | 
|  | // Check if memory operand is the same type as the vector element. | 
|  | if (MemVT != VT.getVectorElementType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if there are other uses. If so, do not combine as it will introduce | 
|  | // an extra load. | 
|  | for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; | 
|  | ++UI) { | 
|  | if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. | 
|  | continue; | 
|  | if (*UI != N) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Addr = LD->getOperand(1); | 
|  | SDValue Vector = N->getOperand(0); | 
|  | // Search for a use of the address operand that is an increment. | 
|  | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = | 
|  | Addr.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User->getOpcode() != ISD::ADD | 
|  | || UI.getUse().getResNo() != Addr.getResNo()) | 
|  | continue; | 
|  |  | 
|  | // Check that the add is independent of the load.  Otherwise, folding it | 
|  | // would create a cycle. | 
|  | if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) | 
|  | continue; | 
|  | // Also check that add is not used in the vector operand.  This would also | 
|  | // create a cycle. | 
|  | if (User->isPredecessorOf(Vector.getNode())) | 
|  | continue; | 
|  |  | 
|  | // If the increment is a constant, it must match the memory ref size. | 
|  | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); | 
|  | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { | 
|  | uint32_t IncVal = CInc->getZExtValue(); | 
|  | unsigned NumBytes = VT.getScalarSizeInBits() / 8; | 
|  | if (IncVal != NumBytes) | 
|  | continue; | 
|  | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); | 
|  | } | 
|  |  | 
|  | // Finally, check that the vector doesn't depend on the load. | 
|  | // Again, this would create a cycle. | 
|  | // The load depending on the vector is fine, as that's the case for the | 
|  | // LD1*post we'll eventually generate anyway. | 
|  | if (LoadSDN->isPredecessorOf(Vector.getNode())) | 
|  | continue; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(LD->getOperand(0));  // Chain | 
|  | if (IsLaneOp) { | 
|  | Ops.push_back(Vector);           // The vector to be inserted | 
|  | Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector | 
|  | } | 
|  | Ops.push_back(Addr); | 
|  | Ops.push_back(Inc); | 
|  |  | 
|  | EVT Tys[3] = { VT, MVT::i64, MVT::Other }; | 
|  | SDVTList SDTys = DAG.getVTList(Tys); | 
|  | unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; | 
|  | SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, | 
|  | MemVT, | 
|  | LoadSDN->getMemOperand()); | 
|  |  | 
|  | // Update the uses. | 
|  | SDValue NewResults[] = { | 
|  | SDValue(LD, 0),            // The result of load | 
|  | SDValue(UpdN.getNode(), 2) // Chain | 
|  | }; | 
|  | DCI.CombineTo(LD, NewResults); | 
|  | DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result | 
|  | DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register | 
|  |  | 
|  | break; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Simplify \Addr given that the top byte of it is ignored by HW during | 
|  | /// address translation. | 
|  | static bool performTBISimplification(SDValue Addr, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | APInt DemandedMask = APInt::getLowBitsSet(64, 56); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), | 
|  | DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) { | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SDValue performSTORECombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) | 
|  | return Split; | 
|  |  | 
|  | if (Subtarget->supportsAddressTopByteIgnored() && | 
|  | performTBISimplification(N->getOperand(2), DCI, DAG)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// This function handles the log2-shuffle pattern produced by the | 
|  | /// LoopVectorizer for the across vector reduction. It consists of | 
|  | /// log2(NumVectorElements) steps and, in each step, 2^(s) elements | 
|  | /// are reduced, where s is an induction variable from 0 to | 
|  | /// log2(NumVectorElements). | 
|  | static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV, | 
|  | unsigned Op, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VTy = OpV->getOperand(0).getValueType(); | 
|  | if (!VTy.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | int NumVecElts = VTy.getVectorNumElements(); | 
|  | if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) { | 
|  | if (NumVecElts != 4) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | int NumExpectedSteps = APInt(8, NumVecElts).logBase2(); | 
|  | SDValue PreOp = OpV; | 
|  | // Iterate over each step of the across vector reduction. | 
|  | for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) { | 
|  | SDValue CurOp = PreOp.getOperand(0); | 
|  | SDValue Shuffle = PreOp.getOperand(1); | 
|  | if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) { | 
|  | // Try to swap the 1st and 2nd operand as add and min/max instructions | 
|  | // are commutative. | 
|  | CurOp = PreOp.getOperand(1); | 
|  | Shuffle = PreOp.getOperand(0); | 
|  | if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check if the input vector is fed by the operator we want to handle, | 
|  | // except the last step; the very first input vector is not necessarily | 
|  | // the same operator we are handling. | 
|  | if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if it forms one step of the across vector reduction. | 
|  | // E.g., | 
|  | //   %cur = add %1, %0 | 
|  | //   %shuffle = vector_shuffle %cur, <2, 3, u, u> | 
|  | //   %pre = add %cur, %shuffle | 
|  | if (Shuffle.getOperand(0) != CurOp) | 
|  | return SDValue(); | 
|  |  | 
|  | int NumMaskElts = 1 << CurStep; | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask(); | 
|  | // Check mask values in each step. | 
|  | // We expect the shuffle mask in each step follows a specific pattern | 
|  | // denoted here by the <M, U> form, where M is a sequence of integers | 
|  | // starting from NumMaskElts, increasing by 1, and the number integers | 
|  | // in M should be NumMaskElts. U is a sequence of UNDEFs and the number | 
|  | // of undef in U should be NumVecElts - NumMaskElts. | 
|  | // E.g., for <8 x i16>, mask values in each step should be : | 
|  | //   step 0 : <1,u,u,u,u,u,u,u> | 
|  | //   step 1 : <2,3,u,u,u,u,u,u> | 
|  | //   step 2 : <4,5,6,7,u,u,u,u> | 
|  | for (int i = 0; i < NumVecElts; ++i) | 
|  | if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) || | 
|  | (i >= NumMaskElts && !(Mask[i] < 0))) | 
|  | return SDValue(); | 
|  |  | 
|  | PreOp = CurOp; | 
|  | } | 
|  | unsigned Opcode; | 
|  | bool IsIntrinsic = false; | 
|  |  | 
|  | switch (Op) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected operator for across vector reduction"); | 
|  | case ISD::ADD: | 
|  | Opcode = AArch64ISD::UADDV; | 
|  | break; | 
|  | case ISD::SMAX: | 
|  | Opcode = AArch64ISD::SMAXV; | 
|  | break; | 
|  | case ISD::UMAX: | 
|  | Opcode = AArch64ISD::UMAXV; | 
|  | break; | 
|  | case ISD::SMIN: | 
|  | Opcode = AArch64ISD::SMINV; | 
|  | break; | 
|  | case ISD::UMIN: | 
|  | Opcode = AArch64ISD::UMINV; | 
|  | break; | 
|  | case ISD::FMAXNUM: | 
|  | Opcode = Intrinsic::aarch64_neon_fmaxnmv; | 
|  | IsIntrinsic = true; | 
|  | break; | 
|  | case ISD::FMINNUM: | 
|  | Opcode = Intrinsic::aarch64_neon_fminnmv; | 
|  | IsIntrinsic = true; | 
|  | break; | 
|  | } | 
|  | SDLoc DL(N); | 
|  |  | 
|  | return IsIntrinsic | 
|  | ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0), | 
|  | DAG.getConstant(Opcode, DL, MVT::i32), PreOp) | 
|  | : DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), | 
|  | DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp), | 
|  | DAG.getConstant(0, DL, MVT::i64)); | 
|  | } | 
|  |  | 
|  | /// Target-specific DAG combine for the across vector min/max reductions. | 
|  | /// This function specifically handles the final clean-up step of the vector | 
|  | /// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle | 
|  | /// pattern, which narrows down and finds the final min/max value from all | 
|  | /// elements of the vector. | 
|  | /// For example, for a <16 x i8> vector : | 
|  | ///   svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> | 
|  | ///   %smax0 = smax %arr, svn0 | 
|  | ///   %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u> | 
|  | ///   %smax1 = smax %smax0, %svn1 | 
|  | ///   %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u> | 
|  | ///   %smax2 = smax %smax1, svn2 | 
|  | ///   %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u> | 
|  | ///   %sc = setcc %smax2, %svn3, gt | 
|  | ///   %n0 = extract_vector_elt %sc, #0 | 
|  | ///   %n1 = extract_vector_elt %smax2, #0 | 
|  | ///   %n2 = extract_vector_elt $smax2, #1 | 
|  | ///   %result = select %n0, %n1, n2 | 
|  | ///     becomes : | 
|  | ///   %1 = smaxv %0 | 
|  | ///   %result = extract_vector_elt %1, 0 | 
|  | static SDValue | 
|  | performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasNEON()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue IfTrue = N->getOperand(1); | 
|  | SDValue IfFalse = N->getOperand(2); | 
|  |  | 
|  | // Check if the SELECT merges up the final result of the min/max | 
|  | // from a vector. | 
|  | if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expect N0 is fed by SETCC. | 
|  | SDValue SetCC = N0.getOperand(0); | 
|  | EVT SetCCVT = SetCC.getValueType(); | 
|  | if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() || | 
|  | SetCCVT.getVectorElementType() != MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue VectorOp = SetCC.getOperand(0); | 
|  | unsigned Op = VectorOp->getOpcode(); | 
|  | // Check if the input vector is fed by the operator we want to handle. | 
|  | if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN && | 
|  | Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VTy = VectorOp.getValueType(); | 
|  | if (!VTy.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VTy.getSizeInBits() < 64) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT EltTy = VTy.getVectorElementType(); | 
|  | if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) { | 
|  | if (EltTy != MVT::f32) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check if extracting from the same vector. | 
|  | // For example, | 
|  | //   %sc = setcc %vector, %svn1, gt | 
|  | //   %n0 = extract_vector_elt %sc, #0 | 
|  | //   %n1 = extract_vector_elt %vector, #0 | 
|  | //   %n2 = extract_vector_elt $vector, #1 | 
|  | if (!(VectorOp == IfTrue->getOperand(0) && | 
|  | VectorOp == IfFalse->getOperand(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if the condition code is matched with the operator type. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); | 
|  | if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) || | 
|  | (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) || | 
|  | (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) || | 
|  | (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) || | 
|  | (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE && | 
|  | CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT && | 
|  | CC != ISD::SETGE) || | 
|  | (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE && | 
|  | CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT && | 
|  | CC != ISD::SETLE)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expect to check only lane 0 from the vector SETCC. | 
|  | if (!isNullConstant(N0.getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expect to extract the true value from lane 0. | 
|  | if (!isNullConstant(IfTrue.getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expect to extract the false value from lane 1. | 
|  | if (!isOneConstant(IfFalse.getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG); | 
|  | } | 
|  |  | 
|  | /// Target-specific DAG combine for the across vector add reduction. | 
|  | /// This function specifically handles the final clean-up step of the vector | 
|  | /// add reduction produced by the LoopVectorizer. It is the log2-shuffle | 
|  | /// pattern, which adds all elements of a vector together. | 
|  | /// For example, for a <4 x i32> vector : | 
|  | ///   %1 = vector_shuffle %0, <2,3,u,u> | 
|  | ///   %2 = add %0, %1 | 
|  | ///   %3 = vector_shuffle %2, <1,u,u,u> | 
|  | ///   %4 = add %2, %3 | 
|  | ///   %result = extract_vector_elt %4, 0 | 
|  | /// becomes : | 
|  | ///   %0 = uaddv %0 | 
|  | ///   %result = extract_vector_elt %0, 0 | 
|  | static SDValue | 
|  | performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const AArch64Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasNEON()) | 
|  | return SDValue(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Check if the input vector is fed by the ADD. | 
|  | if (N0->getOpcode() != ISD::ADD) | 
|  | return SDValue(); | 
|  |  | 
|  | // The vector extract idx must constant zero because we only expect the final | 
|  | // result of the reduction is placed in lane 0. | 
|  | if (!isNullConstant(N1)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VTy = N0.getValueType(); | 
|  | if (!VTy.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT EltTy = VTy.getVectorElementType(); | 
|  | if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VTy.getSizeInBits() < 64) | 
|  | return SDValue(); | 
|  |  | 
|  | return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG); | 
|  | } | 
|  |  | 
|  | /// Target-specific DAG combine function for NEON load/store intrinsics | 
|  | /// to merge base address updates. | 
|  | static SDValue performNEONPostLDSTCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned AddrOpIdx = N->getNumOperands() - 1; | 
|  | SDValue Addr = N->getOperand(AddrOpIdx); | 
|  |  | 
|  | // Search for a use of the address operand that is an increment. | 
|  | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), | 
|  | UE = Addr.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User->getOpcode() != ISD::ADD || | 
|  | UI.getUse().getResNo() != Addr.getResNo()) | 
|  | continue; | 
|  |  | 
|  | // Check that the add is independent of the load/store.  Otherwise, folding | 
|  | // it would create a cycle. | 
|  | if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) | 
|  | continue; | 
|  |  | 
|  | // Find the new opcode for the updating load/store. | 
|  | bool IsStore = false; | 
|  | bool IsLaneOp = false; | 
|  | bool IsDupOp = false; | 
|  | unsigned NewOpc = 0; | 
|  | unsigned NumVecs = 0; | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("unexpected intrinsic for Neon base update"); | 
|  | case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post; | 
|  | NumVecs = 2; break; | 
|  | case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post; | 
|  | NumVecs = 3; break; | 
|  | case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post; | 
|  | NumVecs = 4; break; | 
|  | case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post; | 
|  | NumVecs = 2; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post; | 
|  | NumVecs = 3; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post; | 
|  | NumVecs = 4; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post; | 
|  | NumVecs = 2; break; | 
|  | case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post; | 
|  | NumVecs = 3; break; | 
|  | case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post; | 
|  | NumVecs = 4; break; | 
|  | case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post; | 
|  | NumVecs = 2; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post; | 
|  | NumVecs = 3; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post; | 
|  | NumVecs = 4; IsStore = true; break; | 
|  | case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost; | 
|  | NumVecs = 2; IsDupOp = true; break; | 
|  | case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost; | 
|  | NumVecs = 3; IsDupOp = true; break; | 
|  | case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost; | 
|  | NumVecs = 4; IsDupOp = true; break; | 
|  | case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost; | 
|  | NumVecs = 2; IsLaneOp = true; break; | 
|  | case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost; | 
|  | NumVecs = 3; IsLaneOp = true; break; | 
|  | case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost; | 
|  | NumVecs = 4; IsLaneOp = true; break; | 
|  | case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost; | 
|  | NumVecs = 2; IsStore = true; IsLaneOp = true; break; | 
|  | case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost; | 
|  | NumVecs = 3; IsStore = true; IsLaneOp = true; break; | 
|  | case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost; | 
|  | NumVecs = 4; IsStore = true; IsLaneOp = true; break; | 
|  | } | 
|  |  | 
|  | EVT VecTy; | 
|  | if (IsStore) | 
|  | VecTy = N->getOperand(2).getValueType(); | 
|  | else | 
|  | VecTy = N->getValueType(0); | 
|  |  | 
|  | // If the increment is a constant, it must match the memory ref size. | 
|  | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); | 
|  | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { | 
|  | uint32_t IncVal = CInc->getZExtValue(); | 
|  | unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; | 
|  | if (IsLaneOp || IsDupOp) | 
|  | NumBytes /= VecTy.getVectorNumElements(); | 
|  | if (IncVal != NumBytes) | 
|  | continue; | 
|  | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); | 
|  | } | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(N->getOperand(0)); // Incoming chain | 
|  | // Load lane and store have vector list as input. | 
|  | if (IsLaneOp || IsStore) | 
|  | for (unsigned i = 2; i < AddrOpIdx; ++i) | 
|  | Ops.push_back(N->getOperand(i)); | 
|  | Ops.push_back(Addr); // Base register | 
|  | Ops.push_back(Inc); | 
|  |  | 
|  | // Return Types. | 
|  | EVT Tys[6]; | 
|  | unsigned NumResultVecs = (IsStore ? 0 : NumVecs); | 
|  | unsigned n; | 
|  | for (n = 0; n < NumResultVecs; ++n) | 
|  | Tys[n] = VecTy; | 
|  | Tys[n++] = MVT::i64;  // Type of write back register | 
|  | Tys[n] = MVT::Other;  // Type of the chain | 
|  | SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); | 
|  |  | 
|  | MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); | 
|  | SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, | 
|  | MemInt->getMemoryVT(), | 
|  | MemInt->getMemOperand()); | 
|  |  | 
|  | // Update the uses. | 
|  | std::vector<SDValue> NewResults; | 
|  | for (unsigned i = 0; i < NumResultVecs; ++i) { | 
|  | NewResults.push_back(SDValue(UpdN.getNode(), i)); | 
|  | } | 
|  | NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); | 
|  | DCI.CombineTo(N, NewResults); | 
|  | DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); | 
|  |  | 
|  | break; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Checks to see if the value is the prescribed width and returns information | 
|  | // about its extension mode. | 
|  | static | 
|  | bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { | 
|  | ExtType = ISD::NON_EXTLOAD; | 
|  | switch(V.getNode()->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); | 
|  | if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) | 
|  | || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { | 
|  | ExtType = LoadNode->getExtensionType(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ISD::AssertSext: { | 
|  | VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); | 
|  | if ((TypeNode->getVT() == MVT::i8 && width == 8) | 
|  | || (TypeNode->getVT() == MVT::i16 && width == 16)) { | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ISD::AssertZext: { | 
|  | VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); | 
|  | if ((TypeNode->getVT() == MVT::i8 && width == 8) | 
|  | || (TypeNode->getVT() == MVT::i16 && width == 16)) { | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ISD::Constant: | 
|  | case ISD::TargetConstant: { | 
|  | return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < | 
|  | 1LL << (width - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This function does a whole lot of voodoo to determine if the tests are | 
|  | // equivalent without and with a mask. Essentially what happens is that given a | 
|  | // DAG resembling: | 
|  | // | 
|  | //  +-------------+ +-------------+ +-------------+ +-------------+ | 
|  | //  |    Input    | | AddConstant | | CompConstant| |     CC      | | 
|  | //  +-------------+ +-------------+ +-------------+ +-------------+ | 
|  | //           |           |           |               | | 
|  | //           V           V           |    +----------+ | 
|  | //          +-------------+  +----+  |    | | 
|  | //          |     ADD     |  |0xff|  |    | | 
|  | //          +-------------+  +----+  |    | | 
|  | //                  |           |    |    | | 
|  | //                  V           V    |    | | 
|  | //                 +-------------+   |    | | 
|  | //                 |     AND     |   |    | | 
|  | //                 +-------------+   |    | | 
|  | //                      |            |    | | 
|  | //                      +-----+      |    | | 
|  | //                            |      |    | | 
|  | //                            V      V    V | 
|  | //                           +-------------+ | 
|  | //                           |     CMP     | | 
|  | //                           +-------------+ | 
|  | // | 
|  | // The AND node may be safely removed for some combinations of inputs. In | 
|  | // particular we need to take into account the extension type of the Input, | 
|  | // the exact values of AddConstant, CompConstant, and CC, along with the nominal | 
|  | // width of the input (this can work for any width inputs, the above graph is | 
|  | // specific to 8 bits. | 
|  | // | 
|  | // The specific equations were worked out by generating output tables for each | 
|  | // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The | 
|  | // problem was simplified by working with 4 bit inputs, which means we only | 
|  | // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero | 
|  | // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 | 
|  | // patterns present in both extensions (0,7). For every distinct set of | 
|  | // AddConstant and CompConstants bit patterns we can consider the masked and | 
|  | // unmasked versions to be equivalent if the result of this function is true for | 
|  | // all 16 distinct bit patterns of for the current extension type of Input (w0). | 
|  | // | 
|  | //   sub      w8, w0, w1 | 
|  | //   and      w10, w8, #0x0f | 
|  | //   cmp      w8, w2 | 
|  | //   cset     w9, AArch64CC | 
|  | //   cmp      w10, w2 | 
|  | //   cset     w11, AArch64CC | 
|  | //   cmp      w9, w11 | 
|  | //   cset     w0, eq | 
|  | //   ret | 
|  | // | 
|  | // Since the above function shows when the outputs are equivalent it defines | 
|  | // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and | 
|  | // would be expensive to run during compiles. The equations below were written | 
|  | // in a test harness that confirmed they gave equivalent outputs to the above | 
|  | // for all inputs function, so they can be used determine if the removal is | 
|  | // legal instead. | 
|  | // | 
|  | // isEquivalentMaskless() is the code for testing if the AND can be removed | 
|  | // factored out of the DAG recognition as the DAG can take several forms. | 
|  |  | 
|  | static bool isEquivalentMaskless(unsigned CC, unsigned width, | 
|  | ISD::LoadExtType ExtType, int AddConstant, | 
|  | int CompConstant) { | 
|  | // By being careful about our equations and only writing the in term | 
|  | // symbolic values and well known constants (0, 1, -1, MaxUInt) we can | 
|  | // make them generally applicable to all bit widths. | 
|  | int MaxUInt = (1 << width); | 
|  |  | 
|  | // For the purposes of these comparisons sign extending the type is | 
|  | // equivalent to zero extending the add and displacing it by half the integer | 
|  | // width. Provided we are careful and make sure our equations are valid over | 
|  | // the whole range we can just adjust the input and avoid writing equations | 
|  | // for sign extended inputs. | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | AddConstant -= (1 << (width-1)); | 
|  |  | 
|  | switch(CC) { | 
|  | case AArch64CC::LE: | 
|  | case AArch64CC::GT: { | 
|  | if ((AddConstant == 0) || | 
|  | (CompConstant == MaxUInt - 1 && AddConstant < 0) || | 
|  | (AddConstant >= 0 && CompConstant < 0) || | 
|  | (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::LT: | 
|  | case AArch64CC::GE: { | 
|  | if ((AddConstant == 0) || | 
|  | (AddConstant >= 0 && CompConstant <= 0) || | 
|  | (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::HI: | 
|  | case AArch64CC::LS: { | 
|  | if ((AddConstant >= 0 && CompConstant < 0) || | 
|  | (AddConstant <= 0 && CompConstant >= -1 && | 
|  | CompConstant < AddConstant + MaxUInt)) | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::PL: | 
|  | case AArch64CC::MI: { | 
|  | if ((AddConstant == 0) || | 
|  | (AddConstant > 0 && CompConstant <= 0) || | 
|  | (AddConstant < 0 && CompConstant <= AddConstant)) | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::LO: | 
|  | case AArch64CC::HS: { | 
|  | if ((AddConstant >= 0 && CompConstant <= 0) || | 
|  | (AddConstant <= 0 && CompConstant >= 0 && | 
|  | CompConstant <= AddConstant + MaxUInt)) | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::EQ: | 
|  | case AArch64CC::NE: { | 
|  | if ((AddConstant > 0 && CompConstant < 0) || | 
|  | (AddConstant < 0 && CompConstant >= 0 && | 
|  | CompConstant < AddConstant + MaxUInt) || | 
|  | (AddConstant >= 0 && CompConstant >= 0 && | 
|  | CompConstant >= AddConstant) || | 
|  | (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) | 
|  |  | 
|  | return true; | 
|  | } break; | 
|  | case AArch64CC::VS: | 
|  | case AArch64CC::VC: | 
|  | case AArch64CC::AL: | 
|  | case AArch64CC::NV: | 
|  | return true; | 
|  | case AArch64CC::Invalid: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue performCONDCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG, unsigned CCIndex, | 
|  | unsigned CmpIndex) { | 
|  | unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); | 
|  | SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); | 
|  | unsigned CondOpcode = SubsNode->getOpcode(); | 
|  |  | 
|  | if (CondOpcode != AArch64ISD::SUBS) | 
|  | return SDValue(); | 
|  |  | 
|  | // There is a SUBS feeding this condition. Is it fed by a mask we can | 
|  | // use? | 
|  |  | 
|  | SDNode *AndNode = SubsNode->getOperand(0).getNode(); | 
|  | unsigned MaskBits = 0; | 
|  |  | 
|  | if (AndNode->getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { | 
|  | uint32_t CNV = CN->getZExtValue(); | 
|  | if (CNV == 255) | 
|  | MaskBits = 8; | 
|  | else if (CNV == 65535) | 
|  | MaskBits = 16; | 
|  | } | 
|  |  | 
|  | if (!MaskBits) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue AddValue = AndNode->getOperand(0); | 
|  |  | 
|  | if (AddValue.getOpcode() != ISD::ADD) | 
|  | return SDValue(); | 
|  |  | 
|  | // The basic dag structure is correct, grab the inputs and validate them. | 
|  |  | 
|  | SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); | 
|  | SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); | 
|  | SDValue SubsInputValue = SubsNode->getOperand(1); | 
|  |  | 
|  | // The mask is present and the provenance of all the values is a smaller type, | 
|  | // lets see if the mask is superfluous. | 
|  |  | 
|  | if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || | 
|  | !isa<ConstantSDNode>(SubsInputValue.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | ISD::LoadExtType ExtType; | 
|  |  | 
|  | if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || | 
|  | !checkValueWidth(AddInputValue2, MaskBits, ExtType) || | 
|  | !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) | 
|  | return SDValue(); | 
|  |  | 
|  | if(!isEquivalentMaskless(CC, MaskBits, ExtType, | 
|  | cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), | 
|  | cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) | 
|  | return SDValue(); | 
|  |  | 
|  | // The AND is not necessary, remove it. | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), | 
|  | SubsNode->getValueType(1)); | 
|  | SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; | 
|  |  | 
|  | SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); | 
|  | DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); | 
|  |  | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // Optimize compare with zero and branch. | 
|  | static SDValue performBRCONDCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) | 
|  | N = NV.getNode(); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Dest = N->getOperand(1); | 
|  | SDValue CCVal = N->getOperand(2); | 
|  | SDValue Cmp = N->getOperand(3); | 
|  |  | 
|  | assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); | 
|  | unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); | 
|  | if (CC != AArch64CC::EQ && CC != AArch64CC::NE) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned CmpOpc = Cmp.getOpcode(); | 
|  | if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only attempt folding if there is only one use of the flag and no use of the | 
|  | // value. | 
|  | if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = Cmp.getOperand(0); | 
|  | SDValue RHS = Cmp.getOperand(1); | 
|  |  | 
|  | assert(LHS.getValueType() == RHS.getValueType() && | 
|  | "Expected the value type to be the same for both operands!"); | 
|  | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (isNullConstant(LHS)) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (!isNullConstant(RHS)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || | 
|  | LHS.getOpcode() == ISD::SRL) | 
|  | return SDValue(); | 
|  |  | 
|  | // Fold the compare into the branch instruction. | 
|  | SDValue BR; | 
|  | if (CC == AArch64CC::EQ) | 
|  | BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); | 
|  | else | 
|  | BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); | 
|  |  | 
|  | // Do not add new nodes to DAG combiner worklist. | 
|  | DCI.CombineTo(N, BR, false); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test | 
|  | // as well as whether the test should be inverted.  This code is required to | 
|  | // catch these cases (as opposed to standard dag combines) because | 
|  | // AArch64ISD::TBZ is matched during legalization. | 
|  | static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, | 
|  | SelectionDAG &DAG) { | 
|  |  | 
|  | if (!Op->hasOneUse()) | 
|  | return Op; | 
|  |  | 
|  | // We don't handle undef/constant-fold cases below, as they should have | 
|  | // already been taken care of (e.g. and of 0, test of undefined shifted bits, | 
|  | // etc.) | 
|  |  | 
|  | // (tbz (trunc x), b) -> (tbz x, b) | 
|  | // This case is just here to enable more of the below cases to be caught. | 
|  | if (Op->getOpcode() == ISD::TRUNCATE && | 
|  | Bit < Op->getValueType(0).getSizeInBits()) { | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  | } | 
|  |  | 
|  | if (Op->getNumOperands() != 2) | 
|  | return Op; | 
|  |  | 
|  | auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | 
|  | if (!C) | 
|  | return Op; | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | default: | 
|  | return Op; | 
|  |  | 
|  | // (tbz (and x, m), b) -> (tbz x, b) | 
|  | case ISD::AND: | 
|  | if ((C->getZExtValue() >> Bit) & 1) | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  | return Op; | 
|  |  | 
|  | // (tbz (shl x, c), b) -> (tbz x, b-c) | 
|  | case ISD::SHL: | 
|  | if (C->getZExtValue() <= Bit && | 
|  | (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { | 
|  | Bit = Bit - C->getZExtValue(); | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  | } | 
|  | return Op; | 
|  |  | 
|  | // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x | 
|  | case ISD::SRA: | 
|  | Bit = Bit + C->getZExtValue(); | 
|  | if (Bit >= Op->getValueType(0).getSizeInBits()) | 
|  | Bit = Op->getValueType(0).getSizeInBits() - 1; | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  |  | 
|  | // (tbz (srl x, c), b) -> (tbz x, b+c) | 
|  | case ISD::SRL: | 
|  | if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { | 
|  | Bit = Bit + C->getZExtValue(); | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  | } | 
|  | return Op; | 
|  |  | 
|  | // (tbz (xor x, -1), b) -> (tbnz x, b) | 
|  | case ISD::XOR: | 
|  | if ((C->getZExtValue() >> Bit) & 1) | 
|  | Invert = !Invert; | 
|  | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Optimize test single bit zero/non-zero and branch. | 
|  | static SDValue performTBZCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | SelectionDAG &DAG) { | 
|  | unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); | 
|  | bool Invert = false; | 
|  | SDValue TestSrc = N->getOperand(1); | 
|  | SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); | 
|  |  | 
|  | if (TestSrc == NewTestSrc) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NewOpc = N->getOpcode(); | 
|  | if (Invert) { | 
|  | if (NewOpc == AArch64ISD::TBZ) | 
|  | NewOpc = AArch64ISD::TBNZ; | 
|  | else { | 
|  | assert(NewOpc == AArch64ISD::TBNZ); | 
|  | NewOpc = AArch64ISD::TBZ; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, | 
|  | DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); | 
|  | } | 
|  |  | 
|  | // vselect (v1i1 setcc) -> | 
|  | //     vselect (v1iXX setcc)  (XX is the size of the compared operand type) | 
|  | // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as | 
|  | // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine | 
|  | // such VSELECT. | 
|  | static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT CCVT = N0.getValueType(); | 
|  |  | 
|  | if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || | 
|  | CCVT.getVectorElementType() != MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ResVT = N->getValueType(0); | 
|  | EVT CmpVT = N0.getOperand(0).getValueType(); | 
|  | // Only combine when the result type is of the same size as the compared | 
|  | // operands. | 
|  | if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue IfTrue = N->getOperand(1); | 
|  | SDValue IfFalse = N->getOperand(2); | 
|  | SDValue SetCC = | 
|  | DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, | 
|  | IfTrue, IfFalse); | 
|  | } | 
|  |  | 
|  | /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with | 
|  | /// the compare-mask instructions rather than going via NZCV, even if LHS and | 
|  | /// RHS are really scalar. This replaces any scalar setcc in the above pattern | 
|  | /// with a vector one followed by a DUP shuffle on the result. | 
|  | static SDValue performSelectCombine(SDNode *N, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT ResVT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered | 
|  | // scalar SetCCResultType. We also don't expect vectors, because we assume | 
|  | // that selects fed by vector SETCCs are canonicalized to VSELECT. | 
|  | assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && | 
|  | "Scalar-SETCC feeding SELECT has unexpected result type!"); | 
|  |  | 
|  | // If NumMaskElts == 0, the comparison is larger than select result. The | 
|  | // largest real NEON comparison is 64-bits per lane, which means the result is | 
|  | // at most 32-bits and an illegal vector. Just bail out for now. | 
|  | EVT SrcVT = N0.getOperand(0).getValueType(); | 
|  |  | 
|  | // Don't try to do this optimization when the setcc itself has i1 operands. | 
|  | // There are no legal vectors of i1, so this would be pointless. | 
|  | if (SrcVT == MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); | 
|  | if (!ResVT.isVector() || NumMaskElts == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); | 
|  | EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); | 
|  |  | 
|  | // Also bail out if the vector CCVT isn't the same size as ResVT. | 
|  | // This can happen if the SETCC operand size doesn't divide the ResVT size | 
|  | // (e.g., f64 vs v3f32). | 
|  | if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure we didn't create illegal types, if we're not supposed to. | 
|  | assert(DCI.isBeforeLegalize() || | 
|  | DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); | 
|  |  | 
|  | // First perform a vector comparison, where lane 0 is the one we're interested | 
|  | // in. | 
|  | SDLoc DL(N0); | 
|  | SDValue LHS = | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); | 
|  | SDValue RHS = | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); | 
|  | SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); | 
|  |  | 
|  | // Now duplicate the comparison mask we want across all other lanes. | 
|  | SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); | 
|  | SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); | 
|  | Mask = DAG.getNode(ISD::BITCAST, DL, | 
|  | ResVT.changeVectorElementTypeToInteger(), Mask); | 
|  |  | 
|  | return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); | 
|  | } | 
|  |  | 
|  | /// Get rid of unnecessary NVCASTs (that don't change the type). | 
|  | static SDValue performNVCASTCombine(SDNode *N) { | 
|  | if (N->getValueType(0) == N->getOperand(0).getValueType()) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | return performAddSubLongCombine(N, DCI, DAG); | 
|  | case ISD::XOR: | 
|  | return performXorCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::MUL: | 
|  | return performMulCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | return performIntToFpCombine(N, DAG, Subtarget); | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | return performFpToIntCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::FDIV: | 
|  | return performFDivCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::OR: | 
|  | return performORCombine(N, DCI, Subtarget); | 
|  | case ISD::SRL: | 
|  | return performSRLCombine(N, DCI); | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | return performIntrinsicCombine(N, DCI, Subtarget); | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | return performExtendCombine(N, DCI, DAG); | 
|  | case ISD::BITCAST: | 
|  | return performBitcastCombine(N, DCI, DAG); | 
|  | case ISD::CONCAT_VECTORS: | 
|  | return performConcatVectorsCombine(N, DCI, DAG); | 
|  | case ISD::SELECT: { | 
|  | SDValue RV = performSelectCombine(N, DCI); | 
|  | if (!RV.getNode()) | 
|  | RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget); | 
|  | return RV; | 
|  | } | 
|  | case ISD::VSELECT: | 
|  | return performVSelectCombine(N, DCI.DAG); | 
|  | case ISD::LOAD: | 
|  | if (performTBISimplification(N->getOperand(1), DCI, DAG)) | 
|  | return SDValue(N, 0); | 
|  | break; | 
|  | case ISD::STORE: | 
|  | return performSTORECombine(N, DCI, DAG, Subtarget); | 
|  | case AArch64ISD::BRCOND: | 
|  | return performBRCONDCombine(N, DCI, DAG); | 
|  | case AArch64ISD::TBNZ: | 
|  | case AArch64ISD::TBZ: | 
|  | return performTBZCombine(N, DCI, DAG); | 
|  | case AArch64ISD::CSEL: | 
|  | return performCONDCombine(N, DCI, DAG, 2, 3); | 
|  | case AArch64ISD::DUP: | 
|  | return performPostLD1Combine(N, DCI, false); | 
|  | case AArch64ISD::NVCAST: | 
|  | return performNVCASTCombine(N); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return performPostLD1Combine(N, DCI, true); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return performAcrossLaneAddReductionCombine(N, DAG, Subtarget); | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | 
|  | case Intrinsic::aarch64_neon_ld2: | 
|  | case Intrinsic::aarch64_neon_ld3: | 
|  | case Intrinsic::aarch64_neon_ld4: | 
|  | case Intrinsic::aarch64_neon_ld1x2: | 
|  | case Intrinsic::aarch64_neon_ld1x3: | 
|  | case Intrinsic::aarch64_neon_ld1x4: | 
|  | case Intrinsic::aarch64_neon_ld2lane: | 
|  | case Intrinsic::aarch64_neon_ld3lane: | 
|  | case Intrinsic::aarch64_neon_ld4lane: | 
|  | case Intrinsic::aarch64_neon_ld2r: | 
|  | case Intrinsic::aarch64_neon_ld3r: | 
|  | case Intrinsic::aarch64_neon_ld4r: | 
|  | case Intrinsic::aarch64_neon_st2: | 
|  | case Intrinsic::aarch64_neon_st3: | 
|  | case Intrinsic::aarch64_neon_st4: | 
|  | case Intrinsic::aarch64_neon_st1x2: | 
|  | case Intrinsic::aarch64_neon_st1x3: | 
|  | case Intrinsic::aarch64_neon_st1x4: | 
|  | case Intrinsic::aarch64_neon_st2lane: | 
|  | case Intrinsic::aarch64_neon_st3lane: | 
|  | case Intrinsic::aarch64_neon_st4lane: | 
|  | return performNEONPostLDSTCombine(N, DCI, DAG); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check if the return value is used as only a return value, as otherwise | 
|  | // we can't perform a tail-call. In particular, we need to check for | 
|  | // target ISD nodes that are returns and any other "odd" constructs | 
|  | // that the generic analysis code won't necessarily catch. | 
|  | bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, | 
|  | SDValue &Chain) const { | 
|  | if (N->getNumValues() != 1) | 
|  | return false; | 
|  | if (!N->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  |  | 
|  | SDValue TCChain = Chain; | 
|  | SDNode *Copy = *N->use_begin(); | 
|  | if (Copy->getOpcode() == ISD::CopyToReg) { | 
|  | // If the copy has a glue operand, we conservatively assume it isn't safe to | 
|  | // perform a tail call. | 
|  | if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == | 
|  | MVT::Glue) | 
|  | return false; | 
|  | TCChain = Copy->getOperand(0); | 
|  | } else if (Copy->getOpcode() != ISD::FP_EXTEND) | 
|  | return false; | 
|  |  | 
|  | bool HasRet = false; | 
|  | for (SDNode *Node : Copy->uses()) { | 
|  | if (Node->getOpcode() != AArch64ISD::RET_FLAG) | 
|  | return false; | 
|  | HasRet = true; | 
|  | } | 
|  |  | 
|  | if (!HasRet) | 
|  | return false; | 
|  |  | 
|  | Chain = TCChain; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return whether the an instruction can potentially be optimized to a tail | 
|  | // call. This will cause the optimizers to attempt to move, or duplicate, | 
|  | // return instructions to help enable tail call optimizations for this | 
|  | // instruction. | 
|  | bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { | 
|  | return CI->isTailCall(); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | bool &IsInc, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) | 
|  | return false; | 
|  |  | 
|  | Base = Op->getOperand(0); | 
|  | // All of the indexed addressing mode instructions take a signed | 
|  | // 9 bit immediate offset. | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { | 
|  | int64_t RHSC = (int64_t)RHS->getZExtValue(); | 
|  | if (RHSC >= 256 || RHSC <= -256) | 
|  | return false; | 
|  | IsInc = (Op->getOpcode() == ISD::ADD); | 
|  | Offset = Op->getOperand(1); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT; | 
|  | SDValue Ptr; | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | VT = LD->getMemoryVT(); | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | VT = ST->getMemoryVT(); | 
|  | Ptr = ST->getBasePtr(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | bool IsInc; | 
|  | if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) | 
|  | return false; | 
|  | AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::getPostIndexedAddressParts( | 
|  | SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { | 
|  | EVT VT; | 
|  | SDValue Ptr; | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | VT = LD->getMemoryVT(); | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | VT = ST->getMemoryVT(); | 
|  | Ptr = ST->getBasePtr(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | bool IsInc; | 
|  | if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) | 
|  | return false; | 
|  | // Post-indexing updates the base, so it's not a valid transform | 
|  | // if that's not the same as the load's pointer. | 
|  | if (Ptr != Base) | 
|  | return false; | 
|  | AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | SDValue Op = N->getOperand(0); | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16) | 
|  | return; | 
|  |  | 
|  | Op = SDValue( | 
|  | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, | 
|  | DAG.getUNDEF(MVT::i32), Op, | 
|  | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | 
|  | 0); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); | 
|  | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); | 
|  | } | 
|  |  | 
|  | static void ReplaceReductionResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG, unsigned InterOp, | 
|  | unsigned AcrossOp) { | 
|  | EVT LoVT, HiVT; | 
|  | SDValue Lo, Hi; | 
|  | SDLoc dl(N); | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); | 
|  | std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); | 
|  | SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); | 
|  | SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); | 
|  | Results.push_back(SplitVal); | 
|  | } | 
|  |  | 
|  | static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); | 
|  | SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i128, N, | 
|  | DAG.getConstant(64, DL, MVT::i64))); | 
|  | return std::make_pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | static void ReplaceCMP_SWAP_128Results(SDNode *N, | 
|  | SmallVectorImpl<SDValue> & Results, | 
|  | SelectionDAG &DAG) { | 
|  | assert(N->getValueType(0) == MVT::i128 && | 
|  | "AtomicCmpSwap on types less than 128 should be legal"); | 
|  | auto Desired = splitInt128(N->getOperand(2), DAG); | 
|  | auto New = splitInt128(N->getOperand(3), DAG); | 
|  | SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, | 
|  | New.first,        New.second,    N->getOperand(0)}; | 
|  | SDNode *CmpSwap = DAG.getMachineNode( | 
|  | AArch64::CMP_SWAP_128, SDLoc(N), | 
|  | DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | Results.push_back(SDValue(CmpSwap, 0)); | 
|  | Results.push_back(SDValue(CmpSwap, 1)); | 
|  | Results.push_back(SDValue(CmpSwap, 3)); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::ReplaceNodeResults( | 
|  | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Don't know how to custom expand this"); | 
|  | case ISD::BITCAST: | 
|  | ReplaceBITCASTResults(N, Results, DAG); | 
|  | return; | 
|  | case AArch64ISD::SADDV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); | 
|  | return; | 
|  | case AArch64ISD::UADDV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); | 
|  | return; | 
|  | case AArch64ISD::SMINV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); | 
|  | return; | 
|  | case AArch64ISD::UMINV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); | 
|  | return; | 
|  | case AArch64ISD::SMAXV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); | 
|  | return; | 
|  | case AArch64ISD::UMAXV: | 
|  | ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); | 
|  | return; | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); | 
|  | // Let normal code take care of it by not adding anything to Results. | 
|  | return; | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | ReplaceCMP_SWAP_128Results(N, Results, DAG); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::useLoadStackGuardNode() const { | 
|  | if (!Subtarget->isTargetAndroid()) | 
|  | return true; | 
|  | return TargetLowering::useLoadStackGuardNode(); | 
|  | } | 
|  |  | 
|  | unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { | 
|  | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | 
|  | // reciprocal if there are three or more FDIVs. | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | AArch64TargetLowering::getPreferredVectorAction(EVT VT) const { | 
|  | MVT SVT = VT.getSimpleVT(); | 
|  | // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8, | 
|  | // v4i16, v2i32 instead of to promote. | 
|  | if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32 | 
|  | || SVT == MVT::v1f32) | 
|  | return TypeWidenVector; | 
|  |  | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  |  | 
|  | // Loads and stores less than 128-bits are already atomic; ones above that | 
|  | // are doomed anyway, so defer to the default libcall and blame the OS when | 
|  | // things go wrong. | 
|  | bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { | 
|  | unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); | 
|  | return Size == 128; | 
|  | } | 
|  |  | 
|  | // Loads and stores less than 128-bits are already atomic; ones above that | 
|  | // are doomed anyway, so defer to the default libcall and blame the OS when | 
|  | // things go wrong. | 
|  | TargetLowering::AtomicExpansionKind | 
|  | AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { | 
|  | unsigned Size = LI->getType()->getPrimitiveSizeInBits(); | 
|  | return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; | 
|  | } | 
|  |  | 
|  | // For the real atomic operations, we have ldxr/stxr up to 128 bits, | 
|  | TargetLowering::AtomicExpansionKind | 
|  | AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { | 
|  | unsigned Size = AI->getType()->getPrimitiveSizeInBits(); | 
|  | return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( | 
|  | AtomicCmpXchgInst *AI) const { | 
|  | // At -O0, fast-regalloc cannot cope with the live vregs necessary to | 
|  | // implement cmpxchg without spilling. If the address being exchanged is also | 
|  | // on the stack and close enough to the spill slot, this can lead to a | 
|  | // situation where the monitor always gets cleared and the atomic operation | 
|  | // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. | 
|  | return getTargetMachine().getOptLevel() != 0; | 
|  | } | 
|  |  | 
|  | Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, | 
|  | AtomicOrdering Ord) const { | 
|  | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | 
|  | Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | bool IsAcquire = isAcquireOrStronger(Ord); | 
|  |  | 
|  | // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd | 
|  | // intrinsic must return {i64, i64} and we have to recombine them into a | 
|  | // single i128 here. | 
|  | if (ValTy->getPrimitiveSizeInBits() == 128) { | 
|  | Intrinsic::ID Int = | 
|  | IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; | 
|  | Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); | 
|  |  | 
|  | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); | 
|  | Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); | 
|  |  | 
|  | Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); | 
|  | Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); | 
|  | Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); | 
|  | Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); | 
|  | return Builder.CreateOr( | 
|  | Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); | 
|  | } | 
|  |  | 
|  | Type *Tys[] = { Addr->getType() }; | 
|  | Intrinsic::ID Int = | 
|  | IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; | 
|  | Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); | 
|  |  | 
|  | return Builder.CreateTruncOrBitCast( | 
|  | Builder.CreateCall(Ldxr, Addr), | 
|  | cast<PointerType>(Addr->getType())->getElementType()); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( | 
|  | IRBuilder<> &Builder) const { | 
|  | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | 
|  | Builder.CreateCall( | 
|  | llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); | 
|  | } | 
|  |  | 
|  | Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, | 
|  | Value *Val, Value *Addr, | 
|  | AtomicOrdering Ord) const { | 
|  | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | 
|  | bool IsRelease = isReleaseOrStronger(Ord); | 
|  |  | 
|  | // Since the intrinsics must have legal type, the i128 intrinsics take two | 
|  | // parameters: "i64, i64". We must marshal Val into the appropriate form | 
|  | // before the call. | 
|  | if (Val->getType()->getPrimitiveSizeInBits() == 128) { | 
|  | Intrinsic::ID Int = | 
|  | IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; | 
|  | Function *Stxr = Intrinsic::getDeclaration(M, Int); | 
|  | Type *Int64Ty = Type::getInt64Ty(M->getContext()); | 
|  |  | 
|  | Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); | 
|  | Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); | 
|  | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); | 
|  | return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); | 
|  | } | 
|  |  | 
|  | Intrinsic::ID Int = | 
|  | IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; | 
|  | Type *Tys[] = { Addr->getType() }; | 
|  | Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); | 
|  |  | 
|  | return Builder.CreateCall(Stxr, | 
|  | {Builder.CreateZExtOrBitCast( | 
|  | Val, Stxr->getFunctionType()->getParamType(0)), | 
|  | Addr}); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( | 
|  | Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { | 
|  | return Ty->isArrayTy(); | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, | 
|  | EVT) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { | 
|  | if (!Subtarget->isTargetAndroid()) | 
|  | return TargetLowering::getIRStackGuard(IRB); | 
|  |  | 
|  | // Android provides a fixed TLS slot for the stack cookie. See the definition | 
|  | // of TLS_SLOT_STACK_GUARD in | 
|  | // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h | 
|  | const unsigned TlsOffset = 0x28; | 
|  | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *ThreadPointerFunc = | 
|  | Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); | 
|  | return IRB.CreatePointerCast( | 
|  | IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset), | 
|  | Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0)); | 
|  | } | 
|  |  | 
|  | Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { | 
|  | if (!Subtarget->isTargetAndroid()) | 
|  | return TargetLowering::getSafeStackPointerLocation(IRB); | 
|  |  | 
|  | // Android provides a fixed TLS slot for the SafeStack pointer. See the | 
|  | // definition of TLS_SLOT_SAFESTACK in | 
|  | // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h | 
|  | const unsigned TlsOffset = 0x48; | 
|  | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *ThreadPointerFunc = | 
|  | Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); | 
|  | return IRB.CreatePointerCast( | 
|  | IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset), | 
|  | Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0)); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { | 
|  | // Update IsSplitCSR in AArch64unctionInfo. | 
|  | AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); | 
|  | AFI->setIsSplitCSR(true); | 
|  | } | 
|  |  | 
|  | void AArch64TargetLowering::insertCopiesSplitCSR( | 
|  | MachineBasicBlock *Entry, | 
|  | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { | 
|  | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); | 
|  | if (!IStart) | 
|  | return; | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); | 
|  | MachineBasicBlock::iterator MBBI = Entry->begin(); | 
|  | for (const MCPhysReg *I = IStart; *I; ++I) { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (AArch64::GPR64RegClass.contains(*I)) | 
|  | RC = &AArch64::GPR64RegClass; | 
|  | else if (AArch64::FPR64RegClass.contains(*I)) | 
|  | RC = &AArch64::FPR64RegClass; | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  |  | 
|  | unsigned NewVR = MRI->createVirtualRegister(RC); | 
|  | // Create copy from CSR to a virtual register. | 
|  | // FIXME: this currently does not emit CFI pseudo-instructions, it works | 
|  | // fine for CXX_FAST_TLS since the C++-style TLS access functions should be | 
|  | // nounwind. If we want to generalize this later, we may need to emit | 
|  | // CFI pseudo-instructions. | 
|  | assert(Entry->getParent()->getFunction()->hasFnAttribute( | 
|  | Attribute::NoUnwind) && | 
|  | "Function should be nounwind in insertCopiesSplitCSR!"); | 
|  | Entry->addLiveIn(*I); | 
|  | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) | 
|  | .addReg(*I); | 
|  |  | 
|  | // Insert the copy-back instructions right before the terminator. | 
|  | for (auto *Exit : Exits) | 
|  | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), *I) | 
|  | .addReg(NewVR); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const { | 
|  | // Integer division on AArch64 is expensive. However, when aggressively | 
|  | // optimizing for code size, we prefer to use a div instruction, as it is | 
|  | // usually smaller than the alternative sequence. | 
|  | // The exception to this is vector division. Since AArch64 doesn't have vector | 
|  | // integer division, leaving the division as-is is a loss even in terms of | 
|  | // size, because it will have to be scalarized, while the alternative code | 
|  | // sequence can be performed in vector form. | 
|  | bool OptSize = | 
|  | Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); | 
|  | return OptSize && !VT.isVector(); | 
|  | } |